Nothing Special   »   [go: up one dir, main page]

JP2010014330A - Heat exchanger and method for manufacturing the heat exchanger - Google Patents

Heat exchanger and method for manufacturing the heat exchanger Download PDF

Info

Publication number
JP2010014330A
JP2010014330A JP2008174237A JP2008174237A JP2010014330A JP 2010014330 A JP2010014330 A JP 2010014330A JP 2008174237 A JP2008174237 A JP 2008174237A JP 2008174237 A JP2008174237 A JP 2008174237A JP 2010014330 A JP2010014330 A JP 2010014330A
Authority
JP
Japan
Prior art keywords
fin
heat exchanger
region
corrugated
corrugated fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008174237A
Other languages
Japanese (ja)
Inventor
Genei Kin
鉉永 金
Haruo Nakada
春男 中田
Hirokazu Fujino
宏和 藤野
Toshimitsu Kamata
俊光 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008174237A priority Critical patent/JP2010014330A/en
Publication of JP2010014330A publication Critical patent/JP2010014330A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger improved in dew condensate draining performance with an excellent contact state of a flat tube and a fin. <P>SOLUTION: A water conveying fin 13 in the heat exchanger 10 is formed integrally with a corrugated fin 12 out of one plate-like material and arranged outside a ventilating space and downstream of air flow passing through the ventilating space. The lower part of the upper water conveying fin 13 out of the vertically adjacent water conveying fins 13 is in proximity to or in contact with the upper part of the lower water conveying fin 13. The dew condensate produced at the flat tube 11 and the corrugated fin 12 is pushed by air flow to reach the water conveying fin 13 integral with the corrugated fin 12, and flows downward from there. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、扁平管とフィンとを備えた熱交換器、及びその熱交換器の製造方法に関する。   The present invention relates to a heat exchanger provided with flat tubes and fins, and a method for manufacturing the heat exchanger.

従来、扁平管の平面部を水平にし、平面部と平面部との間にフィンが波形に折り曲げられた状態で配置されている熱交換器が広く普及している。このような熱交換器では、フィンが扁平管によって分断されているので、結露水が滞留して通風抵抗となる。この結露水の滞留を解消するために、フィンの端部から突出部を空気流の下流側へ突出させ、その突出部に切り欠きを設けた熱交換器が提供されている(特許文献1参照)。特許文献1に開示されている熱交換器によれば、発生した結露水は、空気流に押されて下流側に集まり、切り欠きを通って下方へ落下する。   2. Description of the Related Art Conventionally, a heat exchanger in which a flat portion of a flat tube is horizontal and fins are disposed between the flat portion and the flat portion in a state where the fin is bent into a corrugated shape has been widely used. In such a heat exchanger, since the fins are divided by the flat tube, the condensed water stays and becomes ventilation resistance. In order to eliminate the retention of the condensed water, a heat exchanger is provided in which a protrusion is protruded from the end of the fin to the downstream side of the air flow, and a notch is provided in the protrusion (see Patent Document 1). ). According to the heat exchanger disclosed in Patent Document 1, the generated condensed water is pushed by the air flow, gathers on the downstream side, and falls downward through the notch.

しかしながら、特許文献1に記載の熱交換器では、結露水が切り欠きから落下するのは、結露水が自重で落下できる程度の大きさまで成長したときであって、周期的に結露水が熱交換器に滞留することがあり、結露水に対する水はけ性は低い。また、熱交換器の小型化がさらに進む状況下において、熱交換器の小型化は結露水に対する熱交換器の水はけ性を低下させる可能性が高いので、さらなる水はけ性の向上が求められている。   However, in the heat exchanger described in Patent Document 1, the condensed water falls from the notch when the condensed water grows to such a size that it can be dropped by its own weight, and the condensed water is periodically heat exchanged. It may stay in the vessel, and its drainage against condensed water is low. In addition, in a situation where further downsizing of the heat exchanger is progressing, the downsizing of the heat exchanger is likely to reduce the drainability of the heat exchanger with respect to the dew condensation water, so further improvement in drainage is required. .

他方、水はけ性を向上させるために、扁平管が水平面に対して傾斜した状態でフィンに貫通する熱交換器も提供されている(特許文献2参照)。特許文献2に開示されている熱交換器によれば、発生した結露水は、傾斜した扁平管の表面を流れるので、滞留して空気抵抗となることはない。   On the other hand, in order to improve drainage, a heat exchanger is also provided that penetrates the fins with the flat tube inclined with respect to the horizontal plane (see Patent Document 2). According to the heat exchanger disclosed in Patent Document 2, the generated condensed water flows on the surface of the inclined flat tube, and therefore does not stay and become air resistance.

しかしながら、特許文献2に記載の熱交換器では、扁平管がフィンに嵌め込まれるという構成であるので、ロウ付け溶接時にフィンが扁平管の長手方向に逃げ易く、ロウ付け溶接後の扁平管とフィンとの接触状態が不完全となり、熱交換性能が低下する。
実公昭63−6632号公報 特開2005−121318号公報
However, in the heat exchanger described in Patent Document 2, since the flat tube is fitted into the fin, the fin easily escapes in the longitudinal direction of the flat tube during brazing welding, and the flat tube and fin after brazing welding The contact state with the air becomes incomplete, and the heat exchange performance decreases.
Japanese Utility Model Publication No. 63-6632 JP-A-2005-121318

本発明の課題は、扁平管とフィンとの接触状態が良好で、結露水に対する水はけ性を向上させた熱交換器を提供することにある。   The subject of this invention is providing the heat exchanger which the contact state of a flat tube and a fin is favorable and improved the drainage property with respect to dew condensation water.

第1発明に係る熱交換器は、扁平管と、波形フィンと、導水フィンとを備えている。扁平管は、平面部を上下方向に向けた状態で複数段配列されている。波形フィンは、上下に隣接する扁平管に挟まれた通風空間に波形に折り曲げられた状態で配置されている。導水フィンは、一つの板状素材から波形フィンと一体成形され、通風空間の外側で且つ通風空間を通る空気流の上流側及び/又は下流側に配置されている。   The heat exchanger according to the first invention includes a flat tube, a corrugated fin, and a water guide fin. The flat tubes are arranged in a plurality of stages in a state where the plane portion is directed in the vertical direction. The corrugated fins are arranged in a state of being bent into a corrugated space in a ventilation space sandwiched between vertically adjacent flat tubes. The water guide fins are integrally formed with the corrugated fins from a single plate-shaped material, and are disposed outside the ventilation space and upstream and / or downstream of the air flow passing through the ventilation space.

この熱交換器では、扁平管及び波形フィンで発生した結露水は、空気流に押されて波形フィンと一体の導水フィンへ伝わり下方へ流れる。その結果、熱交換器の水はけがよくなる。また、波形フィンは、扁平管の長手方向にそって波形に延びているので、ロウ付け溶接時に、扁平管の長手方向に逃げ難く、ロウ付け溶接後の扁平管と波形フィンとの接触状態がよい。   In this heat exchanger, the dew condensation water generated in the flat tube and the corrugated fin is pushed by the air flow and is transferred to the water guiding fin integral with the corrugated fin and flows downward. As a result, drainage of the heat exchanger is improved. In addition, since the corrugated fin extends in a corrugated shape along the longitudinal direction of the flat tube, it is difficult to escape in the longitudinal direction of the flat tube during brazing welding, and the contact state between the flat tube and the corrugated fin after brazing welding is difficult. Good.

第2発明に係る熱交換器は、第1発明に係る熱交換器であって、上下に隣接する導水フィンの上側の導水フィンが、下側の導水フィンと近接又は接触している。   A heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the water guide fins on the upper side of the water guide fins adjacent in the vertical direction are close to or in contact with the lower water guide fins.

この熱交換器では、上側の導水フィンから降下してきた結露水は、降下時の勢い、又は結露水同士の結合によって下側の導水フィンへ移動し下方へ流れるので、熱交換器の水はけがさらによくなる。   In this heat exchanger, the dew condensation water that has descended from the upper water conduction fins moves to the lower water conduction fins due to the momentum at the time of descent, or the coupling of the dew condensation waters, and flows downward. Get better.

第3発明に係る熱交換器の製造方法は、第1発明又は第2発明に係る熱交換器の製造方法であって、波形フィンが、波形に折り曲げられる前の板状素材のとき、波形フィンとなる予定の第1領域と、導水フィンとなる予定の第2領域とを有している。第1領域と第2領域との境界線のうち、波形フィンの谷と隣接する予定の範囲を除いた部分に切り込み線が設けられている。第1領域が波形に折り曲げられるときに、第2領域が第1領域の折り曲げ方向と反対方向に折り曲げられる。   A method for manufacturing a heat exchanger according to a third invention is a method for manufacturing a heat exchanger according to the first or second invention, wherein the corrugated fin is a plate-like material before being bent into a corrugated shape. And a second region that is to be a water guide fin. Of the boundary line between the first region and the second region, a cut line is provided in a portion excluding a range adjacent to the corrugated fin valley. When the first region is folded into a waveform, the second region is folded in a direction opposite to the folding direction of the first region.

この熱交換器の製造方法では、波形フィン及び導水フィンが折り曲げ後にせん断加工を必要としないので、製造コストの増大が抑制される。また、波形フィンと導水フィンとの一体化により部品点数が削減される。   In this heat exchanger manufacturing method, since the corrugated fin and the water guide fin do not require a shearing process after being bent, an increase in manufacturing cost is suppressed. In addition, the number of parts is reduced by integrating the corrugated fins and the water guiding fins.

第4発明に係る熱交換器の製造方法は、第1発明又は第2発明に係る熱交換器の製造方法であって、波形フィンが、波形に折り曲げられる前の板状素材のとき、波形フィンとなる予定の第1領域と、導水フィンとなる予定の第2領域とを有している。第1領域と第2領域との境界線のうち、波形フィンの谷と隣接する予定の範囲を除いた部分に切り込み線が設けられている。第2領域のうち、波形フィンの山と隣接する予定の部分に切り欠きが設けられている。第1領域が波形に折り曲げられるときに、第2領域が第1領域の折り曲げ方向と反対方向に折り曲げられる。   A method for manufacturing a heat exchanger according to a fourth invention is a method for manufacturing a heat exchanger according to the first or second invention, wherein the corrugated fin is a plate-like material before being bent into a corrugated shape. And a second region that is to be a water guide fin. Of the boundary line between the first region and the second region, a cut line is provided in a portion excluding a range adjacent to the corrugated fin valley. In the second region, a notch is provided in a portion scheduled to be adjacent to the peak of the corrugated fin. When the first region is folded into a waveform, the second region is folded in a direction opposite to the folding direction of the first region.

この熱交換器の製造方法では、波形フィン及び導水フィンが折り曲げ後にせん断加工を必要としないので、製造コストの増大が抑制される。また、波形フィンと導水フィンとの一体化により部品点数が削減される。さらに、本来、導水フィンの谷となる部分が切り欠かれているので、結露水が導水フィンに溜まることがない。   In this heat exchanger manufacturing method, since the corrugated fin and the water guide fin do not require a shearing process after being bent, an increase in manufacturing cost is suppressed. In addition, the number of parts is reduced by integrating the corrugated fins and the water guiding fins. Furthermore, since the part which becomes a trough of a water conveyance fin is notched originally, dew condensation water does not accumulate in a water conveyance fin.

第1発明に係る熱交換器では、扁平管及び波形フィンで発生した結露水は、空気流に押されて波形フィンと一体の導水フィンへ伝わり下方へ流れるので、熱交換器の水はけがよくなる。また、波形フィンは、扁平管の長手方向にそって波形に延びているので、ロウ付け溶接時に、扁平管の長手方向に逃げ難く、ロウ付け溶接後の扁平管と波形フィンとの接触状態がよい。   In the heat exchanger according to the first aspect of the invention, the dew condensation water generated by the flat tube and the corrugated fin is pushed by the air flow and transferred to the water guiding fin integral with the corrugated fin and flows downward, so that the heat exchanger drains well. In addition, since the corrugated fin extends in a corrugated shape along the longitudinal direction of the flat tube, it is difficult to escape in the longitudinal direction of the flat tube during brazing welding, and the contact state between the flat tube and the corrugated fin after brazing welding is difficult. Good.

第2発明に係る熱交換器では、上側の導水フィンから降下してきた結露水は、降下時の勢い、又は結露水同士の結合によって下側の導水フィンへ移動し下方へ流れるので、熱交換器の水はけがさらによくなる。   In the heat exchanger according to the second aspect of the invention, the dew condensation water that has descended from the upper water conduction fins moves to the lower water conduction fins due to the momentum of the descent or the coupling of the dew condensation waters and flows downward. The drainage is even better.

第3発明に係る熱交換器の製造方法では、波形フィン及び導水フィンが折り曲げ後にせん断加工を必要としないので、製造コストの増大が抑制される。また、波形フィンと導水フィンとの一体化により部品点数が削減される。   In the method for manufacturing a heat exchanger according to the third invention, since the corrugated fin and the water guide fin do not require shearing after being bent, an increase in manufacturing cost is suppressed. In addition, the number of parts is reduced by integrating the corrugated fins and the water guiding fins.

第4発明に係る熱交換器の製造方法では、本来、導水フィンの谷となる部分が切り欠かれているので、結露水が導水フィンに溜まることがない。   In the heat exchanger manufacturing method according to the fourth aspect of the present invention, since the portion that becomes the valley of the water conveyance fin is originally cut out, the condensed water does not accumulate in the water conveyance fin.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

<熱交換器10の構成>
図1は、本発明の一実施形態に係る熱交換器の正面図であり、図2は、図1のA部の拡大斜視図である。図1において、熱交換器10は、扁平管11、波形フィン12、導水フィン13及びヘッダ15を備えている。
<Configuration of heat exchanger 10>
FIG. 1 is a front view of a heat exchanger according to an embodiment of the present invention, and FIG. 2 is an enlarged perspective view of a portion A in FIG. In FIG. 1, the heat exchanger 10 includes a flat tube 11, a corrugated fin 12, water guide fins 13, and a header 15.

(扁平管11)
図2において、扁平管11は、アルミニウムまたはアルミニウム合金から成形されており、伝熱面となる平面部11aと、冷媒が流れる複数の冷媒流路11bを有している。扁平管11は、平面部11aを上下に向けた状態で複数段配列されている。
(Flat tube 11)
In FIG. 2, the flat tube 11 is formed from aluminum or an aluminum alloy, and has a flat portion 11a serving as a heat transfer surface and a plurality of refrigerant flow paths 11b through which a refrigerant flows. The flat tubes 11 are arranged in a plurality of stages with the flat portion 11a facing up and down.

(波形フィン12)
図2において、波形フィン12は、波形に折り曲げられたアルミニウム製またはアルミニウム合金製のフィンである。波形フィン12は、上下に隣接する扁平管11に挟まれた通風空間に配置され、谷部12g及び山部12hとなる折り曲げ部が扁平管11の平面部11aと接触している。なお、谷部12gと山部12hと平面部11aとはロウ付け溶接されている。
(Waveform fin 12)
In FIG. 2, corrugated fins 12 are fins made of aluminum or aluminum alloy that are bent into corrugations. The corrugated fins 12 are arranged in a ventilation space sandwiched between upper and lower flat tubes 11, and bent portions that become valley portions 12 g and mountain portions 12 h are in contact with the flat portion 11 a of the flat tube 11. In addition, the trough part 12g, the peak part 12h, and the plane part 11a are brazed and welded.

伝熱面12aは、通風空間を通過する空気流Bと熱交換する部分であり、効率よく熱交換を行うためのルーバー12cが形成されている。ルーバー12cは、伝熱面12aの一方の面から他方の面へ貫通する開口を形成している。説明の便宜上、図2正面視において、伝熱面12aの正面側を「第1面」、背面側を「第2面」と呼ぶ。伝熱面12aの中央から上流側に位置するルーバー12c群は、空気流が第2面からから第1面へ流れるように傾いており、伝熱面12aの中央から下流側に位置するルーバー12c群は、空気流が第1面からから第2面へ流れるように傾いている。   The heat transfer surface 12a is a portion that exchanges heat with the air flow B that passes through the ventilation space, and a louver 12c for efficiently exchanging heat is formed. Louver 12c forms an opening penetrating from one surface of heat transfer surface 12a to the other surface. For convenience of explanation, in the front view of FIG. 2, the front side of the heat transfer surface 12a is referred to as a “first surface” and the back side is referred to as a “second surface”. The louver 12c group located upstream from the center of the heat transfer surface 12a is inclined so that the air flow flows from the second surface to the first surface, and the louver 12c located downstream from the center of the heat transfer surface 12a. The group is tilted so that the airflow flows from the first surface to the second surface.

(導水フィン13)
図2において、導水フィン13は、通風空間の外側に位置し、通風空間から空気流Bの下流側へはみ出ている。上下に隣接する導水フィン13のうち、上側の導水フィン13の下部は、下側の導水フィン13の上部に近接又は接触している。
(Water guide fins 13)
In FIG. 2, the water guide fins 13 are located outside the ventilation space and protrude from the ventilation space to the downstream side of the air flow B. Among the water guide fins 13 adjacent in the vertical direction, the lower part of the upper water guide fin 13 is close to or in contact with the upper part of the lower water guide fin 13.

図3は、波形フィン及び導水フィンの斜視図である。図3において、波形フィン12の谷部12gと導水フィンの山部13hとは隣接しており、本実施形態では、波形フィン12と導水フィン13とは同一板状素材から一体成形されているので、波形フィン12の谷部12gと導水フィンの山部13hとがなめらかに繋がっている。   FIG. 3 is a perspective view of the corrugated fins and the water guiding fins. In FIG. 3, the valley 12g of the corrugated fin 12 and the peak 13h of the water guiding fin are adjacent to each other, and in this embodiment, the corrugated fin 12 and the water guiding fin 13 are integrally formed from the same plate-like material. The valley 12g of the corrugated fin 12 and the peak 13h of the water guiding fin are smoothly connected.

(波形フィン12と導水フィン13の製造方法)
図4は、波形フィン及び導水フィンの折り曲げ前の板状素材の平面図である。なお、図4では、波形フィン12のルーバー12cの記載が省略されている。図4において、波形フィン12及び導水フィン13の折り曲げ前の板状素材は、波形フィン12となる予定の第1領域121と、導水フィン13となる予定の第2領域とを有している。この状態では、波形フィン12の谷部12gとなる第1谷予定域121gと、導水フィン13の山部13hとなる予定の第2山予定域122hとが隣接し、波形フィン12の山部12hとなる第1山予定域121hと、導水フィン13の谷部13gとなる予定の第2谷予定域122gとが隣接している。第1領域121と第2領域122との境界線上には、切り込み線123が設けられている。但し、第1谷予定域121gと第2山予定域122hとの境界線上には、切り込み線123は設けられていない。
(Manufacturing method of the corrugated fin 12 and the water guide fin 13)
FIG. 4 is a plan view of the plate-like material before the corrugated fins and the water guide fins are bent. In FIG. 4, the description of the louver 12c of the corrugated fin 12 is omitted. In FIG. 4, the plate-shaped material before the corrugated fins 12 and the water guide fins 13 are bent has a first region 121 to be the corrugated fins 12 and a second region to be the water guide fins 13. In this state, the first valley planned area 121g that becomes the valley 12g of the corrugated fin 12 and the second mountain planned area 122h that becomes the peak 13h of the water conveyance fin 13 are adjacent to each other, and the peak 12h of the corrugated fin 12 The 1st mountain planned area 121h which becomes and the 2nd valley planned area 122g which will become the valley part 13g of the water conveyance fin 13 adjoin. On the boundary line between the first region 121 and the second region 122, a cut line 123 is provided. However, the cut line 123 is not provided on the boundary line between the first valley planned area 121g and the second mountain planned area 122h.

上記の板状素材の折り曲げは、第1谷予定域121gの両側が上方に向って折れ、第2山予定域122hの両側が下方に向って折れるように行われる。このとき、第1山予定域121hが上方に向って移動し、第2谷予定域122gは下方に向って移動する。これによって、波形フィン12の谷部12gと導水フィン13の山部13hとが繋がった一体物が完成する。なお、図4の破線Xは、折り曲げ予定位置を示している。   The plate-like material is bent so that both sides of the first valley planned area 121g are folded upward and both sides of the second mountain planned area 122h are folded downward. At this time, the first mountain planned area 121h moves upward, and the second valley planned area 122g moves downward. As a result, an integrated body in which the valley 12g of the corrugated fin 12 and the peak 13h of the water guiding fin 13 are connected is completed. In addition, the broken line X of FIG. 4 has shown the bending planned position.

(ヘッダ15)
図1において、ヘッダ15は、上下方向に複数段配列された扁平管11の両端に連結されている。説明の便宜上、図1の正面視右側のヘッダを「第1ヘッダ151」と呼び、左側のヘッダを「第2ヘッダ152」と呼ぶ。第1ヘッダ151及び第2ヘッダ152は、扁平管11を支持する機能と、冷媒を扁平管11の冷媒流路11bに導く機能と、冷媒流路11bから出てきた冷媒を集合させる機能とを有している。
(Header 15)
In FIG. 1, the header 15 is connected to both ends of flat tubes 11 arranged in a plurality of stages in the vertical direction. For convenience of explanation, the header on the right side in FIG. 1 is called “first header 151”, and the header on the left side is called “second header 152”. The first header 151 and the second header 152 have a function of supporting the flat tube 11, a function of guiding the refrigerant to the refrigerant flow path 11b of the flat pipe 11, and a function of collecting the refrigerant that has come out of the refrigerant flow path 11b. Have.

(冷媒の流れ)
図1、図2において、第1ヘッダ151の入口151aから流入した冷媒は、最上段の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、2段目の扁平管11の各冷媒流路11bへ均等に分配され第1ヘッダ151へ向って流れる。以降、奇数段目の扁平管11内の冷媒は、第2ヘッダ152へ向って流れ、偶数段目の扁平管11内の冷媒は、第1ヘッダ151に向って流れる。そして、最下段で且つ偶数段目の扁平管11内の冷媒は、第1ヘッダ151に向って流れ、第1ヘッダ151で集合し出口151bから流出する。
(Refrigerant flow)
In FIG. 1 and FIG. 2, the refrigerant flowing in from the inlet 151 a of the first header 151 is distributed almost evenly to the respective refrigerant flow paths 11 b of the uppermost flat tube 11 and flows toward the second header 152. The refrigerant reaching the second header 152 is evenly distributed to the respective refrigerant flow paths 11b of the second-stage flat tube 11 and flows toward the first header 151. Thereafter, the refrigerant in the odd-numbered flat tubes 11 flows toward the second header 152, and the refrigerant in the even-numbered flat tubes 11 flows toward the first header 151. And the refrigerant | coolant in the flat tube 11 of the lowest level and the even-numbered level flows toward the 1st header 151, gathers at the 1st header 151, and flows out from the exit 151b.

なお、冷媒の流れ方は、用途又は冷媒の圧力損失の程度に応じて変更される。例えば、冷媒が複数の扁平管11内を同時に同方向へ流れるようにして冷媒の圧力損失を抑えてもよい。以下、再度、図1を参照しながら、冷媒の他の流れ方を説明する。   In addition, how the refrigerant flows changes depending on the application or the degree of pressure loss of the refrigerant. For example, the pressure loss of the refrigerant may be suppressed by allowing the refrigerant to flow in the same direction in the plurality of flat tubes 11 at the same time. Hereinafter, another flow of the refrigerant will be described with reference to FIG. 1 again.

先ず、第1ヘッダ151の入口151aから流入した冷媒は、最上段及び第2段目の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、第3段目及び第4段目の扁平管11の各冷媒流路11bへ均等に分配され第1ヘッダ151に向って流れる。第1ヘッダ151に達した冷媒は第5段目及び第6段目の扁平管11の各冷媒流路11bへほぼ均等に分配され第2ヘッダ152に向って流れる。第2ヘッダ152に達した冷媒は、第7段目及び第8段目の扁平管11の各冷媒流路11bへほぼ均等に分配されヘッダ151に向って流れる。そして、第1ヘッダ151で集合した冷媒は出口151bから流出する。これによって、1つに冷媒流路11bを通る冷媒の流速が低くなり、冷媒の圧力損失が軽減される。   First, the refrigerant flowing from the inlet 151 a of the first header 151 is distributed almost evenly to the respective refrigerant flow paths 11 b of the uppermost and second flat tubes 11 and flows toward the second header 152. The refrigerant reaching the second header 152 is evenly distributed to the refrigerant flow paths 11b of the third and fourth flat tubes 11 and flows toward the first header 151. The refrigerant reaching the first header 151 is distributed almost evenly to the refrigerant flow paths 11 b of the fifth and sixth flat tubes 11 and flows toward the second header 152. The refrigerant that has reached the second header 152 is distributed almost evenly to the refrigerant flow paths 11 b of the seventh and eighth flat tubes 11 and flows toward the header 151. Then, the refrigerant collected at the first header 151 flows out from the outlet 151b. As a result, the flow rate of the refrigerant passing through the refrigerant flow path 11b is lowered, and the pressure loss of the refrigerant is reduced.

熱交換器10が蒸発器として機能するとき、冷媒流路11bを流れる冷媒は、波形フィン12を介して通風空間を流れる空気流から吸熱する。熱交換器10が凝縮器として機能するときは、冷媒流路11bを流れる冷媒は、波形フィン12を介して通風空間を流れる空気流へ放熱する。   When the heat exchanger 10 functions as an evaporator, the refrigerant flowing through the refrigerant flow path 11b absorbs heat from the air flow flowing through the ventilation space via the corrugated fins 12. When the heat exchanger 10 functions as a condenser, the refrigerant flowing through the refrigerant flow path 11b radiates heat to the air flow flowing through the ventilation space via the corrugated fins 12.

(結露水の流れ)
一般に、扁平管11が平面部11aを上下に向けて配列されているとき、熱交換器表面の水はけが悪く、蒸発器として利用した場合、滞留した結露水が空気流の抵抗となり熱交換性能が低下することがある。しかし、本実施形態の熱交換器10では、導水フィン13があるので結露水は滞留することがない。以下、結露水の流れについて図面を用いて説明する。
(Flow of condensed water)
In general, when the flat tubes 11 are arranged with the flat portion 11a facing up and down, drainage of the surface of the heat exchanger is poor, and when used as an evaporator, the accumulated condensed water becomes resistance to air flow and heat exchange performance is improved. May decrease. However, in the heat exchanger 10 of the present embodiment, the condensed water does not stay because there are the water guide fins 13. Hereinafter, the flow of condensed water will be described with reference to the drawings.

図5は、図1の熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図である。図5において、波形フィン12の伝熱面12aで発生した結露水Wは、重力によって伝熱面12aを降下しながら、空気流Bに押されて下流側へ移動する。途中で扁平管11の平面部11aへ落ちた結露水および平面部11aで発生した結露水も、空気流Bに押され平面部11aに沿って下流側へ移動する。また、波形フィン12の谷部12g(図3参照)へ降下した結露水も、空気流Bに押され谷部12gに沿って下流側へ移動する。また、波形フィン12の谷部12gと扁平管11の平面部11aとの隙間に侵入した結露水は、その隙間による毛細管現象によって隙間に沿って下流側へ移動する。   FIG. 5 is a partial cross-sectional view of the heat exchanger of FIG. 1 taken along a plane perpendicular to the longitudinal direction of the flat tube. In FIG. 5, the dew condensation water W generated on the heat transfer surface 12a of the corrugated fin 12 is pushed by the air flow B and moves downstream while descending the heat transfer surface 12a by gravity. Condensed water that has fallen to the flat portion 11a of the flat tube 11 and condensed water generated at the flat portion 11a are pushed by the airflow B and move downstream along the flat portion 11a. Moreover, the dew condensation water which descend | falls to the trough part 12g (refer FIG. 3) of the corrugated fin 12 is pushed by the airflow B, and moves downstream along the trough part 12g. Moreover, the dew condensation water which penetrate | invaded into the clearance gap between the trough part 12g of the corrugated fin 12 and the plane part 11a of the flat tube 11 moves downstream along a clearance gap by the capillary phenomenon by the clearance gap.

波形フィン12の下流側に達した結露水は、空気流Bに押されて導水フィン13の山部13h(図3参照)へ移動し、導水フィン13の鉛直面に沿って下方に移動する。その結果、導水フィン13がないものに比べて水はけがよくなる。   Condensed water that has reached the downstream side of the corrugated fins 12 is pushed by the air flow B, moves to the mountain portion 13 h of the water guide fins 13 (see FIG. 3), and moves downward along the vertical plane of the water guide fins 13. As a result, drainage is better than that without the water guide fins 13.

<特徴>
(1)
熱交換器10では、導水フィン13が、一つの板状素材から波形フィン12と一体成形され、通風空間の外側で且つ通風空間を通る空気流の下流側に配置されている。上下に隣接する導水フィン13のうち、上側の導水フィン13の下部が、下側の導水フィン13の上部と近接又は接触している。扁平管11及び波形フィン12で発生した結露水は、空気流に押されて波形フィン12と一体の導水フィン13へ伝わり、そこから下方へ流れる。したがって、水はけがよい。また、波形フィン12は、扁平管11の長手方向にそって波形に延びているので、ロウ付け溶接時に、扁平管11の長手方向に逃げ難く、ロウ付け溶接後の扁平管11と波形フィン12との接触状態がよい。
<Features>
(1)
In the heat exchanger 10, the water guiding fins 13 are integrally formed with the corrugated fins 12 from a single plate-shaped material, and are arranged outside the ventilation space and downstream of the air flow passing through the ventilation space. Among the water guide fins 13 adjacent in the vertical direction, the lower part of the upper water guide fin 13 is in proximity to or in contact with the upper part of the lower water guide fin 13. Condensed water generated in the flat tube 11 and the corrugated fins 12 is pushed by the air flow and transmitted to the water guiding fins 13 integrated with the corrugated fins 12 and flows downward therefrom. Therefore, drainage is good. Further, since the corrugated fin 12 extends in a corrugated shape along the longitudinal direction of the flat tube 11, it is difficult to escape in the longitudinal direction of the flat tube 11 during brazing welding, and the flat tube 11 and the corrugated fin 12 after brazing welding. The contact state with is good.

(2)
熱交換器10では、波形フィン12が、波形に折り曲げられる前の板状素材のとき、波形フィン12となる予定の第1領域121と、導水フィン13となる予定の第2領域122とを有している。第1領域121と第2領域122との境界線のうち、波形フィン12の谷部12gと隣接する予定の範囲を除いた部分に切り込み線123が設けられている。第1領域121が波形に折り曲げられるときに、第2領域122が第1領域121の折り曲げ方向と反対方向に折り曲げられる。その結果、波形フィン12の谷部12gと導水フィン13の山部13hとが繋がった状態となり、波形フィン12で発生した結露水が導水フィン13へ移動し易くなる。また、波形フィン12及び導水フィン13は折り曲げ後にせん断加工を必要としないので、製造コストの増大が抑制される。
(2)
In the heat exchanger 10, when the corrugated fin 12 is a plate-shaped material before being bent into a corrugated shape, the first region 121 that is to be the corrugated fin 12 and the second region 122 that is to be the water guide fin 13 are provided. is doing. Of the boundary line between the first region 121 and the second region 122, a cut line 123 is provided in a portion excluding a range scheduled to be adjacent to the valley 12 g of the corrugated fin 12. When the first region 121 is bent into a waveform, the second region 122 is bent in a direction opposite to the bending direction of the first region 121. As a result, the valley 12g of the corrugated fin 12 and the peak 13h of the water guiding fin 13 are connected to each other, and the condensed water generated in the corrugated fin 12 easily moves to the water guiding fin 13. Further, since the corrugated fins 12 and the water guide fins 13 do not require shearing after being bent, an increase in manufacturing cost is suppressed.

<変形例>
図6は、変形例に係る波形フィン及び導水フィンの斜視図であり、図7は、変形例に係る波形フィン及び導水フィンの折り曲げ前の板状素材の平面図である。なお、上記実施形態と同一の部分には同一符号を付与して説明を省略する。図6、図7において、導水フィン13の谷部、即ち上記実施形態の谷部13g(図3参照)に相当する部分が切断されている。
<Modification>
FIG. 6 is a perspective view of the corrugated fin and the water guiding fin according to the modified example, and FIG. 7 is a plan view of the plate-shaped material before the corrugated fin and the water guiding fin according to the modified example are bent. In addition, the same code | symbol is provided to the part same as the said embodiment, and description is abbreviate | omitted. 6 and 7, a valley portion of the water guide fin 13, that is, a portion corresponding to the valley portion 13 g (see FIG. 3) of the above embodiment is cut.

図7に示すように、変形例に係る波形フィン及び導水フィンの折り曲げ前の板状素材では、第1領域121と第2領域122との境界線上には、切り込み線123が設けられている。但し、第1谷予定域121gと第2山予定域122hとの境界線上には、切り込み線123は設けられていない。さらに、導水フィン13の谷部となる予定の領域、即ち、上記実施形態の第2谷予定域122g(図4参照)に相当する領域に切り欠き124が設けられている。   As shown in FIG. 7, in the plate-shaped material before bending of the corrugated fin and the water guiding fin according to the modification, a cut line 123 is provided on the boundary line between the first region 121 and the second region 122. However, the cut line 123 is not provided on the boundary line between the first valley planned area 121g and the second mountain planned area 122h. Furthermore, the notch 124 is provided in the area | region which becomes a trough part of the water conveyance fin 13, ie, the area | region corresponded to the 2nd trough planned area 122g (refer FIG. 4) of the said embodiment.

上記の板状素材の折り曲げは、第1谷予定域121gの両側が上方に向って折れ、第2山予定域122hの両側が下方に向って折れるように行われる。このとき、第1山予定域121hが上方に向って、切り欠き124は下方に向って移動する。これによって、谷部が切断された導水フィン13が形成され、波形フィン12の谷部12gと導水フィン13の山部13hとが繋がった一体物が完成する。   The plate-like material is bent so that both sides of the first valley planned area 121g are folded upward and both sides of the second mountain planned area 122h are folded downward. At this time, the first mountain planned area 121h moves upward, and the notch 124 moves downward. Thereby, the water conveyance fin 13 by which the trough part was cut | disconnected is formed, and the integral thing which the trough part 12g of the corrugated fin 12 and the peak part 13h of the water conveyance fin 13 were connected is completed.

<変形例の特徴>
変形例に係る熱交換器10では、導水フィン13の鉛直面に沿って降下してきた結露水が、塞き止められることがなく容易に下方の導水フィン13へ移動することができる。
<Features of modification>
In the heat exchanger 10 according to the modification, the condensed water that has descended along the vertical plane of the water guide fins 13 can be easily moved to the water guide fins 13 below without being blocked.

<他の実施形態>
上記実施形態及び変形例では、導水フィン13が、上下に隣接する扁平管11に挟まれた通風空間から空気流Bの下流側にはみ出ているが、これに限定されるものではなく、通風空間から空気流Bの上流側にはみ出てもよい。
<Other embodiments>
In the said embodiment and modification, although the water conveyance fin 13 protrudes in the downstream of the airflow B from the ventilation space pinched | interposed into the flat pipe 11 adjacent to the upper and lower sides, it is not limited to this, The ventilation space To the upstream side of the air flow B.

図8は、空気流の上流側及び下流側に導水フィンを備えた熱交換器の部分断面図である。図8において、導水フィン13は、結露水を下方に流すだけでなく、熱交換用フィンとしての機能が高まる。   FIG. 8 is a partial cross-sectional view of a heat exchanger provided with water guide fins on the upstream side and the downstream side of the air flow. In FIG. 8, the water guiding fins 13 not only cause the condensed water to flow downward, but also increase the function as heat exchange fins.

図9は、扁平管を空気流の方向に複数列で複数段配列した熱交換器の部分断面図である。図9において、扁平管11は空気流Bの方向に2列あり、上下方向に複数段配列されている。導水フィン13は、1列目の上下に隣接する扁平管11に挟まれた通風空間の上流側、2列目の上下に隣接する扁平管11に挟まれた通風空間の下流側、及び1列目の通風空間と2列目の通風空間との間に配置されている。   FIG. 9 is a partial cross-sectional view of a heat exchanger in which flat tubes are arranged in a plurality of rows in a plurality of rows in the air flow direction. In FIG. 9, the flat tubes 11 have two rows in the direction of the air flow B, and are arranged in a plurality of stages in the vertical direction. The water guide fins 13 are located upstream of the ventilation space sandwiched between the flat tubes 11 adjacent above and below the first row, downstream of the ventilation space sandwiched between the flat tubes 11 adjacent above and below the first row, and one row. It arrange | positions between the ventilation space of eyes, and the ventilation space of the 2nd row.

この熱交換器10では、導水フィン13が、1列目の通風空間と2列目の通風空間との間に配置されているので、1列目の扁平管11及び波形フィン12で発生した結露水は、空気流Bに押されて下流側へ進む途中で導水フィン13に到達して下方へ流れる。その結果、結露水が熱交換器10の中央部分で滞留することがない。   In this heat exchanger 10, since the water guiding fins 13 are disposed between the first row ventilation space and the second row ventilation space, dew condensation generated in the first row of flat tubes 11 and the corrugated fins 12. The water is pushed by the air flow B and reaches the water guide fins 13 on the way to the downstream side and flows downward. As a result, the condensed water does not stay in the central portion of the heat exchanger 10.

以上のように、本発明に係る熱交換器は、扁平管が上下方向に複数段配列された場合でも結露水に対して水はけがよいので、空調機の熱交換器及び自動車のラジエターに有用である。   As described above, the heat exchanger according to the present invention is useful for a heat exchanger of an air conditioner and a radiator of an automobile because it can drain the condensed water even when the flat tubes are arranged in a plurality of stages in the vertical direction. is there.

本発明の一実施形態に係る熱交換器の正面図。The front view of the heat exchanger which concerns on one Embodiment of this invention. 図1のA部の拡大斜視図。The expansion perspective view of the A section of FIG. 波形フィン及び導水フィンの斜視図。The perspective view of a corrugated fin and a water guide fin. 波形フィン及び導水フィンの折り曲げ前の板状素材の平面図。The top view of the plate-shaped raw material before bending of a corrugated fin and a water guide fin. 図1の熱交換器を扁平管の長手方向と垂直な平面で切断したときの部分断面図。The fragmentary sectional view when the heat exchanger of FIG. 1 is cut along a plane perpendicular to the longitudinal direction of the flat tube. 変形例に係る波形フィン及び導水フィンの斜視図。The perspective view of the corrugated fin and water guide fin which concern on a modification. 変形例に係る波形フィン及び導水フィンの折り曲げ前の板状素材の平面図。The top view of the plate-shaped raw material before bending of the corrugated fin and water guide fin which concern on a modification. 空気流の上流側及び下流側に導水フィンを備えた熱交換器の部分断面図。The fragmentary sectional view of the heat exchanger provided with the water conveyance fin on the upstream and downstream sides of the air flow. 扁平管を空気流の方向に複数列で複数段配列した熱交換器の部分断面図。The fragmentary sectional view of the heat exchanger which arranged the flat tube in multiple rows in the direction of air flow in multiple rows.

符号の説明Explanation of symbols

10 熱交換器
11 扁平管
11a 平面部
12 波形フィン
12g 波形フィンの谷部
12h 波形フィンの山部
13 導水フィン
121 第1領域
122 第2領域
123 切り込み線
124 切り欠き
DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Flat tube 11a Plane part 12 Corrugated fin 12g Corrugated fin valley part 12h Corrugated fin peak part 13 Water conveyance fin 121 1st area | region 122 2nd area | region 123 Cut line 124 Notch

Claims (4)

平面部(11a)を上下方向に向けた状態で複数段配列される扁平管(11)と、
上下に隣接する前記扁平管(11)に挟まれた通風空間に、波形に折り曲げられた状態で配置される波形フィン(12)と、
一つの板状素材から前記波形フィン(12)と一体成形され、前記通風空間の外側で且つ前記通風空間を通る空気流の上流側及び/又は下流側に配置される導水フィン(13)と、
を備えた、
熱交換器(10)。
Flat tubes (11) arranged in a plurality of stages in a state where the flat surface portion (11a) is directed in the vertical direction;
A corrugated fin (12) arranged in a state of being bent into a corrugated shape in a ventilation space sandwiched between the flat tubes (11) adjacent vertically;
A water guide fin (13) integrally formed with the corrugated fin (12) from a single plate-like material, and disposed outside the ventilation space and upstream and / or downstream of the airflow passing through the ventilation space;
With
Heat exchanger (10).
上下に隣接する前記導水フィン(13)の上側の前記導水フィン(13)が、下側の前記導水フィン(13)と近接又は接触している、
請求項1に記載の熱交換器(10)。
The water guide fins (13) on the upper side of the water guide fins (13) adjacent vertically are close to or in contact with the water guide fins (13) on the lower side,
The heat exchanger (10) according to claim 1.
請求項1又は請求項2に記載の熱交換器(10)の製造方法であって、
前記波形フィン(12)は、前記波形に折り曲げられる前の前記板状素材のとき、
前記波形フィン(12)となる予定の第1領域(121)と、
前記導水フィン(13)となる予定の第2領域(122)と、
を有し、
前記第1領域(121)と前記第2領域(122)との境界線のうち、前記波形フィン(12)の谷(12g)と隣接する予定の範囲を除いた部分に切り込み線(123)が設けられ、
前記第1領域(121)が前記波形に折り曲げられるときに、前記第2領域(122)が前記第1領域(121)の折り曲げ方向と反対方向に折り曲げられる、
熱交換器(10)の製造方法。
It is a manufacturing method of the heat exchanger (10) according to claim 1 or 2,
When the corrugated fin (12) is the plate material before being bent into the corrugated shape,
A first region (121) to be the corrugated fin (12);
A second region (122) to be the water guide fins (13);
Have
Of the boundary line between the first region (121) and the second region (122), a cut line (123) is formed in a portion excluding a range adjacent to the valley (12g) of the corrugated fin (12). Provided,
When the first region (121) is bent into the corrugated shape, the second region (122) is bent in a direction opposite to the bending direction of the first region (121).
Manufacturing method of heat exchanger (10).
請求項1又は請求項2に記載の熱交換器(10)の製造方法であって、
前記波形フィン(12)は、前記波形に折り曲げられる前の前記板状素材のとき、
前記波形フィン(12)となる予定の第1領域(121)と、
前記導水フィン(13)となる予定の第2領域(122)と、
を有し、
前記第1領域(121)と前記第2領域(122)との境界線のうち、前記波形フィン(12)の谷(12g)と隣接する予定の範囲を除いた部分に切り込み線(123)が設けられ、
前記第2領域(122)のうち、前記波形フィン(12)の山(12h)と隣接する予定の部分に切り欠き(124)が設けられ、
前記第1領域(121)が前記波形に折り曲げられるときに、前記第2領域(122)が前記第1領域(121)の折り曲げ方向と反対方向に折り曲げられる、
熱交換器(10)の製造方法。
It is a manufacturing method of the heat exchanger (10) according to claim 1 or 2,
When the corrugated fin (12) is the plate material before being bent into the corrugated shape,
A first region (121) to be the corrugated fin (12);
A second region (122) to be the water guide fins (13);
Have
Of the boundary line between the first region (121) and the second region (122), a cut line (123) is formed in a portion excluding a range adjacent to the valley (12g) of the corrugated fin (12). Provided,
A notch (124) is provided in a portion of the second region (122) that is adjacent to the peak (12h) of the corrugated fin (12),
When the first region (121) is bent into the corrugated shape, the second region (122) is bent in a direction opposite to the bending direction of the first region (121).
Manufacturing method of heat exchanger (10).
JP2008174237A 2008-07-03 2008-07-03 Heat exchanger and method for manufacturing the heat exchanger Pending JP2010014330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174237A JP2010014330A (en) 2008-07-03 2008-07-03 Heat exchanger and method for manufacturing the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174237A JP2010014330A (en) 2008-07-03 2008-07-03 Heat exchanger and method for manufacturing the heat exchanger

Publications (1)

Publication Number Publication Date
JP2010014330A true JP2010014330A (en) 2010-01-21

Family

ID=41700599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174237A Pending JP2010014330A (en) 2008-07-03 2008-07-03 Heat exchanger and method for manufacturing the heat exchanger

Country Status (1)

Country Link
JP (1) JP2010014330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089116A1 (en) * 2011-12-14 2013-06-20 ダイキン工業株式会社 Heat exchanger
EP3128277A1 (en) * 2015-08-03 2017-02-08 DongHwan Ind. Corp. Evaporator having vertical arrangement of header pipe for vehicle air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089116A1 (en) * 2011-12-14 2013-06-20 ダイキン工業株式会社 Heat exchanger
JP2013124808A (en) * 2011-12-14 2013-06-24 Daikin Industries Ltd Heat exchanger
AU2012353427B2 (en) * 2011-12-14 2015-07-16 Daikin Industries, Ltd. Heat exchanger
EP3128277A1 (en) * 2015-08-03 2017-02-08 DongHwan Ind. Corp. Evaporator having vertical arrangement of header pipe for vehicle air conditioner

Similar Documents

Publication Publication Date Title
JP5320846B2 (en) Heat exchanger
JP2010019534A (en) Heat exchanger
KR102218301B1 (en) Heat exchanger and corrugated fin thereof
JP5464207B2 (en) Refrigeration unit outdoor unit
US8613307B2 (en) Finned tube heat exchanger
JP5550106B2 (en) Corrugated fin heat exchanger drainage structure
JP2009204279A (en) Heat exchanger
JP2010025478A (en) Heat exchanger
JP2010025476A (en) Heat exchanger
JP6375897B2 (en) Heat exchanger
JP4876660B2 (en) Finned heat exchanger and air conditioner
JP2012017875A (en) Corrugated fin evaporator
JP5447842B2 (en) Corrugated fin heat exchanger drainage structure
JP2015004449A (en) Fin tube heat exchanger
JP6021081B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus including the same
JP2009121708A (en) Heat exchanger
JP2010014330A (en) Heat exchanger and method for manufacturing the heat exchanger
CN107843031B (en) Micro-channel heat exchanger
JP2010065892A (en) Heat exchanger
JP2010014329A (en) Heat exchanger
JP2010236745A (en) Air heat exchanger
JP2010025482A (en) Heat exchanger
JP2010002152A (en) Heat exchanger and manufacturing method of heat exchanger
JP2009204278A (en) Heat exchanger
KR20100097391A (en) Fin structure of evaporator