Nothing Special   »   [go: up one dir, main page]

JP2010083123A - Compound high-speed molding system - Google Patents

Compound high-speed molding system Download PDF

Info

Publication number
JP2010083123A
JP2010083123A JP2008274542A JP2008274542A JP2010083123A JP 2010083123 A JP2010083123 A JP 2010083123A JP 2008274542 A JP2008274542 A JP 2008274542A JP 2008274542 A JP2008274542 A JP 2008274542A JP 2010083123 A JP2010083123 A JP 2010083123A
Authority
JP
Japan
Prior art keywords
mold
molding die
die
molding system
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274542A
Other languages
Japanese (ja)
Other versions
JP4653209B2 (en
Inventor
Junying Guo
郭俊映
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitac Precision Technology Kunshan Ltd
Original Assignee
Mitac Precision Technology Kunshan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitac Precision Technology Kunshan Ltd filed Critical Mitac Precision Technology Kunshan Ltd
Publication of JP2010083123A publication Critical patent/JP2010083123A/en
Application granted granted Critical
Publication of JP4653209B2 publication Critical patent/JP4653209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound high-speed molding system in which a molding die is heated jointly with a high-temperature fluid and an induction heating coil to shorten the heating cycle of the molding die and improve production efficiency of an injection molded article. <P>SOLUTION: The molding die is heated by the induction heating coil and further, fluid passages are arranged in the molding die. The high-temperature fluid passes through the respective passages and heats the molding die. The molding die is simultaneously heated by the high-temperature fluid and the induction heating coil. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高速成形に関し、特に、誘導加熱と蒸気加熱を結合した複合式高速成形システムに関する。   The present invention relates to high-speed molding, and more particularly to a combined high-speed molding system that combines induction heating and steam heating.

射出成形の製造工程において、液状樹脂は成形金型のキャビティにより成形されるが、充分に流動して液状樹脂がキャビティ全体に充填されるよう確保されなければならない。しかし、成形金型は高い熱伝導特性を有する金属によって製造され、液状樹脂が成形金型に接触した後、迅速に温度が下がる。降温後の液状樹脂は粘度係数が上昇し、流動性が悪くなり、キャビティ内の比較的小さい孔隙箇所(プラスチック成形品の微細な構造の箇所に相当)に流入しにくくなる。更には、液状樹脂が早く固化してしまい、液状樹脂が継続的に流動してキャビティに充填されるのが阻まれることさえあり得る。液状樹脂に固化または不完全な充填の現象がまだ発生していなくても、2つの低温の液状樹脂の流れが合流する箇所でも液状樹脂の流動性が悪いため、2つの液状樹脂が充分に融合されず、結合の痕跡や構造断面が発生する。プラスチック成形品の完成品の外観が劣るだけでなく、応力の欠陥も形成し、プラスチック成形品の完成品が断裂しやすくなってしまう。   In the manufacturing process of injection molding, the liquid resin is molded by the cavity of the molding die, but it must be ensured that it flows sufficiently and fills the entire cavity with the liquid resin. However, the molding die is made of a metal having high heat conduction characteristics, and the temperature rapidly decreases after the liquid resin comes into contact with the molding die. The liquid resin after cooling has an increased viscosity coefficient and poor fluidity, and is difficult to flow into relatively small pores (corresponding to the fine structure of the plastic molded product) in the cavity. Furthermore, the liquid resin may solidify quickly, and the liquid resin may even be prevented from continuously flowing and filling the cavities. Even if the liquid resin has not yet solidified or incompletely filled, the liquid resin has poor fluidity even at the point where the flow of the two low-temperature liquid resins merges, so the two liquid resins are fully fused. In other words, traces of bonds and structural cross sections are generated. Not only is the appearance of the finished plastic molded product inferior, but stress defects are also formed, and the finished plastic molded product tends to tear.

上述の問題を解決するため、液状樹脂を成形金型に注入する前に、相対的高温に加熱し、液状樹脂が相対的に低温の金型に接触した後迅速に降温し固化してしまうことがないようにする必要がある。加熱された高温の成形金型は液状樹脂の流動性を保持し、液状樹脂をキャビティに充填する工程を加速することができる。従来の技術において、迅速に金型を加熱する方式は主に二種類ある。1つ目は高温蒸気を成形金型内部の通路中に導入し、高温蒸気を利用して成形金型を加熱する方法である。2つ目は誘導加熱コイルを使用して成形金型表面(特にキャビティ表面)に接近させ、金型表面に渦電流を発生させて、さらに金型そのものに自ら発熱させる方法である。   In order to solve the above-mentioned problems, the liquid resin is heated to a relatively high temperature before being injected into the molding die, and the liquid resin is quickly cooled and solidified after contacting the relatively low temperature die. It is necessary not to have. The heated high-temperature molding die can maintain the fluidity of the liquid resin and accelerate the process of filling the cavity with the liquid resin. In the prior art, there are mainly two types of methods for rapidly heating the mold. The first is a method in which high temperature steam is introduced into a passage inside the molding die and the molding die is heated using the high temperature steam. The second is a method in which an induction heating coil is used to approach the molding die surface (particularly the cavity surface), eddy current is generated on the die surface, and the die itself generates heat.

図1に従来の技術における成形金型1の断面図を示す。成形金型1は複数の通路2を備えている。これら通路2は頭尾を直列に連結し、出入水管路に連結することができる。通路2はまた平行に並列させて出入水管路に連結することもできる。成形金型1を閉じる前に、通路2の中に高温蒸気が注入され、これにより成形金型1を加熱し、その後型を閉じて成形を行う。成形完了後、通路2には冷却水が導入され、冷却速度を加速し、成形金型1をできるだけ速く型開きできるようにする。通路2は高温蒸気または冷却水の通過に供することができ、成形金型1の加熱と冷却に同時に用いられる。しかしながら、通路2の構造は直線穴あけ技術により制限され、通路2は直線形の通路とできるのみであり、且つ成形金型1に埋設される。このため、通路2はキャビティ表面のあらゆる箇所に真に接近させることができず、高温蒸気の熱エネルギーは成形金型1の材料を通してキャビティ表面に伝導する必要があり、キャビティ表面が作業温度まで加熱する時間が延長されてしまう。   FIG. 1 shows a cross-sectional view of a conventional molding die 1. The molding die 1 includes a plurality of passages 2. These passages 2 can connect the head and tail in series, and can be connected to the water inlet / outlet pipe. The passages 2 can also be connected in parallel to the inlet / outlet water lines. Before closing the molding die 1, high-temperature steam is injected into the passage 2, thereby heating the molding die 1 and then closing the die to perform molding. After the molding is completed, cooling water is introduced into the passage 2 to accelerate the cooling rate so that the molding die 1 can be opened as quickly as possible. The passage 2 can be used for passage of high-temperature steam or cooling water, and is used simultaneously for heating and cooling of the molding die 1. However, the structure of the passage 2 is limited by the straight hole drilling technique, and the passage 2 can only be a straight passage and is embedded in the molding die 1. For this reason, the passage 2 cannot be truly approached everywhere on the cavity surface, and the thermal energy of the high-temperature steam needs to be conducted to the cavity surface through the material of the mold 1 and the cavity surface is heated to the working temperature. The time to do is extended.

図2に従来の技術における別の成形金型3の立体分解図を示す。誘導加熱コイル4を介して加熱を行うものである。成形金型3は型開き後、再度型を閉じて液状樹脂の注入を行う前まで、誘導加熱コイル4がオス型3aとメス型3bの間に移動され、キャビティ3cの位置に対応される。誘導加熱コイル4は高周波の交流電流が導入され、これにより磁場を発生し、キャビティ3cの表面が磁場に誘導されて渦電流を発生する。成形金型3は渦電流の作用下で自ら発熱し、これによりキャビティ3aの表面が加熱される。しかしながら、渦電流の大きさは誘導加熱コイル4と成形金型3表面の間の距離と反比例の関係にあり、キャビティ3aの凹陥箇所は渦電流が比較的少なく、昇温速度も比較的遅くなり、キャビティ3a表面が作業温度まで加熱される時間が延長されてしまう。   FIG. 2 shows a three-dimensional exploded view of another molding die 3 in the prior art. Heating is performed via the induction heating coil 4. After the mold 3 is opened, the induction heating coil 4 is moved between the male mold 3a and the female mold 3b until the mold is closed again and before the liquid resin is injected, and corresponds to the position of the cavity 3c. The induction heating coil 4 is supplied with a high-frequency alternating current, thereby generating a magnetic field, and the surface of the cavity 3c is induced by the magnetic field to generate an eddy current. The molding die 3 itself generates heat under the action of eddy current, thereby heating the surface of the cavity 3a. However, the magnitude of the eddy current is inversely proportional to the distance between the induction heating coil 4 and the surface of the molding die 3, and the recessed portion of the cavity 3a has a relatively small eddy current and the heating rate is relatively slow. The time during which the cavity 3a surface is heated to the working temperature is extended.

本発明の目的は、高温流体と誘導加熱コイルが共同で成形金型を加熱し、成形金型の加熱周期を短縮して射出成形の生産効率を向上することができる、複合式高速成形システムを提供することにある。   An object of the present invention is to provide a composite high-speed molding system in which a high-temperature fluid and an induction heating coil can jointly heat a molding die, shorten the heating cycle of the molding die, and improve the production efficiency of injection molding. It is to provide.

上述の目的を達するため、本発明の複合式高速成形システムは、成形金型と誘導加熱コイルを含み、成形金型は液状樹脂をその中に注入し、固化させて成形を行うために用いられ、誘導加熱コイルは作業電流を受け取って前記成形金型を加熱するために用いられる。そのうち、成形金型はさらに複数の通路を備え、高温流体供給源からの高温流体が各通路に通過され、内部から成形金型を加熱するために用いられる。誘導加熱コイル及び高温流体が成形金型の表面と内部を同時に加熱し、成形金型が作業温度まで加熱するために必要な時間を短縮することができる。   In order to achieve the above-mentioned object, the composite high-speed molding system of the present invention includes a molding die and an induction heating coil, and the molding die is used for injecting a liquid resin therein to solidify and molding. The induction heating coil is used to receive the working current and heat the mold. Among them, the molding die further includes a plurality of passages, and the high-temperature fluid from the high-temperature fluid supply source is passed through each passage and used to heat the molding die from the inside. The induction heating coil and the high temperature fluid simultaneously heat the surface and the inside of the molding die, and the time required for the molding die to be heated to the working temperature can be shortened.

本発明は、高温流体と誘導加熱コイルが共同で成形金型を加熱し、成形金型の加熱周期を短縮することができ、射出成形の生産効率を向上することができる。同時に、高温流体が成形金型の全体を加熱し、注入過程における成形金型のキャビティ表面の降温速度を遅らせ、原料液の流動性を保持し、さらに液状樹脂の流動不良により引き起こされるプラスチック成形品の欠陥を回避することができる。   In the present invention, the high-temperature fluid and the induction heating coil can jointly heat the molding die, shorten the heating cycle of the molding die, and improve the production efficiency of injection molding. At the same time, the high-temperature fluid heats the entire mold, slows the temperature drop rate of the mold cavity surface during the injection process, maintains the fluidity of the raw material liquid, and further causes plastic molding caused by poor flow of the liquid resin. Defects can be avoided.

図3と図4に本発明の実施例の複合式高速成形システムを示す。この複合式高速成形システムは作業台10、成形金型20、誘導加熱コイル30、高温流体供給源40、冷却流体供給源50、排液装置60、及び冷却板70を含む。   3 and 4 show a composite high-speed molding system according to an embodiment of the present invention. The composite high-speed molding system includes a work table 10, a molding die 20, an induction heating coil 30, a high-temperature fluid supply source 40, a cooling fluid supply source 50, a drainage device 60, and a cooling plate 70.

図4に示すように、作業台10は座部11、金型開閉装置12、移動装置13、及び成形機14を含む。座部11は成形金型20、金型開閉装置12、移動装置13、成形機14、及び冷却板70をその上に搭載するために用いられる。金型開閉装置12は座部11上に設置され、成形金型20を直線的に作動させ、成形金型20に対し型開きまたは型閉じ作業を行わせるために用いられる。金型開閉装置12は油圧装置、リンク式アクチュエータ、或いは送りねじアッセンブリとすることができ、本実施例において、金型開閉装置12は油圧装置とし、座部11上に設置された支持体121と複数の油圧シリンダ122を含み、そのうち支持体121と油圧シリンダ122は座部11上に設置され、且つ油圧シリンダ122の駆動棒123が支持体121に穿通されて成形金型20に連結され、成形金型20を直線的に作動させる。移動装置13は座部11上に設置され、冷却板70を座部11で移動させて成形金型20に接触させる、または成形金型20から離すために用いられる。移動装置13は油圧装置、リンク式アクチュエータ、或いは送りねじアッセンブリとすることができ、本実施例において、移動装置13は油圧装置とし、座部11上に設置され、且つその駆動棒131が支持体121に穿通されて冷却板70に連結され、冷却板を成形金型20の一側で支持し移動させる。   As shown in FIG. 4, the work table 10 includes a seat portion 11, a mold opening / closing device 12, a moving device 13, and a molding machine 14. The seat 11 is used for mounting the molding die 20, the mold opening / closing device 12, the moving device 13, the molding machine 14, and the cooling plate 70 thereon. The mold opening / closing device 12 is installed on the seat portion 11 and is used to linearly actuate the molding die 20 so that the molding die 20 can be opened or closed. The mold opening / closing device 12 can be a hydraulic device, a link type actuator, or a feed screw assembly. In this embodiment, the mold opening / closing device 12 is a hydraulic device, and a support body 121 installed on the seat portion 11 and A plurality of hydraulic cylinders 122 are included, of which the support body 121 and the hydraulic cylinder 122 are installed on the seat portion 11, and the driving rod 123 of the hydraulic cylinder 122 is penetrated through the support body 121 and connected to the molding die 20. The mold 20 is operated linearly. The moving device 13 is installed on the seat portion 11 and is used for moving the cooling plate 70 at the seat portion 11 to contact the molding die 20 or to move it away from the molding die 20. The moving device 13 can be a hydraulic device, a link actuator, or a feed screw assembly. In this embodiment, the moving device 13 is a hydraulic device and is installed on the seat portion 11 and its drive rod 131 is a support. It is penetrated by 121 and connected to the cooling plate 70, and the cooling plate is supported and moved on one side of the molding die 20.

図3と図4に示すように、成形金型20はオス型21とメス型22を含み、オス型21とメス型22は相互に閉じ合わせられてキャビティ23を形成し、液状樹脂をその中に注入してキャビティ23内で冷却し、固化させて成形するために用いられる。そのうち、オス型21は座部11に固定して設置され、且つオス型21は注入路211を備え、オス型21の外側面とキャビティ23が連通される。成形機14は注入路211に連結され、高温で溶融された成形原料(液態プラスチック)を注入路211からキャビティ23内に注入するために用いられる。メス型22は座部11上に移動可能に設置され、且つ金型開閉装置12の駆動棒123がメス型22に連結され、直線的にメス型22を移動させるために用いられ、メス型22を移動してオス型21に閉じ合わせ、型閉じを行うか、オス型21から離脱させて型開きを行うことができる。このほか、成形金型20は複数の通路24を備え、成形金型20のオス型21またはメス型22のいずれか1つに穿通される。通路24は成形金型20に対して加熱または冷却を行うための高温流体、低温流体、或いは乾燥気体を通過させるために用いられる。   As shown in FIGS. 3 and 4, the molding die 20 includes a male die 21 and a female die 22, and the male die 21 and the female die 22 are closed together to form a cavity 23, and a liquid resin is contained therein. And then cooled in the cavity 23, solidified and used for molding. Among them, the male mold 21 is fixedly installed on the seat portion 11, and the male mold 21 includes an injection path 211, and the outer surface of the male mold 21 and the cavity 23 are communicated with each other. The molding machine 14 is connected to an injection path 211 and is used to inject a molding material (liquid plastic) melted at a high temperature into the cavity 23 from the injection path 211. The female die 22 is movably installed on the seat portion 11, and the driving rod 123 of the mold opening / closing device 12 is connected to the female die 22 and used to move the female die 22 linearly. Can be moved and closed to the male mold 21 to close the mold, or separated from the male mold 21 to open the mold. In addition, the molding die 20 includes a plurality of passages 24, and is penetrated by any one of the male die 21 and the female die 22 of the molding die 20. The passage 24 is used for passing a high-temperature fluid, a low-temperature fluid, or a dry gas for heating or cooling the molding die 20.

図3と図4に示すように、誘導加熱コイル30は移動可能に設置され、かつ例えば機械アーム32などのアクチュエータに連結され、機械アーム32によって座部11の上に支持され、成形金型30のオス型21とメス型22の間に移動されてオス型21とメス型22の内側側面、即ち、キャビティ23の表面に対して加熱を行う。誘導加熱コイル30は機械アーム32により駆動されて二次元方向にオス型21とメス型22の間に移動され、キャビティ23の表面に接近するが、接触はしない。誘導加熱コイル30は作業電流を受け取ると磁場を発生し、成形金型20のキャビティ23表面に磁場の誘導で渦電流を発生させ、渦電流の流動が成形金型20の表面を自ら発熱させ、成形金型20のキャビティ23表面を加熱する効果が達せられる。   As shown in FIGS. 3 and 4, the induction heating coil 30 is movably installed and connected to an actuator such as a mechanical arm 32 and supported on the seat 11 by the mechanical arm 32. Is moved between the male mold 21 and the female mold 22 to heat the inner side surfaces of the male mold 21 and the female mold 22, that is, the surface of the cavity 23. The induction heating coil 30 is driven by a mechanical arm 32 and is moved between the male mold 21 and the female mold 22 in a two-dimensional direction and approaches the surface of the cavity 23 but does not come into contact therewith. When the induction heating coil 30 receives a working current, it generates a magnetic field, generates an eddy current by induction of the magnetic field on the surface of the cavity 23 of the molding die 20, and the flow of the eddy current causes the surface of the molding die 20 to generate heat by itself. The effect of heating the surface of the cavity 23 of the molding die 20 is achieved.

図3と図4に示すように、高温流体供給源40は高温流体の提供に用いられ、例えば高温流体供給源40はボイラーとし、純水を加熱して高圧高温蒸気を発生することができる。高温流体供給源40は成形金型20の通路24に連結され、高温流体を提供して各通路24に通過させ、成形金型20を作業温度まで加熱する。   As shown in FIGS. 3 and 4, the high-temperature fluid supply source 40 is used to provide a high-temperature fluid. For example, the high-temperature fluid supply source 40 can be a boiler, and pure water can be heated to generate high-pressure high-temperature steam. A hot fluid supply 40 is connected to the passages 24 of the mold 20 and provides a hot fluid to pass through each passage 24 to heat the mold 20 to the working temperature.

図3と図4に示すように、前述の誘導加熱コイル30は直接キャビティ23表面に加熱を行い、直接液状樹脂に接触するキャビティ23表面を迅速に昇温させる。誘導加熱コイル30はキャビティ23の凹陥箇所23aに対する加熱効率が比較的劣るが、凹陥箇所23aは逆に通路24に比較的接近しているため、高温流体が凹陥箇所23aを迅速に加熱することができる。このため、高温流体と誘導加熱コイル30が共同で成形金型20を加熱することで、成形金型20の加熱周期を短縮し、射出成形の生産効率を高めることができる。同時に、高温流体が成形金型20の全体を加熱するため、原料液の注入過程で成形金型20のキャビティ23表面の温度が低下する速度を遅め、原料液の流動性を保持し、液状樹脂の2つの流れが合流する箇所に結合の痕跡や構造断面が出現するのを回避することができる。   As shown in FIGS. 3 and 4, the induction heating coil 30 described above directly heats the surface of the cavity 23, and rapidly raises the temperature of the surface of the cavity 23 that directly contacts the liquid resin. The induction heating coil 30 is relatively inferior in heating efficiency to the recessed portion 23a of the cavity 23. However, since the recessed portion 23a is relatively close to the passage 24, the high temperature fluid can quickly heat the recessed portion 23a. it can. For this reason, the high-temperature fluid and the induction heating coil 30 jointly heat the molding die 20, thereby shortening the heating cycle of the molding die 20 and increasing the production efficiency of injection molding. At the same time, since the high temperature fluid heats the entire molding die 20, the rate at which the temperature of the cavity 23 surface of the molding die 20 decreases during the injection of the raw material liquid is slowed to maintain the fluidity of the raw material liquid. It is possible to avoid the appearance of bond traces and structural cross sections at the place where the two flows of the resin merge.

迅速な射出成形を達するため、成形金型20を迅速に加熱するほか、成形原料を完全に成形金型20に注入した後、型を開くことができる温度まで成形金型20を迅速に冷却する必要がある。   In order to achieve rapid injection molding, the molding die 20 is heated quickly, and after the molding raw material is completely injected into the molding die 20, the molding die 20 is rapidly cooled to a temperature at which the die can be opened. There is a need.

図3と図4に示すように、冷却流体供給源50は冷却流体の提供に用いられ、例えば冷却流体供給源50は水タンクに連結された凝縮器とし、低温の冷却水の提供に用いることができる。冷却流体供給源50は成形金型20の通路24に連結され、冷却流体を提供して各通路24を通過させ、成形金型20を型開き温度まで冷却する。   As shown in FIGS. 3 and 4, the cooling fluid supply source 50 is used to provide cooling fluid. For example, the cooling fluid supply source 50 is a condenser connected to a water tank and is used to provide low-temperature cooling water. Can do. The cooling fluid supply source 50 is connected to the passage 24 of the molding die 20 and provides cooling fluid to pass through each passage 24 to cool the molding die 20 to the mold opening temperature.

図3と図4に示すように、排液装置60は圧力差発生装置とし、例えば排液装置60はブロワ装置、高圧気体供給源、または真空ポンプとすることができ、高圧且つ乾燥した空気をあらかじめ定めた方向に向かって送り込み、流動させるために用いられる。排液装置60は成形金型20の通路24に連結される。排液装置60が正圧力差を提供するときは、通路24の入口端から高圧空気を送り込むことができる。排液装置60が負圧力差を提供するときは、通路24の出口端から吸引を行うことができる。排液装置60が発生することができる高圧且つ乾燥した気体は各通路24を通過し、通路24内部に残存する冷却液体または高温蒸気を排出することができる。   As shown in FIG. 3 and FIG. 4, the drainage device 60 is a pressure difference generating device. For example, the drainage device 60 can be a blower device, a high-pressure gas supply source, or a vacuum pump. Used to feed and flow in a predetermined direction. The drainage device 60 is connected to the passage 24 of the molding die 20. When the drainage device 60 provides a positive pressure difference, high pressure air can be fed from the inlet end of the passage 24. When the drainage device 60 provides a negative pressure difference, suction can be performed from the outlet end of the passage 24. The high-pressure and dry gas that can be generated by the drainage device 60 passes through each passage 24, and the cooling liquid or high-temperature vapor remaining in the passage 24 can be discharged.

成形金型20に十分な応力強度を具備させ、成形過程の高圧力に対応できるようにするため、通路24は通常小孔径であり、成形金型20内にサイズが大きすぎる空心構造を形成しないようにし、且つ通路24の数量も平均的に成形金型20全体をカバーするようにする必要がある。このような状況下で、小孔径の通路24そのものが大きな流動抵抗を発生し、冷却流体が複数の通路24に分流されるのも同様の流動抵抗を生じ、特に成形金型20が比較的大きいとき、通路24の数量も多くなる。大流阻の存在は冷却流体の流量を低下させ、冷却流体供給源50の実際の成形金型20に対して発生する冷却仕事率が低下され、降温時間が相対して延長される。冷却流体供給源50の実質的な冷却仕事率が制限される問題を解決するため、本発明の実施例は冷却板70で成形金型20の冷却速度を強化する。   In order to provide the molding die 20 with sufficient stress strength and to cope with the high pressure during the molding process, the passage 24 is usually a small hole diameter and does not form an air core structure that is too large in the molding die 20. In addition, the number of passages 24 needs to cover the entire molding die 20 on average. Under such circumstances, the small-diameter passage 24 itself generates a large flow resistance, and the same flow resistance occurs when the cooling fluid is divided into the plurality of passages 24. In particular, the molding die 20 is relatively large. Sometimes, the quantity of the passages 24 also increases. The presence of the large flow block decreases the flow rate of the cooling fluid, the cooling power generated for the actual molding die 20 of the cooling fluid supply source 50 is decreased, and the temperature drop time is relatively extended. In order to solve the problem that the substantial cooling power of the cooling fluid supply source 50 is limited, the embodiment of the present invention enhances the cooling rate of the molding die 20 with the cooling plate 70.

図3と図4に示すように、冷却板70は座部11上に移動可能に設置され、そのうち移動装置13の駆動棒131が冷却板70に連結され、冷却板を座部11上に支持し、且つ冷却板70はメス型22の外側に配置され、即ち、メス型22と金型開閉装置12の支持体121の間に位置する。移動装置13は冷却板70を移動させるために用いられ、冷却板70を成形金型20のメス型22に接触させ、冷却板70にメス型22に対し吸熱を行わせ、成形金型20の全体の温度が型開き温度まで低下する速度を加速する。冷却板70は熱電発電機(Thermoelectric Generator)を含む金属板、または冷却管路を備えた金属板とすることができる。冷却板70は成形金型20の一部分ではないため、その応力強度は成形条件の要求に合わせる必要がない。冷却板70の応力要求を考慮する必要がないため、冷却板70中の冷却構造は最大冷却仕事率の要求を容易に達することができ、成形金型20の冷却過程を加速することができる。   As shown in FIGS. 3 and 4, the cooling plate 70 is movably installed on the seat portion 11, of which the drive rod 131 of the moving device 13 is connected to the cooling plate 70 and supports the cooling plate on the seat portion 11. The cooling plate 70 is disposed outside the female die 22, that is, is positioned between the female die 22 and the support 121 of the mold opening / closing device 12. The moving device 13 is used to move the cooling plate 70, brings the cooling plate 70 into contact with the female die 22 of the molding die 20, causes the cooling plate 70 to absorb heat with respect to the female die 22, and Accelerate the rate at which the overall temperature drops to the mold opening temperature. The cooling plate 70 may be a metal plate including a thermoelectric generator or a metal plate provided with a cooling pipe line. Since the cooling plate 70 is not a part of the molding die 20, the stress intensity does not need to match the requirements of the molding conditions. Since it is not necessary to consider the stress requirement of the cooling plate 70, the cooling structure in the cooling plate 70 can easily reach the requirement of the maximum cooling power, and the cooling process of the molding die 20 can be accelerated.

本発明の実施例の動作フローを次に説明する。   The operation flow of the embodiment of the present invention will be described next.

図4に示すように、射出成形作業を開始するとき、または前回の射出成形作業が完了した後、成形金型20は型が開いた状態を呈する。即ち、移動装置13がまず移動して冷却板70を駆動し、成形金型20のメス型22から離脱させる。続いて型開き装置12がメス型22を駆動してオス型21から離脱させ、キャビティ23の表面が露出され、前回の射出成形作業で完成したプラスチック成形品Pを取り出すこともできる。これと同時に、高温流体供給源40が高温流体の提供を開始し、通路24の中を通って成形金型20の加熱を開始する。   As shown in FIG. 4, when the injection molding operation is started or after the previous injection molding operation is completed, the molding die 20 is in an open state. In other words, the moving device 13 first moves to drive the cooling plate 70 and separates the molding die 20 from the female die 22. Subsequently, the mold opening device 12 drives the female die 22 so as to be detached from the male die 21, the surface of the cavity 23 is exposed, and the plastic molded product P completed by the previous injection molding operation can be taken out. At the same time, the hot fluid supply source 40 begins to provide hot fluid and begins to heat the mold 20 through the passage 24.

図5に示すように、機械アーム32が誘導加熱コイル30をオス型21とメス型22の間まで移動させ、キャビティ23の表面に対応させて、誘導加熱コイル30がキャビティ23の表面に接近するが、接触しない設定距離に保持する。続いて作業電流が誘導加熱コイル30中に通電され、キャビティ23表面に渦電流を発生させて加熱を開始する。この図では誘導加熱コイル30は1つしか描かれていないが、実際には誘導加熱コイル30の数量を複数として、それぞれキャビティ23表面の異なる区域に対応させることができる。   As shown in FIG. 5, the mechanical arm 32 moves the induction heating coil 30 between the male mold 21 and the female mold 22, and the induction heating coil 30 approaches the surface of the cavity 23 so as to correspond to the surface of the cavity 23. Is kept at a set distance that does not touch. Subsequently, a working current is passed through the induction heating coil 30 to generate an eddy current on the surface of the cavity 23 to start heating. Although only one induction heating coil 30 is illustrated in this figure, in practice, the number of induction heating coils 30 can be set to a plurality, and each can correspond to a different area on the surface of the cavity 23.

キャビティ23表面の温度が作業温度に到達したとき、高温流体供給源40は高温流体の供給を停止し、同時に作業電流も誘導加熱コイル30への通電が停止され、成形金型20に対する加熱が停止される。キャビティ23表面が作業温度に達したか否かの決定は、熱電対等の温度センサの測定によってキャビティ23表面の温度を取得することができる。或いは、実験結果に基づいて加熱時間を決定し、加熱時間に達したときキャビティ23表面の温度がすでに作業温度に達したとみなすことができる。   When the temperature of the surface of the cavity 23 reaches the working temperature, the high-temperature fluid supply source 40 stops supplying the high-temperature fluid, and at the same time, the working current is turned off to the induction heating coil 30 and the heating to the molding die 20 is stopped. Is done. Whether or not the surface of the cavity 23 has reached the working temperature can be obtained by measuring the temperature of the surface of the cavity 23 by measuring a temperature sensor such as a thermocouple. Alternatively, the heating time is determined based on the experimental results, and when the heating time is reached, it can be considered that the temperature of the surface of the cavity 23 has already reached the working temperature.

図6に示すように、機械アーム32が誘導加熱コイル30を移動してオス型21とメス型22の間から離脱させ、且つ金型開閉装置12がメス型22を駆動してオス型21に閉じ合わせ、型閉じ作業が完了する。型閉じ作業の完了後、移動装置13がさらに冷却板70を移動し、冷却板70をメス型22に接触させ、メス型23の表面に対して降温を開始する。   As shown in FIG. 6, the mechanical arm 32 moves the induction heating coil 30 to separate from the male mold 21 and the female mold 22, and the mold opening / closing device 12 drives the female mold 22 to change to the male mold 21. The closing and mold closing operations are completed. After the mold closing operation is completed, the moving device 13 further moves the cooling plate 70, brings the cooling plate 70 into contact with the female die 22, and starts to cool the surface of the female die 23.

図7に示すように、成形機14が成形金型20に液状樹脂を注入し、液状樹脂をキャビティ23に充填する。冷却板70はメス型23の表面から降温を開始するため、即座にキャビティ23の表面温度を変化させることはなく、このため液状樹脂は高温を維持し、充分に流動してキャビティ23を満たすことができる。注入が完了し、液状樹脂でキャビティ23を満たした後は、冷却流体供給源50が冷却流体を提供し、通路24中に通過させて成形金型20を冷却し、同時に冷却板70を起動して成形金型20を継続して冷却する。   As shown in FIG. 7, the molding machine 14 injects a liquid resin into the molding die 20 and fills the cavity 23 with the liquid resin. Since the cooling plate 70 starts to cool down from the surface of the female mold 23, the surface temperature of the cavity 23 does not change immediately, so that the liquid resin maintains a high temperature and flows sufficiently to fill the cavity 23. Can do. After the injection is completed and the cavity 23 is filled with the liquid resin, the cooling fluid supply source 50 provides the cooling fluid and passes it through the passage 24 to cool the molding die 20 and at the same time activate the cooling plate 70. Then, the molding die 20 is continuously cooled.

キャビティ23中の圧力を維持し、かつ冷却流体供給源50と冷却板70で成形金型20の冷却を継続する。キャビティ23表面の温度が型開き温度に達したとき、冷却流体供給源50が冷却流体の供給を停止する。キャビティ23表面が型開き温度に達したか否かの決定は、熱電対等の温度センサの測定によってキャビティ23表面の温度を取得することができる。或いは、実験結果に基づいて冷却時間を決定し、冷却時間に達したときキャビティ23表面の温度がすでに型開き温度に達したとみなすことができる。   The pressure in the cavity 23 is maintained, and the cooling of the molding die 20 is continued with the cooling fluid supply source 50 and the cooling plate 70. When the temperature of the surface of the cavity 23 reaches the mold opening temperature, the cooling fluid supply source 50 stops supplying the cooling fluid. Whether or not the surface of the cavity 23 has reached the mold opening temperature can be obtained by measuring the temperature of the surface of the cavity 23 by measuring a temperature sensor such as a thermocouple. Alternatively, the cooling time is determined based on the experimental result, and when the cooling time is reached, it can be considered that the temperature of the surface of the cavity 23 has already reached the mold opening temperature.

最後に型開き作業を行い、移動装置13がまず移動して冷却板70を駆動し、成形金型20のメス型22から離脱させる。続いて型開き装置12がメス型22を駆動してオス型21から離脱させ、図4に示すように、キャビティ23表面を露出させる。これと同時に、高温流体供給源40が高温流体の提供を開始し、通路24の中を通過させ、成形金型20の加熱を開始し、次回の射出成形作業の準備をする。   Finally, the mold opening operation is performed, and the moving device 13 first moves to drive the cooling plate 70 to separate the molding die 20 from the female die 22. Subsequently, the mold opening device 12 drives the female mold 22 to separate it from the male mold 21 and exposes the surface of the cavity 23 as shown in FIG. At the same time, the high-temperature fluid supply source 40 starts providing the high-temperature fluid, passes through the passage 24, starts heating the molding die 20, and prepares for the next injection molding operation.

本発明の精神は、高温流体と誘導加熱コイル30で同時にそれぞれ成形金型30内部と表面を加熱し、成形金型30の受熱状況をより均一にする。成形金型30に入力される熱量は、長い経路を介しての熱伝導を行う必要がなく、全体の昇温時間を短縮し、加熱過程全体を加速することができる。同様に、冷却過程は、低温流体と冷却板70で同時にそれぞれ成形金型30内部と表面を冷却し、逃がす必要がある熱量は長い経路を介して熱伝導を行う必要がなく、全体の冷却時間を短縮し、冷却過程全体を加速することができる。   The spirit of the present invention is to heat the inside and the surface of the molding die 30 simultaneously with the high-temperature fluid and the induction heating coil 30, respectively, and make the heat receiving state of the molding die 30 more uniform. The amount of heat input to the molding die 30 does not need to conduct heat through a long path, shortens the overall temperature rise time, and accelerates the entire heating process. Similarly, in the cooling process, the inside and the surface of the molding die 30 are simultaneously cooled by the low-temperature fluid and the cooling plate 70, respectively, and the amount of heat that needs to be released does not need to be conducted through a long path, and the entire cooling time is reduced. And the entire cooling process can be accelerated.

従来の技術の成形金型の断面図である。It is sectional drawing of the shaping die of a prior art. 従来の技術における誘導加熱コイルで加熱を行う別の成形金型の立体分解図である。It is a three-dimensional exploded view of another molding die for heating with an induction heating coil in the prior art. 本発明の実施例のシステムのブロック図である。It is a block diagram of the system of the Example of this invention. 本発明の実施例の断面図1である。It is sectional drawing 1 of the Example of this invention. 本発明の実施例の断面図2である。It is sectional drawing 2 of the Example of this invention. 本発明の実施例の断面図3である。It is sectional drawing 3 of the Example of this invention. 本発明の実施例の断面図4である。It is sectional drawing 4 of the Example of this invention.

符号の説明Explanation of symbols

1・・・・・・成形金型
2・・・・・・通路
3・・・・・・成形金型
4・・・・・・誘導加熱コイル
3a・・・・・オス型
3b・・・・・メス型
10・・・・・作業台
11・・・・・座部
12・・・・・金型開閉装置
121・・・・支持体
122・・・・油圧シリンダ
123・・・・駆動棒
13・・・・・移動装置
14・・・・・成形機
20・・・・・成形金型
21・・・・・オス型
211・・・・注入路
22・・・・・メス型
23・・・・・キャビティ
23a・・・・凹陥箇所
30・・・・・誘導加熱コイル
32・・・・・機械アーム
40・・・・・高温流体供給源
50・・・・・冷却流体供給源
60・・・・・排液装置
70・・・・・冷却板
131・・・・駆動棒
24・・・・・通路
P・・・・・・プラスチック成形品
3c・・・・・キャビティ
1 ··················································································· Induction heating coil 3a ················································· Work table 11 ··· Seat 12 ··· Mold opening / closing device 121 ··· Support 122 · · · Hydraulic cylinder 123 ··· Drive Rod 13 ... Movement device 14 ... Molding machine 20 ... Molding die 21 ... Male die 211 ... Injection path 22 ... Female die 23 ··· Cavity 23a ··· Recessed portion 30 ··· Induction heating coil 32 ··· Mechanical arm 40 · · · High-temperature fluid supply source 50 · · · Cooling fluid supply source 60 ... Drainage device 70 ... Cooling plate 131 ... Drive rod 24 ... Passage P ... Plastic molded product 3c Activity

Claims (17)

複合式高速成形システムであって、
成形金型と、誘導加熱コイルと、高温流体供給源を含み、
前記成形金型は液状樹脂をその中に注入し固化させて成形するために用いられ、且つ複数の通路を備え、
前記誘導加熱コイルは作業電流を受け取り、前記成形金型を加熱するために用いられ、
前記高温流体供給源は、高温流体を提供し、各前記通路に通過させ、前記成形金型を加熱するために用いられることを特徴とする、
複合式高速成形システム。
A complex high-speed molding system,
Including a mold, an induction heating coil, and a high temperature fluid source;
The molding die is used for injecting and solidifying a liquid resin therein, and has a plurality of passages,
The induction heating coil receives a working current and is used to heat the mold;
The high temperature fluid supply source is used to provide a high temperature fluid, pass through each of the passages, and heat the mold.
Combined high speed molding system.
さらに冷却流体を提供し、各前記通路に通過させ、前記成形金型を冷却するために用いられる冷却流体供給源を含むことを特徴とする、請求項1に記載の複合式高速成形システム。   The combined high speed molding system of claim 1, further comprising a cooling fluid supply for providing cooling fluid to pass through each of the passages and cooling the mold. さらに高圧気体を提供し、各前記通路中に残存する冷却流体または高温流体を排除するために用いられる排液装置を含むことを特徴とする、請求項2に記載の複合式高速成形システム。   3. The combined high speed molding system of claim 2, further comprising a drainage device used to provide high pressure gas and to eliminate cooling or hot fluid remaining in each of the passages. 前記成形金型がオス型とメス型を含み、相互に閉じ合わせられてキャビティを形成し、液状樹脂をその中に注入するために用いられることを特徴とする、請求項1に記載の複合式高速成形システム。   2. The composite type according to claim 1, wherein the molding die includes a male die and a female die, which are closed to each other to form a cavity and used to inject liquid resin therein. High speed molding system. 前記通路が前記成形金型のオス型またはメス型のいずれか1つに穿通されたことを特徴とする、請求項4に記載の複合式高速成形システム。   5. The composite high-speed molding system according to claim 4, wherein the passage is penetrated through one of a male mold and a female mold of the molding die. 前記誘導加熱コイルが前記オス型と前記メス型の間に移動され、前記キャビティの表面を加熱することを特徴とする、請求項4に記載の複合式高速成形システム。   The combined high-speed molding system according to claim 4, wherein the induction heating coil is moved between the male mold and the female mold to heat the surface of the cavity. さらに冷却板を含み、選択的に移動されて前記成形金型に接触し、前記成形金型を冷却するか、前記成形金型から離脱するよう移動されることを特徴とする、請求項1に記載の複合式高速成形システム。   2. The apparatus according to claim 1, further comprising a cooling plate, which is selectively moved to contact the molding die and is moved to cool the molding die or to be detached from the molding die. The combined high-speed molding system described. さらに座部を含み、前記成形金型と前記冷却板が前記座部上に設置されたことを特徴とする、請求項7に記載の複合式高速成形システム。   The composite high-speed molding system according to claim 7, further comprising a seat, wherein the molding die and the cooling plate are installed on the seat. さらに金型開閉装置を含み、前記座部に設置され、前記成形金型の型閉じと型開きを行うことを特徴とする、請求項8に記載の複合式高速成形システム。   9. The composite high-speed molding system according to claim 8, further comprising a mold opening / closing device, which is installed on the seat portion and performs mold closing and mold opening of the molding mold. 前記金型がオス型とメス型を含み、前記オス型が前記座部に固定して設置され、且つ前記金型開閉装置が前記メス型に連結され、前記メス型を移動して前記オス型に対して閉じ合わせ、型閉じを行うか、前記オス型から離脱させて型開きを行うことを特徴とする、請求項9に記載の複合式高速成形システム。   The mold includes a male mold and a female mold, the male mold is fixedly installed on the seat, and the mold opening / closing device is coupled to the female mold, and the male mold is moved to move the male mold The composite high-speed molding system according to claim 9, wherein the mold is closed and the mold is closed, or the mold is opened by being detached from the male mold. さらに移動装置を含み、前記座部上に設置され、前記冷却板を移動するために用いられることを特徴とする、請求項8に記載の複合式高速成形システム。   The composite high-speed molding system according to claim 8, further comprising a moving device, installed on the seat and used to move the cooling plate. さらにアクチュエータを含み、前記誘導加熱コイルが前記アクチュエータにより移動され、かつ前記成形金型に対して支持されることを特徴とする、請求項1に記載の複合式高速成形システム。   The composite high-speed molding system according to claim 1, further comprising an actuator, wherein the induction heating coil is moved by the actuator and supported by the molding die. 複合式高速成形システムであって、成形金型と、誘導加熱コイルを含み、前記成形金型が液状樹脂をその中に注入し固化させて成形するために用いられ、前記誘導加熱コイルが作業電流を受け取り、前記成形金型を加熱するために用いられ、そのうち、前記成形金型が複数の通路を備え、流体をその中に通過させるために用いられることを特徴とする、複合式高速成形システム。   A complex high-speed molding system, comprising a molding die and an induction heating coil, wherein the molding die is used for molding by injecting and solidifying a liquid resin therein, and the induction heating coil is used as a working current. And a high-speed molding system characterized in that the molding die is provided with a plurality of passages and is used for passing a fluid therethrough . 前記成形金型がオス型とメス型を含み、相互に閉じ合わされてキャビティを形成し、液状樹脂をその中に注入するために用いられることを特徴とする、請求項13に記載の複合式高速成形システム。   14. The composite high speed according to claim 13, wherein the molding die includes a male die and a female die, and is used to close a space to form a cavity and to inject a liquid resin therein. Molding system. 前記通路が前記成形金型のオス型またはメス型のいずれか1つに穿通されたことを特徴とする、請求項14に記載の複合式高速成形システム。   The composite high-speed molding system according to claim 14, wherein the passage is penetrated through one of a male mold and a female mold of the molding die. 前記誘導加熱コイルが前記オス型と前記メス型の間に移動され、前記キャビティの表面を加熱することを特徴とする、請求項14に記載の複合式高速成形システム。   The combined high-speed molding system according to claim 14, wherein the induction heating coil is moved between the male mold and the female mold to heat the surface of the cavity. さらにアクチュエータを含み、前記誘導加熱コイルが前記アクチュエータによって移動され、かつ前記成形金型に対して支持されることを特徴とする、請求項13に記載の複合式高速成形システム。   The composite high-speed molding system according to claim 13, further comprising an actuator, wherein the induction heating coil is moved by the actuator and supported by the molding die.
JP2008274542A 2008-09-30 2008-10-24 Combined high speed molding system Expired - Fee Related JP4653209B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97137632A TW201012615A (en) 2008-09-30 2008-09-30 Hybrid rapid forming system

Publications (2)

Publication Number Publication Date
JP2010083123A true JP2010083123A (en) 2010-04-15
JP4653209B2 JP4653209B2 (en) 2011-03-16

Family

ID=42247547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274542A Expired - Fee Related JP4653209B2 (en) 2008-09-30 2008-10-24 Combined high speed molding system

Country Status (2)

Country Link
JP (1) JP4653209B2 (en)
TW (1) TW201012615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954305A (en) * 2021-10-14 2022-01-21 进顺汽车零部件如皋有限公司 Forming die and forming process of automobile decorative ring

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395919A (en) * 1986-10-14 1988-04-26 Mitsubishi Heavy Ind Ltd Method and device for injection molding
JPH0372410U (en) * 1989-11-20 1991-07-22
JPH0413319U (en) * 1990-05-24 1992-02-03
JPH06234145A (en) * 1993-02-10 1994-08-23 Star Seiki:Kk Temperature control liquid discharge method for molding die
JPH10315292A (en) * 1997-05-14 1998-12-02 Ricoh Co Ltd Method and device for plastic molding
JP2000071253A (en) * 1998-08-27 2000-03-07 Toyo Mach & Metal Co Ltd Method and apparatus for automatic drainage of mold cooling water
JP2000318010A (en) * 1999-05-10 2000-11-21 Matsui Mfg Co Core pin cooling device
JP2001347546A (en) * 2000-06-07 2001-12-18 Mitsubishi Rayon Co Ltd Injection molding die for thermoplastic resin, molding method, and thermoplastic resin molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395919A (en) * 1986-10-14 1988-04-26 Mitsubishi Heavy Ind Ltd Method and device for injection molding
JPH0372410U (en) * 1989-11-20 1991-07-22
JPH0413319U (en) * 1990-05-24 1992-02-03
JPH06234145A (en) * 1993-02-10 1994-08-23 Star Seiki:Kk Temperature control liquid discharge method for molding die
JPH10315292A (en) * 1997-05-14 1998-12-02 Ricoh Co Ltd Method and device for plastic molding
JP2000071253A (en) * 1998-08-27 2000-03-07 Toyo Mach & Metal Co Ltd Method and apparatus for automatic drainage of mold cooling water
JP2000318010A (en) * 1999-05-10 2000-11-21 Matsui Mfg Co Core pin cooling device
JP2001347546A (en) * 2000-06-07 2001-12-18 Mitsubishi Rayon Co Ltd Injection molding die for thermoplastic resin, molding method, and thermoplastic resin molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954305A (en) * 2021-10-14 2022-01-21 进顺汽车零部件如皋有限公司 Forming die and forming process of automobile decorative ring
CN113954305B (en) * 2021-10-14 2023-12-01 进顺汽车零部件如皋有限公司 Forming die and forming process of automotive decorative ring

Also Published As

Publication number Publication date
JP4653209B2 (en) 2011-03-16
TW201012615A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CN101528440B (en) Injection molding system, computer program, method of injection molding, and injection molding machine
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
CN102320114B (en) Rapid heating cycle molding (RHCM) process and die with telescopic sprue bush
CN201287451Y (en) Magnetic effect heating apparatus for injection mold without trace
US10086547B2 (en) Molding system and method for directly gas-cooling a molding object
KR101264893B1 (en) Injection Mold Die of Air Cooling System And Method for The Same
CN101823325B (en) Electrically-heating and floating type rapid thermal circulation injection mould
KR101824486B1 (en) 3D rapid heating and cooling structures and the method of the mold
CN102328404A (en) Ejection forming method and injection machine
CN105799124A (en) Cold runner device of liquid silicon rubber injection mold
CN101480821B (en) Control method and device for quick change of mold temperature
JP4653209B2 (en) Combined high speed molding system
KR101705003B1 (en) Injection mold for provide simultaneous forming two kind of product at the sametime
JP4653208B2 (en) High speed injection molding system
CN101946558B (en) Heater, resin molding apparatus, resin molding method and resin molded body
CN101733915A (en) Fast injection molding system
CN104703773B (en) For producing plastic part by injection moulding method in particular for the method and apparatus of the plastic part of automobile
CN103112140A (en) Servo energy-saving double-loop oil passage of injection molding machine
CN109986757A (en) A kind of energy-efficient injection molding machine
KR20110092649A (en) Mold heating and cooling system using vapor compression cycle
CN104227994B (en) A kind of injection mold of the product for processing with oblique hole
KR102011004B1 (en) Hotrunner system
JP2022127095A (en) Metal molding device and metal molding method
JP6108862B2 (en) Mold for manufacturing synthetic resin products and method for manufacturing synthetic resin products
CN201721022U (en) Electrothermic and floating rapid heating cycle injection mold

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Ref document number: 4653209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees