Nothing Special   »   [go: up one dir, main page]

JP2010078459A - Device and method for detecting breakage of heat exchanger tube of heat exchanger - Google Patents

Device and method for detecting breakage of heat exchanger tube of heat exchanger Download PDF

Info

Publication number
JP2010078459A
JP2010078459A JP2008247143A JP2008247143A JP2010078459A JP 2010078459 A JP2010078459 A JP 2010078459A JP 2008247143 A JP2008247143 A JP 2008247143A JP 2008247143 A JP2008247143 A JP 2008247143A JP 2010078459 A JP2010078459 A JP 2010078459A
Authority
JP
Japan
Prior art keywords
gas
tube
heat transfer
heat exchanger
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247143A
Other languages
Japanese (ja)
Inventor
Koichi Nitto
光一 日塔
Masabumi Komai
正文 小舞
Shinichiro Matsuyama
慎一郎 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008247143A priority Critical patent/JP2010078459A/en
Publication of JP2010078459A publication Critical patent/JP2010078459A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect existence of a breakage and a breakage spot of a heat exchanger tube highly accurately in a short period of time. <P>SOLUTION: This device has: a gas leak first detector 16 and a gas leak second detector 18 for detecting leak of He gas flowing through an aperture between an outer tube and an inner tube of the heat exchanger tube from a breakage spot of the heat exchanger tube in order to confirm existence of a breakage of the heat exchanger tube 11 in a steam generator 10; and a neutron generation device 33 and a neutron detection image sensor 34 arranged oppositely across the heat exchanger tube 11 in order to specify the breakage spot of the heat exchanger tube. Neutrons emitted from the neutron generation device 33 are absorbed by He3 gas flowing through the aperture between the outer tube and the inner tube and leaking from the breakage spot, and a neutron shadow at that time is detected as a two-dimensional image by the neutron detection image sensor 34. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器の伝熱管破損検出装置及び方法に係り、特に、高速増殖炉において熱交換器として機能する蒸気発生器に適用されて好適な熱交換器の伝熱管破損検出装置及び方法に関する。   TECHNICAL FIELD The present invention relates to a heat exchanger tube breakage detecting apparatus and method for a heat exchanger, and more particularly to a heat exchanger tube breakage detecting apparatus and method suitable for a steam generator functioning as a heat exchanger in a fast breeder reactor. About.

従来、熱交換器における伝熱管の破損検出を行なうためには、渦流探傷(渦電流探傷とも称する)検査法や内挿式超音波探傷法等が検討されている。これらの方法では、処理量は多くても、5mの長さの伝熱管を1日に600本までしか検査できない。伝熱管の本数が多くなり長さも長くなると、亀裂等の破損箇所を特定するのに更に長時間を要する。   Conventionally, in order to detect breakage of a heat transfer tube in a heat exchanger, an eddy current flaw detection (also referred to as eddy current flaw detection) inspection method, an interpolated ultrasonic flaw detection method, and the like have been studied. These methods can only inspect up to 600 heat transfer tubes having a length of 5 m per day even if the amount of treatment is large. If the number of heat transfer tubes increases and the length becomes longer, it takes a longer time to identify a broken portion such as a crack.

実際の渦流探傷検査法では、作業員が熱交換器を解体して伝熱管を1本1本丁寧に検査しなければならず、かなりの時間を要する。現在の石油精製・石油化学・一般化学プランなどでは、一般的な熱交換器の伝熱管の寿命を予測する方法として、サンプリング検査法が広く適用されている。しかし、このサンプリング検査法では、サンプリングの対象外となった箇所については検査が実際に行われていないため、熱交換器を再組み立てした後の運転時に異常となるリスクを伴う。また、このように熱交換器を解体して検査することは、液体金属ナトリウムと蒸気とを用いた高速増殖炉の蒸気発生器では、金属ナトリウムが液体であることから、適用が困難であると考えられる。   In an actual eddy current flaw inspection method, an operator must disassemble the heat exchanger and carefully inspect the heat transfer tubes one by one, which requires a considerable amount of time. In current petroleum refining, petrochemical, and general chemical plans, sampling inspection methods are widely applied as a method for predicting the life of heat transfer tubes of general heat exchangers. However, in this sampling inspection method, since the inspection is not actually performed for the portions that are not subject to sampling, there is a risk of abnormalities during operation after reassembling the heat exchanger. In addition, disassembling and inspecting the heat exchanger in this way is difficult to apply in a fast breeder reactor steam generator using liquid metal sodium and steam because the metal sodium is liquid. Conceivable.

渦流探傷法以外の非破壊検査の方法として、X線やγ線を用いた透過試験法や、特許文献1に記載のCT法がある。CT法は、放射線を利用したCT(コンピューター・トモグラフィ)処理によって伝熱管群を画像化して、伝熱管の欠陥を検出するものである。伝熱管が複雑に多数本存在する場合には、これらの伝熱管が重なり合うため、透過試験法では画像から破損部分を判断することが難しく、CT法により、断面から異常箇所を検出する方法が適していると考えられる。   As a nondestructive inspection method other than the eddy current flaw detection method, there are a transmission test method using X-rays and γ-rays and a CT method described in Patent Document 1. In the CT method, heat transfer tube groups are imaged by CT (computer tomography) processing using radiation to detect defects in the heat transfer tubes. When a large number of heat transfer tubes exist, these heat transfer tubes overlap, so it is difficult to determine the damaged part from the image by the transmission test method, and the method of detecting an abnormal part from the cross section by the CT method is suitable. It is thought that.

また、現状の液体金属ナトリウムと蒸気との間で熱交換を行なう高速増殖炉の蒸気発生器では、特許文献2に記載のように、液体金属ナトリウムを扱う上で、蒸気発生器の伝熱管を2重伝熱管とし、外管と内管の隙間にHeガスを正圧で流し、外管に破損が生じた場合に、Heガスが液体金属ナトリウム側に移行するので、液体金属ナトリウム中のHe濃度を検出することで外管の破損を確認する。また、内管に破損が生じた場合には、外管と内管の隙間に流れたHeガス中に内管の内側の蒸気が流入するので、Heガス中の湿分濃度を検出することで内管の破損を確認する。
特開2005−140791号公報 特開2000−130965号公報
Moreover, in the steam generator of the fast breeder reactor that performs heat exchange between the current liquid metal sodium and steam, as described in Patent Document 2, the heat transfer tube of the steam generator is used for handling the liquid metal sodium. When a double heat transfer tube is used and He gas is allowed to flow through the gap between the outer tube and the inner tube at a positive pressure and the outer tube is damaged, the He gas moves to the liquid metal sodium side. The outer tube is damaged by detecting the concentration. In addition, when the inner pipe is damaged, the steam inside the inner pipe flows into the He gas flowing in the gap between the outer pipe and the inner pipe, so that the moisture concentration in the He gas is detected. Check for damage to the inner tube.
JP 2005-140791 A JP 2000-130965 A

ところが、特許文献1に記載のCT法では、熱交換器全体が直径5m以上もある体系で放射線を用いても、放射線の透過量に対する亀裂等の欠陥部分での変化量が少ないので、欠陥の検出が困難である。しかも、スライスされる伝熱管の断面の分解能を高く設定すると測定時間が膨大になり、現状のセンサ技術との組み合わせでは実用的でないと判断せざるを得ない。   However, in the CT method disclosed in Patent Document 1, even if radiation is used in a system in which the entire heat exchanger has a diameter of 5 m or more, the amount of change in a defect portion such as a crack with respect to the amount of transmitted radiation is small. It is difficult to detect. Moreover, if the resolution of the cross section of the heat transfer tube to be sliced is set high, the measurement time becomes enormous, and it must be determined that the combination with the current sensor technology is not practical.

また、特許文献2に記載の蒸気発生器における伝熱管破損検出方法では、蒸気発生器の伝熱管から微小漏出が生じた場合、例えば液体金属ナトリウムの流速が速いときには、サンプリングされるHeガス量が極微小量になって、伝熱管の破損検出精度が低下してしまう。従って、伝熱管に欠陥が生じてからHeガスの検出までに長時間を要することになる。しかも、伝熱管の破損の有無は確認できても、その破損箇所の特定が困難である。   Further, in the heat transfer tube breakage detection method in the steam generator described in Patent Document 2, when a minute leak occurs from the heat transfer tube of the steam generator, for example, when the flow rate of liquid metal sodium is high, the amount of He gas to be sampled is It becomes extremely small amount, and the heat detection accuracy of the heat transfer tube is lowered. Therefore, it takes a long time to detect He gas after the heat transfer tube is defective. Moreover, even if the presence or absence of breakage of the heat transfer tube can be confirmed, it is difficult to identify the breakage point.

本発明の目的は、上述の事情を考慮してなされたものであり、伝熱管の破損の有無及び破損箇所を高精度且つ短時間に検出できる熱交換器の伝熱管破損検出装置及び方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and provides a heat exchanger tube breakage detection device and method for a heat exchanger that can detect the presence or absence and breakage of a heat exchanger tube with high accuracy and in a short time. There is to do.

本発明に係る熱交換器の伝熱管破損検出装置は、多数本の伝熱管のそれぞれが外管と内管からなる2重伝熱管であり、前記外管の外側を流れる第1流体と、前記内管の内側を流れる第2流体との間で熱交換を行なう熱交換器であって、前記伝熱管の破損の有無を確認するために、前記外管と前記内管の隙間を流れる第1検出ガスが、前記伝熱管の破損箇所から漏出したことを検出するガス漏出検出器と、前記伝熱管の前記破損箇所を特定するために、前記伝熱管を挟んで対向配置された中性子発生装置と中性子検出イメージセンサとを有し、前記中性子発生装置から放出された中性子が、前記外管と前記内管の隙間を流れて前記破損箇所から漏出した第2検出ガスにより吸収され、そのときの中性子の影を前記中性子検出イメージセンサが2次元画像として検出することを特徴とするものである。   The heat exchanger tube breakage detection device for a heat exchanger according to the present invention is a double heat transfer tube in which each of a plurality of heat transfer tubes is composed of an outer tube and an inner tube, the first fluid flowing outside the outer tube, A heat exchanger for exchanging heat with a second fluid flowing inside the inner pipe, wherein the first pipe flowing through the gap between the outer pipe and the inner pipe in order to confirm whether the heat transfer pipe is damaged or not. A gas leakage detector for detecting that the detection gas leaked from the damaged portion of the heat transfer tube; and a neutron generator arranged opposite to the heat transfer tube to identify the damaged portion of the heat transfer tube; A neutron detection image sensor, and neutrons emitted from the neutron generator are absorbed by a second detection gas leaked from the damaged portion through the gap between the outer tube and the inner tube, and the neutrons at that time The shadow of the neutron detection image sensor is 2 It is characterized in that the detection as the original image.

また、本発明に係る熱交換器の伝熱管破損検出方法は、多数本の伝熱管のそれぞれが外管と内管からなる2重伝熱管であり、前記外管の外側を流れる第1流体と、前記内管の内側を流れる第2流体との間で熱交換を行なう熱交換器であって、前記外管と前記内管の隙間を流れる第1検出ガスが、前記伝熱管の破損箇所から漏出したことをガス漏出検出器が検出することで、前記伝熱管の破損の有無を確認し、前記伝熱管に破損があった場合に、前記中性子発生装置から放出された中性子が、前記外管と前記内管の隙間を流れて前記破損箇所から漏出した第2検出ガスにより吸収され、そのときの中性子の影を、前記中性子発生装置と前記伝熱管を挟んで対向配置された中性子検出イメージセンサが2次元画像として検出することで、前記伝熱管の前記破損箇所を特定することを特徴とするものである。   Moreover, the heat exchanger tube breakage detection method for a heat exchanger according to the present invention is a double heat transfer tube in which each of a plurality of heat transfer tubes is composed of an outer tube and an inner tube, and a first fluid flowing outside the outer tube, A heat exchanger for exchanging heat with the second fluid flowing inside the inner pipe, wherein the first detection gas flowing through the gap between the outer pipe and the inner pipe is from a damaged portion of the heat transfer pipe. The gas leak detector detects that the leak has occurred, and confirms whether or not the heat transfer tube is damaged. When the heat transfer tube is damaged, the neutrons emitted from the neutron generator are Neutron detection image sensor that is absorbed by the second detection gas leaked from the damaged portion through the gap between the neutron generator and the heat transfer tube, and is opposed to the neutron generator and the heat transfer tube Detects the heat transfer as a two-dimensional image. Is characterized in that the identifying the damage.

本発明に係る熱交換器の伝熱管破損検出装置及び方法によれば、伝熱管の外管と内管の隙間を流れる第1検出ガスが伝熱管の破損箇所から漏出したことをガス漏出検出器が検出することで、伝熱管の破損の有無を確認し、中性子発生装置からの中性子が、外管と内管の隙間を流れて破損箇所から漏出した第2検出ガスにより吸収され、そのときの中性子の影を中性子検出イメージセンサが検出することで、伝熱管の破損箇所を特定するので、伝熱管の破損の有無及び破損箇所を高精度及び短時間に検出できる。   According to the heat exchanger tube breakage detecting device and method for a heat exchanger according to the present invention, a gas leak detector detects that the first detection gas flowing through the gap between the outer tube and the inner tube of the heat exchanger tube has leaked from the breakage point of the heat exchanger tube. By detecting whether the heat transfer tube is damaged or not, the neutron from the neutron generator is absorbed by the second detection gas leaked from the damaged portion through the gap between the outer tube and the inner tube, Since the neutron detection image sensor detects the shadow of the neutron, the damaged portion of the heat transfer tube is specified, so the presence or absence of the heat transfer tube and the damaged portion can be detected with high accuracy and in a short time.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施の形態(図1〜図8)
図1は、本発明に係る熱交換器の伝熱管破損検出装置における第1の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置を示す概略構成図である。図2は、図1のII矢視図である。図5は、図2における多数本の伝熱管へ、この伝熱管の破損を検出するための検出ガスを供給するガス供給ラインを示す管路図である。図7は、図1の伝熱管破損検出装置を示す斜視図である。
[A] First embodiment (FIGS. 1 to 8)
FIG. 1 is a schematic configuration diagram showing a heat transfer tube breakage detection device in a steam generator of a fast breeder reactor to which the first embodiment of the heat transfer tube breakage detection device of a heat exchanger according to the present invention is applied. FIG. 2 is a view taken in the direction of arrow II in FIG. FIG. 5 is a pipeline diagram showing a gas supply line for supplying a detection gas for detecting breakage of the heat transfer tubes to the multiple heat transfer tubes in FIG. FIG. 7 is a perspective view showing the heat transfer tube breakage detecting device of FIG.

図1に示す高速増殖炉の蒸気発生器10は熱交換器として機能し、図2及び図3に示すように、多数本の螺旋形状の伝熱管11を有する。各伝熱管11は、図4に示すように、外管12と内管13からなる2重伝熱管である。前記蒸気発生器10では、外管12の外側を流れる第1流体としての液体金属ナトリウムNaと、内管13の内側を流れる第2流体としての水または蒸気Wとの間で熱交換が行われ、内管13内の水Wは液体金属ナトリウムNaの熱によって蒸気となり、この蒸気Wが蒸気タービンへ導かれて発電に供される。   The steam generator 10 of the fast breeder reactor shown in FIG. 1 functions as a heat exchanger, and has a large number of helical heat transfer tubes 11 as shown in FIGS. As shown in FIG. 4, each heat transfer tube 11 is a double heat transfer tube including an outer tube 12 and an inner tube 13. In the steam generator 10, heat exchange is performed between the liquid metal sodium Na as the first fluid flowing outside the outer tube 12 and the water or steam W as the second fluid flowing inside the inner tube 13. The water W in the inner pipe 13 becomes steam due to the heat of the liquid metal sodium Na, and this steam W is guided to the steam turbine for power generation.

伝熱管11の外管12と内管13との隙間14に、伝熱管11の破損の有無を確認するために、第1検出ガスとしてのHeガスが正圧で流れる。つまり、外管12が破損した場合には、高速で大量に流れる液体金属ナトリウムNa中にHeガスが漏出する。このHeガスは、液体金属ナトリウムNaよりも軽いため、この液体金属ナトリウムNa中では泡となって上昇するが、液体金属ナトリウムNaの流速が速いため、Heガスの泡も液体金属ナトリウムNaと共に流れる。図1に示すように、蒸気発生器10において液体金属ナトリウムNaの流出管15に設けられたガス漏出第1検出器16が、サンプリングした液体金属ナトリウムNa中のHeの濃度を検出することで、Heガスの液体金属ナトリウムNaへの漏出を検出し、これにより伝熱管11の外管12の破損が確認される。   In order to confirm whether or not the heat transfer tube 11 is damaged, the He gas as the first detection gas flows at a positive pressure in the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11. That is, when the outer tube 12 is broken, the He gas leaks into the liquid metal sodium Na flowing in a large amount at a high speed. Since this He gas is lighter than liquid metal sodium Na, it rises as bubbles in this liquid metal sodium Na. However, because the flow rate of liquid metal sodium Na is high, the bubbles of He gas also flow with the liquid metal sodium Na. . As shown in FIG. 1, the gas leak first detector 16 provided in the outflow pipe 15 of the liquid metal sodium Na in the steam generator 10 detects the concentration of He in the sampled liquid metal sodium Na, Leakage of He gas into the liquid metal sodium Na is detected, and thereby the breakage of the outer tube 12 of the heat transfer tube 11 is confirmed.

また、伝熱管11の内管13が破損した場合には、内管13内を流れる水または蒸気W中へHeガスが漏出する。蒸気発生器10において蒸気Wの流出管17に設けられたガス漏出第2検出器18が、サンプリングした蒸気W中のHe濃度を検出することで、Heガスの蒸気Wへの漏出を検出し、これにより内管13の破損が確認される。   Further, when the inner tube 13 of the heat transfer tube 11 is damaged, the He gas leaks into the water or steam W flowing through the inner tube 13. In the steam generator 10, the gas leak second detector 18 provided in the outflow pipe 17 of the steam W detects the He concentration in the sampled steam W, thereby detecting the leak of He gas to the steam W, Thereby, the damage of the inner pipe 13 is confirmed.

尚、ガス漏出第2検出器18は、外管12と内管13との隙間14を流れるHeガスの圧力を検出して、その圧力の低下によりHeガスの漏出を検出して内管13の破損を確認するものでも良く、または、伝熱管14の上記隙間14内のHeガス中へ流入する内管13内の水または蒸気の濃度(湿分濃度)を検出することで、内管13の破損を確認するものでもよい。   The second gas leak detector 18 detects the pressure of the He gas flowing through the gap 14 between the outer tube 12 and the inner tube 13 and detects the leakage of the He gas due to the decrease in the pressure. It may be one that confirms breakage, or by detecting the concentration of water or steam (moisture concentration) in the inner pipe 13 that flows into the He gas in the gap 14 of the heat transfer pipe 14, It may be one that confirms damage.

上述のようにしてガス漏出第1検出器16またはガス漏出第2検出器18により伝熱管11の外管12または内管13の破損が確認されたときに、高速増殖炉の運転が安全に停止される。しかし、上述の構成のみでは、どの伝熱管11のどの箇所が破損したかを特定することができない。そこで、まず、蒸気発生器10における多数本の伝熱管11のうち、どの伝熱管11が破損したかを探索する構成について説明する。   When the gas leak first detector 16 or the gas leak second detector 18 confirms that the outer tube 12 or the inner tube 13 of the heat transfer tube 11 is broken as described above, the operation of the fast breeder reactor is safely stopped. Is done. However, it is impossible to specify which part of which heat transfer tube 11 is damaged only by the above-described configuration. Therefore, first, a configuration for searching which heat transfer tube 11 is damaged among the multiple heat transfer tubes 11 in the steam generator 10 will be described.

図2〜図4に示す蒸気発生器10内の多数本の伝熱管11におけるそれぞれの外管12と内管13の隙間14へHeガス、または第2検出ガスとしてのHe3ガス(後述)を供給するガス供給ライン20は、図5に示すように、Heガスのガスボンベ21、He3ガスのガスボンベ22にそれぞれ切換弁23、24を介して連通された第1ヘッダ25に接続されて、それぞれに流量調整弁26Aを備えた複数本の第1ガス供給管26と、それぞれの第1ガス供給管26に連通された第2ヘッダ27に接続されて、それぞれに流量調整弁28Aを備えた複数本の第2ガス供給管28と、それぞれの第2ガス供給管28に連通された第3ヘッダ29に接続されて、それぞれに流量調整弁30Aを備えた複数本の第3ガス供給管30と、以下同様に、図示しないが、第(n−1)ガス供給管に連通された第n(n:自然数)ヘッダに接続されて、それぞれに流量調整弁を備えた複数本の第nガス供給管と、伝熱管11の外管12と内管13の隙間14に接続された端末ガス供給管31とを有して構成される。このように、第1ガス供給管26、第2ガス供給管28、第3ガス供給管30、…第nガス供給管、…端末ガス供給管31は、ツリー構造に構成されている。   Supply He gas or He3 gas (described later) as the second detection gas to the gaps 14 between the outer tube 12 and the inner tube 13 in the multiple heat transfer tubes 11 in the steam generator 10 shown in FIGS. As shown in FIG. 5, the gas supply line 20 is connected to a first header 25 communicated with a gas cylinder 21 of He gas and a gas cylinder 22 of He3 gas via switching valves 23 and 24, respectively. A plurality of first gas supply pipes 26 provided with regulating valves 26A and a plurality of second headers 27 connected to the respective first gas supply pipes 26, each having a plurality of flow regulating valves 28A. A plurality of third gas supply pipes 30 connected to the second gas supply pipes 28 and third headers 29 communicated with the respective second gas supply pipes 28 and each having a flow rate adjusting valve 30A, and the following. As well Although not shown, a plurality of nth gas supply pipes connected to an nth (n: natural number) header communicated with the (n-1) th gas supply pipe, each having a flow rate adjusting valve, and a heat transfer pipe 11 and the terminal gas supply pipe 31 connected to the gap 14 between the outer pipe 12 and the inner pipe 13. Thus, the 1st gas supply pipe 26, the 2nd gas supply pipe 28, the 3rd gas supply pipe 30, ... nth gas supply pipe, ... terminal gas supply pipe 31 is constituted by tree structure.

前記第1ガス供給管26は第1番目のガス供給管であり、蒸気発生器10内の多数本の伝熱管11を複数の第1番目の群毎にまとめてHeガスまたはHe3ガスを供給する。即ち、図6(A)の蒸気発生器10における全ての伝熱管11を複数(例えば4つ)の第1番目の群A1〜A4に区画したとき、複数本(例えば4本)の第1ガス供給管26のそれぞれは、これらの各群A1〜A4に属する伝熱管11の隙間14へHeガスまたはHe3ガスを供給する。   The first gas supply pipe 26 is a first gas supply pipe, and a plurality of heat transfer pipes 11 in the steam generator 10 are grouped into a plurality of first groups to supply He gas or He3 gas. . That is, when all the heat transfer tubes 11 in the steam generator 10 of FIG. 6A are partitioned into a plurality of (for example, four) first groups A1 to A4, a plurality of (for example, four) first gases. Each of the supply pipes 26 supplies He gas or He3 gas to the gap 14 of the heat transfer pipe 11 belonging to each of these groups A1 to A4.

図5に示す前記第2ガス供給管28は第2番目のガス供給管であり、第1番目の各群A1〜A4における多数本の伝熱管11を複数の第2番目の群毎にまとめてHeガスまたはHe3ガスを供給する。即ち、図6(A)の第1番目の各群A1〜A4における例えば群A1の伝熱管11を複数(例えば4つ)の第2番目の群B1〜B4に区画したとき、複数本(例えば4本)の第2ガス供給管28のそれぞれは、これらの各群B1〜B4に属する伝熱管11の隙間14へHeガスまたはHe3ガスを供給する。第1番目の他の群A2〜A4のそれぞれに属する伝熱管11についても同様に、複数(例えば4つ)の第2番目の群B5〜B8、B9〜B12、B13〜B16(共に不図示)に区画し、複数本の第2ガス供給管28のそれぞれは、これらの各群B5〜B16のそれぞれに属する伝熱管11の隙間14へHeガスまたはHe3ガスを供給する。   The second gas supply pipe 28 shown in FIG. 5 is a second gas supply pipe, and the multiple heat transfer tubes 11 in the first groups A1 to A4 are grouped into a plurality of second groups. He gas or He3 gas is supplied. That is, when the heat transfer tubes 11 of, for example, the group A1 in each of the first groups A1 to A4 in FIG. 6A are divided into a plurality of (for example, four) second groups B1 to B4, a plurality (for example, Each of the four second gas supply pipes 28 supplies He gas or He3 gas to the gap 14 of the heat transfer pipe 11 belonging to each of the groups B1 to B4. Similarly, the plurality of (for example, four) second groups B5 to B8, B9 to B12, and B13 to B16 (both not shown) also belong to each of the first other groups A2 to A4. Each of the plurality of second gas supply pipes 28 supplies He gas or He3 gas to the gap 14 of the heat transfer pipe 11 belonging to each of these groups B5 to B16.

図5に示す前記第3ガス供給管30は第3番目のガス供給管であり、第2番目の各群B1〜B16における多数本の伝熱管11を複数の第3番目の群毎にまとめてHeガスまたはHe3ガスを供給する。即ち、図6(B)の第2番目の各群B1〜B16における例えば群B1の伝熱管11を複数(例えば2つ)の第3番目の群C1、C2に区画したとき、複数本(例えば2本)の第3ガス供給管30のそれぞれは、これらの各群C1、C2に属する伝熱管11へHeガスまたはHe3ガスを供給する。第2番目の他の群B2〜B16のそれぞれに属する伝熱管11についても同様に、複数(例えば2つ)の第3番目の群C3〜C32(不図示)に区画し、複数本の第3ガス供給管30のそれぞれは、これらの各群C3〜C32のそれぞれに属する伝熱管11へHeガスまたはHe3ガスを供給する。   The third gas supply pipe 30 shown in FIG. 5 is a third gas supply pipe, and the multiple heat transfer tubes 11 in the second groups B1 to B16 are grouped into a plurality of third groups. He gas or He3 gas is supplied. That is, when the heat transfer tubes 11 of, for example, the group B1 in the second groups B1 to B16 of FIG. 6B are divided into a plurality of (for example, two) third groups C1 and C2, a plurality (for example, Each of the two third gas supply pipes 30 supplies He gas or He3 gas to the heat transfer pipes 11 belonging to the groups C1 and C2. Similarly, the heat transfer tubes 11 belonging to each of the second other groups B2 to B16 are divided into a plurality of (for example, two) third groups C3 to C32 (not shown), and a plurality of third groups. Each of the gas supply pipes 30 supplies He gas or He3 gas to the heat transfer pipes 11 belonging to each of these groups C3 to C32.

図示しない第nガス供給管は第n番目のガス供給管であり、第(n−1)の番目の各群における多数本の伝熱管11を複数の第n番目の群毎にまとめてHeガスまたはHe3ガスを供給する。   An n-th gas supply pipe (not shown) is an n-th gas supply pipe, and a large number of heat transfer tubes 11 in each of the (n−1) -th groups are combined into a plurality of n-th groups to form He gas. Alternatively, He3 gas is supplied.

本実施の形態において、破損した伝熱管11がどれであるかを探索する際には、図5に示すように、ツリー構造に構成された上述の第1ガス供給管26、第2ガス供給管28、第3ガス供給管30、…第nガス供給管などのそれぞれの流量調整弁26A、28A、30Aなどを、ガス漏出第1検出器16及びガス漏出第2検出器18からの信号に連動して制御装置32が遠隔操作する。   In the present embodiment, when searching for which heat transfer tube 11 is damaged, as shown in FIG. 5, the first gas supply tube 26 and the second gas supply tube described above configured in a tree structure are used. 28, the third gas supply pipe 30,... The nth gas supply pipe, etc., are connected to the signals from the gas leak first detector 16 and the gas leak second detector 18, respectively. Then, the control device 32 is remotely operated.

つまり、制御装置32は、まず、高速増殖炉の運転中と同様に、切換弁23を開操作し、切換弁24を閉操作して、第1ガス供給管26、第2ガス供給管28及び第3ガス供給管30等を介し、第1番目の全ての群A1〜A4に属する伝熱管11の外管12と内管13の隙間14へガスボンベ21内のHeガスを供給する。   That is, the control device 32 first opens the switching valve 23 and closes the switching valve 24 in the same manner as during the operation of the fast breeder reactor, and the first gas supply pipe 26, the second gas supply pipe 28, and the like. The He gas in the gas cylinder 21 is supplied to the gaps 14 between the outer tube 12 and the inner tube 13 of the heat transfer tubes 11 belonging to all the first groups A1 to A4 through the third gas supply tube 30 and the like.

次に制御装置32は、第1番目の群A1〜A4のうちで、ガス漏出第1検出器16またはガス漏出第2検出器18により漏出を検出した第1番目の群(例えば図6(A)の群A1)に連なる下位の第2番目の群(例えば図6(B)の群B1〜B4)へHeガスを供給し、これらの第2番目の群B1〜B4のうちで、ガス漏出第1検出器16またはガス漏出第2検出器18により漏出を検出した群(例えば群B1)に連なる下位の第3番目の群(例えば図6(C)の群C1及びC2)へHeガスを供給し、これを繰り返すことで破損してHeガスが漏出した伝熱管11を探索する。   Next, in the first group A1 to A4, the control device 32 detects the first group in which leakage is detected by the gas leakage first detector 16 or the gas leakage second detector 18 (for example, FIG. ) To the second lower group (for example, the groups B1 to B4 in FIG. 6B) connected to the group A1), and gas leakage from these second groups B1 to B4. He gas is supplied to the lower third group (for example, groups C1 and C2 in FIG. 6C) connected to the group (for example, group B1) in which leakage is detected by the first detector 16 or the gas leakage second detector 18. The heat transfer tube 11 in which the He gas is leaked due to supply and repeated is searched for.

具体的には、全ての流量調整弁26が開操作されて第1番目の群A1〜A4の全ての伝熱管11の隙間14へHeガスが供給されているときに、ガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出した場合、制御装置32は、流量調整弁26Aのいずれか一つを順次開操作して、第1番目の群A1〜A4のうちいずれか一つの群の伝熱管11の隙間14へHeガスを供給し、いずれの群の伝熱管11へHeガスを供給しているときにガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出したかを判定する。   Specifically, when all the flow rate adjustment valves 26 are opened and the He gas is supplied to the gaps 14 of all the heat transfer tubes 11 of the first group A1 to A4, the gas leakage first detector. 16 or when the gas leakage second detector 18 detects the leakage of He gas, the control device 32 sequentially opens any one of the flow rate adjustment valves 26A to select one of the first groups A1 to A4. Gas leakage first detector 16 or gas leakage second detector when He gas is supplied to the gap 14 between any one group of heat transfer tubes 11 and He gas is supplied to any group of heat transfer tubes 11 It is determined whether 18 has detected a leak of He gas.

仮に、群A1の伝熱管11の隙間14へHeガスを供給しているときにガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出したと判定したとき、制御装置32は次に、第2番目の群B1〜B16のうち、第1番目の群A1に連なる下位の群B1〜B4に対応する流量調整弁28Aのいずれか一つを順次開操作して、これらの第2番目の群B1〜B4のいずれか一つの群の伝熱管11の隙間14へHeガスを供給する。そして、制御装置32は、群B1〜B4のいずれの群の伝熱管11へHeガスを供給しているときにガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出したかを判定する。   If it is determined that the gas leakage first detector 16 or the gas leakage second detector 18 has detected the leakage of He gas when He gas is being supplied to the gap 14 of the heat transfer tube 11 of the group A1, the control is performed. Next, the device 32 sequentially opens any one of the flow rate regulating valves 28A corresponding to the lower groups B1 to B4 connected to the first group A1 among the second groups B1 to B16, He gas is supplied to the gap 14 between the heat transfer tubes 11 of any one of the second groups B1 to B4. And when the control apparatus 32 is supplying He gas to the heat exchanger tube 11 of any group of group B1-B4, the gas leak 1st detector 16 or the gas leak 2nd detector 18 will leak He gas. Determine if it was detected.

仮に、群B1の伝熱管11の隙間14へHeガスを供給しているときにガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出したと判定したとき、次に制御装置32は、第3番目の群C1〜C32のうち、第2番目の群B1に連なる下位の群C1、C2に対応する流量調整弁30Aのいずれか一つを順次開操作して、これらの第3番目の群C1、C2のいずれか一つの群の伝熱管11の隙間14へHeガスを供給する。そして、制御装置32は、群C1、C2のいずれの群の伝熱管11へHeガスを供給しているときにガス漏出第1検出器16またはガス漏出第2検出器18がHeガスの漏出を検出したかを判定する。   If it is determined that the gas leak first detector 16 or the gas leak second detector 18 has detected the He gas leak when the He gas is being supplied to the gap 14 of the heat transfer tube 11 of the group B1, The control device 32 sequentially opens any one of the flow rate regulating valves 30A corresponding to the lower groups C1 and C2 connected to the second group B1 among the third groups C1 to C32, He gas is supplied to the gap 14 between the heat transfer tubes 11 of any one of the third groups C1 and C2. And the control apparatus 32 is the gas leak 1st detector 16 or the gas leak 2nd detector 18 when He gas is supplied to the heat exchanger tube 11 of any group of the groups C1 and C2. Determine if it was detected.

上述の操作を繰り返すことにより、制御装置32は、外管12または内管13が破損してHeガスが漏出した伝熱管11を絞り込んで探索する。このとき、破損した伝熱管が同時に複数本存在する場合にも、絞り込みのルートを複数実行することで、複数本の破損伝熱管11を探索することが可能となる。   By repeating the above operation, the control device 32 searches for the heat transfer tube 11 in which the outer tube 12 or the inner tube 13 is broken and the He gas leaks out. At this time, even when there are a plurality of damaged heat transfer tubes at the same time, it is possible to search for a plurality of damaged heat transfer tubes 11 by executing a plurality of narrowing routes.

上述のように破損してHeガスが漏出した伝熱管11を探索した後に、この破損した伝熱管11の破損個所を特定する構成について説明する。   After searching for the heat transfer tube 11 that has been damaged as described above and the He gas has leaked out, a configuration for identifying the damaged portion of the damaged heat transfer tube 11 will be described.

図1〜図3及び図7に示すように、この構成では、破損したまたは破損の可能性が高い伝熱管11の破損個所を特定するために、蒸気発生器10内の多数本の伝熱管11を挟んで、中性子発生装置33と中性子検出イメージセンサ34とが対向して配置されると共に、図5の切換弁24が開操作され、切換弁23が閉操作されて、ガスボンベ22内のHe3ガスが、第1ガス供給管26、第2ガス供給管28及び第3ガス供給管30などを経て、蒸気発生器10の多数本の伝熱管11における外管12と内管13の隙間14内へ供給される。   As shown in FIG. 1 to FIG. 3 and FIG. 7, in this configuration, a plurality of heat transfer tubes 11 in the steam generator 10 are specified in order to identify a damaged portion of the heat transfer tube 11 that is damaged or highly likely to be damaged. The neutron generator 33 and the neutron detection image sensor 34 are arranged to face each other, the switching valve 24 in FIG. 5 is opened, the switching valve 23 is closed, and the He 3 gas in the gas cylinder 22 is opened. However, the gas passes through the first gas supply pipe 26, the second gas supply pipe 28, the third gas supply pipe 30, and the like into the gap 14 between the outer pipe 12 and the inner pipe 13 in the multiple heat transfer pipes 11 of the steam generator 10. Supplied.

前記中性子発生装置33は中性子を放出する。また、He3はHeの同位体であり、中性子を吸収し、且つβ線を放出する特性を有する。中性子発生装置33から放出された中性子は、伝熱管11の隙間14を流れ破損箇所から漏出して泡となったHe3ガスにより吸収される。前記中性子検出イメージセンサ34は、伝熱管11の隙間14を流れるHe3ガスと漏出して泡となったHe3ガスにより吸収された中性子の影を、液体金属ナトリウムNaを透過した中性子と共に2次元画像として検出する。   The neutron generator 33 emits neutrons. He3 is an isotope of He and has characteristics of absorbing neutrons and emitting β rays. Neutrons emitted from the neutron generator 33 are absorbed by the He3 gas that has flowed through the gap 14 of the heat transfer tube 11 and leaked from the damaged portion into bubbles. The neutron detection image sensor 34 produces a two-dimensional image of the shadow of neutrons absorbed by the He3 gas flowing through the gap 14 of the heat transfer tube 11 and the He3 gas leaked into bubbles together with neutrons that have passed through the liquid metal sodium Na. To detect.

通常、Heは中性子に対して吸収係数がほとんどゼロであるが、He3は、熱中性子に対する吸収断面積が1×10バーンであり、中性子を多量に吸収する。これに対し、液体金属ナトリウムNaは熱中性子に対する吸収断面積が3バーン程度であり、中性子の吸収が少なく、中性子は液体金属ナトリウムNaを透過する。従って、伝熱管11の外管12と内管13との隙間14にHe3ガスを流すことで、その流れた部分はHe3ガスが中性子を吸収して影となり、伝熱管11の破損箇所から漏出して泡となったHe3ガスも、中性子を吸収して影となって中性子検出イメージセンサ34に検出される。 Normally, He has an absorption coefficient almost zero for neutrons, but He3 has an absorption cross section of 1 × 10 4 burns for thermal neutrons and absorbs a large amount of neutrons. On the other hand, liquid metal sodium Na has an absorption cross section of about 3 burns with respect to thermal neutrons, has little neutron absorption, and neutrons penetrate liquid metal sodium Na. Therefore, by flowing He3 gas through the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11, the flowed portion of He3 gas absorbs neutrons and becomes a shadow, and leaks from the damaged portion of the heat transfer tube 11. The He3 gas that has become bubbles is also detected by the neutron detection image sensor 34 as a shadow by absorbing neutrons.

中性子検出イメージセンサ34の実際の2次元画像中には、図8(A)に示すように、中性子を吸収する伝熱管11等の構造物の影も同時に撮影されてしまう。そこで、中性子検出イメージセンサ34からの2次元画像を取り込む制御装置32は、伝熱管11の外管12と内管13の隙間14にHe3ガスを流す前に得られた中性子検出イメージセンサ34による2次元画像(図8(B))を基準画像とし、伝熱管11の外管12と内管13の隙間14にHe3ガスを流したときに得られた中性子検出イメージセンサ34による2次元画像(図8(A))に対して上記基準画像との差分処理を行い、He3ガスを流したときの変化のみを表示した画像(図8(C))を得る。   In the actual two-dimensional image of the neutron detection image sensor 34, as shown in FIG. 8A, the shadow of the structure such as the heat transfer tube 11 that absorbs neutrons is also photographed at the same time. Therefore, the control device 32 that captures a two-dimensional image from the neutron detection image sensor 34 uses the neutron detection image sensor 34 obtained before flowing the He3 gas into the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11. A two-dimensional image (FIG. 8B) obtained by a neutron detection image sensor 34 obtained when He3 gas is allowed to flow through the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11 with the two-dimensional image (FIG. 8B) as a reference image. 8 (A)) is subjected to difference processing with the reference image to obtain an image (FIG. 8C) displaying only changes when He3 gas is flowed.

この図8(C)には、図8(B)に表れた伝熱管11の影35が消去され、伝熱管11の隙間14内を流れるHe3ガスの影36と、伝熱管11の破損箇所から泡となって漏出したHe3ガスの影37のみが表示されている。このHe3ガスの泡の影37の位置、大きさ、流れ方向などから、伝熱管11の破損箇所の位置、寸法、性状などを検出することが可能となる。   In FIG. 8C, the shadow 35 of the heat transfer tube 11 shown in FIG. 8B is eliminated, and the shadow 36 of the He3 gas flowing in the gap 14 of the heat transfer tube 11 and the damaged portion of the heat transfer tube 11 are removed. Only the shadow 37 of He3 gas leaked as a bubble is displayed. From the position, size, flow direction, and the like of the He3 gas bubble shadow 37, it is possible to detect the position, size, property, and the like of the damaged portion of the heat transfer tube 11.

ここで、図1〜図3及び図7に示す前記中性子検出イメージセンサ34は、高感度で撮影時間が短い中性子検出用イメージインテンシファイアが好ましい。この中性子検出イメージセンサ34の撮影範囲は一般に蒸気発生器10の側面視領域よりも小さいため、蒸気発生器10内の伝熱管11における破損個所を検出するためには、中性子発生装置33と中性子検出イメージセンサ34とを対にした状態で移動させる必要があり、このために駆動装置38が設けられている。   Here, the neutron detection image sensor 34 shown in FIGS. 1 to 3 and 7 is preferably an image intensifier for neutron detection with high sensitivity and short imaging time. Since the imaging range of the neutron detection image sensor 34 is generally smaller than the side view region of the steam generator 10, the neutron generator 33 and the neutron detection are used in order to detect a damaged portion in the heat transfer tube 11 in the steam generator 10. It is necessary to move the image sensor 34 in a paired state, and a drive device 38 is provided for this purpose.

尚、伝熱管11の破損個所を検出する際には、液体金属ナトリウムNa中に漏出したHe3ガスの泡が鉛直上方へ流れるように、液体金属ナトリウムNaの流速を高速増殖炉の通常運転時よりも遅くする。更に、伝熱管11の内管13内へ漏出したHe3ガスを効率良く検出するために、中性子を吸収する水または蒸気を内管13内から除去して、この内管13内を中性子が透過しやすくしておく。   When detecting the damaged part of the heat transfer tube 11, the flow rate of the liquid metal sodium Na is made higher than that during normal operation of the fast breeder reactor so that the bubbles of He3 gas leaked into the liquid metal sodium Na flow vertically upward. Also slow down. Further, in order to efficiently detect the He3 gas leaked into the inner tube 13 of the heat transfer tube 11, water or steam that absorbs neutrons is removed from the inner tube 13, and neutrons pass through the inner tube 13. Keep it easy.

前記駆動装置38は、特に図7に示すように、蒸気発生器10の底部周囲に設けられた回転可能なターンテーブル39と、このターンテーブル39に立設された複数本、例えば4本の支柱40と、これらの支柱40に昇降可能に設けられた昇降スライダ41と、一対の昇降スライダ41間に架け渡されたレール42と、各レール42に対し水平方向に移動可能なスライダ43とを有して構成され、スライダ43の一方に中性子発生装置33が、他方に中性子検出イメージセンサ34がそれぞれ設置される。中性子発生装置33及び中性子検出イメージセンサ34は、スライダ43によって蒸気発生器10の水平方向に、昇降スライダ41によって蒸気発生器10の鉛直方向に、ターンテーブル39によって蒸気発生器10の水平断面における回転方向に、それぞれ移動可能に設けられ、蒸気発生器10における伝熱管11の破損箇所に対応した位置に接近して位置付けられる。   As shown in FIG. 7 in particular, the drive device 38 includes a rotatable turntable 39 provided around the bottom of the steam generator 10 and a plurality of, for example, four support columns provided upright on the turntable 39. 40, an elevating slider 41 provided on these columns 40 so as to be elevable, a rail 42 spanned between the pair of elevating sliders 41, and a slider 43 movable in the horizontal direction with respect to each rail 42. The neutron generator 33 is installed on one side of the slider 43 and the neutron detection image sensor 34 is installed on the other side. The neutron generator 33 and the neutron detection image sensor 34 are rotated in the horizontal direction of the steam generator 10 by the slider 43, in the vertical direction of the steam generator 10 by the elevating slider 41, and rotated in the horizontal section of the steam generator 10 by the turntable 39. Each of the steam generators 10 is provided so as to be movable, and is positioned close to a position corresponding to the damaged portion of the heat transfer tube 11 in the steam generator 10.

前記中性子発生装置33及び中性子検出イメージセンサ34は、制御装置32によって、中性子検出イメージセンサ34により検出された2次元画像による画像判定に連動して移動するよう制御される。つまり、蒸気発生器10の伝熱管11から漏出したHe3ガスの泡は、蒸気発生器10の上部へ向かって上昇するため、制御装置32は、中性子発生装置33及び中性子検出イメージセンサ34を、昇降スライダ41の動作によって蒸気発生器10の例えば最上位置に位置付ける。次に制御装置32は、スライダ43、ターンテーブル39を動作させて、中性子発生装置33及び中性子検出イメージセンサ34を水平方向に移動させ、蒸気発生器10の水平断面において回転させて、He3ガスの泡を検出する。更に、制御装置32は、その位置から昇降スライダ41を動作させて、中性子発生装置33及び中性子検出イメージセンサ34を鉛直下方へ移動させ、He3ガスの泡の発生箇所を検出して、伝熱管11の破損個所を特定する。   The neutron generator 33 and the neutron detection image sensor 34 are controlled by the control device 32 so as to move in conjunction with image determination based on the two-dimensional image detected by the neutron detection image sensor 34. That is, since the bubble of He3 gas leaked from the heat transfer tube 11 of the steam generator 10 rises toward the upper part of the steam generator 10, the controller 32 moves the neutron generator 33 and the neutron detection image sensor 34 up and down. The operation of the slider 41 positions the steam generator 10 at, for example, the uppermost position. Next, the control device 32 operates the slider 43 and the turntable 39 to move the neutron generator 33 and the neutron detection image sensor 34 in the horizontal direction, and rotate them in the horizontal section of the steam generator 10, so that the He3 gas Detect bubbles. Further, the control device 32 operates the lift slider 41 from the position to move the neutron generator 33 and the neutron detection image sensor 34 vertically downward, detect the generation location of the He3 gas bubble, and the heat transfer tube 11. Identify the damaged part.

以上のように構成されたことから、本実施の形態によれば次の効果(1)〜(4)を奏する。   Since it is configured as described above, the following effects (1) to (4) are achieved according to the present embodiment.

(1)蒸気発生器10における伝熱管11の外管12と内管13の隙間14を流れるHeガスが伝熱管11の破損個所から漏出したことをガス漏出第1検出器16、ガス漏出第2検出器18が検出することで、伝熱管11の破損の有無を確認し、また中性子発生装置33からの中性子が、外管12と内管13の隙間14を流れて破損個所から漏出したHe3ガスにより吸収され、そのときの中性子の影を中性子検出イメージセンサ34が検出することで、伝熱管11の破損個所を特定する。これらのことから、伝熱管11の破損の有無及び破損個所を高精度且つ短時間に検出できる。   (1) In the steam generator 10, it is detected that the He gas flowing through the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11 has leaked from the damaged portion of the heat transfer tube 11. The detector 18 detects whether or not the heat transfer tube 11 is damaged, and the neutron from the neutron generator 33 flows through the gap 14 between the outer tube 12 and the inner tube 13 and leaks from the damaged portion. When the neutron detection image sensor 34 detects the shadow of the neutron at that time, the damaged portion of the heat transfer tube 11 is specified. From these things, the presence or absence and the damaged part of the heat exchanger tube 11 can be detected with high accuracy and in a short time.

(2)蒸気発生器10における多数本の伝熱管11を複数の第1番目の群A1〜A4毎にまとめてHeガスを供給し、第1番目の各郡A1〜A4における多数本の伝熱管11を複数の第2番目の群B1〜B16毎にまとめてHeガスを供給し、以下同様に、第(n−1)番目の各群における多数本の伝熱管11を複数の第n番目の群毎にまとめてHeガスを供給し、漏出を確認した群(例えば群A1)に連なる下位の郡(例えば群B1〜B4)に属する伝熱管11における外管12と内管13の隙間14へHeガスを供給することで、破損してHeガスが漏出した伝熱管11を探索する。この結果、蒸気発生器10の全ての伝熱管11に対して個別に破損の有無を確認して、破損した伝熱管11を探索する場合に比べ、破損した伝熱管11の探索の効率を大幅に向上させることができる。   (2) A large number of heat transfer tubes 11 in the steam generator 10 are grouped into a plurality of first groups A1 to A4 to supply He gas, and a plurality of heat transfer tubes in the first groups A1 to A4 are supplied. 11 is grouped into a plurality of second groups B1 to B16, and He gas is supplied. Similarly, a plurality of heat transfer tubes 11 in each of the (n−1) th groups are connected to a plurality of nth groups. He gas is supplied together for each group, and the gap 14 between the outer tube 12 and the inner tube 13 in the heat transfer tube 11 belonging to the lower group (for example, the groups B1 to B4) connected to the group (for example, the group A1) where leakage is confirmed. By supplying the He gas, the heat transfer tube 11 in which the He gas leaks due to damage is searched. As a result, the efficiency of the search for the damaged heat transfer tube 11 is greatly increased as compared with the case where all the heat transfer tubes 11 of the steam generator 10 are individually checked for damage and searched for the damaged heat transfer tubes 11. Can be improved.

(3)蒸気発生器10における伝熱管11の外管12と内管13の隙間14にHe3ガスを流す前に得られた中性子検出イメージセンサ34による2次元画像を基準画像とし、伝熱管11の外管12と内管13の隙間14にHe3ガスを流したときに得られた中性子検出イメージセンサ34による2次元画像に対して前記基準画像との差分処理を行い、He3ガスを流したときの変化のみを表示可能としたので、He3による中性子の吸収を高感度に検出でき、伝熱管11の破損個所を容易に特定できる。   (3) A two-dimensional image obtained by the neutron detection image sensor 34 obtained before flowing the He3 gas through the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11 in the steam generator 10 is used as a reference image, and the heat transfer tube 11 When the He3 gas is caused to flow through the gap 14 between the outer tube 12 and the inner tube 13, a difference process with the reference image is performed on the two-dimensional image obtained by the neutron detection image sensor 34 and the He3 gas is caused to flow. Since only the change can be displayed, the absorption of neutrons by He3 can be detected with high sensitivity, and the damaged portion of the heat transfer tube 11 can be easily identified.

(4)ターンテーブル39、昇降スライダ41及びスライダ43を備える駆動装置38が、制御装置32による制御によって、中性子検出イメージセンサ34により検出された2次元画像による画像判定に連動して、中性子発生装置33及び中性子検出イメージセンサ34を移動させる。このため、この駆動装置38によって、He3ガスの泡の発生箇所を追跡することができる。更に、中性子検出イメージセンサ34を伝熱管11の破損個所に接近させ、この中性子検出イメージセンサ34により破損箇所を拡大して撮影できる。これらのことから、伝熱管11の破損個所を効率良く特定することができる。   (4) The driving device 38 including the turntable 39, the lift slider 41, and the slider 43 is controlled by the control device 32, and in conjunction with image determination based on the two-dimensional image detected by the neutron detection image sensor 34, the neutron generator 33 and the neutron detection image sensor 34 are moved. For this reason, this drive device 38 can track the location where the bubbles of He3 gas are generated. Further, the neutron detection image sensor 34 can be brought close to the damaged portion of the heat transfer tube 11, and the damaged portion can be enlarged and photographed by the neutron detection image sensor 34. From these things, the broken part of the heat exchanger tube 11 can be pinpointed efficiently.

[B]第2の実施の形態(図9、図10)
図9は、本発明に係る熱交換器の伝熱管破損検出装置における第2の実施の形態が適用された高速増殖炉の蒸気発生装置における伝熱管破損検出装置のガス漏出検出器の一例を示し、(A)がガス漏出第1検出器の構成図、(B)がガス漏出第2検出器の構成図である。図10は、本発明に係る熱交換器の伝熱管破損装置における第2の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置のガス漏出検出器の他の例を示し、(A)がガス漏出第1検出器の構成図、(B)がガス漏出第2検出器の構成図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 9 and 10)
FIG. 9 shows an example of a gas leakage detector of the heat transfer tube breakage detection device in the steam generator of the fast breeder reactor to which the second embodiment of the heat transfer tube breakage detection device of the heat exchanger according to the present invention is applied. (A) is a block diagram of a gas leak 1st detector, (B) is a block diagram of a gas leak 2nd detector. FIG. 10 shows another example of the gas leakage detector of the heat transfer tube breakage detection device in the steam generator of the fast breeder reactor to which the second embodiment of the heat transfer tube breakage device of the heat exchanger according to the present invention is applied. (A) is a block diagram of a gas leak 1st detector, (B) is a block diagram of a gas leak 2nd detector. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態は、高速増殖炉の運転中に蒸気発生器10の伝熱管11における外管12と内管13の隙間14へHeガスを流し、ガス漏出第1検出器16A及びガス漏出第2検出器18A、またはガス漏出第1検出器16B及びガス漏出第2検出器18Bを用いて伝熱管11の破損が確認され、高速増殖炉が停止された後、伝熱管11の隙間14へHe3ガスを流し、ガス漏出第1検出器16A及びガス漏出第2検出器18A、またはガス漏出第1検出器16B及びガス漏出第2検出器18Bを用いて、どの伝熱管11が破損したかを探索するものである。ここで、ガス漏出第1検出器16A及びガス漏出第2検出器18Aが、Heの濃度検出部(不図示)の他に放射線検出部45(図9)を有し、ガス漏出第1検出器16B及びガス漏出第2検出器18Bが、Heの濃度検出部(不図示)の他に、中性子源46及び中性子検出器47(図10)を有して構成されている。   In the present embodiment, He gas is caused to flow through the gap 14 between the outer tube 12 and the inner tube 13 in the heat transfer tube 11 of the steam generator 10 during the operation of the fast breeder reactor, and the gas leakage first detector 16A and the gas leakage second After the breakage of the heat transfer tube 11 is confirmed using the detector 18A, or the gas leak first detector 16B and the gas leak second detector 18B, and the fast breeder reactor is stopped, the He3 gas enters the gap 14 of the heat transfer tube 11. And using the gas leak first detector 16A and the gas leak second detector 18A, or the gas leak first detector 16B and the gas leak second detector 18B, search for which heat transfer tube 11 is damaged. Is. Here, the gas leak first detector 16A and the gas leak second detector 18A have the radiation detector 45 (FIG. 9) in addition to the He concentration detector (not shown), and the gas leak first detector. 16B and the gas leakage second detector 18B include a neutron source 46 and a neutron detector 47 (FIG. 10) in addition to a He concentration detector (not shown).

HeガスからHe3ガスへの切換は、図5に示す切換弁24を開操作し、切換弁23を閉操作することで、ガスボンベ22内のHe3ガスを第1ガス供給管26、第2ガス供給管28、第3ガス供給管30などを経て蒸気発生器10の多数本の伝熱管11における外管12と内管13の隙間14へ供給する。   To switch from He gas to He3 gas, the switching valve 24 shown in FIG. 5 is opened and the switching valve 23 is closed so that the He3 gas in the gas cylinder 22 is supplied to the first gas supply pipe 26 and the second gas supply. The gas is supplied to the gap 14 between the outer pipe 12 and the inner pipe 13 in the multiple heat transfer pipes 11 of the steam generator 10 through the pipe 28, the third gas supply pipe 30, and the like.

図1及び図9に示すように、蒸気発生器10における液体金属ナトリウムNaの流出管15に設けられたガス漏出第1検出器16Aは、伝熱管11の外管12の破損個所から液体金属ナトリウムNa中に漏出したHe3ガスが放出するβ線を検出する前記放射線検出部45を有する。また、蒸気発生器10において蒸気Wが流出する流出管17に設けられたガス漏出第2検出器18Aは、伝熱管11の内管13の破損個所から蒸気W中に漏出したHe3ガスが放出するβ線を検出する前記放射線検出部45を有する。これらの放射線検出部45がβ線を検出することで、液体金属ナトリウムNaまたは蒸気W中に漏出したHe3の濃度が検出される。   As shown in FIGS. 1 and 9, the first gas leakage detector 16 </ b> A provided in the outflow pipe 15 of the liquid metal sodium Na in the steam generator 10 is liquid metal sodium from the damaged portion of the outer pipe 12 of the heat transfer pipe 11. The radiation detection unit 45 detects β rays emitted by He3 gas leaked into Na. Further, the gas leakage second detector 18A provided in the outflow pipe 17 from which the steam W flows out in the steam generator 10 releases He3 gas leaked into the steam W from the damaged portion of the inner pipe 13 of the heat transfer pipe 11. The radiation detection unit 45 that detects β rays is included. These radiation detection units 45 detect β rays to detect the concentration of He3 leaked into the liquid metal sodium Na or the vapor W.

また、他の態様としては、図1及び図10に示すように、蒸気発生器10における液体金属ナトリウムNaの流出管15に設けられたガス漏出第1検出器16Bは、中性子源46及び中性子検出器47を備え、伝熱管11の外管12の破損個所から液体金属ナトリウムNa中に漏出したHe3ガスによって、中性子源46から放出された中性子が吸収されたとき、残りの中性子を中性子検出器47が検出することで、液体金属ナトリウムNa中のHe3の濃度を検出する。また、蒸気発生器10における蒸気Wの流出管17に設けられたガス漏出第2検出器18Bは、中性子源46及び中性子検出器47を備え、伝熱管11の内管13の破損個所から蒸気W中に漏出したHe3ガスによって、中性子源46から放出された中性子が吸収されたとき、残りの中性子を中性子検出器47が検出することで、蒸気W中のHe3の濃度を検出する。   As another embodiment, as shown in FIGS. 1 and 10, the gas leakage first detector 16 </ b> B provided in the outflow pipe 15 of the liquid metal sodium Na in the steam generator 10 includes the neutron source 46 and the neutron detection. When the neutrons emitted from the neutron source 46 are absorbed by the He3 gas leaked into the liquid metal sodium Na from the damaged portion of the outer tube 12 of the heat transfer tube 11, the remaining neutrons are detected by the neutron detector 47. Detects the concentration of He3 in the liquid metal sodium Na. The gas leakage second detector 18B provided in the steam W outflow pipe 17 in the steam generator 10 includes a neutron source 46 and a neutron detector 47, and the steam W from the damaged portion of the inner pipe 13 of the heat transfer tube 11 is provided. When neutrons emitted from the neutron source 46 are absorbed by the He3 gas leaked into the neutron detector 47, the neutron detector 47 detects the remaining neutrons, thereby detecting the concentration of He3 in the vapor W.

従って、本実施の形態によっても、前記第1の実施の形態の効果(1)〜(4)と同様な効果を奏するほか、次の効果(5)を奏する。   Therefore, according to the present embodiment, in addition to the same effects (1) to (4) as in the first embodiment, the following effect (5) is achieved.

(5)ガス漏出第1検出器16A及びガス漏出第2検出器18Aが、He3ガスから放出されるβ線を検出してHe3の濃度を検出し、またガス漏出第1検出器16B及びガス漏出第2検出器18Bが、He3ガスが吸収する中性子に基づいてHe3の濃度を検出する。このため、本実施形態では、前記実施形態のガス漏出第1検出器16、ガス漏出第2検出器18がHeの濃度を検出する場合に比べて、He3の濃度検出の検出感度を向上させることができる。この結果、蒸気発生器10における伝熱管11のうち、ガス漏出第1検出器16A及びガス漏出第2検出器18A、またはガス漏出第1検出器16B及びガス漏出第2検出器18Bを用いて行なう破損した伝熱管11の探索を確実且つ容易に実現できる。   (5) The gas leakage first detector 16A and the gas leakage second detector 18A detect the β-rays emitted from the He3 gas to detect the concentration of He3, and the gas leakage first detector 16B and the gas leakage. The second detector 18B detects the concentration of He3 based on the neutrons absorbed by the He3 gas. For this reason, in this embodiment, compared with the case where the gas leak first detector 16 and the gas leak second detector 18 of the above embodiment detect the He concentration, the detection sensitivity of the He3 concentration detection is improved. Can do. As a result, among the heat transfer tubes 11 in the steam generator 10, the gas leakage first detector 16A and the gas leakage second detector 18A, or the gas leakage first detector 16B and the gas leakage second detector 18B are used. The search for the damaged heat transfer tube 11 can be realized reliably and easily.

[C]第3の実施の形態(図11)
図11は、本発明に係る熱交換器の伝熱管破損検出装置における第3の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置において、破損個所の概略位置を求めるための説明図であり、(A)が蒸気発生器内の伝熱管の概略管路図、(B)がHe3ガスへの切換時点とHe3の濃度検出時点のタイミングチャートである。この第3の実施の形態において、前記第1及び第2の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 11)
FIG. 11 shows an approximate position of a broken portion in the heat transfer tube breakage detecting apparatus in the steam generator of the fast breeder reactor to which the third embodiment of the heat exchanger tube breakage detecting apparatus of the heat exchanger according to the present invention is applied. (A) is a schematic conduit diagram of a heat transfer tube in the steam generator, and (B) is a timing chart at the time of switching to He3 gas and when the concentration of He3 is detected. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

この第3の実施の形態においても、蒸気発生器10(図1)におけるどの伝熱管11が破損しているかを探索する際に、伝熱管11の外管12と内管13の隙間14へHeガスに代えてHe3ガスが供給され、He3の濃度が、放射線検出部45(図9)を備えたガス漏出第1検出器16A及びガス漏出第2検出器18Aにより、または中性子源46及び中性子検出器47(図10)を備えたガス漏出第1検出器16B及びガス漏出第2検出器18Bにより、それぞれ第2の実施の形態と同様にして検出される。更に、本実施の形態では、探索された破損伝熱管11の破損箇所の概略位置を制御装置32が、He3ガスの切換時点からガス漏出第1検出器16A、16Bまたはガス漏出第2検出器18A、18BによるHe3の濃度検出時点までの時間に基づいて検出する。   Also in the third embodiment, when searching which heat transfer tube 11 in the steam generator 10 (FIG. 1) is broken, the He into the gap 14 between the outer tube 12 and the inner tube 13 of the heat transfer tube 11 is obtained. He3 gas is supplied instead of the gas, and the concentration of He3 is detected by the gas leakage first detector 16A and the gas leakage second detector 18A provided with the radiation detection unit 45 (FIG. 9), or by the neutron source 46 and the neutron detection. The gas leakage first detector 16B and the gas leakage second detector 18B provided with the detector 47 (FIG. 10) respectively detect the same as in the second embodiment. Further, in the present embodiment, the control device 32 determines the approximate position of the damaged portion of the damaged heat transfer tube 11 searched for from the first gas leakage detectors 16A and 16B or the second gas leakage detector 18A from the time of switching of the He3 gas. , 18B, based on the time until the He3 concentration detection time.

つまり、制御装置32は、図11に示すように、ガスボンベ22内のHe3ガスを第1ガス供給管16、第2ガス供給管28などを経て蒸気発生器10の多数本の伝熱管11における外管12と内管13の隙間14へ、切換弁24を瞬時に開操作し、切換弁23を瞬時に閉操作してパルス状に切り換えて流す。図11(B)の符号Eは、He3ガスがパルス状に流れたときの波形を示し、この時点をt0とする。次に制御装置32は、ガス漏出第1検出器16A、16Bまたはガス漏出第2検出器18A、18B、例えばガス漏出第1検出器16A、16Bが蒸気発生器10の液体金属ナトリウムNa中のHe3の濃度変化(後述の波形F1、F2)をそれぞれ検出した時点t1、t2を計測する。図11(B)中の符号F1は、伝熱管11の下流部Pが破損したときにガス漏出第1検出器16A、16Bにより検出されたHe3の濃度変化を示す波形である。また、符号F2は、伝熱管11の上流部Qが破損したときにガス漏出第1検出器16A、16Bにより検出されたHe3の濃度変化を示す波形である。   That is, as shown in FIG. 11, the control device 32 causes the He3 gas in the gas cylinder 22 to pass through the first gas supply pipe 16, the second gas supply pipe 28, and the like in the multiple heat transfer pipes 11 of the steam generator 10. The switching valve 24 is instantaneously opened to the gap 14 between the pipe 12 and the inner pipe 13, and the switching valve 23 is instantaneously closed to switch it in a pulsed manner. A symbol E in FIG. 11B indicates a waveform when the He3 gas flows in a pulse shape, and this time is t0. Next, the control device 32 determines whether the gas leak first detector 16A, 16B or the gas leak second detector 18A, 18B, for example, the gas leak first detector 16A, 16B is He3 in the liquid metal sodium Na of the steam generator 10. The time points t1 and t2 at which the change in density (waveforms F1 and F2 described later) are detected are measured. A symbol F1 in FIG. 11B is a waveform indicating a change in the concentration of He3 detected by the first gas leak detectors 16A and 16B when the downstream portion P of the heat transfer tube 11 is damaged. Reference symbol F2 is a waveform showing a change in the concentration of He3 detected by the first gas leak detectors 16A and 16B when the upstream portion Q of the heat transfer tube 11 is broken.

一般に、蒸気発生器10において多数本の伝熱管11の外管12と内管13の隙間14を流れるHe3ガスの流速は、蒸気発生器10内を流れる液体金属ナトリウムNaの流速よりも速いため、蒸気発生器10内の伝熱管11の下流部Pが破損した場合、He3ガスへの切換時点t0からガス漏出第1検出器16A、16BによりHe3の濃度変化が検出される時点t1までの時間T1は短時間となる。これに対し、蒸気発生器10内の伝熱管11の上流部Qが破損した場合には、He3ガスへの切換時点t0からガス漏出第1検出器16A、16BによりHe3の濃度変化が検出される時点t2までの時間T2は、漏出したHe3ガスが流速の遅い液体金属ナトリウムNaの流れに乗るため長時間となる。   In general, in the steam generator 10, the flow rate of the He 3 gas flowing through the gaps 14 between the outer tube 12 and the inner tube 13 of the multiple heat transfer tubes 11 is faster than the flow rate of the liquid metal sodium Na flowing in the steam generator 10. When the downstream portion P of the heat transfer tube 11 in the steam generator 10 is broken, the time T1 from the switching time t0 to He3 gas to the time t1 when the concentration change of He3 is detected by the gas leakage first detectors 16A and 16B. Is a short time. On the other hand, when the upstream portion Q of the heat transfer tube 11 in the steam generator 10 is broken, a change in the concentration of He3 is detected by the gas leakage first detectors 16A and 16B from the switching time t0 to the He3 gas. Time T2 until time t2 is long because the leaked He3 gas rides on the flow of liquid metal sodium Na having a low flow rate.

従って、制御装置32は、蒸気発生器10内の伝熱管11における複数の破損箇所の各位置と、各破損個所からHe3ガスが漏出したときに、He3ガスへの切換時点からガス漏出第1検出器16A、16BによるHe3の濃度変化検出時点までの時間との関係を試験等により予め測定し、校正値として保存しておく。そして、制御装置32は、He3ガスへの切換時点t0からガス漏出第1検出器16A、16BによりHe3の濃度変化が検出された時点t1、t2までの時間T1、T2を実際に求め、この時間T1、T2を予め求めた前記校正値と比較することで、He3ガスが漏出した伝熱管11の破損箇所の概略位置を検出することが可能となる。   Accordingly, the control device 32 detects the first gas leakage from the position of the plurality of breakage points in the heat transfer tube 11 in the steam generator 10 and when the He3 gas leaks from each breakage point from the time of switching to the He3 gas. The relationship with the time to detect the concentration change of He3 by the devices 16A and 16B is measured in advance by a test or the like and stored as a calibration value. Then, the control device 32 actually obtains the times T1 and T2 from the time t0 when switching to He3 gas to the time t1 and t2 when the concentration change of He3 is detected by the gas leakage first detectors 16A and 16B. By comparing T1 and T2 with the calibration values obtained in advance, it is possible to detect the approximate position of the damaged portion of the heat transfer tube 11 from which the He3 gas has leaked.

尚、本実施の形態では、ガス漏出第1検出器16A、16Bが液体金属ナトリウムNa中のHe3の濃度変化を検出する場合を述べたが、伝熱管11の外管12と内管13の隙間14を流れるHe3ガスの流速よりも遅い流速の水または蒸気W中へHe3ガスが漏出したとき、この内管13の内側を流れる水または蒸気W中のHe3の濃度変化を、ガス漏出第2検出器18A、18Bにより検出する場合についても同様である。   In the present embodiment, the case where the gas leakage first detectors 16A and 16B detect a change in the concentration of He3 in the liquid metal sodium Na has been described. However, the gap between the outer tube 12 and the inner tube 13 of the heat transfer tube 11 is described. When He3 gas leaks into water or steam W having a flow rate slower than the flow rate of He3 gas flowing through 14, the concentration change of He3 in the water or steam W flowing inside the inner pipe 13 is detected as a second gas leak. The same applies to the case of detection by the devices 18A and 18B.

従って、本実施の形態によれば、前記第1及び第2の実施の形態の効果(1)〜(5)と同様な効果を奏するほか、次の効果(6)を奏する。   Therefore, according to the present embodiment, in addition to the same effects (1) to (5) as in the first and second embodiments, the following effect (6) is achieved.

(6)He3ガスへの切換時点t0から、ガス漏出第1検出器16A、16Bまたはガス漏出第2検出器18A、18BによるHe3の濃度変化検出時点t1、t2…までの時間T1、T2、…に基づいて、蒸気発生器10内の伝熱管11における破損箇所の概略位置が検出されるので、中性子発生装置33及び中性子検出イメージセンサ34を用いて後に実施する伝熱管11の破損箇所の特定を、迅速かつ効率的に実施できる。   (6) Times T1, T2,... From the time t0 when switching to He3 gas to the time points t1, t2,..., The detection of He3 concentration change by the gas leak first detectors 16A, 16B or the gas leak second detectors 18A, 18B. Since the approximate position of the damaged portion in the heat transfer tube 11 in the steam generator 10 is detected based on the above, the damaged portion of the heat transfer tube 11 to be identified later using the neutron generator 33 and the neutron detection image sensor 34 is identified. Can be implemented quickly and efficiently.

本発明に係る熱交換器の伝熱管破損検出装置における第1の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置を示す概略構成図。The schematic block diagram which shows the heat exchanger tube breakage detection apparatus in the steam generator of the fast breeder reactor to which 1st Embodiment in the heat exchanger tube breakage detection apparatus of the heat exchanger which concerns on this invention was applied. 図1のII矢視図。II arrow line view of FIG. 図2のIII矢視図Fig. 3 arrow view of Fig. 2 図3の伝熱管(2重伝熱管)を、一部を破断して示す側面図。FIG. 4 is a side view of the heat transfer tube (double heat transfer tube) of FIG. 図2における多数本の伝熱管へ、この伝熱管の破損を検出するための検出ガスを供給するガス供給ラインを示す管路図。FIG. 3 is a pipeline diagram showing a gas supply line for supplying a detection gas for detecting breakage of the heat transfer tube to the multiple heat transfer tubes in FIG. 2. 図2における多数本の伝熱管の水平断面であり、(A)は伝熱管の第1番目の各群A1〜A4を示す説明図、(B)は伝熱管の第2番目の各群B1〜B4を示す説明図、(C)は伝熱管の第3番目の各群C1、C2を示す説明図、(D)は図6(C)の第3番目の群C1を示す説明図。It is a horizontal cross section of the multiple heat exchanger tubes in FIG. 2, (A) is explanatory drawing which shows each 1st group A1-A4 of a heat exchanger tube, (B) is 2nd each group B1 of heat exchanger tubes. Explanatory drawing which shows B4, (C) is explanatory drawing which shows each 3rd group C1, C2 of a heat exchanger tube, (D) is explanatory drawing which shows the 3rd group C1 of FIG.6 (C). 図1の伝熱管破損検出装置を示す斜視図。The perspective view which shows the heat exchanger tube breakage detection apparatus of FIG. 図1の中性子検出イメージセンサによる撮影画像を示し、(A)はHe3ガスを流したときの撮影画像図、(B)はHe3ガスを流す前の撮影画像図、(C)は(A)の画像から(B)の画像を差し引いたときの画像図。FIG. 1 shows a photographed image taken by the neutron detection image sensor of FIG. 1, (A) is a photographed image when He3 gas is flowed, (B) is a photographed image before flowing He3 gas, and (C) is a photograph of (A). The image figure when the image of (B) is subtracted from the image. 本発明に係る熱交換器の伝熱管破損検出装置における第2の実施の形態が適用された高速増殖炉の蒸気発生装置における伝熱管破損検出装置のガス漏出検出器の一例を示し、(A)はガス漏出第1検出器の構成図、(B)はガス漏出第2検出器の構成図。An example of the gas leakage detector of the heat transfer tube breakage detection device in the steam generator of the fast breeder reactor to which the second embodiment of the heat transfer tube breakage detection device of the heat exchanger according to the present invention is applied is shown in (A). Is a block diagram of a gas leak first detector, and (B) is a block diagram of a gas leak second detector. 本発明に係る熱交換器の伝熱管破損装置における第2の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置のガス漏出検出器の他の例を示し、(A)はガス漏出第1検出器の構成図、(B)はガス漏出第2検出器の構成図。The other example of the gas leak detector of the heat exchanger tube breakage detector in the steam generator of the fast breeder reactor to which the second embodiment of the heat exchanger tube breaker of the heat exchanger according to the present invention is applied is shown in (A ) Is a configuration diagram of a gas leakage first detector, and (B) is a configuration diagram of a gas leakage second detector. 本発明に係る熱交換器の伝熱管破損検出装置における第3の実施の形態が適用された高速増殖炉の蒸気発生器における伝熱管破損検出装置において、破損個所の概略位置を求めるための説明図であり、(A)は蒸気発生器内の伝熱管の概略管路図、(B)はHe3ガスへの切換時点とHe3の濃度検出時点とのタイミングチャート。Explanatory drawing for calculating | requiring the approximate position of a failure part in the heat exchanger tube breakage detection apparatus in the steam generator of a fast breeder reactor to which the third embodiment of the heat exchanger tube breakage detection apparatus of the heat exchanger according to the present invention is applied (A) is a schematic conduit diagram of a heat transfer tube in the steam generator, and (B) is a timing chart of the switching time to He3 gas and the concentration detection time of He3.

符号の説明Explanation of symbols

10 蒸気発生器(熱交換器)
11 伝熱管
12 外管
13 内管
14 隙間
16、16A、16B ガス漏出第1検出器
18、18A、18B ガス漏出第2検出器
26 第1ガス供給管
28 第2ガス供給管
30 第3ガス供給管
26A、28A、30A 流量調整弁
32 制御装置
33 中性子発生装置
34 中性子検出イメージセンサ
37 影
38 駆動装置
45 放射線検出部
46 中性子源
47 中性子検出器
Na 液体金属ナトリウム(第1流体)
W 水または蒸気(第2流体)
A1〜A4 第1番目の群
B1〜B4 第2番目の群
C1、C2 第3番目の群
t0 He3ガスへの切換時点
t1、t2 He3の濃度変化検出時点
10 Steam generator (heat exchanger)
11 Heat transfer tube 12 Outer tube 13 Inner tube 14 Gap 16, 16A, 16B Gas leakage first detector 18, 18A, 18B Gas leakage second detector 26 First gas supply tube 28 Second gas supply tube 30 Third gas supply Tubes 26A, 28A, 30A Flow rate adjusting valve 32 Control device 33 Neutron generator 34 Neutron detection image sensor 37 Shadow 38 Drive device 45 Radiation detector 46 Neutron source 47 Neutron detector Na Liquid metal sodium (first fluid)
W Water or steam (second fluid)
A1 to A4 First group B1 to B4 Second group C1 and C2 Third group t0 Switching point to He3 gas t1 and t2 He3 concentration change detection time

Claims (15)

多数本の伝熱管のそれぞれが外管と内管からなる2重伝熱管であり、前記外管の外側を流れる第1流体と、前記内管の内側を流れる第2流体との間で熱交換を行なう熱交換器であって、
前記伝熱管の破損の有無を確認するために、前記外管と前記内管の隙間を流れる第1検出ガスが、前記伝熱管の破損箇所から漏出したことを検出するガス漏出検出器と、
前記伝熱管の前記破損箇所を特定するために、前記伝熱管を挟んで対向配置された中性子発生装置と中性子検出イメージセンサとを有し、
前記中性子発生装置から放出された中性子が、前記外管と前記内管の隙間を流れて前記破損箇所から漏出した第2検出ガスにより吸収され、そのときの中性子の影を前記中性子検出イメージセンサが2次元画像として検出することを特徴とする熱交換器の伝熱管破損検出装置。
Each of the multiple heat transfer tubes is a double heat transfer tube including an outer tube and an inner tube, and heat exchange is performed between the first fluid flowing outside the outer tube and the second fluid flowing inside the inner tube. A heat exchanger for performing
A gas leakage detector for detecting that the first detection gas flowing through the gap between the outer tube and the inner tube leaks from the damaged portion of the heat transfer tube in order to confirm whether or not the heat transfer tube is damaged;
In order to identify the damaged portion of the heat transfer tube, it has a neutron generator and a neutron detection image sensor arranged to face each other across the heat transfer tube,
Neutrons emitted from the neutron generator are absorbed by the second detection gas leaked from the damaged portion through the gap between the outer tube and the inner tube, and the neutron detection image sensor detects the shadow of the neutron at that time. A heat transfer tube breakage detection device for a heat exchanger, wherein the heat transfer tube breakage detection device is detected as a two-dimensional image.
多数本の伝熱管におけるそれぞれの外管と内管の隙間へ第1または第2検出ガスを供給するガス供給ラインは、
多数本の前記伝熱管を複数の第1番目の群毎にまとめて前記第1または第2検出ガスを供給し、それぞれに流量調整弁を備えた複数の第1番目のガス供給管と、
前記第1番目の各群における多数本の前記伝熱管を複数の第2番目の群毎にまとめて前記第1または第2検出ガスを供給し、それぞれに流量調整弁を備えた複数の第2番目のガス供給管と、
以下同様に、第(n−1)番目の各群における多数本の前記伝熱管を複数の第n(n:自然数)番目の群毎にまとめて前記第1または第2検出ガスを供給し、それぞれに流量調整弁を備えた複数の第n番目のガス供給管とを有し、
このようなツリー構造の第1番目から第n番目までの前記ガス供給管の前記流量調整弁をガス漏出検出器の信号に連動させて操作して、漏出を検出した前記群に連なる前記下位の群の前記伝熱管における前記外管と前記内管の隙間へ前記第1または第2検出ガスを供給し、破損して前記第1または第2検出ガスが漏出した前記伝熱管を探索するよう構成されたことを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。
A gas supply line that supplies the first or second detection gas to the gaps between the outer tube and the inner tube in the plurality of heat transfer tubes,
A plurality of first heat supply tubes, each of which is grouped into a plurality of first groups, to supply the first or second detection gas, and a plurality of first gas supply tubes each having a flow control valve;
The plurality of heat transfer tubes in each of the first groups are grouped into a plurality of second groups to supply the first or second detection gas, and each of a plurality of second tubes each having a flow control valve. A second gas supply pipe,
Similarly, a plurality of the heat transfer tubes in each of the (n−1) th groups are grouped into a plurality of n (n: natural number) th groups to supply the first or second detection gas, A plurality of nth gas supply pipes each having a flow control valve,
By operating the flow rate adjusting valves of the first to nth gas supply pipes of such a tree structure in conjunction with the signal of the gas leak detector, the lower order connected to the group that has detected the leak The first or second detection gas is supplied to a gap between the outer tube and the inner tube in the group of heat transfer tubes, and the heat transfer tube in which the first or second detection gas leaks due to breakage is searched. The heat exchanger tube breakage detecting device for a heat exchanger according to claim 1, wherein
前記伝熱管の外管と内管の隙間に、放射線を放出する第2検出ガスが流れ、
ガス漏出検出器は、前記外管と前記内管の破損箇所から漏出した前記第2検出ガスからの放射線を検出する放射線検出部を備え、この放射線の検出により、漏出した前記第2検出ガスの濃度を検出するよう構成されたことを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。
A second detection gas that emits radiation flows in a gap between the outer tube and the inner tube of the heat transfer tube,
The gas leakage detector includes a radiation detection unit that detects radiation from the second detection gas leaked from the damaged portion of the outer tube and the inner tube, and the leakage of the second detection gas leaked by detection of the radiation. The heat exchanger tube breakage detecting device for a heat exchanger according to claim 1, wherein the device is configured to detect a concentration.
前記伝熱管の外管と内管の隙間に、中性子を吸収する第2検出ガスが流れ、
ガス漏出検出器は、中性子源と中性子検出部を備え、前記中性子源から放出された中性子が前記第2検出ガスにより吸収されたときの残りの中性子を前記中性子検出部が検出することで、漏出した前記第2検出ガスの濃度を検出するよう構成されたことを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。
A second detection gas that absorbs neutrons flows in a gap between the outer tube and the inner tube of the heat transfer tube,
The gas leakage detector includes a neutron source and a neutron detection unit, and the neutron detection unit detects a remaining neutron when the neutron emitted from the neutron source is absorbed by the second detection gas. 2. The heat exchanger tube breakage detecting device for a heat exchanger according to claim 1, wherein the second detection gas concentration is detected.
前記伝熱管の外管と内管の隙間に、第1検出ガスから第2検出ガスをパルス状に切り換えて流し、このときの切換時点からガス漏出検出器により第2検出ガスが検出される時点までの時間を、予め求めた校正値と比較することで、前記第2検出ガスが漏出した前記伝熱管の破損箇所の概略位置を求めるよう構成されたことを特徴とする請求項3または4に記載の熱交換器の伝熱管破損検出装置。 When the second detection gas flows from the first detection gas to the gap between the outer tube and the inner tube of the heat transfer tube in a pulsed manner and the second detection gas is detected by the gas leakage detector from this switching time 5 or 4, wherein the approximate position of the damaged portion of the heat transfer tube where the second detection gas has leaked is obtained by comparing the time until the calibration value obtained in advance. The heat exchanger tube breakage detection device of the described heat exchanger. 前記中性子検出イメージセンサが、高感度で撮影時間の短い中性子検出用イメージインテンシファイアであることを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。 The heat transfer tube breakage detection device for a heat exchanger according to claim 1, wherein the neutron detection image sensor is an image intensifier for neutron detection with high sensitivity and short imaging time. 前記伝熱管の外管と内管の隙間に第2検出ガスを流す前に得られた中性子検出イメージセンサによる2次元画像を基準画像とし、前記外管と前記内管の隙間に前記第2検出ガスを流したときに得られた前記中性子検出イメージセンサによる2次元画像に対して前記基準画像との差分処理を行い、前記第2検出ガスを流したときの変化のみを表示可能に構成されたことを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。 A two-dimensional image obtained by a neutron detection image sensor obtained before flowing the second detection gas through the gap between the outer tube and the inner tube of the heat transfer tube is used as a reference image, and the second detection is performed in the gap between the outer tube and the inner tube. Difference processing with the reference image is performed on the two-dimensional image obtained by the neutron detection image sensor obtained when the gas is flowed, and only changes when the second detection gas is flowed can be displayed. The heat exchanger tube breakage detecting device for a heat exchanger according to claim 1. 前記中性子発生装置と中性子検出イメージセンサは駆動装置により、熱交換器の水平方向と、前記熱交換器の鉛直方向と、前記熱交換器の水平断面における回転方向との少なくとも1方向に移動可能に設けられて、前記熱交換器の伝熱管における破損箇所に対応する位置に位置づけられるよう構成されたことを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。 The neutron generator and the neutron detection image sensor can be moved by a driving device in at least one of a horizontal direction of the heat exchanger, a vertical direction of the heat exchanger, and a rotation direction in a horizontal section of the heat exchanger. The heat exchanger tube breakage detecting device for a heat exchanger according to claim 1, wherein the heat exchanger tube breakage detecting device for a heat exchanger according to claim 1, wherein the heat exchanger tube breakage detecting device is provided at a position corresponding to a breakage point in the heat exchanger tube of the heat exchanger. 前記駆動装置は、中性子検出イメージセンサにより検出された2次元画像による画像判定に連動して中性子発生装置及び前記中性子検出イメージセンサを移動させるよう構成されたことを特徴とする請求項8に記載の熱交換器の伝熱管破損検出装置。 9. The drive device according to claim 8, wherein the drive device is configured to move the neutron generation device and the neutron detection image sensor in conjunction with image determination based on a two-dimensional image detected by a neutron detection image sensor. Heat exchanger tube breakage detector. 前記第1検出ガスがHeガスであり、第2検出ガスが、Heガスの同位体であって、放射線としてのベータ線を放出し、且つ中性子を吸収可能なHe3ガスであることを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。 The first detection gas is He gas, and the second detection gas is an isotope of He gas, and emits beta rays as radiation, and is He3 gas capable of absorbing neutrons. The heat exchanger tube breakage detection device for a heat exchanger according to claim 1. 前記熱交換器が高速増殖炉の蒸気発生器であり、第1流体が液体金属ナトリウムであり、第2流体が水であることを特徴とする請求項1に記載の熱交換器の伝熱管破損検出装置。 The heat exchanger tube of the heat exchanger according to claim 1, wherein the heat exchanger is a steam generator of a fast breeder reactor, the first fluid is liquid metal sodium, and the second fluid is water. Detection device. 多数本の伝熱管のそれぞれが外管と内管からなる2重伝熱管であり、前記外管の外側を流れる第1流体と、前記内管の内側を流れる第2流体との間で熱交換を行なう熱交換器であって、
前記外管と前記内管の隙間を流れる第1検出ガスが、前記伝熱管の破損箇所から漏出したことをガス漏出検出器が検出することで、前記伝熱管の破損の有無を確認し、
前記伝熱管に破損があった場合に、前記中性子発生装置から放出された中性子が、前記外管と前記内管の隙間を流れて前記破損箇所から漏出した第2検出ガスにより吸収され、そのときの中性子の影を、前記中性子発生装置と前記伝熱管を挟んで対向配置された中性子検出イメージセンサが2次元画像として検出することで、前記伝熱管の前記破損箇所を特定することを特徴とする熱交換器の伝熱管破損検出方法。
Each of the multiple heat transfer tubes is a double heat transfer tube including an outer tube and an inner tube, and heat exchange is performed between the first fluid flowing outside the outer tube and the second fluid flowing inside the inner tube. A heat exchanger for performing
The gas leakage detector detects that the first detection gas flowing through the gap between the outer tube and the inner tube has leaked from the damaged portion of the heat transfer tube, thereby confirming whether the heat transfer tube is damaged,
When the heat transfer tube is damaged, neutrons emitted from the neutron generator are absorbed by the second detection gas leaked from the damaged portion through the gap between the outer tube and the inner tube, The neutron shadow is detected as a two-dimensional image by a neutron detection image sensor arranged opposite to the neutron generator and the heat transfer tube to identify the damaged portion of the heat transfer tube. Heat exchanger tube breakage detection method for heat exchangers.
多数本の伝熱管におけるそれぞれの外管と内管の隙間へ第1または第2検出ガスを供給する際に、
多数本の前記伝熱管を複数の第1番目の群毎にまとめて前記第1または第2検出ガスを供給し、
漏出を確認した前記第1番目の群における多数本の前記伝熱管を複数の第2番目の群毎にまとめて前記第1または第2検出ガスを供給し、
以下同様に、漏出を確認した第(n−1)番目の群における多数本の前記伝熱管を複数の第n(n:自然数)番目の群毎にまとめて前記第1または第2検出ガスを供給し、
漏出を検出した前記群に連なる前記下位の群の前記伝熱管における前記外管と前記内管の隙間へ前記第1または第2検出ガスを供給して、破損して前記第1または第2検出ガスが漏出した前記伝熱管を探索することを特徴とする請求項12に記載の熱交換器の伝熱管破損検出方法。
When supplying the first or second detection gas to the gap between the outer tube and the inner tube of the multiple heat transfer tubes,
A plurality of the heat transfer tubes are grouped into a plurality of first groups to supply the first or second detection gas,
A plurality of the heat transfer tubes in the first group, which have been confirmed to leak, are grouped into a plurality of second groups, and the first or second detection gas is supplied,
Similarly, a plurality of the heat transfer tubes in the (n-1) th group whose leakage has been confirmed are grouped into a plurality of n (n: natural number) th groups, and the first or second detection gas is collected. Supply
The first or second detection gas is damaged by supplying the first or second detection gas to the gap between the outer tube and the inner tube in the heat transfer tube of the lower group connected to the group in which leakage has been detected. The heat transfer tube breakage detection method for a heat exchanger according to claim 12, wherein the heat transfer tube from which gas has leaked is searched.
前記第1検出ガスがHeガスであり、第2検出ガスが、Heガスの同位体であって、中性子を吸収可能なHe3ガスであることを特徴とする請求項12に記載の熱交換器の伝熱管破損検出方法。 13. The heat exchanger according to claim 12, wherein the first detection gas is He gas, and the second detection gas is He 3 gas that is an isotope of He gas and can absorb neutrons. Heat transfer tube breakage detection method. 前記熱交換器が高速増殖炉の蒸気発生器であり、第1流体が液体金属ナトリウムであり、第2流体が水であることを特徴とする請求項12に記載の熱交換器の伝熱管破損検出方法。 The heat exchanger tube breakage of the heat exchanger according to claim 12, wherein the heat exchanger is a steam generator of a fast breeder reactor, the first fluid is liquid metal sodium, and the second fluid is water. Detection method.
JP2008247143A 2008-09-26 2008-09-26 Device and method for detecting breakage of heat exchanger tube of heat exchanger Pending JP2010078459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247143A JP2010078459A (en) 2008-09-26 2008-09-26 Device and method for detecting breakage of heat exchanger tube of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247143A JP2010078459A (en) 2008-09-26 2008-09-26 Device and method for detecting breakage of heat exchanger tube of heat exchanger

Publications (1)

Publication Number Publication Date
JP2010078459A true JP2010078459A (en) 2010-04-08

Family

ID=42209082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247143A Pending JP2010078459A (en) 2008-09-26 2008-09-26 Device and method for detecting breakage of heat exchanger tube of heat exchanger

Country Status (1)

Country Link
JP (1) JP2010078459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203269A (en) * 2015-09-16 2015-12-30 东方电气(广州)重型机器有限公司 Heat exchange tube and tube plate seal-welding helium leakage-detection device
JP2016161396A (en) * 2015-03-02 2016-09-05 コニカミノルタ株式会社 Fluid detection device
CN108760184A (en) * 2018-03-29 2018-11-06 哈尔滨共阳科技咨询有限公司 A kind of pipeline quality detection device
KR102606410B1 (en) * 2023-07-28 2023-11-29 고려공업검사 주식회사 Inspection device for removal of tubular water and foreign matter in the heat exchanger tube for ECT inspection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161396A (en) * 2015-03-02 2016-09-05 コニカミノルタ株式会社 Fluid detection device
CN105203269A (en) * 2015-09-16 2015-12-30 东方电气(广州)重型机器有限公司 Heat exchange tube and tube plate seal-welding helium leakage-detection device
CN108760184A (en) * 2018-03-29 2018-11-06 哈尔滨共阳科技咨询有限公司 A kind of pipeline quality detection device
KR102606410B1 (en) * 2023-07-28 2023-11-29 고려공업검사 주식회사 Inspection device for removal of tubular water and foreign matter in the heat exchanger tube for ECT inspection

Similar Documents

Publication Publication Date Title
CN103106935B (en) Apparatus and method for detecting position of annulus spacer between concentric tubes
WO2005024406A1 (en) High speed digital radiographic inspection of piping
JP2010078459A (en) Device and method for detecting breakage of heat exchanger tube of heat exchanger
JP2008096345A (en) System for and method of monitoring leakage in nuclear facility
JP5576860B2 (en) Method and apparatus for monitoring reactor operation
JP3650063B2 (en) Heat transfer tube inspection device
EP2622362B1 (en) Nondestructive inspection method for a heat exchanger employing adaptive noise thresholding
US20220392654A1 (en) Defective fuel bundle location system
US8903034B2 (en) Fuel rod internal pressure measurement
Rao In-service inspection and structural health monitoring for safe and reliable operation of NPPs
RU2624909C1 (en) Method for detecting leaky thermal elements of assemblies of nuclear reactor with liquid metal heat carrier
Kasban et al. New trends for on-line troubleshooting in industrial problems using radioisotopes
JP4909278B2 (en) Inspection method for leaking fuel rods in fuel assemblies of boiling water reactors.
KR20130114799A (en) Foreign removal system for steam generator of nuclear power plant
Takeda et al. Inspection techniques for primary pressurized water cooler tubes in the high temperature engineering test reactor
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines
Erhard et al. Nondestructive testing and fracture mechanics
KR101553889B1 (en) Method for reliability evaluation of robot
Grover Final assembly and initial irradiation of the first advanced gas reactor fuel development and qualification experiment in the advanced test reactor
KR20040082866A (en) Leak detection device for once-through steam generator by using of gas circulation
Shanmugavel et al. Operating experience of high temperature sodium loops for material testing
Saario et al. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes
Hegde et al. Residual Life Assessment of Nuclear Power Plant Components
Moura et al. Nondestructive testing diagnosis for corrosion and welding by means of hydrostatic test and gamma ray tomography
Joo et al. In-Service Inspection Approaches of KALIMER-600 Reactor System

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100424