Nothing Special   »   [go: up one dir, main page]

JP2010080588A - Method and apparatus for manufacturing light-emitting device - Google Patents

Method and apparatus for manufacturing light-emitting device Download PDF

Info

Publication number
JP2010080588A
JP2010080588A JP2008245600A JP2008245600A JP2010080588A JP 2010080588 A JP2010080588 A JP 2010080588A JP 2008245600 A JP2008245600 A JP 2008245600A JP 2008245600 A JP2008245600 A JP 2008245600A JP 2010080588 A JP2010080588 A JP 2010080588A
Authority
JP
Japan
Prior art keywords
light emitting
sealing material
emitting element
light
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245600A
Other languages
Japanese (ja)
Other versions
JP5380027B2 (en
Inventor
Naoki Kimura
直樹 木村
Shunichiro Hirafune
俊一郎 平船
Masakazu Ohashi
正和 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008245600A priority Critical patent/JP5380027B2/en
Publication of JP2010080588A publication Critical patent/JP2010080588A/en
Application granted granted Critical
Publication of JP5380027B2 publication Critical patent/JP5380027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing light-emitting device, which ensure a high production yield even when a large number of light-emitting devices beyond 500 pieces are continuously manufactured. <P>SOLUTION: The method for manufacturing a light-emitting device is intended for manufacturing light-emitting devices 30, each including a light-emitting element 31, a package 32 mounting the light-emitting element 31, and a sealing material 33 containing a phosphor emitting light by absorbing at least a part of the light emitted from the light-emitting element 31 and sealing the light-emitting element 31. The method includes a mixing process of mixing the sealing material 33 containing a phosphor substance while cooling the sealing material, and a heating process of heating a package 32 with the light-emitting element 31 mounted thereon before coating the light-emitting element 31 with the sealing material 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光素子と、この発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質とを具備する発光装置の製造方法および製造装置に関する。  The present invention relates to a method and an apparatus for manufacturing a light-emitting device including a light-emitting element and a fluorescent material that emits light by absorbing at least a part of light emitted from the light-emitting element.

従来、発光装置としては、青色などの短波長で発光する発光ダイオード(LED)と、この発光ダイオードから発せられた光の少なくとも一部を吸収することによって励起し、より長波長の蛍光を発する蛍光物質とを用いた白色発光ダイオードが知られている。
このような白色発光ダイオードとしては、例えば、化合物半導体からなる青色発光ダイオード素子と、青色を吸収することによって励起し、青色の補色である黄色の蛍光を発するセリウムにより賦活されたイットリウム・アルミニウム・ガーネット系蛍光体とを備えた白色発光ダイオードが開示されている(例えば、特許文献1参照)。
Conventionally, as a light-emitting device, a light-emitting diode (LED) that emits light with a short wavelength such as blue, and a fluorescence that excites and absorbs at least part of the light emitted from the light-emitting diode to emit longer-wavelength fluorescence. White light emitting diodes using materials are known.
As such a white light emitting diode, for example, a blue light emitting diode element made of a compound semiconductor, and yttrium, aluminum, and garnet activated by cerium that emits yellow fluorescent light that is excited by absorbing blue and is complementary to blue. A white light emitting diode including a phosphor is disclosed (for example, see Patent Document 1).

また、セリウムにより賦活されたイットリウム・アルミニウム・ガーネット系蛍光体の代わりに、アルファサイアロン蛍光体を用いても、白色発光ダイオードを実現することができる。このようなアルファサイアロン蛍光体としては、例えば、ユウロピウム(Eu)により賦活されたカルシウム固溶アルファサイアロン蛍光体が開示されている(例えば、特許文献2参照)。   A white light emitting diode can also be realized by using an alpha sialon phosphor instead of the yttrium / aluminum / garnet phosphor activated by cerium. As such an alpha sialon phosphor, for example, a calcium solid solution alpha sialon phosphor activated by europium (Eu) is disclosed (for example, see Patent Document 2).

ところで、発光ダイオードから発せられた光と、蛍光物質から発せられた光とを混合することにより色を表現する発光装置が、所望の色の光を発するためには、発光ダイオードから発せられた光の量と、蛍光物質から発せれた光の量とのバランスが非常に重要となる。そのため、それぞれの光を極めてバランス良く発光させて混合する必要がある。このような発光装置において、発光ダイオードの上、あるいは、近傍に蛍光物質を配し、固定させるためには、発光ダイオードからの光および蛍光物質からの光を放出することができるとともに、種々の樹脂やガラスに密着可能であり、発光ダイオードを封止するための封止材中に蛍光物質を含ませる必要がある。   By the way, in order for a light emitting device that expresses a color by mixing light emitted from a light emitting diode and light emitted from a fluorescent material to emit light of a desired color, the light emitted from the light emitting diode. The balance between the amount of light and the amount of light emitted from the fluorescent material is very important. Therefore, it is necessary to emit light in a well-balanced manner and mix them. In such a light-emitting device, in order to place and fix the fluorescent substance on or near the light-emitting diode, light from the light-emitting diode and light from the fluorescent substance can be emitted and various resins can be emitted. It is necessary to include a fluorescent substance in the sealing material for sealing the light emitting diode.

このように封止材中に蛍光物質を含ませた構成の発光装置では、蛍光物質の含有量や分布などによって、発光ダイオードから発せられた光量および蛍光物質から放出された光量が大きく影響を受けるため、極めて精度良く蛍光物質の含有量や分布を制御する必要がある。
このような問題を改善するために、封止材中における蛍光物質の密度が実質的に一定になるように、蛍光物質が含まれる封止材を、温度を一定に保ちながら攪拌し、この蛍光物質と封止材の混合物を、その密度を維持したまま発光ダイオードチップ上に所定量塗布する発光装置の形成方法および形成装置が開示されている(例えば、特許文献3参照)。
特許2927279号公報 特開2002−363554号公報 特開平10−233533号公報
As described above, in the light emitting device having the configuration in which the fluorescent material is included in the sealing material, the light amount emitted from the light emitting diode and the light amount emitted from the fluorescent material are greatly affected by the content and distribution of the fluorescent material. Therefore, it is necessary to control the content and distribution of the fluorescent substance with extremely high accuracy.
In order to improve such problems, the sealing material containing the fluorescent material is stirred while keeping the temperature constant so that the density of the fluorescent material in the sealing material becomes substantially constant. A method for forming a light emitting device and a forming device for applying a predetermined amount of a mixture of a substance and a sealing material onto a light emitting diode chip while maintaining the density thereof are disclosed (for example, see Patent Document 3).
Japanese Patent No. 2927279 JP 2002-363554 A JP-A-10-233533

しかしながら、特許文献3に開示されている発光装置の形成方法および形成装置を用いて発光装置を製造すると、得られる白色発光ダイオードの色度は次第に青色側に変化し、製造が進むにつれて、この色の変化が急激になるという問題があった。このような現象は、発光装置を製造する速度にもよるが、特に500個を超えるような多数の発光装置を連続的に製造する場合に顕著に確認されていた。  However, when a light-emitting device is manufactured using the method and apparatus for forming a light-emitting device disclosed in Patent Document 3, the chromaticity of the obtained white light-emitting diode gradually changes to the blue side. There was a problem that the change of the sudden. Although such a phenomenon depends on the speed of manufacturing the light emitting device, it has been remarkably confirmed particularly when a large number of light emitting devices exceeding 500 are manufactured continuously.

本発明は、前記事情に鑑みてなされたもので、500個を超えるような多数の発光装置を連続的に製造する場合においても、歩留まりの高い発光装置の製造方法および製造装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and provides a method and an apparatus for manufacturing a light emitting device with a high yield even when a large number of light emitting devices exceeding 500 are continuously manufactured. Objective.

本発明は、パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する方法であって、前記封止材を冷却しながら攪拌することにより、粘度の上昇を抑えながら、前記発光素子に前記封止材を塗布し、前記発光素子に前記封止材を塗布する前から、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱する発光装置の製造方法を提供する。  The present invention provides a light-emitting element mounted on a package, and the light-emitting element includes a fluorescent material that emits light by absorbing at least a part of light emitted from the light-emitting element, and seals the light-emitting element The light-emitting device is manufactured by applying the sealing material to the light-emitting element while stirring the cooling material while cooling, thereby suppressing the increase in viscosity. A method of manufacturing a light emitting device is provided in which the package on which the light emitting element is mounted is heated to a temperature at which the package is cured immediately after the sealing material is applied to the light emitting element before the sealing material is applied to the light emitting element.

前記攪拌工程において、前記封止材を5℃以下に冷却することが好ましい。  In the stirring step, the sealing material is preferably cooled to 5 ° C. or lower.

前記攪拌工程において、前記蛍光物質が含まれる前記封止材を回転する攪拌部材により攪拌し、該攪拌部材の回転速度を0.1回転/秒以上、5回転/秒以下とすることが好ましい。  In the stirring step, it is preferable that the sealing material containing the fluorescent substance is stirred by a rotating stirring member, and the rotation speed of the stirring member is 0.1 rotation / second or more and 5 rotation / second or less.

前記加熱工程において、前記発光素子を実装した前記パッケージを、前記封止材の硬化が開始する温度以上に加熱することが好ましい。  In the heating step, the package on which the light emitting element is mounted is preferably heated to a temperature higher than a temperature at which the sealing material starts to be cured.

本発明は、パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する発光装置の製造装置であって、前記パッケージに実装した前記発光素子に前記封止材を塗布する塗布手段と、該塗布手段内に前記封止材を攪拌する攪拌部材が配された攪拌手段と、前記塗布手段の周りに配され、前記塗布手段内の前記封止材を冷却する冷却手段と、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱する加熱手段とを備えた発光装置の製造装置を提供する。  The present invention provides a light-emitting element mounted on a package, and the light-emitting element includes a fluorescent material that emits light by absorbing at least a part of light emitted from the light-emitting element, and seals the light-emitting element A light-emitting device manufacturing apparatus for manufacturing a light-emitting device by coating a coating means for applying the sealing material to the light-emitting element mounted on the package, and stirring the sealing material in the coating means An agitation unit provided with an agitation member, a cooling unit disposed around the application unit and cooling the sealing material in the application unit, and the package on which the light emitting element is mounted. Provides a heating device for heating to a temperature that cures immediately after being applied to the light emitting element.

本発明の発光装置の製造方法は、パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する方法であって、前記封止材を冷却しながら攪拌することにより、粘度の上昇を抑えながら、前記発光素子に前記封止材を塗布し、前記発光素子に前記封止材を塗布する前から、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱するので、500個を超えるような多数の発光装置を連続的に製造する場合においても、色度のばらつきを大幅に低減し、一定の色度を有する発光装置を高い歩留まりで安定して製造することができる。  A method of manufacturing a light emitting device according to the present invention includes mounting a light emitting element on a package, the light emitting element including a fluorescent material that emits light by absorbing at least a part of light emitted from the light emitting element, A method of manufacturing a light emitting device by applying a sealing material to be sealed, wherein the sealing material is agitated while cooling the sealing material, and the sealing material is applied to the light emitting element while suppressing an increase in viscosity. Before applying the sealing material to the light emitting element, the package on which the light emitting element is mounted is heated to a temperature at which the package is cured immediately after the sealing material is applied to the light emitting element. Even when a large number of light emitting devices exceeding the above are continuously manufactured, variation in chromaticity can be greatly reduced, and light emitting devices having a constant chromaticity can be stably manufactured with a high yield.

本発明の発光装置の製造装置は、パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する発光装置の製造装置であって、前記パッケージに実装した前記発光素子に前記封止材を塗布する塗布手段と、該塗布手段内に前記封止材を攪拌する攪拌部材が配された攪拌手段と、前記塗布手段の周りに配され、前記塗布手段内の前記封止材を冷却する冷却手段と、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱する加熱手段とを備えたので、500個を超えるような多数の発光装置を連続的に製造する場合においても、色度のばらつきを大幅に低減し、一定の色度を有する発光装置を高い歩留まりで安定して製造することができる。  The light emitting device manufacturing apparatus of the present invention includes a light emitting element mounted on a package, the light emitting element including a fluorescent material that emits light by absorbing at least a part of light emitted from the light emitting element, and the light emitting element includes: An apparatus for manufacturing a light-emitting device that manufactures a light-emitting device by applying a sealing material to be sealed, the application unit applying the sealing material to the light-emitting element mounted on the package, and in the application unit An agitation unit provided with an agitation member for agitating the encapsulant, a cooling unit arranged around the application unit and cooling the encapsulant in the application unit, and the package mounted with the light emitting element The heating means is heated to a temperature at which the sealing material is cured immediately after it is applied to the light emitting element. Degree of rose Can greatly reduce, it can be produced stably at a high yield a light-emitting device having a certain chromaticity.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

(発光装置の製造装置)
図1は、本発明の発光装置の製造装置の一実施形態を示し、一部を断面で表す概略構成図である。
図1中、符号10は発光装置の製造装置、11は塗布手段、12は攪拌手段、13は冷却手段、14は加熱手段、15はシリンジ、16はノズル、17は攪拌部材、18は回転軸、19は羽根、20は駆動部、21は加熱部、22は固定冶具、23は収容部、24はガス導入管、25はガス導入路、26はケーブル、30は発光装置、31は発光素子、32はパッケージ、33は封止材、34は回路パターン、36は金ワイヤ、37は反射面、38は凹部、39はパッケージ、40はパッケージフレーム、をそれぞれ示している。
この実施形態の発光装置の製造装置10は、発光素子31と、発光素子31を実装するパッケージ32と、発光素子31から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、発光素子31を封止する封止材33とを備えた発光装置30を製造するためのものである。
(Light emitting device manufacturing equipment)
FIG. 1 is a schematic configuration diagram showing an embodiment of a light emitting device manufacturing apparatus according to the present invention, a part of which is shown in cross section.
In FIG. 1, reference numeral 10 is a light emitting device manufacturing apparatus, 11 is a coating means, 12 is a stirring means, 13 is a cooling means, 14 is a heating means, 15 is a syringe, 16 is a nozzle, 17 is a stirring member, and 18 is a rotating shaft. 19 is a blade, 20 is a drive unit, 21 is a heating unit, 22 is a fixing jig, 23 is a storage unit, 24 is a gas introduction pipe, 25 is a gas introduction path, 26 is a cable, 30 is a light emitting device, and 31 is a light emitting element. , 32 is a package, 33 is a sealing material, 34 is a circuit pattern, 36 is a gold wire, 37 is a reflective surface, 38 is a recess, 39 is a package, and 40 is a package frame.
The light emitting device manufacturing apparatus 10 of this embodiment includes a light emitting element 31, a package 32 on which the light emitting element 31 is mounted, and a fluorescent material that emits light by absorbing at least part of the light emitted from the light emitting element 31, The light emitting device 30 is provided with a sealing material 33 that seals the light emitting element 31.

この実施形態の発光装置の製造装置10は、蛍光物質が含まれる封止材33を、パッケージ32に実装した発光素子31に塗布する塗布手段11と、この塗布手段11内に、塗布手段11内の封止材33を攪拌する攪拌部材17が配された攪拌手段12と、塗布手段11の周りに配され、塗布手段11内の封止材33を冷却する冷却手段13と、発光素子31を実装したパッケージ32を加熱する加熱手段14とから概略構成されている。  The light emitting device manufacturing apparatus 10 according to this embodiment includes a coating unit 11 that coats a sealing material 33 containing a fluorescent substance on a light emitting element 31 mounted on a package 32, and a coating unit 11 in the coating unit 11. The agitating means 12 provided with the agitating member 17 for agitating the sealing material 33, the cooling means 13 arranged around the applying means 11 and cooling the sealing material 33 in the applying means 11, and the light emitting element 31. A heating unit 14 for heating the mounted package 32 is schematically configured.

塗布手段11は、略円筒状のシリンジ15と、このシリンジ15の先端部15aに接続され、シリンジ15内の封止材33を吐出するノズル16とから概略構成されている。
なお、封止材33としては、熱硬化性の透明樹脂が用いられる。
The application unit 11 is roughly configured by a substantially cylindrical syringe 15 and a nozzle 16 that is connected to the distal end portion 15 a of the syringe 15 and discharges the sealing material 33 in the syringe 15.
As the sealing material 33, a thermosetting transparent resin is used.

攪拌手段12は、円柱状の回転軸18およびその外周面に設けられた羽根19からなる攪拌部材17と、回転軸18に接続され、攪拌部材17を、回転軸18を中心として回転するように駆動するモーターなどが備えられた駆動部20とから概略構成されている。
回転軸18は攪拌部材17の中心軸をなしており、回転軸18はシリンジ15の中央部に配されている。また、回転軸18の長さは、シリンジ15の内部において、その長手方向の全長とほぼ等しくなっている。さらに、この回転軸18の外周面に設けられた羽根19は、回転軸18を対称軸とする3つの羽根19A、19B、19Cからなり、これらの羽根19A、19B、19Cは、互いに異なる向きに配されている。そして、羽根19は、シリンジ15の内部の長手方向において、封止材33が収容される領域のほぼ全長に亘って配されている。
このような攪拌部材17の構造により、シリンジ15内に容れられた蛍光物質が含まれる封止材33を、蛍光物質の濃度が一様になるように攪拌することができる。
The agitating means 12 is connected to the agitating member 17 comprising a columnar rotating shaft 18 and blades 19 provided on the outer peripheral surface thereof, and is connected to the rotating shaft 18 so as to rotate the agitating member 17 about the rotating shaft 18. The driving unit 20 is provided with a driving motor 20 and the like.
The rotating shaft 18 forms the central axis of the stirring member 17, and the rotating shaft 18 is disposed at the center of the syringe 15. Further, the length of the rotating shaft 18 is substantially equal to the entire length in the longitudinal direction inside the syringe 15. Further, the blade 19 provided on the outer peripheral surface of the rotary shaft 18 includes three blades 19A, 19B, and 19C having the rotational shaft 18 as a symmetry axis. The blades 19A, 19B, and 19C are in different directions. It is arranged. And the blade | wing 19 is distribute | arranged over the full length of the area | region in which the sealing material 33 is accommodated in the longitudinal direction inside the syringe 15. FIG.
With such a structure of the stirring member 17, the sealing material 33 containing the fluorescent substance contained in the syringe 15 can be stirred so that the concentration of the fluorescent substance becomes uniform.

また、駆動部20はシリンジ15の後端(図1において、シリンジ15の上端)を密封するように配されている。
そして、シリンジ15内の封止材33を加圧し、封止材33をノズル16から吐出するために、シリンジ内15内に窒素ガスや空気を送り込むためのガス導入管24が、駆動部20にシリンジ15の内部と外部を連通するように設けられたガス導入路25に接続されている。
このような構造により、ガス導入管24およびガス導入路25を介して、シリンジ15内に窒素ガスや空気を送り込むことによって、シリンジ15内の封止材33を加圧し、この封止材33をノズル16から吐出することができる。
Moreover, the drive part 20 is distribute | arranged so that the rear end (In FIG. 1, the upper end of the syringe 15) of the syringe 15 may be sealed.
Then, in order to pressurize the sealing material 33 in the syringe 15 and discharge the sealing material 33 from the nozzle 16, a gas introduction pipe 24 for feeding nitrogen gas or air into the syringe 15 is provided in the drive unit 20. The syringe 15 is connected to a gas introduction path 25 provided to communicate the inside and the outside of the syringe 15.
With such a structure, the sealing material 33 in the syringe 15 is pressurized by feeding nitrogen gas or air into the syringe 15 through the gas introduction pipe 24 and the gas introduction path 25. It can be discharged from the nozzle 16.

冷却手段13は、シリンジ15を中心とし、ノズル16を除いて、シリンジ15の先端面15bおよび外周面15cを囲むように配されている。
この冷却手段13は、シリンジ15側から順に配された、冷媒を備えた冷却層(図示略)と、この冷却層を囲む断熱層(図示略)とから概略構成されている。
このような冷却手段13の構造により、シリンジ15内の封止材33を所定の温度に均一に冷却することができるとともに、その温度を一定に保つことができる。
The cooling means 13 is arranged so as to surround the distal end surface 15b and the outer peripheral surface 15c of the syringe 15 except for the nozzle 16 with the syringe 15 as the center.
The cooling means 13 is generally configured by a cooling layer (not shown) provided with a refrigerant and a heat insulating layer (not shown) surrounding the cooling layer, which are arranged in order from the syringe 15 side.
With such a structure of the cooling means 13, the sealing material 33 in the syringe 15 can be uniformly cooled to a predetermined temperature, and the temperature can be kept constant.

加熱手段14は、発光素子31を実装したパッケージ39を収容するための収容部23が複数設けられたヒータなどからなる加熱部21と、収容部23に収容された発光素子31を実装したパッケージ39を固定するための固定冶具22とから概略構成されている。
このような加熱手段14の構造により、収容部23に収容された発光素子31を実装したパッケージ39を、所定の温度に均一に加熱することができる。
The heating unit 14 includes a heating unit 21 including a heater provided with a plurality of housing units 23 for housing the package 39 on which the light emitting element 31 is mounted, and a package 39 on which the light emitting element 31 housed in the housing unit 23 is mounted. And a fixing jig 22 for fixing the.
With such a structure of the heating means 14, the package 39 on which the light emitting element 31 housed in the housing portion 23 is mounted can be uniformly heated to a predetermined temperature.

また、加熱手段14は、塗布手段11のノズル16の先端と垂直な方向(図1の矢印方向)に移動可能となっている。このとき、ノズル16が移動可能となっていてもよい。
これにより、収容部23に収容された発光素子31を実装したパッケージ39を、塗布手段11のノズル16の先端に対向する位置に配することができる。
The heating means 14 is movable in a direction perpendicular to the tip of the nozzle 16 of the coating means 11 (the arrow direction in FIG. 1). At this time, the nozzle 16 may be movable.
Thereby, the package 39 on which the light emitting element 31 accommodated in the accommodating portion 23 is mounted can be disposed at a position facing the tip of the nozzle 16 of the application unit 11.

さらに、駆動部20は、電線などからなるケーブル26を介して、駆動部20の動力、すなわち、攪拌部材17の回転数を制御する駆動制御部(図示略)に電気的に接続されている。  Further, the drive unit 20 is electrically connected to a drive control unit (not shown) that controls the power of the drive unit 20, that is, the rotational speed of the stirring member 17, via a cable 26 made of an electric wire or the like.

この実施形態の発光装置の製造装置10によれば、シリンジ15を囲む冷却手段13によりシリンジ15内の封止材33を冷却しながら、攪拌手段1によりシリンジ15内の封止材33を一様に攪拌することができる上に、加熱手段14により発光素子31を実装したパッケージ39を、所定の温度に均一に加熱することができるので、多数の発光装置30を連続的に製造する場合においても、色度のばらつきを大幅に低減し、一定の色度を有する発光装置30を高い歩留まりで安定して製造することができる。  According to the light emitting device manufacturing apparatus 10 of this embodiment, while the sealing material 33 in the syringe 15 is cooled by the cooling means 13 surrounding the syringe 15, the sealing material 33 in the syringe 15 is uniformly distributed by the stirring means 1. In addition, the package 39 in which the light emitting element 31 is mounted by the heating means 14 can be uniformly heated to a predetermined temperature. Therefore, even when a large number of light emitting devices 30 are continuously manufactured, Thus, the variation in chromaticity can be greatly reduced, and the light emitting device 30 having a certain chromaticity can be stably manufactured with a high yield.

なお、この実施形態の発光装置の製造装置10では、攪拌部材17を構成する羽根として、羽根19A、19B、19Cを例示したが、本発明の発光装置の製造装置は、これに限定されない。本発明の発光装置の製造装置にあっては、攪拌部材を構成する羽根は、シリンジ内の封止材を一様に攪拌することができる構造であれば、その数や形状は限定されない。  In the light emitting device manufacturing apparatus 10 of this embodiment, the blades 19A, 19B, and 19C are exemplified as the blades constituting the stirring member 17, but the light emitting device manufacturing apparatus of the present invention is not limited to this. In the light emitting device manufacturing apparatus of the present invention, the number and shape of the blades constituting the stirring member are not limited as long as the blade can uniformly stir the sealing material in the syringe.

(発光装置の製造方法)
次に、図1を参照して、この実施形態の発光装置の製造方法を説明する。
まず、パッケージ39の回路パターン34上に、発光素子31を実装する。この際、凹部38内に発光素子31を配し、ダイボンドにより回路パターン34上に発光素子31を固定して、発光素子31の電極と、回路パターン34とを、金ワイヤ36によるワイヤボンディングによって電気的に接続する。
(Method for manufacturing light emitting device)
Next, with reference to FIG. 1, the manufacturing method of the light-emitting device of this embodiment is demonstrated.
First, the light emitting element 31 is mounted on the circuit pattern 34 of the package 39. At this time, the light emitting element 31 is disposed in the recess 38, the light emitting element 31 is fixed on the circuit pattern 34 by die bonding, and the electrode of the light emitting element 31 and the circuit pattern 34 are electrically connected by wire bonding with the gold wire 36. Connect.

次いで、発光素子31が実装された多数のパッケージ39を、パッケージフレーム40により同一面上にて連接する。
次いで、パッケージフレーム40によって接続されたそれぞれのパッケージ39を、加熱手段14の加熱部21に設けられた収容部23内に配した後、固定冶具22により加熱部21にパッケージフレーム40を固定することによって、加熱部21にパッケージ39を固定する。
Next, a large number of packages 39 on which the light emitting elements 31 are mounted are connected on the same surface by the package frame 40.
Next, after each package 39 connected by the package frame 40 is placed in the accommodating portion 23 provided in the heating portion 21 of the heating means 14, the package frame 40 is fixed to the heating portion 21 by the fixing jig 22. Thus, the package 39 is fixed to the heating unit 21.

また、並行して、シリンジ15内に容れられた蛍光物質が含まれる封止材33を、冷却手段13により所定の温度に冷却しながら、回転する攪拌部材17により蛍光物質の濃度が一様になるように攪拌する(攪拌工程)。この攪拌工程は、シリンジ15内の封止材33をパッケージ39に実装された発光素子31に塗布する工程を実施している間、継続される。  In parallel, while the sealing material 33 containing the fluorescent substance contained in the syringe 15 is cooled to a predetermined temperature by the cooling means 13, the concentration of the fluorescent substance is made uniform by the rotating stirring member 17. Stir so as to become (stirring step). This stirring process is continued while the process of applying the sealing material 33 in the syringe 15 to the light emitting element 31 mounted on the package 39 is being performed.

この攪拌工程において、蛍光物質が含まれる封止材33を、封止材33の硬化が開始する温度以下に冷却することが好ましく、5℃以下に冷却することがより好ましい。
封止材33は熱硬化性樹脂であるから、攪拌工程において、封止材33の温度が、硬化が開始する温度を超えると、硬化の進行に伴って封止材33の粘度が、通常、室温においても上昇する。その結果、蛍光物質が含まれる封止材33をパッケージ39に実装された発光素子31に塗布する工程において、発光素子31に適切な量の封止材33が塗布されない。封止材33の塗布量が適切でないと、所定の色度の発光装置30を得ることができない。例えば、発光装置30が白色発光ダイオードである場合、時間の経過に伴って、発光装置30の色度が青色側に変化してしまう。
In this stirring step, the sealing material 33 containing the fluorescent material is preferably cooled to a temperature below the temperature at which the curing of the sealing material 33 starts, and more preferably to 5 ° C. or less.
Since the sealing material 33 is a thermosetting resin, when the temperature of the sealing material 33 exceeds the temperature at which the curing starts in the stirring step, the viscosity of the sealing material 33 is usually as the curing proceeds. It also rises at room temperature. As a result, an appropriate amount of the sealing material 33 is not applied to the light emitting element 31 in the step of applying the sealing material 33 containing the fluorescent material to the light emitting element 31 mounted on the package 39. If the application amount of the sealing material 33 is not appropriate, the light emitting device 30 having a predetermined chromaticity cannot be obtained. For example, when the light emitting device 30 is a white light emitting diode, the chromaticity of the light emitting device 30 changes to the blue side as time passes.

また、攪拌工程において、蛍光物質が含まれる封止材33を、回転する攪拌部材17により攪拌する際、攪拌部材17の回転速度は、蛍光物質の粒径、封止材33の粘度などに応じて適宜調節されるが、攪拌部材17の回転速度を0.1回転/秒以上、5回転/秒以下とすることが好ましく、0.25回転/秒以上、3回転/秒以下とすることがより好ましい。
攪拌部材17の回転速度を0.1回転/秒以上、5回転/秒以下とすれば、蛍光物質が含まれる封止材33を、蛍光物質の濃度が一様になるように攪拌することができる。
In the stirring step, when the sealing material 33 containing the fluorescent material is stirred by the rotating stirring member 17, the rotation speed of the stirring member 17 depends on the particle size of the fluorescent material, the viscosity of the sealing material 33, and the like. The rotation speed of the stirring member 17 is preferably 0.1 rotation / second or more and 5 rotation / second or less, and preferably 0.25 rotation / second or more and 3 rotation / second or less. More preferred.
If the rotation speed of the stirring member 17 is 0.1 rotation / second or more and 5 rotation / second or less, the sealing material 33 containing the fluorescent material can be stirred so that the concentration of the fluorescent material becomes uniform. it can.

さらに、上述の工程と並行して、封止材33をパッケージ39に実装された発光素子31に塗布する前から、発光素子31が実装されたパッケージ39を加熱する(加熱工程)。この加熱工程は、シリンジ15内の封止材33をパッケージ39に実装された発光素子31に塗布する工程を実施している間、および、封止材33が硬化するまでの間、継続される。  Further, in parallel with the above-described process, the package 39 on which the light emitting element 31 is mounted is heated before the sealing material 33 is applied to the light emitting element 31 mounted on the package 39 (heating process). This heating process is continued during the process of applying the sealing material 33 in the syringe 15 to the light emitting element 31 mounted on the package 39 and until the sealing material 33 is cured. .

この加熱工程において、発光素子31が実装されたパッケージ39を、封止材33の硬化が開始する温度以上に加熱することが好ましい。
封止材33は熱硬化性樹脂であるから、加熱工程において、パッケージ39を、封止材33の硬化が開始する温度以上に加熱することにより、封止材33を発光素子31に塗布すると同時に、封止材33の硬化が開始する。したがって、封止材33は短時間でむらなく均一に硬化するので、硬化後の封止材33では、蛍光物質がパッケージ39の凹部38に沈降することなく、均一に分布している。
In this heating step, it is preferable to heat the package 39 on which the light emitting element 31 is mounted to a temperature at which the curing of the sealing material 33 starts.
Since the sealing material 33 is a thermosetting resin, at the same time that the sealing material 33 is applied to the light emitting element 31 by heating the package 39 to a temperature higher than the temperature at which the sealing material 33 starts to be cured in the heating step. Then, curing of the sealing material 33 starts. Therefore, since the sealing material 33 is uniformly cured in a short time, in the cured sealing material 33, the fluorescent material is uniformly distributed without being settled in the recesses 38 of the package 39.

次に、加熱手段14とともにパッケージ39を移動させるか、または、ノズル16を移動させて、発光素子31を実装したパッケージ39の1つを、塗布手段11のノズル16の先端に対向する位置に配する。
次いで、ガス導入管24およびガス導入路25を介して、シリンジ15内に窒素ガスや空気を送り込み、シリンジ15内の封止材33を加圧し、封止材33をノズル16から吐出し、パッケージ39に実装された発光素子31に塗布する。そして、パッケージ39の凹部38が所定量の封止材33により封止された時点で、封止材33の吐出を停止する。
上述したように、封止材33を発光素子31に塗布すると同時に、封止材33の硬化が開始するので、封止材33の吐出を停止後直ぐに蛍光物質が動かなくなる程度に硬化し、その後、加熱をしばらく続けると、封止材33が完全に硬化し、発光装置30が得られる。
Next, the package 39 is moved together with the heating means 14 or the nozzle 16 is moved so that one of the packages 39 on which the light emitting element 31 is mounted is arranged at a position facing the tip of the nozzle 16 of the coating means 11. To do.
Next, nitrogen gas or air is fed into the syringe 15 through the gas introduction pipe 24 and the gas introduction path 25, the sealing material 33 in the syringe 15 is pressurized, the sealing material 33 is discharged from the nozzle 16, and the package It is applied to the light emitting element 31 mounted on 39. Then, when the recess 38 of the package 39 is sealed with a predetermined amount of the sealing material 33, the discharge of the sealing material 33 is stopped.
As described above, since the sealing material 33 starts to be cured at the same time as the sealing material 33 is applied to the light emitting element 31, it is cured to such an extent that the fluorescent material does not move immediately after the ejection of the sealing material 33 is stopped. When the heating is continued for a while, the sealing material 33 is completely cured and the light emitting device 30 is obtained.

なお、この実施形態の発光装置の製造方法では、1つのパッケージ39への封止材33の塗布が終了した時点で、加熱手段14または塗布手段11を所定の位置に移動させて、別のパッケージ39に封止材33を塗布する工程を繰り返し、加熱部21に固定された全てのパッケージ39に封止材33を塗布する。  In the method of manufacturing the light emitting device according to this embodiment, when the application of the sealing material 33 to one package 39 is completed, the heating means 14 or the application means 11 is moved to a predetermined position, and another package is obtained. The process of applying the sealing material 33 to 39 is repeated, and the sealing material 33 is applied to all the packages 39 fixed to the heating unit 21.

このようにして得られた発光装置30は、反射面37が形成されたパッケージ32と、パッケージ32の一面に形成された回路パターン34上に実装された発光素子31と、発光素子31を封止する透明樹脂からなる封止材33とから概略構成されている。  The light emitting device 30 thus obtained includes a package 32 on which a reflection surface 37 is formed, a light emitting element 31 mounted on a circuit pattern 34 formed on one surface of the package 32, and the light emitting element 31 sealed. And a sealing material 33 made of a transparent resin.

発光素子31としては、赤色〜紫色の可視域の光、あるいは近紫外域の光を発光する各種の発光ダイオードの中から、使用目的に応じて適宜選択して用いられる。
パッケージ32としては、ガラスエポキシ基板、ホーロー基板、セラミック製基板などが用いられる。
The light-emitting element 31 is appropriately selected from various light-emitting diodes that emit red to purple visible light or near-ultraviolet light according to the purpose of use.
As the package 32, a glass epoxy substrate, a hollow substrate, a ceramic substrate, or the like is used.

封止材33としては、熱硬化性の透明樹脂が用いられ、このような透明樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂が挙げられる。
この封止材33に添加する蛍光物質としては、発光素子31から発せられた光の少なくとも一部を吸収して発光する顔料または蛍光体が用いられる。
As the sealing material 33, a thermosetting transparent resin is used, and examples of such a transparent resin include a silicone resin and an epoxy resin.
As the fluorescent material added to the sealing material 33, a pigment or a phosphor that emits light by absorbing at least a part of the light emitted from the light emitting element 31 is used.

回路パターン34としては、所望のパターンに加工した銅箔をパッケージ32に貼り合わせる方法、メッキ法、真空蒸着法、銅ペーストや銀ペーストを印刷して加熱硬化させる方法などにより形成されたものが挙げられる。  Examples of the circuit pattern 34 include those formed by bonding a copper foil processed into a desired pattern to the package 32, a plating method, a vacuum deposition method, a method of printing a copper paste or a silver paste, and heat-curing. It is done.

この実施形態の発光装置の製造方法によれば、攪拌工程において、シリンジ15内の蛍光物質が含まれる封止材33を、冷却手段13により所定の温度に冷却しながら、回転する攪拌部材17により蛍光物質の濃度が一様になるように攪拌し、かつ、加熱工程において、封止材33をパッケージ39に実装された発光素子31に塗布する前から、発光素子31が実装されたパッケージ39を、封止材33の硬化が開始する温度以上に加熱することにより、多数の発光装置30を連続的に製造する場合においても、色度のばらつきを大幅に低減し、一定の色度を有する発光装置30を高い歩留まりで安定して製造することができる。  According to the method for manufacturing the light emitting device of this embodiment, in the stirring step, the sealing member 33 containing the fluorescent substance in the syringe 15 is cooled by the cooling means 13 to a predetermined temperature, and the rotating stirring member 17 rotates. The package 39 on which the light emitting element 31 is mounted is stirred before the sealing material 33 is applied to the light emitting element 31 mounted on the package 39 in the heating step while stirring so that the concentration of the fluorescent substance becomes uniform. In the case where a large number of light-emitting devices 30 are continuously manufactured by heating to a temperature higher than the temperature at which the sealing material 33 starts to be cured, the variation in chromaticity is greatly reduced and light emission having a constant chromaticity is achieved. The apparatus 30 can be manufactured stably with a high yield.

以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with experimental examples, but the present invention is not limited to the following experimental examples.

「実験例1」
図1に示す発光装置の製造装置10を用い、連続して1024個の発光装置30を製造した。
封止材33としては、白色発光ダイオードに使用されている、3種類のシリコーン樹脂(シリコーン樹脂A、シリコーン樹脂B、シリコーン樹脂C)と、3種類のエポキシ樹脂(エポキシ樹脂D、エポキシ樹脂E、エポキシ樹脂F)とを用いた。
シリンジ15内に容れられた蛍光物質が含まれる封止材33を、冷却手段13により所定の温度に冷却しながら、回転する攪拌部材17により攪拌し続けた状態で、加熱手段14に固定されているパッケージ39内の発光素子31に封止材33を塗布した。この際、シリンジ15内の封止材33の温度を、25℃(冷却なし)、15℃、10℃、5℃、0℃、−5℃に調節した。
また、封止材33を発光素子31に塗布する前から、加熱手段14によりパッケージ39を加熱しておき、このパッケージ39の温度を、封止材33の硬化が開始する温度に調節した。
得られた全ての発光装置30について、硬化後の蛍光物質が含まれる封止材33の色度を測定し、そのばらつきを調べた。
色度のばらつきがなかった場合を(○)、色度が単調あるいは周期的に僅かに変化した場合を(△)、色度が単調あるいは周期的に大幅に変化した場合を(×)と評価した。
結果を表1に示す。
"Experiment 1"
Using the light emitting device manufacturing apparatus 10 shown in FIG. 1, 1024 light emitting devices 30 were continuously manufactured.
As the sealing material 33, three types of silicone resins (silicone resin A, silicone resin B, silicone resin C) used in white light emitting diodes and three types of epoxy resins (epoxy resin D, epoxy resin E, Epoxy resin F) was used.
The sealing material 33 containing the fluorescent substance contained in the syringe 15 is fixed to the heating means 14 while being continuously stirred by the rotating stirring member 17 while being cooled to a predetermined temperature by the cooling means 13. A sealing material 33 was applied to the light emitting element 31 in the package 39. Under the present circumstances, the temperature of the sealing material 33 in the syringe 15 was adjusted to 25 degreeC (no cooling), 15 degreeC, 10 degreeC, 5 degreeC, 0 degreeC, and -5 degreeC.
In addition, the package 39 was heated by the heating unit 14 before the sealing material 33 was applied to the light emitting element 31, and the temperature of the package 39 was adjusted to a temperature at which the sealing material 33 began to be cured.
For all the light emitting devices 30 obtained, the chromaticity of the sealing material 33 containing the cured fluorescent material was measured, and the variation was examined.
Evaluated as (○) when there was no chromaticity variation, (△) when the chromaticity monotonically or slightly changed periodically, and (X) when the chromaticity changed monotonically or periodically significantly. did.
The results are shown in Table 1.

Figure 2010080588
Figure 2010080588

表1の結果から、シリンジ15内の封止材33の温度を10℃以上とすると、色度にばらつきが生じ、シリンジ15内の封止材33の温度を5℃以下とすると、色度にばらつきが生じないことが確認された。
以上の結果から、シリンジ15内の封止材33を攪拌し、かつ、発光素子31に封止材33を塗布する前から、パッケージ39の温度を、封止材33の硬化が開始する温度に調節しておいても、シリンジ15内の封止材33の温度を5℃以下に調節しなければ、色度が安定しないことが分かった。
From the results of Table 1, when the temperature of the sealing material 33 in the syringe 15 is 10 ° C. or higher, the chromaticity varies, and when the temperature of the sealing material 33 in the syringe 15 is 5 ° C. or lower, the chromaticity is increased. It was confirmed that no variation occurred.
From the above results, the temperature of the package 39 is set to a temperature at which the curing of the sealing material 33 starts before the sealing material 33 in the syringe 15 is stirred and before the sealing material 33 is applied to the light emitting element 31. Even if it was adjusted, it was found that the chromaticity would not be stable unless the temperature of the sealing material 33 in the syringe 15 was adjusted to 5 ° C. or lower.

「実験例2」
図1に示す発光装置の製造装置10を用い、連続して1024個の発光装置30を製造した。
封止材33としては、実験例1と同様のものを用いた。
シリンジ15内に容れられた蛍光物質が含まれる封止材33を、冷却手段13により所定の温度に冷却しながら、回転する攪拌部材17により攪拌し続けた状態で、加熱手段14に固定されているパッケージ39内の発光素子31に封止材33を塗布した。この際、シリンジ15内の封止材33の温度を、25℃(冷却なし)、15℃、10℃、5℃、0℃、−5℃に調節した。
また、封止材33を発光素子31に塗布する前から、加熱手段14によりパッケージ39を加熱せずに、1024個全ての発光素子31に封止材33を塗布した後、加熱手段14によりパッケージ39を加熱して、封止材33を硬化させた。
得られた全ての発光装置30について、硬化後の蛍光物質が含まれる封止材33の色度を測定し、そのばらつきを調べた。
色度のばらつきがなかった場合を(○)、色度が単調あるいは周期的に僅かに変化した場合を(△)、色度が単調あるいは周期的に大幅に変化した場合を(×)と評価した。
結果を表2に示す。
"Experimental example 2"
Using the light emitting device manufacturing apparatus 10 shown in FIG. 1, 1024 light emitting devices 30 were continuously manufactured.
As the sealing material 33, the thing similar to Experimental example 1 was used.
The sealing material 33 containing the fluorescent substance contained in the syringe 15 is fixed to the heating means 14 while being continuously stirred by the rotating stirring member 17 while being cooled to a predetermined temperature by the cooling means 13. A sealing material 33 was applied to the light emitting element 31 in the package 39. Under the present circumstances, the temperature of the sealing material 33 in the syringe 15 was adjusted to 25 degreeC (no cooling), 15 degreeC, 10 degreeC, 5 degreeC, 0 degreeC, and -5 degreeC.
In addition, before applying the sealing material 33 to the light emitting element 31, the heating means 14 does not heat the package 39, and after applying the sealing material 33 to all 1024 light emitting elements 31, the heating means 14 applies the package. 39 was heated to cure the sealing material 33.
For all the light emitting devices 30 obtained, the chromaticity of the sealing material 33 containing the cured fluorescent material was measured, and the variation was examined.
Evaluated as (○) when there was no chromaticity variation, (△) when the chromaticity monotonically or slightly changed periodically, and (X) when the chromaticity changed monotonically or periodically significantly. did.
The results are shown in Table 2.

Figure 2010080588
Figure 2010080588

表2の結果から、発光素子31に封止材33を塗布する前から、パッケージ39を加熱しておかないと、シリンジ15内の封止材33を冷却しながら攪拌しても、色度にばらつきが生じることが確認された。これは、発光素子31に塗布された封止材33は、塗布後、すぐに硬化しないため、硬化が開始するまでの間に、封止材33に含まれる蛍光物質が次第にパッケージ内に沈降するなどして、封止材33における蛍光物質の分布が不均一になるため、色度が次第に変化するからであると考えられる。したがって、パッケージ39を加熱することなく、1000個以上の発光素子31に塗布した封止材33をまとめて硬化させると、色度に大きなばらつきが生じる。  From the results in Table 2, the chromaticity can be improved even if the sealing material 33 in the syringe 15 is stirred while being cooled unless the package 39 is heated before the sealing material 33 is applied to the light emitting element 31. It was confirmed that variation occurred. This is because the sealing material 33 applied to the light emitting element 31 is not cured immediately after application, and thus the fluorescent material contained in the sealing material 33 gradually settles in the package until the curing starts. Thus, it is considered that the chromaticity gradually changes because the distribution of the fluorescent substance in the sealing material 33 becomes non-uniform. Therefore, if the sealing material 33 applied to 1000 or more light emitting elements 31 is cured together without heating the package 39, the chromaticity varies greatly.

「実験例3」
図1に示す発光装置の製造装置10を用い、連続して1024個の発光装置30を製造した。
封止材33としては、実験例1と同様のものを用いた。
シリンジ15内に容れられた蛍光物質が含まれる封止材33を、冷却手段13により所定の温度に冷却しながら、回転する攪拌部材17により攪拌し続けた状態で、加熱手段14に固定されているパッケージ39内の発光素子31に封止材33を塗布した。この際、シリンジ15内の封止材33の温度を、25℃(冷却なし)、15℃、10℃、5℃、0℃、−5℃に調節した。
また、封止材33を発光素子31に塗布する前から、加熱手段14によりパッケージ39を加熱せずに、128個の発光素子に封止材33を塗布する毎に、加熱手段14により、パッケージ39を加熱して、封止材33を硬化させるという工程を8回繰り返した。
得られた全ての発光装置30について、硬化後の蛍光物質が含まれる封止材33の色度を測定し、そのばらつきを調べた。
色度のばらつきがなかった場合を(○)、色度が単調あるいは周期的に僅かに変化した場合を(△)、色度が単調あるいは周期的に大幅に変化した場合を(×)と評価した。
結果を表3に示す。
"Experiment 3"
Using the light emitting device manufacturing apparatus 10 shown in FIG. 1, 1024 light emitting devices 30 were continuously manufactured.
As the sealing material 33, the thing similar to Experimental example 1 was used.
The sealing material 33 containing the fluorescent substance contained in the syringe 15 is fixed to the heating means 14 while being continuously stirred by the rotating stirring member 17 while being cooled to a predetermined temperature by the cooling means 13. A sealing material 33 was applied to the light emitting element 31 in the package 39. Under the present circumstances, the temperature of the sealing material 33 in the syringe 15 was adjusted to 25 degreeC (no cooling), 15 degreeC, 10 degreeC, 5 degreeC, 0 degreeC, and -5 degreeC.
Further, before applying the sealing material 33 to the light emitting element 31, the heating means 14 does not heat the package 39 and each time the sealing material 33 is applied to 128 light emitting elements, the heating means 14 The process of heating 39 to cure the sealing material 33 was repeated 8 times.
For all the light emitting devices 30 obtained, the chromaticity of the sealing material 33 containing the cured fluorescent material was measured, and the variation was examined.
Evaluated as (○) when there was no chromaticity variation, (△) when the chromaticity monotonically or slightly changed periodically, and (X) when the chromaticity changed monotonically or periodically significantly. did.
The results are shown in Table 3.

Figure 2010080588
Figure 2010080588

表3の結果から、実験例2よりも、一度の工程で封止材33を塗布する発光素子31の数を少なくしても、発光素子31に封止材33を塗布する前から、パッケージ39を加熱しておかないと、シリンジ15内の封止材33を冷却しながら攪拌しても、色度にばらつきが生じることが確認された。なお、シリンジ15内の封止材33の温度を5℃以下にすれば、色度のばらつきが少なくなるものの、ばらつきを完全に無くすことはできなかった。  From the results in Table 3, even if the number of light emitting elements 31 to which the sealing material 33 is applied in a single process is smaller than that in Experimental Example 2, before the sealing material 33 is applied to the light emitting elements 31, the package 39 It was confirmed that variation in chromaticity would occur even if the sealing material 33 in the syringe 15 was stirred while being cooled unless it was heated. If the temperature of the sealing material 33 in the syringe 15 was 5 ° C. or less, the chromaticity variation was reduced, but the variation could not be completely eliminated.

「実験例4」
図1に示す発光装置の製造装置10を用い、連続して1024個の発光装置30を製造した。
封止材33としては、実験例1と同様のものを用いた。
シリンジ15内に容れられた蛍光物質が含まれる封止材33を、攪拌することなく、冷却手段13により所定の温度に冷却しながら、加熱手段14に固定されているパッケージ39内の発光素子31に封止材33を塗布した。この際、シリンジ15内の封止材33の温度を、25℃(冷却なし)、15℃、10℃、5℃、0℃、−5℃に調節した。
また、加熱手段14によりパッケージ39を加熱し、パッケージ39の温度を、封止材33の硬化が開始する温度に調節した。
得られた全ての発光装置30について、硬化後の蛍光物質が含まれる封止材33の色度を測定し、そのばらつきを調べた。
色度のばらつきがなかった場合を(○)、色度が単調あるいは周期的に僅かに変化した場合を(△)、色度が単調あるいは周期的に大幅に変化した場合を(×)と評価した。
結果を表4に示す。
"Experimental example 4"
Using the light emitting device manufacturing apparatus 10 shown in FIG. 1, 1024 light emitting devices 30 were continuously manufactured.
As the sealing material 33, the thing similar to Experimental example 1 was used.
The light-emitting element 31 in the package 39 fixed to the heating means 14 while cooling the sealing material 33 containing the fluorescent substance contained in the syringe 15 to a predetermined temperature by the cooling means 13 without stirring. The sealing material 33 was apply | coated to. Under the present circumstances, the temperature of the sealing material 33 in the syringe 15 was adjusted to 25 degreeC (no cooling), 15 degreeC, 10 degreeC, 5 degreeC, 0 degreeC, and -5 degreeC.
Further, the package 39 was heated by the heating means 14, and the temperature of the package 39 was adjusted to a temperature at which the curing of the sealing material 33 started.
For all of the obtained light emitting devices 30, the chromaticity of the sealing material 33 containing the cured fluorescent material was measured, and the variation was examined.
Evaluated as (○) when there was no chromaticity variation, (△) when the chromaticity monotonically or slightly changed periodically, and (X) when the chromaticity changed monotonically or periodically significantly. did.
The results are shown in Table 4.

Figure 2010080588
Figure 2010080588

表4の結果から、シリンジ15内の封止材33の温度を5℃以下に調節し、かつ、発光素子31に封止材33を塗布する前から、パッケージ39の温度を、封止材33の硬化が開始する温度に調節しておいても、シリンジ15内の封止材33を攪拌しなければ、色度が安定しないことが分かった。  From the results in Table 4, the temperature of the package 39 is adjusted before the temperature of the sealing material 33 in the syringe 15 is adjusted to 5 ° C. or less and the sealing material 33 is applied to the light emitting element 31. It was found that the chromaticity is not stable unless the sealing material 33 in the syringe 15 is agitated even if the temperature is adjusted to the temperature at which the curing of the resin begins.

本発明の発光装置の製造装置の一実施形態を示し、一部を断面で表す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram illustrating an embodiment of a light emitting device manufacturing apparatus according to the present invention, a part of which is shown in cross section.

符号の説明Explanation of symbols

10・・・発光装置の製造装置、11・・・塗布手段、12・・・攪拌手段、13・・・冷却手段、14・・・加熱手段、15・・・シリンジ、16・・・ノズル、17・・・攪拌部材、18・・・回転軸、19・・・羽根、20・・・駆動部、21・・・加熱部、22・・・固定冶具、23・・・収容部、24・・・ガス導入管、25・・・ガス導入路、26・・・ケーブル。 DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus of light-emitting device, 11 ... Application | coating means, 12 ... Stirring means, 13 ... Cooling means, 14 ... Heating means, 15 ... Syringe, 16 ... Nozzle, 17 ... Stirring member, 18 ... Rotating shaft, 19 ... Blade, 20 ... Drive part, 21 ... Heating part, 22 ... Fixing jig, 23 ... Storage part, 24 ..Gas introduction pipe, 25... Gas introduction path, 26.

Claims (5)

パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する方法であって、
前記封止材を冷却しながら攪拌することにより、粘度の上昇を抑えながら、前記発光素子に前記封止材を塗布し、前記発光素子に前記封止材を塗布する前から、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱することを特徴とする発光装置の製造方法。
A light emitting element is mounted on a package, and the light emitting element includes a fluorescent material that emits light by absorbing at least a part of light emitted from the light emitting element, and is coated with a sealing material that seals the light emitting element. A method of manufacturing a light emitting device by:
By stirring the sealing material while cooling, the sealing material is applied to the light emitting element while suppressing an increase in viscosity, and the light emitting element is applied before the sealing material is applied to the light emitting element. The method of manufacturing a light emitting device, wherein the package is heated to a temperature at which the package is cured immediately after the sealing material is applied to the light emitting element.
前記攪拌工程において、前記封止材を5℃以下に冷却することを特徴とする請求項1に記載の発光装置の製造方法。  The method for manufacturing a light emitting device according to claim 1, wherein the sealing material is cooled to 5 ° C. or lower in the stirring step. 前記攪拌工程において、前記蛍光物質が含まれる前記封止材を回転する攪拌部材により攪拌し、該攪拌部材の回転速度を0.1回転/秒以上、5回転/秒以下とすることを特徴とする請求項1または2に記載の発光装置の製造方法。  In the stirring step, the sealing material containing the fluorescent material is stirred by a rotating stirring member, and the rotation speed of the stirring member is 0.1 rotation / second or more and 5 rotation / second or less. The manufacturing method of the light-emitting device of Claim 1 or 2. 前記加熱工程において、前記発光素子を実装した前記パッケージを、前記封止材の硬化が開始する温度以上に加熱することを特徴とする請求項1に記載の発光装置の製造方法。  The method for manufacturing a light emitting device according to claim 1, wherein, in the heating step, the package on which the light emitting element is mounted is heated to a temperature higher than a temperature at which the sealing material starts to be cured. パッケージに発光素子を実装し、前記発光素子に、前記発光素子から発せられた光の少なくとも一部を吸収して発光する蛍光物質を含み、前記発光素子を封止する封止材を塗布することによって発光装置を製造する発光装置の製造装置であって、
前記パッケージに実装した前記発光素子に前記封止材を塗布する塗布手段と、該塗布手段内に前記封止材を攪拌する攪拌部材が配された攪拌手段と、前記塗布手段の周りに配され、前記塗布手段内の前記封止材を冷却する冷却手段と、前記発光素子を実装した前記パッケージを、前記封止材が前記発光素子に塗布した直後に硬化する温度に加熱する加熱手段とを備えたことを特徴とする発光装置の製造装置。
A light emitting element is mounted on a package, and the light emitting element includes a fluorescent material that emits light by absorbing at least a part of light emitted from the light emitting element, and is coated with a sealing material that seals the light emitting element. A light emitting device manufacturing apparatus for manufacturing a light emitting device by:
An applicator for applying the sealing material to the light emitting element mounted on the package, an agitator having an agitating member for agitating the sealant in the applicator, and a coating device disposed around the applicator. Cooling means for cooling the sealing material in the coating means; and heating means for heating the package on which the light emitting element is mounted to a temperature at which the package is cured immediately after the sealing material is applied to the light emitting element. An apparatus for manufacturing a light-emitting device, comprising:
JP2008245600A 2008-09-25 2008-09-25 Method for manufacturing light emitting device Expired - Fee Related JP5380027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245600A JP5380027B2 (en) 2008-09-25 2008-09-25 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245600A JP5380027B2 (en) 2008-09-25 2008-09-25 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2010080588A true JP2010080588A (en) 2010-04-08
JP5380027B2 JP5380027B2 (en) 2014-01-08

Family

ID=42210722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245600A Expired - Fee Related JP5380027B2 (en) 2008-09-25 2008-09-25 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5380027B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023424A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
WO2012160739A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Method for manufacturing light emitting elements and device for manufacturing light emitting elements
JP2013004588A (en) * 2011-06-13 2013-01-07 Oh'tec Electronics Corp Liquid quantitative discharge device and liquid quantitative discharge method
JP2013038372A (en) * 2011-08-11 2013-02-21 Panasonic Corp Resin application apparatus and resin application method
JP2013521652A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッド System and method for applying an optical material to an optical element
US8618569B2 (en) 2008-01-15 2013-12-31 Cree, Inc. Packaged light emitting diodes including phosphor coating and phosphor coating systems
WO2014046486A2 (en) * 2012-09-21 2014-03-27 포항공과대학교 산학협력단 Glass sealant coating method and glass sealant coating device for light-emitting diode
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9508904B2 (en) 2011-01-31 2016-11-29 Cree, Inc. Structures and substrates for mounting optical elements and methods and devices for providing the same background
CN114904731A (en) * 2022-05-07 2022-08-16 深圳市世宗自动化设备有限公司 Glue deaeration barrel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032712A (en) * 2015-08-18 2015-11-11 珠海宏光照明器材有限公司 Glue dispensing syringe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065220A (en) * 1996-08-23 1998-03-06 Sharp Corp Semiconductor light-emitting device and manufacture thereof
JPH10233533A (en) * 1997-02-21 1998-09-02 Nichia Chem Ind Ltd Method and device for forming light emitting device
JP2002050798A (en) * 2000-08-04 2002-02-15 Stanley Electric Co Ltd While led lamp
JP2008071793A (en) * 2006-09-12 2008-03-27 Toshiba Corp Optical semiconductor device and its manufacturing method
JP2008219836A (en) * 2007-03-08 2008-09-18 Epson Toyocom Corp Method of manufacturing piezoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065220A (en) * 1996-08-23 1998-03-06 Sharp Corp Semiconductor light-emitting device and manufacture thereof
JPH10233533A (en) * 1997-02-21 1998-09-02 Nichia Chem Ind Ltd Method and device for forming light emitting device
JP2002050798A (en) * 2000-08-04 2002-02-15 Stanley Electric Co Ltd While led lamp
JP2008071793A (en) * 2006-09-12 2008-03-27 Toshiba Corp Optical semiconductor device and its manufacturing method
JP2008219836A (en) * 2007-03-08 2008-09-18 Epson Toyocom Corp Method of manufacturing piezoelectric device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940561B2 (en) 2008-01-15 2015-01-27 Cree, Inc. Systems and methods for application of optical materials to optical elements
US8618569B2 (en) 2008-01-15 2013-12-31 Cree, Inc. Packaged light emitting diodes including phosphor coating and phosphor coating systems
JP2013521652A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッド System and method for applying an optical material to an optical element
US9153752B2 (en) 2010-08-17 2015-10-06 Konica Minolta Advanced Layers, Inc. Method of manufacturing light-emitting device
CN103081142B (en) * 2010-08-17 2015-01-14 柯尼卡美能达先进多层薄膜株式会社 Method of manufacturing light-emitting device
CN103081142A (en) * 2010-08-17 2013-05-01 柯尼卡美能达先进多层薄膜株式会社 Method of manufacturing light-emitting device
JP5299577B2 (en) * 2010-08-17 2013-09-25 コニカミノルタ株式会社 Method for manufacturing light emitting device
JP5870923B2 (en) * 2010-08-17 2016-03-01 コニカミノルタ株式会社 Method for manufacturing light emitting device
WO2012023424A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
US8835192B2 (en) 2010-08-17 2014-09-16 Konica Minolta, Inc. Method of manufacturing light-emitting device
WO2012023425A1 (en) * 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 Method of manufacturing light-emitting device
US9508904B2 (en) 2011-01-31 2016-11-29 Cree, Inc. Structures and substrates for mounting optical elements and methods and devices for providing the same background
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
WO2012160739A1 (en) * 2011-05-24 2012-11-29 パナソニック株式会社 Method for manufacturing light emitting elements and device for manufacturing light emitting elements
JP5632966B2 (en) * 2011-05-24 2014-11-26 パナソニック株式会社 Light emitting element manufacturing method and light emitting element manufacturing apparatus
US9219014B2 (en) 2011-05-24 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of light emitting elements, and manufacturing apparatus of light emitting elements
JP2013004588A (en) * 2011-06-13 2013-01-07 Oh'tec Electronics Corp Liquid quantitative discharge device and liquid quantitative discharge method
JP2013038372A (en) * 2011-08-11 2013-02-21 Panasonic Corp Resin application apparatus and resin application method
WO2014046486A3 (en) * 2012-09-21 2014-05-22 포항공과대학교 산학협력단 Glass sealant coating method and glass sealant coating device for light-emitting diode
WO2014046486A2 (en) * 2012-09-21 2014-03-27 포항공과대학교 산학협력단 Glass sealant coating method and glass sealant coating device for light-emitting diode
CN114904731A (en) * 2022-05-07 2022-08-16 深圳市世宗自动化设备有限公司 Glue deaeration barrel

Also Published As

Publication number Publication date
JP5380027B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5380027B2 (en) Method for manufacturing light emitting device
CN110546228B (en) Adhesive bonding composition and electronic component prepared therefrom
US7569406B2 (en) Method for coating semiconductor device using droplet deposition
KR100990337B1 (en) A fabrication equipment of a light emitting device
CN107995920B (en) Phosphor composition, phosphor sheet, and article formed using same, LED chip, LED package, light-emitting device, and backlight unit
EP2903039B1 (en) Semiconductor device
CN102339931B (en) Light-emitting device part, light-emitting device and manufacture method thereof
US8736160B2 (en) Light-emitting apparatus and method for manufacturing same
JP2009135485A (en) Semiconductor light-emitting apparatus and method of manufacturing the same
KR101026167B1 (en) Light-emitting device mounting substrate, light-emitting device package body, display and illuminating device
JP5740344B2 (en) Method for manufacturing light emitting device
US20040166234A1 (en) Apparatus and method for coating a light source to provide a modified output spectrum
KR20130028905A (en) Systems and methods for application of optical materials to optical elements
JP2012109531A (en) Light-emitting device and method for manufacturing the same
WO2020003789A1 (en) Method for producing light emitting device, and light emitting device
JP2006302965A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2017174908A (en) Method of manufacturing light emitting device
WO2011057831A1 (en) Light-emitting diode module and corresponding manufacturing method
CN1691359A (en) Light-emitting device and making method thereof, making system, packaging device and light emitting source, backlight module and display device
JP2005039104A (en) Light emitting diode and its manufacturing method
US7115428B2 (en) Method for fabricating light-emitting devices utilizing a photo-curable epoxy
JPH10233533A (en) Method and device for forming light emitting device
KR101207935B1 (en) Method of manufacturing led device
JP2004327975A (en) Sticking method of phosphors onto light emitting diode
JP2020010013A (en) Manufacturing method of light-emitting device and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees