JP2010011759A - Method for measuring microorganism in tea-based beverage - Google Patents
Method for measuring microorganism in tea-based beverage Download PDFInfo
- Publication number
- JP2010011759A JP2010011759A JP2008173164A JP2008173164A JP2010011759A JP 2010011759 A JP2010011759 A JP 2010011759A JP 2008173164 A JP2008173164 A JP 2008173164A JP 2008173164 A JP2008173164 A JP 2008173164A JP 2010011759 A JP2010011759 A JP 2010011759A
- Authority
- JP
- Japan
- Prior art keywords
- atp
- tea
- derived
- microorganism
- elimination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000013361 beverage Nutrition 0.000 title claims abstract description 63
- 244000005700 microbiome Species 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 56
- 241001122767 Theaceae Species 0.000 title claims abstract 9
- 239000002994 raw material Substances 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000000872 buffer Substances 0.000 claims abstract description 11
- 235000013616 tea Nutrition 0.000 claims description 85
- 239000003153 chemical reaction reagent Substances 0.000 claims description 73
- 238000003379 elimination reaction Methods 0.000 claims description 58
- 230000008030 elimination Effects 0.000 claims description 51
- 239000000243 solution Substances 0.000 claims description 22
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 claims description 12
- 239000005089 Luciferase Substances 0.000 claims description 11
- 239000007997 Tricine buffer Substances 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 6
- 239000007995 HEPES buffer Substances 0.000 claims description 6
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 claims description 6
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 abstract description 7
- 239000002516 radical scavenger Substances 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 2
- 244000269722 Thea sinensis Species 0.000 description 95
- 238000004020 luminiscence type Methods 0.000 description 41
- 230000000052 comparative effect Effects 0.000 description 18
- 235000009569 green tea Nutrition 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 210000001082 somatic cell Anatomy 0.000 description 16
- 238000000605 extraction Methods 0.000 description 14
- 230000001580 bacterial effect Effects 0.000 description 12
- 235000006468 Thea sinensis Nutrition 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 235000020333 oolong tea Nutrition 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 235000005979 Citrus limon Nutrition 0.000 description 8
- 244000131522 Citrus pyriformis Species 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 8
- 239000002738 chelating agent Substances 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 7
- 229920000053 polysorbate 80 Polymers 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 5
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 5
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 5
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 238000005415 bioluminescence Methods 0.000 description 3
- 230000029918 bioluminescence Effects 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 3
- 235000019225 fermented tea Nutrition 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 150000008442 polyphenolic compounds Chemical class 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 108030003292 Adenosine-phosphate deaminases Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 229960001950 benzethonium chloride Drugs 0.000 description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 235000020279 black tea Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108010007730 Apyrase Proteins 0.000 description 1
- 102000007347 Apyrase Human genes 0.000 description 1
- 244000163122 Curcuma domestica Species 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- 235000009008 Eriobotrya japonica Nutrition 0.000 description 1
- 244000061508 Eriobotrya japonica Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 239000006173 Good's buffer Substances 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 235000003368 Ilex paraguariensis Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 101100202428 Neopyropia yezoensis atps gene Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- OCBHHZMJRVXXQK-UHFFFAOYSA-M benzyl-dimethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 OCBHHZMJRVXXQK-UHFFFAOYSA-M 0.000 description 1
- 235000021329 brown rice Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- NCHHNDHUZPFYTL-UHFFFAOYSA-L disodium;dodecanoyl phosphate Chemical compound [Na+].[Na+].CCCCCCCCCCCC(=O)OP([O-])([O-])=O NCHHNDHUZPFYTL-UHFFFAOYSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 235000015092 herbal tea Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 235000020332 matcha tea Nutrition 0.000 description 1
- 235000020331 mate tea Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- ONQDVAFWWYYXHM-UHFFFAOYSA-M potassium lauryl sulfate Chemical compound [K+].CCCCCCCCCCCCOS([O-])(=O)=O ONQDVAFWWYYXHM-UHFFFAOYSA-M 0.000 description 1
- 229940116985 potassium lauryl sulfate Drugs 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 235000020185 raw untreated milk Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
【課題】従来困難であったATP法に基づく茶系飲料中の微生物の迅速測定法を提供する。
【解決手段】茶系飲料と特定の緩衝液を混合し処理することで、微生物を破壊することなく茶系飲料中の原料由来ATPを抽出、遊離させ、後のATP消去剤との反応によるATP消去工程の効率を高めるだけでなく、化学発光を低減し、茶系飲料中の微生物由来ATPを迅速測定可能とする。
【選択図】図1The present invention provides a rapid measurement method for microorganisms in tea-based beverages based on the ATP method, which has been difficult in the past.
By mixing and processing a tea-based beverage and a specific buffer, ATP derived from the raw material in the tea-based beverage is extracted and released without destroying microorganisms, and then ATP is obtained by reaction with an ATP scavenger. In addition to increasing the efficiency of the erasing process, chemiluminescence is reduced, and microorganism-derived ATP in tea-based beverages can be measured quickly.
[Selection] Figure 1
Description
本発明は、茶系飲料における微生物汚染の迅速測定法に関する。 The present invention relates to a rapid method for measuring microbial contamination in tea-based beverages.
従来、飲料中の微生物汚染を測定する方法としては、寒天培地を用いて試料を2〜3日間培養し、生じるコロニー数を計数する寒天平板法や、メンブランフィルターを用いて試料をろ過し、寒天培地に貼り付け、フィルター上で同様に培養するメンブランフィルター法が一般的に用いられている。しかし、これらの微生物測定法では測定結果を得るまでに長時間を要し、飲料中の微生物汚染の検出法・工程管理手法として迅速性を欠く。また、出荷判定までの所要時間が長くなることで、在庫の増加に伴う倉庫スペースの拡大が必要となり、金銭的・空間的な損失が生じる。 Conventionally, as a method for measuring microbial contamination in beverages, a sample is cultured for 2 to 3 days using an agar medium, and the sample is filtered using an agar plate method for counting the number of colonies produced, or a membrane filter, and then agar. A membrane filter method is generally used, which is applied to a medium and cultured in the same manner on a filter. However, these microorganism measurement methods require a long time to obtain measurement results, and lack rapidness as a detection method / process control method for microbial contamination in beverages. In addition, since the time required to determine shipping becomes longer, it is necessary to expand the warehouse space with the increase in inventory, resulting in financial and spatial losses.
こうした問題を解決するため、広く採用されている微生物汚染の迅速測定法の一つとして生物発光法(以下、「ATP法」という)が知られている。「ATP法」は、ルシフェリン、ルシフェラーゼおよびATPの存在下で、ルシフェリンの酸化によって生じる発光量がATP量と比例することに基づき、発光量を基に微生物汚染を測定する方法である。「ATP法」を用いれば短時間で微生物汚染を測定できるため、測定時間の大幅な短縮が可能となる。 In order to solve such problems, a bioluminescence method (hereinafter referred to as “ATP method”) is known as one of the rapid measurement methods for microbial contamination that has been widely adopted. The “ATP method” is a method for measuring microbial contamination based on the amount of luminescence based on the fact that the amount of luminescence produced by oxidation of luciferin is proportional to the amount of ATP in the presence of luciferin, luciferase and ATP. If the “ATP method” is used, microbial contamination can be measured in a short time, so that the measurement time can be greatly shortened.
一方で、飲料中には原料由来の遊離ATPや、体細胞、タンパク質、繊維質などに付着したATP(以下、まとめて「原料由来ATP」という)も含まれている。ATP測定時においては、「原料由来ATP」が発光することで、微生物量が正確に測定できないことがある。そのため、飲料中の微生物由来のATP(以下、「微生物由来ATP」という)を測定する場合、「原料由来ATP」の影響を低減する前処理方法が必要となる。 On the other hand, in beverages, free ATP derived from raw materials and ATP attached to somatic cells, proteins, fibers, etc. (hereinafter collectively referred to as “raw material-derived ATP”) are also included. At the time of ATP measurement, the amount of microorganisms may not be accurately measured because “raw material-derived ATP” emits light. Therefore, when measuring ATP derived from microorganisms in a beverage (hereinafter referred to as “microorganism-derived ATP”), a pretreatment method for reducing the influence of “raw material-derived ATP” is required.
従来まで報告されている「原料由来ATP」の消去技術としては、
(1)体細胞由来のATP(以下、「体細胞ATP」という)を「体細胞ATP」抽出剤により抽出し、「ATP消去剤」でこれらATPを消去する方法(以下、「体細胞処理法」という)、
(2)植物飲料中の体細胞に対して「体細胞ATP」抽出剤および「ATP消去剤」を十分に反応させた後に遠心分離を行う方法(以下、「植物飲料法」という)
がある(例えば、特許文献1〜3参照)。
As a technology for erasing the “raw material-derived ATP” reported so far,
(1) A method of extracting ATP derived from somatic cells (hereinafter referred to as “somatic cell ATP”) with a “somatic cell ATP” extractant and erasing these ATPs with an “ATP scavenger” (hereinafter referred to as “somatic cell treatment method”). ")
(2) Method of performing centrifugation after sufficiently reacting “somatic cell ATP” extractant and “ATP eliminator” to somatic cells in a plant beverage (hereinafter referred to as “plant beverage method”)
(For example, refer to
上記(1)の「体細胞処理法」は、「体細胞ATP」抽出剤により、体細胞中からATPを抽出後、「ATP消去剤」を添加作用させることにより、「原料由来ATP」を消去する方法であるが、茶系飲料に関しては、「原料由来ATP」消去の効果が不十分であり、正確な「微生物由来ATP」の測定結果が得られない。 In the “somatic cell treatment method” of (1) above, after extracting ATP from the somatic cells using the “somatic cell ATP” extractant, the “ATP scavenger” is added to act to erase the “raw material-derived ATP”. However, for tea-based beverages, the effect of eliminating “raw material-derived ATP” is insufficient, and an accurate measurement result of “microbe-derived ATP” cannot be obtained.
上記(2)の「植物飲料法」は、植物飲料由来の体細胞から、「体細胞ATP」抽出剤によりATPを抽出後、「原料由来ATP」を消去し、次いで、遠心分離によってこれら不要となった試薬や分解物を除去し、残った「微生物由来ATP」のみを検出する。しかし、茶系飲料では、「植物飲料法」を用いても良い結果が得られない。また、「植物飲料法」は遠心分離など煩雑な工程や専用の機器を必要とする問題点もある。 In the “plant beverage method” of (2) above, ATP is extracted from a somatic cell derived from a plant beverage using a “somatic cell ATP” extractant, then “raw material-derived ATP” is eliminated, and then these are not required by centrifugation. The remaining reagent and degradation products are removed, and only the remaining “microbe-derived ATP” is detected. However, with tea-based beverages, good results cannot be obtained using the “plant beverage method”. In addition, the “plant beverage method” has a problem in that it requires complicated processes such as centrifugation and dedicated equipment.
さらに、茶系飲料中成分に含まれる没食子酸やポリフェノールなどの成分は、一般的にアルカリ条件のもと、活性酸素の存在下で化学発光を生じることが知られている(例えば、非特許文献1および特許文献4参照)。微生物からのATPの抽出や、ルシフェラーゼ−ルシフェリン反応は、pHが中性付近〜アルカリ条件下で実施される(例えば、非特許文献2参照)。pHがアルカリ条件下では前述の化学発光が生じ、非ATP由来のノイズが発生していると考えられ、このことが「ATP法」に基づく茶系飲料中の微生物の迅速測定を困難にしている。 Furthermore, it is known that components such as gallic acid and polyphenol contained in components in tea-based beverages generally generate chemiluminescence in the presence of active oxygen under alkaline conditions (for example, non-patent documents). 1 and Patent Document 4). The extraction of ATP from microorganisms and the luciferase-luciferin reaction are carried out under a pH range from near neutral to alkaline conditions (see, for example, Non-Patent Document 2). When the pH is alkaline, the aforementioned chemiluminescence occurs, and it is considered that non-ATP-derived noise is generated. This makes it difficult to rapidly measure microorganisms in tea-based beverages based on the “ATP method”. .
本発明は、上記の問題点を解決するためになされたものであり、簡便な操作で、従来困難であった「ATP法」に基づく茶系飲料中の微生物の迅速測定法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a rapid measurement method for microorganisms in tea-based beverages based on the “ATP method”, which has been difficult in the past with a simple operation. Objective.
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、試料と特定の溶液を混合し処理することで、微生物を破壊することなく茶系飲料中の「原料由来ATP」を抽出、遊離させ、後の「ATP消去剤」との反応によるATP消去工程の効率を高めるだけでなく、「原料由来ATP」に由来しない化学発光を低減可能であり、「微生物由来ATP」量を「ATP法」により迅速に測定可能であることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors extracted “raw material-derived ATP” in tea-based beverages without destroying microorganisms by mixing and treating the sample and a specific solution. In addition to increasing the efficiency of the ATP elimination step by the subsequent reaction with the “ATP elimination agent”, it is possible to reduce chemiluminescence that does not originate from “raw material-derived ATP”. The present inventors have found that it can be measured quickly by the “ATP method” and completed the present invention.
すなわち本発明は、
(1)以下の工程を含む、茶系飲料中の微生物の測定方法
1.微生物を破壊することなく茶系飲料中の「原料由来ATP」を遊離させ、かつ、茶系飲料成分由来の化学発光を減少させるATP消去前処理試薬を茶系飲料に添加し、一定時間反応させる第一工程
2.「ATP消去剤」を添加し、反応させ、反応液中の「原料由来ATP」を消去する第二工程
3.ATP抽出剤を添加し、反応させ、微生物内ATPを反応液中に遊離させる第三工程
4.遊離した「微生物由来ATP」をルシフェリン−ルシフェラーゼ試薬によって測定する第四工程
(2)ATP消去前処理試薬のpHが7.0〜9.0である、上記(1)に記載の微生物測定方法。
(3)ATP消去前処理試薬中の緩衝剤がリン酸、TricineもしくはHEPESから選択される1または2以上の緩衝剤である、上記(1)〜(2)に記載の微生物測定方法。
(4)ATP消去前処理試薬中の緩衝剤の濃度が40〜150mMである上記(1)〜(3)に記載の微生物測定方法。
(5)ATP消去前処理試薬を茶系飲料に添加後の反応時間が1〜30分である上記(1)〜(4)に記載の微生物測定方法。
である。
That is, the present invention
(1) Method for measuring microorganisms in tea-based beverages including the following steps: ATP-erasing pretreatment reagent that releases “raw material-derived ATP” in tea-based beverages without reducing microorganisms and reduces chemiluminescence derived from tea-based beverage components is added to tea-based beverages and allowed to react for a certain period of time. First step 2. 2. Second step of adding “ATP erasing agent” and reacting to eliminate “raw material-derived ATP” in the reaction solution. 3. ATP extraction agent is added and reacted to release ATP in the microorganism into the reaction solution. Fourth step of measuring released “microorganism-derived ATP” with a luciferin-luciferase reagent (2) The microorganism measuring method according to (1) above, wherein the pH of the ATP elimination pretreatment reagent is 7.0 to 9.0.
(3) The microorganism measuring method according to the above (1) to (2), wherein the buffer in the ATP elimination pretreatment reagent is one or two or more buffers selected from phosphoric acid, Tricine or HEPES.
(4) The microorganism measuring method according to the above (1) to (3), wherein the concentration of the buffer in the ATP elimination pretreatment reagent is 40 to 150 mM.
(5) The microorganism measuring method according to the above (1) to (4), wherein the reaction time after adding the ATP elimination pretreatment reagent to the tea-based beverage is 1 to 30 minutes.
It is.
定義
本発明において、測定試料に用いられる「茶系飲料」とは、不発酵茶(緑茶)、半発酵茶(烏龍茶)、発酵茶(紅茶)である。詳しくは、不発酵茶として緑茶、せん茶、玉露、かぶせ茶、番茶、玉緑茶、てん茶、抹茶、ほうじ茶、玄米茶、半発酵茶として包種茶、烏龍茶、発酵茶として紅茶類(ストレートティ、ミルクティ、レモンティ、フレーバーティを含む)、その他の茶系飲料としてウコン茶、ソバ茶、麦茶、こんぶ茶、甘茶、杜仲茶、柿の葉茶、どくだみ茶、げんのしょうこ茶、ギムネム茶、ハーブティ、グアバ茶、ウィキョウ茶、くこ茶、ビワ茶、マテ茶、ルイボスティ、ハトムギ茶、けつめいし茶、コーンティである。
また、茶系飲料同士を混合したブレンド茶や、これらの乾燥物、抽出物、粉末物を含む飲料や、茶系飲料に牛乳、生乳、粉乳、クリーム、果汁または糖類を添加したものも含む。
Definitions In the present invention, “tea-based beverages” used for measurement samples are non-fermented tea (green tea), semi-fermented tea (Oolong tea), and fermented tea (black tea). Specifically, green tea, sencha, gyokuro, kabuse tea, bancha, tamago green tea, tencha, matcha tea, hojicha, brown rice tea, semi-fermented tea, sorghum tea, oolong tea, fermented tea as straight tea, (Including milk tea, lemon tea, and flavor tea) and other tea-based beverages such as turmeric tea, buckwheat tea, barley tea, kombu tea, sweet tea, Tochu green tea, kashiwanoha tea, dodomi tea, genkosho tea tea, gymneme tea, herbal tea, guava tea , Fennel tea, koku tea, loquat tea, mate tea, rooibosti, pearl barley tea, ketsushi tea and corn tea.
Moreover, the blend tea which mixed tea type | system | group drinks, the drink containing these dried products, an extract, a powdery thing, and the thing which added milk, raw milk, powdered milk, cream, fruit juice, or saccharides to tea type | system | group drinks are also included.
中でも、緑茶、烏龍茶、紅茶、抹茶入り飲料(ミルクとの混合飲料や、抹茶を添加した茶系飲料)が茶系飲料の試料として特に好ましい。 Of these, green tea, oolong tea, black tea, and green tea-containing beverages (mixed beverages with milk and tea-based beverages added with green tea) are particularly preferred as tea-based beverage samples.
広義に「化学発光」とは、ケミルミネッセンスともいい、原子ないし分子が化学反応によって生じるエネルギーによって励起され光を発する現象をいう(「生化学辞典」,第3版,東京化学同人,1998年10月,p.274参照)。本発明において化学発光とは、特に茶系飲料にも含まれる没食子酸やポリフェノールが発すると考えられる、ルシフェリン−ルシフェラーゼ反応以外に起因する発光をいう。 In a broad sense, “chemiluminescence” is also referred to as chemiluminescence, and refers to a phenomenon in which atoms or molecules are excited by energy generated by a chemical reaction to emit light (“Biochemical Dictionary”, 3rd edition, Tokyo Chemical Dojin, 1998 10 Month, p.274). In the present invention, chemiluminescence refers to luminescence caused by a reaction other than the luciferin-luciferase reaction, which is thought to be caused by gallic acid and polyphenols contained in tea beverages.
本発明において「原料由来ATP」とは、茶系飲料中に含まれる遊離のATPや、茶葉由来の繊維、タンパク質またはその他不溶性粒子に物理化学的に付着したATP、茶葉由来の体細胞に含まれるATPまたは茶葉由来の細胞成分(葉緑素など)など、該飲料の原料に由来するATPをいう。消去しきれずに測定に持ち込まれる「原料由来ATP」が多いほど、ルシフェリン−ルシフェラーゼ反応の際に生じるバックグランド発光が増加し、S/N(シグナル/ノイズ)比が低下するため、微生物の正確な測定が困難となる。 In the present invention, “raw material-derived ATP” is included in free ATP contained in tea-based beverages, ATP physicochemically attached to tea leaf-derived fibers, proteins or other insoluble particles, and tea leaf-derived somatic cells. ATP derived from ingredients of the beverage such as ATP or cell components derived from tea leaves (chlorophyll etc.). The more “raw material-derived ATP” brought into the measurement without being completely erased, the more the background luminescence generated during the luciferin-luciferase reaction increases and the S / N (signal / noise) ratio decreases. Measurement becomes difficult.
本発明において「バックグランド発光」とは、ノイズの発光をいう。ノイズとは、発光測定時に測定された発光のうち、「微生物由来ATP」がルシフェリン−ルシフェラーゼ反応によって生じる発光を差し引いたものである。これらノイズ(バックグランド)の発光は、茶系飲料中成分由来と考えられる化学発光と、茶系飲料中成分に含まれる「原料由来ATP」がルシフェリン−ルシフェラーゼ反応によって生じる発光とが挙げられる。 In the present invention, “background light emission” refers to light emission of noise. The noise is a value obtained by subtracting the luminescence generated by the “microbe-derived ATP” due to the luciferin-luciferase reaction from the luminescence measured during the luminescence measurement. Luminescence of these noises (background) includes chemiluminescence considered to be derived from components in tea-based beverages, and luminescence generated by luciferin-luciferase reaction of “raw material-derived ATP” contained in components in tea-based beverages.
本発明において、本発明者等は、ATP消去工程に先立ち、茶系飲料にアルカリ性のpHを有する緩衝液を反応させることで、効果的に「バックグランド発光」を低減できることを見出した。「バックグランド発光」低減効果については、以下の二つの事象が本効果の説明になりうる。 In the present invention, the present inventors have found that “background luminescence” can be effectively reduced by reacting a tea-based beverage with a buffer having an alkaline pH prior to the ATP elimination step. Regarding the “background light emission” reduction effect, the following two events can explain this effect.
ATPは、リン酸基とアミノ基を持ち、それぞれのpKa(解離定数)はリン酸基が6.5、アミノ基が4.5である。すなわち、pHが中性付近では、ATPは、負に帯電している。また、ATPは、酸性の溶液中では非常に不安定で加水分解しやすいことが広く知られている。茶系飲料のpHは、一般的にpH5.0〜7.0であり、弱い酸性条件ではあるが、ATPが安定的に存在するために適した条件ではないと考えられる。
例えば、本発明の実施例で用いているようなpH6.5の緑茶飲料中では、ATPのアミノ基は、中性であり、リン酸基も中性に近い状態で存在しうる。そのため、このような茶系飲料中の「原料由来ATP」は、茶葉由来繊維やタンパク質、その他の不溶性粒子または茶葉由来の体細胞などの茶系飲料中成分に非特異的または物理化学的に吸着し、あるいはこれら成分に内包され、加水分解を免れる形で存在していると考えられる。
アルカリ性のpHを有する緩衝液と茶系飲料を混合すると、これら茶系飲料中成分に吸着されたATPは負に帯電する。この負に帯電したATPと茶系飲料中成分との静電的な反発、あるいはこれら成分とATP、OH−イオン、および緩衝剤の間で置換反応が生じ、茶系飲料中成分中のATPが効果的に遊離することが考えられる。
ATP has a phosphate group and an amino group, and each pKa (dissociation constant) is 6.5 for the phosphate group and 4.5 for the amino group. That is, ATP is negatively charged near a neutral pH. ATP is widely known to be very unstable and easily hydrolyzed in an acidic solution. The pH of tea-based beverages is generally pH 5.0 to 7.0, which is a weakly acidic condition, but is not considered to be a suitable condition because ATP exists stably.
For example, in a green tea beverage having a pH of 6.5 as used in the examples of the present invention, the amino group of ATP is neutral, and the phosphate group may exist in a state close to neutrality. Therefore, “raw material-derived ATP” in such tea-based beverages is adsorbed nonspecifically or physicochemically to components in tea-based beverages such as tea leaf-derived fibers and proteins, other insoluble particles or tea leaf-derived somatic cells. Alternatively, it is considered that they are encapsulated in these components and exist in a form that avoids hydrolysis.
When a buffer solution having an alkaline pH and a tea beverage are mixed, ATP adsorbed on the components in the tea beverage is negatively charged. The electrostatic repulsion between the negatively charged ATP and the ingredients in the tea beverage, or a substitution reaction occurs between these ingredients and the ATP, OH - ion, and the buffer, and the ATP in the ingredients in the tea beverage is It is possible to release effectively.
一方で、茶系飲料中成分にも含まれる没食子酸やポリフェノールは、一般的にアルカリ条件のもと、活性酸素の存在下で化学発光を発する。典型的な生物発光法による微生物の測定(Hattoriら,Anal.Biochem.(2003年)第319巻,287〜295頁参照)においては、微生物からのATPの抽出はアルカリ条件で実施され、ルシフェラーゼ−ルシフェリン反応もpH7.0以上のアルカリ条件下で実施されているため、化学発光が生じることがある。
アルカリ性の緩衝液であるATP消去前処理試薬によって、一度茶系飲料をアルカリ性にして化学発光を生じさせることにより、後の工程で化学発光を生じにくくさせることができる。
On the other hand, gallic acid and polyphenol contained in tea-based beverage components generally emit chemiluminescence in the presence of active oxygen under alkaline conditions. In the measurement of microorganisms by typical bioluminescence methods (see Hattori et al., Anal. Biochem. (2003) 319, 287-295), extraction of ATP from microorganisms is carried out in alkaline conditions, and luciferase- Since the luciferin reaction is also performed under alkaline conditions of pH 7.0 or higher, chemiluminescence may occur.
With the ATP erasing pretreatment reagent that is an alkaline buffer solution, once the tea-based beverage is made alkaline to cause chemiluminescence, chemiluminescence can be made difficult to occur in a later step.
ATP消去前処理試薬の組成
本発明において「ATP消去前処理試薬」とは、中性以上のpHであり、微生物を破壊することなく、「原料由来ATP」を茶系飲料中のタンパク質や繊維質または不溶性粒子などの原料由来成分から遊離させ、かつ、化学発光を低減させる性質を有する。
すなわち、ATP消去前処理試薬はpH7.0〜10.0に調節されていることを特徴とする。微生物を破壊することなく「原料由来ATP」を該飲料中の原料由来成分から遊離させ、かつ、化学発光を低減するためには、特にpH7.0〜9.0、さらに好ましくはpH8.0〜9.0の範囲が好ましい。
Composition of ATP Erasing Pretreatment Reagent In the present invention, “ATP elimination pretreatment reagent” means a pH of neutral or higher, and without degrading microorganisms, “raw material-derived ATP” is converted to protein or fiber in tea-based beverages. Alternatively, it has the property of being liberated from raw material-derived components such as insoluble particles and reducing chemiluminescence.
That is, the ATP elimination pretreatment reagent is adjusted to pH 7.0 to 10.0. In order to release the “raw material-derived ATP” from the raw material-derived components in the beverage and destroy chemiluminescence without destroying microorganisms, pH 7.0 to 9.0 is particularly preferable, and pH 8.0 is more preferable. A range of 9.0 is preferred.
緩衝液としては、リン酸緩衝液、またはグッド緩衝液の中でも特にpH7.0〜9.0、さらに好ましくはpH8.0〜9.0の範囲において最適な緩衝能を有するHEPES緩衝液もしくはTricine緩衝液を用い、その濃度は40〜150mMが好ましい。 As the buffer solution, a phosphate buffer or a HEPES buffer or Tricine buffer having an optimum buffer capacity in the range of pH 7.0 to 9.0, more preferably pH 8.0 to 9.0, among the Good buffers. A liquid is used, and the concentration is preferably 40 to 150 mM.
ATP消去前処理試薬は、1つ以上の界面活性剤を含んでも良い。界面活性剤としては、茶系飲料中の原料由来成分から「原料由来ATP」を遊離させる働きを有するものが好ましく、特に非イオン性界面活性剤が好ましい。非イオン性界面活性剤としては、Tween20、Tween80、TritonX−100が挙げられる。好ましくは、Tween80を用い、その濃度は約0.1〜2.0%である。 The ATP elimination pretreatment reagent may contain one or more surfactants. As the surfactant, those having a function of liberating “raw material-derived ATP” from the raw material-derived components in the tea-based beverage are preferable, and nonionic surfactants are particularly preferable. Examples of the nonionic surfactant include Tween 20, Tween 80, and Triton X-100. Preferably, Tween 80 is used and the concentration is about 0.1-2.0%.
ATP消去前処理試薬は、また、1つ以上のキレート剤を含んでも良い。キレート剤としては、エチレンジアミン4酢酸(EDTA)、エチレングリコール4酢酸(EGTA)が挙げられる。好ましくは、キレート剤としてEDTAまたはEGTA用い、その濃度は10〜40mMである。 The ATP elimination pretreatment reagent may also contain one or more chelating agents. Examples of the chelating agent include ethylenediaminetetraacetic acid (EDTA) and ethylene glycol tetraacetic acid (EGTA). Preferably, EDTA or EGTA is used as a chelating agent, and its concentration is 10 to 40 mM.
ATP消去前処理試薬の反応条件
本発明においては、第一工程として、上記のATP消去前処理試薬と試料とを反応させることにより、茶系飲料中の原料由来成分からATPを抽出・遊離させ、かつ、化学発光を減少させる。
ATP消去前処理試薬と試料の反応温度および反応時間は、茶系飲料中の原料由来成分からATPを抽出・遊離させ、かつ、化学発光を減少させるために十分であり、また、微生物を破壊することなく実施できることが必要である。これらの兼ね合いで反応温度および反応時間は定められるため、対象とする試料や微生物種によって影響を受けるが、反応温度は20〜55℃、好ましくは30〜37℃、反応時間は60分以内、好ましくは1〜30分の範囲で実施することが好ましい。
Reaction conditions of ATP elimination pretreatment reagent In the present invention, as the first step, by reacting the above ATP elimination pretreatment reagent with the sample, ATP is extracted and released from the ingredient derived from the raw material in the tea-based beverage, And it reduces chemiluminescence.
The reaction temperature and reaction time between the ATP elimination pretreatment reagent and the sample are sufficient to extract and liberate ATP from the ingredients derived from the ingredients in the tea-based beverage and reduce chemiluminescence, and also destroy microorganisms. It must be possible to implement without Since the reaction temperature and reaction time are determined by these balances, the reaction temperature is affected by the target sample and microbial species, but the reaction temperature is 20 to 55 ° C, preferably 30 to 37 ° C, and the reaction time is within 60 minutes, preferably Is preferably carried out in the range of 1 to 30 minutes.
「ATP消去剤」
本発明においては、第二工程として、上記のATP消去前処理試薬による前処理後に、該試料にATP分解酵素を含む試薬(「ATP消去剤」という)を反応させ、第一工程で抽出・遊離させた「原料由来ATP」を分解消去する。「ATP消去剤」で処理することにより、「原料由来ATP」が分解され、後工程のルシフェリン−ルシフェラーゼ反応におけるバックグランド発光を低減させることができ、微生物の検出感度を向上させることが可能となる。
"ATP eraser"
In the present invention, as a second step, after the pretreatment with the above ATP elimination pretreatment reagent, the sample is reacted with a reagent containing an ATP degrading enzyme (referred to as “ATP elimination agent”), and extracted / released in the first step. The “raw material-derived ATP” is decomposed and eliminated. By treating with “ATP scavenger”, “raw material-derived ATP” is decomposed, background luminescence in the luciferin-luciferase reaction in the subsequent step can be reduced, and the detection sensitivity of microorganisms can be improved. .
「ATP消去剤」としては、アデノシンリン酸デアミナーゼ、アデノシンリン酸デアミナーゼと、その他の酵素(例えば、アピラーゼ、アルカリホスファターゼ、酸性ホスファターゼ、ヘキソキナーゼ、アデノシントリホスファターゼ)などの従来公知のATP分解酵素を一種類若しくは複数種類を含む混合溶液が好ましい。「ATP消去剤」中に含まれるATP分解酵素は、次の工程に入る前に失活させておくことが好ましい。試料中にATP分解酵素が残存していた場合、後の工程で「微生物由来ATP」を抽出した際に、このATPも分解されてしまうため、発光量の減少がおこり、検出感度の低下を引き起こす。酵素活性を失活させる方法としては、特に限定されないが、例えば、活性阻害剤の添加や、酸やアルカリを添加し試料のpHを変化させ失活させる方法が挙げられる。 As the “ATP scavenger”, one kind of conventionally known ATP degrading enzyme such as adenosine phosphate deaminase, adenosine phosphate deaminase and other enzymes (eg, apyrase, alkaline phosphatase, acid phosphatase, hexokinase, adenosine triphosphatase) is used. Or the mixed solution containing multiple types is preferable. The ATP-degrading enzyme contained in the “ATP scavenger” is preferably deactivated before entering the next step. If ATP-degrading enzyme remains in the sample, this “ATP” is also decomposed when “microbe-derived ATP” is extracted in a later step, resulting in a decrease in the amount of luminescence and a decrease in detection sensitivity. . The method for deactivating the enzyme activity is not particularly limited, and examples thereof include a method of adding an activity inhibitor or a method of adding an acid or alkali to change the pH of the sample to deactivate.
「ATP消去剤」と試料の反応温度および反応時間は、「原料由来ATP」を分解するために十分であり、また微生物を破壊することなく実施できることが必要である。対象とする試料や微生物種によって影響を受けるが、反応温度は20〜55℃、好ましくは30〜37℃、反応時間は60分以内、好ましくは1〜30分の範囲で実施することが好ましい。 The reaction temperature and reaction time of the “ATP scavenger” and the sample must be sufficient for decomposing “raw material-derived ATP” and can be carried out without destroying microorganisms. Although it is affected by the target sample and microbial species, the reaction temperature is 20 to 55 ° C, preferably 30 to 37 ° C, and the reaction time is within 60 minutes, preferably 1 to 30 minutes.
第三工程として、ATP分解消去の反応を終えた試料を適当なATP抽出剤と反応させ、「微生物由来ATP」を抽出する。ATPを抽出する方法としては、公知のATP抽出剤を添加する方法が好適である。ATP抽出剤としては、界面活性剤、エタノールとアンモニアの混合液、メタノール、エタノール、トリクロロ酢酸、過塩素酸が使用できるが、このうち界面活性剤はATPの抽出効率が高いほうが好ましい。
界面活性剤としては、ドデシル硫酸ナトリウム(SDS)、ラウリル硫酸カリウム、モノラウロイルリン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、塩化ベンザルコニウム(BAC)、塩化ベンゼトニウム(BZC)、塩化セチルピリジニウム、臭化セチルトリメチルアンモニウム、塩化ミリスチルジメチルベンジルアンモニウムが挙げられる。
As a third step, the sample that has undergone the ATP degradation elimination reaction is reacted with an appropriate ATP extractant to extract “microorganism-derived ATP”. As a method for extracting ATP, a method of adding a known ATP extractant is suitable. As the ATP extractant, a surfactant, a mixed solution of ethanol and ammonia, methanol, ethanol, trichloroacetic acid, and perchloric acid can be used. Of these, the surfactant is preferably higher in the extraction efficiency of ATP.
Surfactants include sodium dodecyl sulfate (SDS), potassium lauryl sulfate, sodium monolauroyl phosphate, sodium alkylbenzenesulfonate, benzalkonium chloride (BAC), benzethonium chloride (BZC), cetylpyridinium chloride, cetyltrimethyl bromide Ammonium and myristyldimethylbenzylammonium chloride are mentioned.
第四工程として、上記抽出した「微生物由来ATP」を測定する。「微生物由来ATP」の測定方法としては、ルシフェリンとルシフェラーゼを生物発光試薬として用いる方法が用いられる。この場合、抽出されたATPを含む試料を、ルシフェリン−ルシフェラーゼ生物発光試薬と反応させ、生成した発光量を測定して「微生物由来ATP」量を求める。生物発光試薬は、ルシフェリン、ルシフェラーゼおよびマグネシウムイオンを含む。
生成した発光量は、ルミノメーター、例えば、ルミテスターC−100、C−100N、C−110、K−100、K−200、K−210(いずれもキッコーマン社製)、ルミネッセンスリーダーBLR−201改良型(アロカ社製)、Lumat LB9501(ベルトールド社製)により測定することができる。
以下実施例によりさらに詳細に説明するが、本発明は、これらに限定されるものではない。
As the fourth step, the extracted “microorganism-derived ATP” is measured. As a method for measuring “microorganism-derived ATP”, a method using luciferin and luciferase as a bioluminescent reagent is used. In this case, the sample containing the extracted ATP is reacted with a luciferin-luciferase bioluminescence reagent, and the amount of luminescence produced is measured to determine the amount of “microorganism-derived ATP”. Bioluminescent reagents include luciferin, luciferase and magnesium ions.
The amount of luminescence produced is a luminometer, for example, Lumitester C-100, C-100N, C-110, K-100, K-200, K-210 (all manufactured by Kikkoman), Luminescence Reader BLR-201 It can be measured by a mold (manufactured by Aroka) and Lumat LB9501 (manufactured by Bertoled).
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(ATP消去前処理試薬の調製)
ATP消去前処理試薬のpHを検討するため、pH6.0〜8.5の計8種類のATP消去前処理試薬を調製した。緩衝剤として、pH6.0のATP消去前処理試薬には80mM MESを、pH7.0〜8.0には80mM HEPESを、pH8.2〜8.5には80mM Tricineをそれぞれ用い、超純水に溶解した。1N 水酸化ナトリウム水溶液などでpHを調製し、これをATP消去前処理試薬とした。
(Preparation of ATP elimination pretreatment reagent)
In order to examine the pH of the ATP elimination pretreatment reagent, a total of 8 types of ATP elimination pretreatment reagents having a pH of 6.0 to 8.5 were prepared. As buffers, 80 mM MES was used for the ATP elimination pretreatment reagent at pH 6.0, 80 mM HEPES was used for pH 7.0 to 8.0, and 80 mM Tricine was used for pH 8.2 to 8.5, respectively. Dissolved in. The pH was adjusted with a 1N aqueous sodium hydroxide solution, and this was used as a pretreatment reagent for ATP elimination.
(「原料由来ATP」の消去工程)
試料として約pH6.5の市販緑茶を用意した。市販緑茶0.1mlを、マイクロピペットを用いてルミチューブ(キッコーマン社製)に分取した。実施例1(ATP消去前処理試薬の調製)で得られた各pHのATP消去前処理試薬0.1mlを、試料が分取されているチューブ内に添加し、チューブミキサーなどで攪拌後、35℃に設定された空調式恒温器(アズワン社製、IC−300A)内に30分間静置することでATP消去前処理反応を行った。反応後、各チューブにルシフェール処理液(キッコーマン社製、Tween80、キレート剤を含む)0.1mLを分注し攪拌した。ATP消去試薬(キッコーマン社製、付属の溶解液で溶解したもの)0.1ml、ルシフェール希釈液(キッコーマン社製)0.7mlを添加後、攪拌し、上記と同様に35℃に設定された恒温器内に30分間静置することで「原料由来ATP」の消去反応を行った。
同時に、ATP消去前処理試薬を使わない測定方法(「前処理なし」として表1に記載)も検討した。その場合、上記のATP消去前処理試薬を添加せず、代わりにルシフェール希釈液を添加する際に0.7mlから0.8mlに添加量を増やして液量を揃えた。その他の反応は、ATP消去前処理試薬を使用する場合と同様に行った。
(Elimination process of “raw material-derived ATP”)
A commercial green tea having a pH of about 6.5 was prepared as a sample. 0.1 ml of commercially available green tea was dispensed into Lumitube (manufactured by Kikkoman) using a micropipette. Add 0.1 ml of the ATP erasing pretreatment reagent of each pH obtained in Example 1 (preparation of ATP erasing pretreatment reagent) to the tube in which the sample is collected, and stir with a tube mixer or the like. ATP erasing pretreatment reaction was carried out by leaving it still in an air-conditioning thermostat set to ° C (manufactured by ASONE, IC-300A) for 30 minutes. After the reaction, 0.1 mL of a lucifer treatment liquid (manufactured by Kikkoman Corporation, including Tween 80 and a chelating agent) was dispensed into each tube and stirred. After adding 0.1 ml of ATP elimination reagent (Kikkoman Co., Ltd., dissolved in the attached solution) and 0.7 ml of lucifer diluted solution (Kikkoman Co., Ltd.), the mixture was stirred and kept at a constant temperature of 35 ° C. as above. The elimination reaction of “raw material-derived ATP” was carried out by leaving it in the vessel for 30 minutes.
At the same time, a measurement method not using an ATP elimination pretreatment reagent (described in Table 1 as “no pretreatment”) was also examined. In that case, the above ATP erasing pretreatment reagent was not added, and instead the lucifer diluted solution was added, the addition amount was increased from 0.7 ml to 0.8 ml to make the solution amount uniform. Other reactions were carried out in the same manner as in the case of using the ATP elimination pretreatment reagent.
(「微生物由来ATP」の抽出工程)
「原料由来ATP」を消去した試料0.1mlを新しいルミチューブに分取した。そこにATP抽出試薬(キッコーマン社製)0.1mlを添加し、攪拌することでATPの抽出を行った。
(Extraction process of “microorganism-derived ATP”)
A 0.1 ml sample from which “raw material-derived ATP” had been erased was dispensed into a new lumitube. ATP extraction reagent (Kikkoman Co., Ltd.) 0.1ml was added there, and ATP was extracted by stirring.
(発光量の測定工程)
ATPの抽出された試料0.2mlにルシフェール発光試薬−HS(キッコーマン社製、付属の溶解液で溶解したもの)0.1mlを添加・攪拌後、直ちにルミテスターC−100(キッコーマン社製)の中に投入し、発光量を測定した。上記で測定した試料の発光量を表1に示す。
(Measurement process of light emission)
0.1 mL of Lucifer Luminescent Reagent-HS (Kikkoman Co., Ltd., dissolved in the attached lysing solution) was added to 0.2 ml of ATP-extracted sample and stirred, and immediately after that Lumitester C-100 (Kikkoman Co.) The amount of luminescence was measured. The amount of luminescence of the sample measured above is shown in Table 1.
表1より、pH6.0のATP消去前処理試薬を用いた場合には、ATP消去前処理試薬を不使用に比べ、バックグランド発光の低下は見られなかった。pH7.0〜8.5の範囲ではバックグランド発光の顕著な低下が見られ、特にpH7.5以上では1/10以下に低減されていることが示された。 From Table 1, when the ATP elimination pretreatment reagent having a pH of 6.0 was used, a decrease in background luminescence was not observed as compared to the case where the ATP elimination pretreatment reagent was not used. In the range of pH 7.0 to 8.5, a significant decrease in background light emission was observed, and in particular, it was shown that the pH was reduced to 1/10 or less at pH 7.5 or higher.
(ATP消去前処理試薬の調製)
ATP消去前処理試薬の微生物への影響を調べるため、pH7.0〜9.0のATP消去前処理試薬を調製した。緩衝剤として、pH7.0には20〜200mM HEPESを、pH8.0〜9.0には20〜200mM Tricineをそれぞれ用い、超純水に溶解した。1N 水酸化ナトリウム水溶液などでpHを調製し、これをATP消去前処理試薬とした。
(Preparation of ATP elimination pretreatment reagent)
In order to investigate the influence of the ATP elimination pretreatment reagent on microorganisms, an ATP elimination pretreatment reagent having a pH of 7.0 to 9.0 was prepared. As buffering agents, 20 to 200 mM HEPES was used at pH 7.0, and 20 to 200 mM Tricine was used at pH 8.0 to 9.0, and dissolved in ultrapure water. The pH was adjusted with a 1N aqueous sodium hydroxide solution, and this was used as a pretreatment reagent for ATP elimination.
(「原料由来ATP」の消去工程)
添加菌として、エンテロバクター・クロアカ(Enterobacter cloacae)NBRC3320、スタフィロコッカス・アウレウス(Staphylococcus aureus)ATCC6538を用意した。これらの添加菌は、茶系飲料において検出される汚染菌のひとつである。各菌は標準寒天培地上、35℃で24時間培養した。
培養後生じたコロニーをPBS中に懸濁し、同PBSを用いて適宜希釈し、マイクロピペットを用いてルミチューブ(キッコーマン社製)に0.1mLを分取した。
実施例2で得られた各pHのATP消去前処理試薬0.1mlを、菌液が分取されているチューブ内に添加し、チューブミキサーなどで攪拌後、35℃に設定された空調式恒温器内に30分間静置することでATP消去前処理反応を行った。
(Elimination process of “raw material-derived ATP”)
Enterobacter cloacae NBRC3320 and Staphylococcus aureus ATCC 6538 were prepared as additional bacteria. These added bacteria are one of the contaminating bacteria detected in tea-based beverages. Each bacterium was cultured on a standard agar medium at 35 ° C. for 24 hours.
Colonies generated after the culture were suspended in PBS, diluted appropriately with the same PBS, and 0.1 mL was fractioned into a Lumitube (manufactured by Kikkoman Corporation) using a micropipette.
Add 0.1 ml of ATP elimination pretreatment reagent of each pH obtained in Example 2 into the tube from which the bacterial solution was collected, and stir with a tube mixer etc. ATP elimination pretreatment reaction was performed by leaving it in the container for 30 minutes.
反応後、各チューブにルシフェール処理液(キッコーマン社製、Tween80、キレート剤を含む)0.1mLを分注し攪拌した。
ATP消去試薬(キッコーマン社製、付属の溶解液で溶解したもの)0.1ml、ルシフェール希釈液(キッコーマン社製)0.6mlを添加後、攪拌し、上記と同様に35℃に設定された恒温器内に30分間静置することで「原料由来ATP」の消去反応を行った。
同時に、ATP消去前処理試薬を使わない測定方法(「前処理なし」として表2に記載)も検討した。その場合、上記のATP消去前処理試薬を添加せず、代わりにルシフェール希釈液を添加する際に0.6mlから0.7mlに添加量を増やして液量を揃えた。その他の反応は、ATP消去前処理試薬を使用する場合と同様に行った。
After the reaction, 0.1 mL of a lucifer treatment liquid (manufactured by Kikkoman Corporation, including Tween 80 and a chelating agent) was dispensed into each tube and stirred.
ATP elimination reagent (Kikkoman, dissolved in the attached solution) 0.1 ml, Lucifer diluted solution (Kikkoman) 0.6 ml was added and stirred, and the temperature was set to 35 ° C. as above. The elimination reaction of “raw material-derived ATP” was carried out by leaving it in the vessel for 30 minutes.
At the same time, a measurement method not using an ATP elimination pretreatment reagent (described in Table 2 as “no pretreatment”) was also examined. In this case, the above ATP erasing pretreatment reagent was not added, and instead the lucifer diluted solution was added, the addition amount was increased from 0.6 ml to 0.7 ml to adjust the solution amount. Other reactions were carried out in the same manner as in the case of using the ATP elimination pretreatment reagent.
(「微生物由来ATP」の抽出工程)
「原料由来ATP」を消去した試料0.1mlを新しいルミチューブに分取した。そこにATP抽出試薬(キッコーマン社製)0.1mlを添加し、攪拌することでATPの抽出を行った。
(Extraction process of “microorganism-derived ATP”)
A 0.1 ml sample from which “raw material-derived ATP” had been erased was dispensed into a new lumitube. ATP extraction reagent (Kikkoman Co., Ltd.) 0.1ml was added there, and ATP was extracted by stirring.
(発光量の測定工程)
ATPの抽出された試料0.2mlにルシフェール発光試薬−HS 0.1mlを添加・攪拌後、直ちにルミテスターC−100(キッコーマン社製)の中に投入し、発光量を測定した。
(Measurement process of light emission)
After adding and stirring 0.1 ml of Lucifer Luminescent Reagent-HS to 0.2 ml of ATP-extracted sample, it was immediately put into Lumitester C-100 (manufactured by Kikkoman Corporation), and the amount of luminescence was measured.
(「発光比」の算出)
以下の式に基づき、表2において「前処理なし」時の各種懸濁液の発光量に対する各ATP消去前処理試薬と反応させた各菌懸濁液の発光量の比(以下、「発光比」という)を算出した。
式: 「発光比」=(各ATP消去前処理試薬と反応させた各菌懸濁液の発光量)÷(「前処理なし」時の各種菌懸濁液の発光量)×100
上記で測定した試料の「発光比」を表2に示す。
(Calculation of “emission ratio”)
Based on the following formula, in Table 2, the ratio of the luminescence amount of each bacterial suspension reacted with each ATP elimination pretreatment reagent to the luminescence amount of each suspension at “no pretreatment” (hereinafter referred to as “luminescence ratio”). ").
Formula: “Luminescence ratio” = (Emission amount of each bacterial suspension reacted with each ATP elimination pretreatment reagent) ÷ (Emission amount of various bacterial suspensions when “no pretreatment”) × 100
The “luminescence ratio” of the sample measured above is shown in Table 2.
表2において「発光比」が80%以上となった場合について、下線を付した。E.cloacaeの「発光比」は、200mM HEPES、pH7.0のATP消去前処理試薬と反応させた場合を除いて100%以上となり、また、全て80%となった。
S.aureusの「発光比」は、40〜150mM Tricine、pH8.0〜9.0範囲で80%以上となった。pH7.0では全て80%未満であった。
以上より、ATP消去前処理試薬使用時の微生物の発光量低下が80%まで許容できると規定するならば、表1の結果と併せ、pH7.0〜9.0が望ましく、さらに好ましくはpH8.0〜9.0であり、緩衝剤濃度は40mM以上、150mM以下が望ましいと考えられた。
In Table 2, the case where the “light emission ratio” is 80% or more is underlined. E. The “luminescence ratio” of cloacae was 100% or more except when reacted with an ATP elimination pretreatment reagent of 200 mM HEPES, pH 7.0, and all were 80%.
S. The “luminescence ratio” of Aureus was 80% or more in the range of 40 to 150 mM Tricine, pH 8.0 to 9.0. All were less than 80% at pH 7.0.
Based on the above, if it is specified that the decrease in the amount of luminescence of the microorganism when using the ATP erasing pretreatment reagent can be tolerated up to 80%, pH 7.0 to 9.0 is desirable, more preferably pH 8. It was 0 to 9.0, and it was considered that the buffer concentration was preferably 40 mM or more and 150 mM or less.
(ATP消去前処理試薬の調製)
超純水を用い、80mM Tricine、0.2% Tween80となるようにそれぞれの試薬を溶解した。1N 水酸化ナトリウム水溶液でpH8.2に調製し、これをATP消去前処理試薬とした。
(Preparation of ATP elimination pretreatment reagent)
Using ultrapure water, each reagent was dissolved to 80 mM Tricine and 0.2% Tween 80. The pH was adjusted to 8.2 with 1N aqueous sodium hydroxide solution, and this was used as a pretreatment reagent for ATP elimination.
(試料の調整)
試料として上記と同じ市販の緑茶、レモンティ、烏龍茶を用意した。いずれもPETボトルに充填されたものを用いた。これらの市販茶系飲料を用いて、微生物非添加区の試料をブランクとして以下の発光測定に用いた。微生物添加区として、エンテロバクター・クロアカ(Enterobacter cloacae)NBRC3320を各茶系飲料に約106 cfu/mLとなるように添加し、これを10倍、100倍、1,000倍に希釈した試料を用意した。
(Sample adjustment)
The same commercially available green tea, lemon tea and oolong tea as above were prepared as samples. All used what was filled in the PET bottle. Using these commercially available tea-based beverages, the samples in the non-microbe-added section were used as blanks for the following luminescence measurements. As a microorganism-added section, Enterobacter cloacae NBRC3320 was added to each tea beverage so as to be about 10 6 cfu / mL, and a sample diluted 10-fold, 100-fold, and 1,000-fold was added. Prepared.
(「原料由来ATP」の消去工程)
微生物非添加区と微生物添加区の各市販茶系飲料0.1mlを、マイクロピペットを用いてルミチューブに分取した。実施例3(ATP消去前処理試薬の調製)で得られたATP消去前処理試薬0.1mlを、試料が分取されているチューブ内に添加し、攪拌後、35℃に設定された空調式恒温器内に30分間静置することでATP消去前処理反応を行った。反応後、各チューブにルシフェール処理液(キッコーマン社製、Tween80、キレート剤を含む)0.1mlを分注し攪拌した。ATP消去試薬0.1ml、ルシフェール希釈液0.6mlを添加後、攪拌し、上記と同様に35℃に設定された恒温器内に30分間静置することで「原料由来ATP」の消去反応を行った。
(Elimination process of “raw material-derived ATP”)
0.1 ml of each commercial tea-based beverage in the non-microbe-added group and the microorganism-added group was dispensed into a Lumi tube using a micropipette. Add 0.1 ml of the ATP elimination pretreatment reagent obtained in Example 3 (Preparation of ATP elimination pretreatment reagent) into the tube in which the sample is separated, and after stirring, an air-conditioning type set to 35 ° C. ATP erasing pretreatment reaction was performed by leaving it in a thermostat for 30 minutes. After the reaction, 0.1 ml of a lucifer treatment solution (manufactured by Kikkoman Corporation, including Tween 80, chelating agent) was dispensed into each tube and stirred. After adding 0.1 ml of ATP elimination reagent and 0.6 ml of lucifer diluted solution, the mixture was stirred and left in a thermostat set at 35 ° C. for 30 minutes in the same manner as described above to eliminate the “raw material-derived ATP”. went.
(「微生物由来ATP」の抽出工程)
「原料由来ATP」を消去した試料0.1mlを新しいルミチューブに分取した。そこにATP抽出試薬0.1mlを添加し、攪拌することでATPの抽出を行った。
(Extraction process of “microorganism-derived ATP”)
A 0.1 ml sample from which “raw material-derived ATP” had been erased was dispensed into a new lumitube. ATP extraction reagent 0.1ml was added there, and ATP extraction was performed by stirring.
(発光量の測定工程)
ATPの抽出された試料0.2mlにルシフェール発光試薬−HS 0.1mlを添加・攪拌後、直ちにルミテスターC−100の中に投入し、発光量を測定した。
(Measurement process of light emission)
After adding and stirring 0.1 ml of Lucifer Luminescent Reagent-HS to 0.2 ml of ATP-extracted sample, it was immediately put into Lumitester C-100, and the amount of luminescence was measured.
(試料中の菌数の確認)
微生物添加区試料について、微生物を添加していない各茶系飲料で適宜希釈し、0.1mlを標準寒天培地に塗抹した。35℃で48時間以上培養した後、生じたコロニー数を計数し、各試料の含む菌濃度を算出した。緑茶、レモンティ、烏龍茶の試料から得られた菌濃度と発光量をそれぞれこの順番で図1〜3に示す。
(Confirmation of the number of bacteria in the sample)
The microorganism-added sample was appropriately diluted with each tea-based beverage to which no microorganism was added, and 0.1 ml was smeared on a standard agar medium. After culturing at 35 ° C. for 48 hours or more, the number of colonies produced was counted, and the bacterial concentration contained in each sample was calculated. The bacterial concentration and the amount of luminescence obtained from the samples of green tea, lemon tea and oolong tea are shown in FIGS.
(比較例1)
実施例3に記載の試料を用いた。また、実施例3に記載の測定方法のうち、「「原料由来ATP」の消去工程」の中でATP消去前処理試薬を使わずに、代わりにルシフェール希釈液を添加する際に0.6mlから0.7mlに添加量を増やして液量を揃えた点を除いて、その他の反応は全く同様にして実施した。緑茶、レモンティ、烏龍茶の試料から得られた菌濃度と発光量をそれぞれこの順番で図1〜3に示す。
(Comparative Example 1)
The sample described in Example 3 was used. In addition, in the measurement method described in Example 3, in the “step of erasing“ raw material-derived ATP ””, without using the ATP erasing pretreatment reagent, instead of adding 0.6 ml of lucifer diluted solution, Other reactions were carried out in the same manner except that the amount added was increased to 0.7 ml and the liquid volume was made uniform. The bacterial concentration and the amount of luminescence obtained from the samples of green tea, lemon tea and oolong tea are shown in FIGS.
(比較例2)
実施例3に記載の試料を用いて、いわゆる「植物飲料法」である特許第2905727号に準ずる方法で発光量の測定を実施した。
「植物飲料法」は、植物飲料由来の体細胞から、「体細胞ATP」抽出剤によりATPを抽出後、「原料由来ATP」を消去し、次いで、遠心分離によってこれら不要となった試薬や分解物を除去し、残った「微生物由来ATP」のみを検出する方法である。
(Comparative Example 2)
Using the sample described in Example 3, the amount of luminescence was measured by a method according to Japanese Patent No. 2905727 which is a so-called “plant beverage method”.
In the “plant beverage method”, ATP is extracted from somatic cells derived from plant beverages using a “somatic cell ATP” extractant, then “raw material-derived ATP” is erased, and then these reagents and decomposition products that have become unnecessary by centrifugation are removed. This is a method of removing the substance and detecting only the remaining “microbe-derived ATP”.
(遠心分離による「原料由来ATP」の消去工程)
微生物非添加区と微生物添加区の各市販茶系飲料0.1mlを、マイクロピペットを用いて1.5ml容のマイクロチューブに分取した。各チューブにルシフェール処理液(キッコーマン社製、Tween80、キレート剤を含む)0.1mlを分注し攪拌した。ATP消去試薬0.1mlを添加、攪拌後、35℃に設定された恒温器内に30分間静置した。これを、遠心分離機を用いて15,000×g、5分間遠心分離を行い、得られた上澄み液をマイクロピペットで吸引除去した。ルシフェール希釈液1.0mlを添加しマイクロチューブ底面に回収された沈殿物をチューブミキサーによる攪拌で再溶解し、懸濁液を得た。
(Elimination process of “raw material-derived ATP” by centrifugation)
0.1 ml of each commercially available tea-based beverage in the non-microbe-added group and the microorganism-added group was dispensed into 1.5 ml microtubes using a micropipette. In each tube, 0.1 ml of a lucifer treatment liquid (manufactured by Kikkoman Corporation, Tween 80, containing a chelating agent) was dispensed and stirred. After adding 0.1 ml of ATP elimination reagent and stirring, it was allowed to stand in a thermostat set at 35 ° C. for 30 minutes. This was centrifuged at 15,000 × g for 5 minutes using a centrifuge, and the resulting supernatant was removed by suction with a micropipette. 1.0 ml of lucifer diluted solution was added and the precipitate collected on the bottom of the microtube was redissolved by stirring with a tube mixer to obtain a suspension.
(「微生物由来ATP」の抽出工程)
上記記載の懸濁液0.1mlを新しいルミチューブに分取した。そこにATP抽出試薬0.1mlを添加し、攪拌することでATPの抽出を行った。
(Extraction process of “microorganism-derived ATP”)
0.1 ml of the above suspension was dispensed into a new lumitube. ATP extraction reagent 0.1ml was added there, and ATP extraction was performed by stirring.
(発光量の測定工程)
実施例3に記載の方法で発光量を測定し菌濃度を算出した。緑茶、レモンティ、烏龍茶の試料から得られた菌濃度と発光量をそれぞれこの順番で図1〜3に示す。
(Measurement process of light emission)
The amount of luminescence was measured by the method described in Example 3 to calculate the bacterial concentration. The bacterial concentration and the amount of luminescence obtained from the samples of green tea, lemon tea and oolong tea are shown in FIGS.
図1の結果から、緑茶の微生物非添加区(ブランク)と微生物添加区のうち菌濃度3.4×103cfu/mlとなった試料の発光量は、ATP消去前処理試薬を用いた実施例3の場合にそれぞれ75RLUと148RLUであった。これに対して、ATP消去前処理試薬を使用しない場合は、前記比較例1の場合、846RLUと、636RLUであった。また、前記比較例2の場合、400RLU、417RLUであった。実施例のシグナル:ノイズ比は148/75=約2倍であり、微生物の測定が可能であったが、比較例1および比較例2では、緑茶に含まれる103cfu/mlオーダーの微生物の測定は困難であった。 From the results shown in FIG. 1, the amount of luminescence of the sample having a bacterial concentration of 3.4 × 10 3 cfu / ml in the green tea microorganism non-addition group (blank) and the microorganism addition group was measured using the ATP elimination pretreatment reagent. In the case of Example 3, they were 75 RLU and 148 RLU, respectively. In contrast, in the case of Comparative Example 1, when the ATP erasing pretreatment reagent was not used, they were 846 RLU and 636 RLU. In the case of Comparative Example 2, the values were 400 RLU and 417 RLU. The signal / noise ratio of the example was 148/75 = about 2 times, and microorganisms could be measured. In Comparative Example 1 and Comparative Example 2, microorganisms of the order of 10 3 cfu / ml contained in green tea were used. Measurement was difficult.
図2の結果から、レモンティの微生物添加区のうち菌濃度5.2×103cfu/mlとなった試料と菌濃度5.2×104cfu/mlとなった試料の発光量は、ATP消去前処理試薬を用いた実施例3の場合にそれぞれ456RLUと1,225RLUであった。これに対して、ATP消去前処理試薬を使用しない場合は、比較例1の場合、9,053RLUと10,522RLUであった。また比較例2の場合、1,474RLUと1,181RLUであった。実施例のシグナル:ノイズ比は1,225/456=約2.7倍であり、微生物の測定が可能であったが、比較例1および比較例2では、レモンティに含まれる104cfu/mlオーダーの微生物の測定は困難であった。 From the results of FIG. 2, the amount of luminescence of the sample with the bacterial concentration of 5.2 × 10 3 cfu / ml and the sample with the bacterial concentration of 5.2 × 10 4 cfu / ml in the microbial addition group of lemon tea is ATP. In the case of Example 3 using the erase pretreatment reagent, they were 456 RLU and 1,225 RLU, respectively. On the other hand, when the ATP erasing pretreatment reagent was not used, in the case of Comparative Example 1, they were 9,053 RLU and 10,522 RLU. In Comparative Example 2, they were 1,474 RLU and 1,181 RLU. The signal / noise ratio of the example was 1,225 / 456 = about 2.7 times, and microorganisms could be measured. In Comparative Example 1 and Comparative Example 2, 10 4 cfu / ml contained in lemon tea Measurement of microorganisms on the order was difficult.
図3の結果から、烏龍茶のブランクと微生物添加区のうち菌濃度4.8×103cfu/mlとなった試料の発光量は、ATP消去前処理試薬を用いた実施例3の場合にそれぞれ63RLUと122RLUであった。これに対して、ATP消去前処理試薬を使用しない場合は、比較例1の場合、1,851RLUと、964RLUであった。また比較例2の場合、235RLU、334RLUであった。実施例のシグナル:ノイズ比は122/63=約2倍であり、微生物の測定が可能であったが、比較例1および比較例2では、緑茶に含まれる103cfu/mlオーダーの微生物の測定は困難であった。 From the results shown in FIG. 3, the luminescence amount of the sample having a microbial concentration of 4.8 × 10 3 cfu / ml in the oolong tea blank and the microorganism-added group was as in Example 3 using the ATP elimination pretreatment reagent. 63 RLU and 122 RLU. On the other hand, when the ATP erasing pretreatment reagent was not used, in the case of Comparative Example 1, they were 1,851 RLU and 964 RLU. In the case of Comparative Example 2, they were 235 RLU and 334 RLU. The signal / noise ratio of Example was 122/63 = about 2 times, and microorganisms could be measured. In Comparative Example 1 and Comparative Example 2, microorganisms of the order of 10 3 cfu / ml contained in green tea were used. Measurement was difficult.
また、図1〜3の結果から、従来法である比較例1〜2の方法で測定した場合に比べ、実施例3で測定した場合は、より低濃度の微生物添加区の試料から直線性を示していることは明らかである。
以上のように、本発明のATP消去前処理試薬を用いることで、各種茶系飲料のバックグランド発光を低下せしめることが可能であり、従来法に比べて高感度に該飲料中の微生物を測定可能である。
Moreover, from the result of FIGS. 1-3, compared with the case where it measures by the method of the comparative examples 1-2 which is a conventional method, when measured in Example 3, linearity is obtained from the sample of a lower concentration microorganism-added section. It is clear that it shows.
As described above, by using the ATP erasing pretreatment reagent of the present invention, it is possible to reduce the background luminescence of various tea-based beverages, and the microorganisms in the beverage can be measured with higher sensitivity than conventional methods. Is possible.
Claims (5)
(1)微生物を破壊することなく茶系飲料中の原料由来ATPを遊離させ、かつ、茶系飲料成分由来の化学発光を減少させるATP消去前処理試薬を茶系飲料に添加し、一定時間反応させる第一工程
(2)ATP消去剤を添加し、反応させ、反応液中の原料由来ATPを消去する第二工程
(3)ATP抽出剤を添加し、反応させ、微生物内ATPを反応液中に遊離させる第三工程
(4)遊離した微生物由来ATPをルシフェリン−ルシフェラーゼ試薬によって測定する第四工程 A method for measuring microorganisms in a tea-based beverage, comprising the following steps.
(1) An ATP erasing pretreatment reagent that releases ATP from raw materials in tea-based beverages and reduces chemiluminescence derived from tea-based beverage components without destroying microorganisms is added to tea-based beverages and reacted for a certain period of time. First step (2) ATP elimination agent is added and reacted, and second step (3) ATP extractant is added and reacted to eliminate ATP in the reaction solution, and ATP in the microorganism is added to the reaction solution. (4) Fourth step of measuring the released microorganism-derived ATP with a luciferin-luciferase reagent
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008173164A JP5177524B2 (en) | 2008-07-02 | 2008-07-02 | Method for measuring microorganisms in tea beverages |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008173164A JP5177524B2 (en) | 2008-07-02 | 2008-07-02 | Method for measuring microorganisms in tea beverages |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010011759A true JP2010011759A (en) | 2010-01-21 |
JP5177524B2 JP5177524B2 (en) | 2013-04-03 |
Family
ID=41698548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008173164A Active JP5177524B2 (en) | 2008-07-02 | 2008-07-02 | Method for measuring microorganisms in tea beverages |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5177524B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061787A1 (en) | 2012-10-19 | 2014-04-24 | 株式会社日立製作所 | Method for quantitative determination of biosubstance and instrument for quantitative determination of biosubstance |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1028599A (en) * | 1996-04-26 | 1998-02-03 | Toyo Ink Mfg Co Ltd | Detection and/or measurement of atp derived from microbial cell existing in sample and its reagent kit |
JP2905727B2 (en) * | 1995-09-14 | 1999-06-14 | カゴメ株式会社 | Method for measuring viable bacteria count in plant drinks |
WO2002092843A1 (en) * | 2001-05-16 | 2002-11-21 | Kikkoman Corporation | Method of counting microbial cells |
JP2003180395A (en) * | 2001-10-11 | 2003-07-02 | Kikkoman Corp | Method for detecting microorganism |
JP2003284589A (en) * | 2002-03-29 | 2003-10-07 | D M L:Kk | Method for measuring microorganism in food |
JP2004313028A (en) * | 2003-04-11 | 2004-11-11 | Hitachi Ltd | Bioluminescence-measuring device and kit for measuring intracellular atp |
JP2005229956A (en) * | 2004-02-23 | 2005-09-02 | Kikkoman Corp | Method for detecting microorganism in drink |
US20060073537A1 (en) * | 2004-10-01 | 2006-04-06 | Cairns James E | Reagent system and process for adenosine triphosphate monitoring |
WO2008015427A1 (en) * | 2006-08-01 | 2008-02-07 | 3M Innovative Properties Company | Assay method for the detection of viable microbial cells in a sample |
-
2008
- 2008-07-02 JP JP2008173164A patent/JP5177524B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2905727B2 (en) * | 1995-09-14 | 1999-06-14 | カゴメ株式会社 | Method for measuring viable bacteria count in plant drinks |
JPH1028599A (en) * | 1996-04-26 | 1998-02-03 | Toyo Ink Mfg Co Ltd | Detection and/or measurement of atp derived from microbial cell existing in sample and its reagent kit |
WO2002092843A1 (en) * | 2001-05-16 | 2002-11-21 | Kikkoman Corporation | Method of counting microbial cells |
JP2003180395A (en) * | 2001-10-11 | 2003-07-02 | Kikkoman Corp | Method for detecting microorganism |
JP2003284589A (en) * | 2002-03-29 | 2003-10-07 | D M L:Kk | Method for measuring microorganism in food |
JP2004313028A (en) * | 2003-04-11 | 2004-11-11 | Hitachi Ltd | Bioluminescence-measuring device and kit for measuring intracellular atp |
JP2005229956A (en) * | 2004-02-23 | 2005-09-02 | Kikkoman Corp | Method for detecting microorganism in drink |
US20060073537A1 (en) * | 2004-10-01 | 2006-04-06 | Cairns James E | Reagent system and process for adenosine triphosphate monitoring |
WO2008015427A1 (en) * | 2006-08-01 | 2008-02-07 | 3M Innovative Properties Company | Assay method for the detection of viable microbial cells in a sample |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061787A1 (en) | 2012-10-19 | 2014-04-24 | 株式会社日立製作所 | Method for quantitative determination of biosubstance and instrument for quantitative determination of biosubstance |
Also Published As
Publication number | Publication date |
---|---|
JP5177524B2 (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180148761A1 (en) | Rapid Method For Detection of Salmonella Live Vaccine Strains | |
EP2789692B1 (en) | Method for measuring cells, and reagent for cell measurement | |
DE3786279T2 (en) | Method for the selective determination of microbial nucleotides. | |
EP2978856B1 (en) | Selective chromogenic medium | |
JP5177524B2 (en) | Method for measuring microorganisms in tea beverages | |
KR101747347B1 (en) | Method for identifying bacteria from the bacillus cereus group | |
Basak et al. | Conventional microbial counting and identification techniques | |
JPH1028599A (en) | Detection and/or measurement of atp derived from microbial cell existing in sample and its reagent kit | |
CN102803503B (en) | Method and kit for detection of guaiacol-producing bacterium | |
JP2905727B2 (en) | Method for measuring viable bacteria count in plant drinks | |
Shinozaki et al. | Rapid detection of bacteria in green tea using a novel pretreatment method in a bioluminescence assay | |
JP2005229956A (en) | Method for detecting microorganism in drink | |
JP2010193815A (en) | Method for detecting coliform bacteria | |
JP6153461B2 (en) | Microbial recovery method | |
JP2001136999A (en) | Atp extinction pretreatment agent added and used in microorganism atp assay, and high-sensitivity assay of microorganism atp using the same agent | |
EP3218510B1 (en) | Kit comprising atp-diphosphohydrolase for detecting bacterial atp in a sample | |
EP3368681B1 (en) | Assay for determining antibiotics in waste | |
EP1333097A2 (en) | Polyols in bioluminescence assays | |
JP2004222643A (en) | Method for detecting yeast in material containing lactic bacterium | |
Sarwat | Isolation and Identification of Tannase producing bacteria from environmental soil sample | |
JP5405650B1 (en) | Method for measuring cell-derived adenosine triphosphate | |
Stalio | NEW APPLICATIONS OF THE MICRO BIOLOGICAL SURVEY METHOD (MRS) | |
Sun et al. | Direct visual detection for methicillin-resistant Staphylococcus aureus in milk based on the RPA-Cas12a-LFS method | |
Sudano | Composition Of Enological Nutrients And Their Effect On Malolactic Fermentation | |
Lokur | β-Galactosidase assay on microfluidic paper-based analytical devices (µPADs) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5177524 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |