JP2010075887A - Cleaning method of contaminated soil and groundwater - Google Patents
Cleaning method of contaminated soil and groundwater Download PDFInfo
- Publication number
- JP2010075887A JP2010075887A JP2008249255A JP2008249255A JP2010075887A JP 2010075887 A JP2010075887 A JP 2010075887A JP 2008249255 A JP2008249255 A JP 2008249255A JP 2008249255 A JP2008249255 A JP 2008249255A JP 2010075887 A JP2010075887 A JP 2010075887A
- Authority
- JP
- Japan
- Prior art keywords
- groundwater
- ozone
- pumping
- injection well
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003673 groundwater Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000002689 soil Substances 0.000 title claims abstract description 31
- 238000004140 cleaning Methods 0.000 title abstract description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000002347 injection Methods 0.000 claims abstract description 44
- 239000007924 injection Substances 0.000 claims abstract description 44
- 238000005273 aeration Methods 0.000 claims abstract description 34
- 238000005086 pumping Methods 0.000 claims abstract description 30
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 239000003344 environmental pollutant Substances 0.000 claims description 30
- 231100000719 pollutant Toxicity 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- -1 trichloroethylene, tetrachloroethylene, dichloroethylene, dichloroethane Chemical class 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 7
- 229920006395 saturated elastomer Polymers 0.000 abstract description 6
- 239000000243 solution Substances 0.000 abstract 1
- 238000000746 purification Methods 0.000 description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 4
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229950011008 tetrachloroethylene Drugs 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100001234 toxic pollutant Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Processing Of Solid Wastes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、有機化合物などの化学物質により汚染された土壌および地下水を浄化する方法に関する。 The present invention relates to a method for purifying soil and groundwater contaminated with chemical substances such as organic compounds.
我国においては、従来からクロム、カドミウム、鉛などの重金属に対して公害防止が叫ばれ、その対策に取り組んできた。しかし、近年では、化学的な汚染物質である石油系化合物、有機化合物、農薬(肥料)などによる土壌や地下水の汚染が深刻な社会問題となっている。 In Japan, pollution prevention has been advocated against heavy metals such as chromium, cadmium, and lead. However, in recent years, contamination of soil and groundwater by chemical pollutants such as petroleum compounds, organic compounds, and agricultural chemicals (fertilizers) has become a serious social problem.
これらの汚染は、動植物の生育を直接的に阻害するばかりではなく、汚染物質の大気中への揮発・拡散により大気汚染を引き起こしたり、雨水とともに河川や湖沼、地下水へと汚染物質が流出して汚染が拡大したりする恐れがある。また、食物連鎖の上でも、広範囲にわたって被害が拡大する危険性が高い。 These pollutions not only directly inhibit the growth of animals and plants, but also cause air pollution due to volatilization and diffusion of pollutants into the atmosphere, and pollutants flow into rivers, lakes, and groundwater along with rainwater. Contamination may spread. There is also a high risk of damage spreading over a wide area in the food chain.
これらの汚染に対する根本的な浄化対策として、例えば、汚染物質を包含する土壌を掘削して地上で浄化し、清浄な土壌にして埋め戻す方法が行われており、その浄化方法としては焼却、水・薬品等での洗浄、あるいは微生物の代謝機能を利用して汚染物質を分解するバイオレメディエーションなどが行われてきた。また、汚染土壌領域に固化剤を注入し、固定化・安定化する方法、汚染物質から揮発した有害ガスを井戸から吸引することによる分離・無害化方法、又は汚染物質が溶脱した地下水の揚水による土壌からの分離・無害化方法等の処理方法も行われてきた。 As a fundamental cleanup measure against these pollutions, for example, excavation of soil containing pollutants, purification on the ground, and backfilling with clean soil are carried out.・ Cleaning with chemicals, etc., or bioremediation to decompose pollutants using the metabolic function of microorganisms have been performed. Also, by injecting solidifying agent into the contaminated soil area, fixing / stabilizing, separating / detoxifying by sucking harmful gas volatilized from pollutants from wells, or by pumping groundwater from which pollutants are leached Treatment methods such as separation and detoxification from soil have also been carried out.
しかし、汚染された土壌を掘削した後に地上で浄化して埋め戻す方法は、多大なコストと労力がかかり、大量の汚染土壌の処理には不適当である。 However, the method of excavating contaminated soil and then purifying and refilling it on the ground is very costly and labor intensive, and is not suitable for treating a large amount of contaminated soil.
一方、土壌を原位置で処理する方法としては、地下水の揚水による土壌からの分離・無害化方法として特許文献1に示されるように、汚染された地下水を揚水井から汲み上げ、地上で汚染物質の浄化処理をした後、浄化済み地下水は排水溝から排出する方法がある。この場合、浄化処理期間を短縮するためには、揚水井を多数設置することで処理する地下水量を増加させる必要があるため、揚水井の設置コストがかかり、また地上に設置する浄化設備の設備容量をアップさせるためのコストもかかる。 On the other hand, as a method of treating soil in situ, as shown in Patent Document 1 as a method for separation and detoxification from soil by pumping groundwater, contaminated groundwater is pumped from a pumping well and pollutants are removed from the ground. After the purification process, there is a method to drain the purified groundwater from the drain. In this case, in order to shorten the purification treatment period, it is necessary to increase the amount of groundwater to be treated by installing a large number of pumping wells. Therefore, the installation cost of the pumping wells is increased, and the equipment of the purification equipment installed on the ground There is also a cost to increase the capacity.
特許文献2には、飽和帯に対応する深さに開口を有する井戸を設け、この開口から地下水が井戸内に流入した後、不飽和帯の高さに設けられた開口から土壌に戻る構造とし、オゾンを含む混合気体に酸化剤を加え地上から配管を通して井戸内の地下水に吹き込み、さらに地下水中で紫外線を照射し、有害物質を除去する方法が示されている。浄化処理期間を短縮するためには、井戸を多数設置することで浄化処理する地下水量を増加させる必要があるため、揚水井の設置コストがかかり、また地上に設置する浄化設備の設備容量をアップさせるためのコストもかかる。また、井戸の上面が開口しているため、未反応のオゾンはこの開口から地上に拡散することとなり、その量次第では周辺環境の安全面が懸念される。
本発明は、上記した従来技術の問題点に鑑み、揮発性汚染物質を包含する飽和帯および不飽和帯を含む汚染地下領域に対し、揚水曝気処理による浄化方法において、低コストで浄化処理期間を短縮し、かつ周辺環境に対し安全である浄化方法を提供することを目的とする。 In view of the above-described problems of the prior art, the present invention provides a purification method using a pumped-water aeration process for a contaminated underground region including a saturated zone and an unsaturated zone containing volatile pollutants at a low cost. The object is to provide a purification method that is shortened and safe for the surrounding environment.
上述した課題を解決するため、本発明が提供する汚染土壌および地下水の浄化方法は揮発性汚染物質を包含する汚染土壌領域に対し、揚水井から地下水を揚水する揚水工程と、揚水工程で揚水された地下水を曝気槽においてオゾンガスで曝気しながら紫外線を照射させることにより揮発性汚染物質を分解する分解工程を備える汚染土壌及び地下水の浄化方法において、分解工程で処理された地下水を注入井から土壌に戻す注入工程を有し、曝気槽内の気相部を注入井内の地下水に供給することにより、注入井内の地下水にオゾンを混合して地下水中のオゾン濃度を上げ、注入井内の地下水中で揮発性汚染物質を分解することを特徴とする。 In order to solve the above-described problems, a method for purifying contaminated soil and groundwater provided by the present invention is a method of pumping groundwater from a pumping well to a contaminated soil region containing volatile pollutants, In a contaminated soil and groundwater purification method comprising a decomposition step of decomposing volatile pollutants by irradiating ultraviolet light while aeration tank is aerated with ozone gas in the aeration tank, the groundwater treated in the decomposition step is transferred from the injection well to the soil. It has a back-injection process, and by supplying the gas phase part in the aeration tank to the groundwater in the injection well, ozone is mixed with the groundwater in the injection well to increase the ozone concentration in the groundwater and volatilize in the groundwater in the injection well. It is characterized by decomposing toxic pollutants.
注入工程における注入井の空間部を吸引する吸引工程を有し、吸引工程から排出される気体を、分解工程の曝気槽の液相部に供給することにより、オゾンをリサイクルし、未反応の揮発性汚染物質を完全に分解することが好ましい。 It has a suction process that sucks the space of the injection well in the injection process, and by supplying the gas discharged from the suction process to the liquid phase part of the aeration tank in the decomposition process, ozone is recycled and unreacted volatilization It is preferable to completely decompose toxic contaminants.
揮発性汚染物質は、トリクロロエチレン、テトラクロロエチレン、ジクロロエチレン、ジクロロエタン、トリクロロエタンのうち少なくとも1つであることが好ましい。 The volatile contaminant is preferably at least one of trichloroethylene, tetrachloroethylene, dichloroethylene, dichloroethane, and trichloroethane.
本発明によれば、揮発性汚染物質を包含する飽和帯および不飽和帯を含む汚染地下領域に対し、揚水曝気処理による浄化方法において、低コストで浄化処理期間を短縮し、かつ周辺環境に対し安全である浄化方法を提供することができる。 According to the present invention, in a purification method using a pumped water aeration process for a contaminated underground region including a saturated zone and an unsaturated zone containing volatile pollutants, the purification treatment period can be shortened at a low cost, and the surrounding environment can be reduced. A safe purification method can be provided.
本発明における浄化対象の揮発性汚染物質には、トリクロロエチレン、テトラクロロエチレン、ジクロロエチレン、ジクロロエタン、トリクロロエタンのうち少なくとも1つが含まれる。 The volatile pollutant to be purified in the present invention includes at least one of trichloroethylene, tetrachloroethylene, dichloroethylene, dichloroethane, and trichloroethane.
本発明の浄化方法の実施の形態を図1に基づいて説明する。
揚水工程において、周囲の飽和帯9から揚水井6に流入した揮発性汚染物質が含まれる地下水は、揚水井6の底に設置した水中ポンプ7で曝気槽1中に汲み上げられる。揚水井6は頭部を無孔管22、頭部以外を多孔管23とし、多孔管部は土壌内に位置するように設置される。
An embodiment of the purification method of the present invention will be described with reference to FIG.
In the pumping process, groundwater containing volatile pollutants flowing into the pumping well 6 from the surrounding saturation zone 9 is pumped into the aeration tank 1 by a submersible pump 7 installed at the bottom of the pumping well 6. The pumping well 6 has a non-porous tube 22 at the head and a porous tube 23 other than the head, and the porous tube portion is installed in the soil.
分解工程において、曝気槽1中の地下水は紫外線照射装置3から発生する紫外線を照射され、オゾン発生装置2から発生するオゾンガスを含む混合気体で曝気され、揮発性汚染物質が分解される。地下水にはオゾンが十分に溶存しており、重力流で注入井12へ供給される。曝気槽1内のガスは余剰オゾンガス分解槽4を経由して大気に排出される。 In the decomposition step, the groundwater in the aeration tank 1 is irradiated with ultraviolet rays generated from the ultraviolet irradiation device 3 and is aerated with a mixed gas containing ozone gas generated from the ozone generation device 2 to decompose volatile pollutants. Ozone is sufficiently dissolved in the groundwater and is supplied to the injection well 12 by gravity flow. The gas in the aeration tank 1 is discharged to the atmosphere via the surplus ozone gas decomposition tank 4.
注入工程において、注入井12内には揮発性汚染物質を含む地下水が周囲の飽和帯9から流入しており、この地下水中の揮発性汚染物質は、曝気槽1から供給された地下水中に溶存しているオゾンによって分解される。注入井12は頭部を無孔管、頭部以外を多孔管とし、多孔管部は土壌内に位置するように設置される。 In the injection process, groundwater containing volatile contaminants flows into the injection well 12 from the surrounding saturated zone 9, and the volatile contaminants in the groundwater are dissolved in the groundwater supplied from the aeration tank 1. Decomposed by ozone. The injection well 12 is a non-porous tube at the head and a porous tube other than the head, and the porous tube portion is installed so as to be located in the soil.
注入井12の底に設置したオゾンガス混合ポンプ17は、注入井内に水没させた地下水供給ライン19から地下水を吸い込むことにより、これに接続されているオゾンガス供給ライン18から曝気槽1内の余剰オゾンガスを吸引する。この操作により、曝気槽1内の余剰オゾンガスが注入井12内の地下水に溶存しかつ注入井12内で地下水が循環することによる攪拌効果で注入井12内の地下水全体にオゾンが高濃度で行き渡り、この高濃度となったオゾンによって揮発性汚染物質の分解が促進される。 The ozone gas mixing pump 17 installed at the bottom of the injection well 12 draws in the groundwater from the groundwater supply line 19 submerged in the injection well, thereby removing excess ozone gas in the aeration tank 1 from the ozone gas supply line 18 connected thereto. Suction. By this operation, surplus ozone gas in the aeration tank 1 is dissolved in the ground water in the injection well 12 and the groundwater is circulated in the injection well 12, so that ozone is spread over the entire ground water in the injection well 12 with a high concentration. This high concentration of ozone accelerates the decomposition of volatile pollutants.
吸引工程において、ガス吸引ブロワー15を作動させることで、吸引工程から排出される気体は分解工程の曝気槽1の液相部に供給されることが好ましい。 In the suction process, it is preferable that the gas discharged from the suction process is supplied to the liquid phase part of the aeration tank 1 in the decomposition process by operating the gas suction blower 15.
これによりオゾン及び未反応の揮発性汚染物質を曝気槽1中の地下水に吸収させ、ここで揮発性汚染物質はオゾンと紫外線照射によって完全に分解される。 As a result, ozone and unreacted volatile pollutants are absorbed into the ground water in the aeration tank 1, where the volatile pollutants are completely decomposed by ozone and ultraviolet irradiation.
また、この反応に寄与しなかったオゾンは地下水に溶存した状態で注入井12へ供給される。 In addition, ozone that has not contributed to this reaction is supplied to the injection well 12 in a state dissolved in groundwater.
このようにして、オゾンは使い捨てされることなく、有効にリサイクル使用される。 In this way, ozone is effectively recycled without being disposable.
曝気槽1内の地下水中の揮発性汚染物質を分解するために、曝気槽1内でのオゾンガスの分散方法および紫外線照射方法など揮発性汚染物質の分解に関わる部分の仕様を充分に検討する必要がある。例えば、曝気槽1の容量や個数、揚水の曝気槽1内の滞留時間、オゾンガス曝気の気泡形成手段などを適正に選定することが必要である。 In order to decompose volatile pollutants in the groundwater in the aeration tank 1, it is necessary to fully study the specifications of the parts related to the decomposition of volatile pollutants such as ozone gas dispersion method and ultraviolet irradiation method in the aeration tank 1 There is. For example, it is necessary to appropriately select the capacity and number of the aeration tanks 1, the residence time in the aeration tank 1 of the pumped water, the bubble forming means for ozone gas aeration, and the like.
上記のように、本浄化方法における設備は、随所にオゾンガスまたはオゾン溶存水を用いるために、オゾンの強力な酸化力に耐えうる材料で構成する必要がある。特に曝気槽1中では、高濃度のオゾンが滞留するためにオゾンによる腐食を防止する処置が必要である。 As described above, in order to use ozone gas or ozone-dissolved water everywhere, the equipment in this purification method needs to be made of a material that can withstand the strong oxidizing power of ozone. In particular, in the aeration tank 1, since a high concentration of ozone stays, a measure for preventing corrosion due to ozone is necessary.
揚水井6と注入井12の位置関係は、汚染領域における地下水流11の下流側に揚水井6を上流側に注入井12を設置する。 As for the positional relationship between the pumping well 6 and the injection well 12, the pumping well 6 is installed on the downstream side of the groundwater flow 11 in the contaminated area, and the injection well 12 is installed on the upstream side.
より詳細には、注入井12から注入したオゾン溶存地下水が、揚水井6へ向かいながら両井戸間の揮発性汚染物質を分解できるような位置関係になるように設置することが好ましい。注入井12に注入されたオゾンが溶存した地下水は、注入井12から周囲の飽和帯にしみ出した後、地下水流11に乗って移動し揚水井6に到達し、この経路中にある揮発性汚染物質を飽和帯9中でオゾンで分解する。これを継続させることで注入井12と揚水井6の周辺土壌及び地下水が浄化されることとなる。 More specifically, it is preferable that the ozone-dissolved groundwater injected from the injection well 12 is installed so as to be in a positional relationship such that volatile pollutants between both wells can be decomposed toward the pumping well 6. The groundwater in which the ozone injected into the injection well 12 is dissolved oozes from the injection well 12 to the surrounding saturated zone, then moves on the groundwater flow 11 and reaches the pumping well 6, and the volatiles in this path The pollutant is decomposed with ozone in the saturation zone 9. By continuing this, the surrounding soil and groundwater of the injection well 12 and the pumping well 6 will be purified.
浄化処理期間およびコストを検討したうえで、揚水井6、注入井12ともに1本以上設置することができる。 One or more pumping wells 6 and injection wells 12 can be installed after considering the purification treatment period and cost.
深さ約8m、幅約6m、長さ約12mにおよぶテトラクロロエチレン(以下PCE)で汚染された汚染土壌領域のほぼ中央部に対して、図2に示すように、直径10cm、深さ8mの揚水井6と、これから地下水流11で6m下流側に直径10cm、深さ8mの観測井21を設置した。また、従来技術となる図3に示す500Lの曝気槽1、オゾン発生量1.2g/hでオゾン濃度25g/Nm3 のオゾンガスを供給するオゾン発生装置2、ピーク波長254±10nmの紫外線を照射する紫外線照射装置3、オゾン分解触媒50Lが充填された余剰オゾンガス分解装置4、曝気槽1内の地下水のオーバーフローラインに活性炭槽5を設置し、揚水井6の底には5L/hの水中ポンプ7を設置した。地下水中のPCE濃度は、観測井21から分析試料を採取してモニタリングした。 As shown in FIG. 2, the pumping water having a diameter of 10 cm and a depth of 8 m is applied to the central part of the contaminated soil area contaminated with tetrachlorethylene (hereinafter referred to as PCE) having a depth of about 8 m, a width of about 6 m and a length of about 12 m. A well 6 and an observation well 21 having a diameter of 10 cm and a depth of 8 m were installed 6 m downstream of the groundwater flow 11. Moreover, the 500-liter aeration tank 1 shown in FIG. 3, which is the prior art, an ozone generator 2 for supplying ozone gas with an ozone generation amount of 1.2 g / h and an ozone concentration of 25 g / Nm 3 , and irradiation with ultraviolet rays having a peak wavelength of 254 ± 10 nm An ultraviolet ray irradiation device 3, an excess ozone gas decomposition device 4 filled with an ozone decomposition catalyst 50 L, an activated carbon tank 5 in the overflow line of groundwater in the aeration tank 1, and a 5 L / h submersible pump at the bottom of the pumping well 6 7 was installed. The PCE concentration in the groundwater was monitored by collecting an analytical sample from the observation well 21.
浄化を開始してから、図4に示すように、地下水中の初期PCE濃度24ppmに対し、徐々に低下していく傾向を確認した。 After the purification was started, as shown in FIG. 4, a tendency to gradually decrease with respect to the initial PCE concentration of 24 ppm in the groundwater was confirmed.
3ヶ月経過したところで浄化完了が3年以上と予想されたため、浄化を促進させるために、図2に示すように直径15cm、深さ8mの注入井12を2本設置した。 Since the completion of purification was expected to be 3 years or more after 3 months, two injection wells 12 having a diameter of 15 cm and a depth of 8 m were installed as shown in FIG. 2 in order to promote the purification.
浄化開始3ヶ月目以降の設備全体の概要を図1に示す。 An overview of the entire facility after the third month of purification is shown in FIG.
活性炭槽5を撤去し、曝気槽1内の地下水のオーバーフローラインを注入井12の頭部に位置するオゾン溶存地下水注入口13に接続した。 The activated carbon tank 5 was removed, and the overflow line of groundwater in the aeration tank 1 was connected to the ozone-dissolved groundwater inlet 13 located at the head of the injection well 12.
曝気槽1の気相部と注入井12のオゾンガス吸引口16をラインで接続した。オゾンガス吸引口16にはオゾンガス供給ライン18の片端が接続しており、オゾンガス供給ライン18のもう一方の片端は地下水供給ライン19の両端以外の部分に接続している。 The gas phase part of the aeration tank 1 and the ozone gas suction port 16 of the injection well 12 were connected by a line. One end of an ozone gas supply line 18 is connected to the ozone gas suction port 16, and the other end of the ozone gas supply line 18 is connected to a portion other than both ends of the groundwater supply line 19.
注入井12の底には2.5L/minのオゾンガス混合ポンプ17を設置し、オゾンガス混合ポンプ17の吸引側には地下水供給ライン19の片端を接続し、オゾンガス混合ポンプの17の排出側にはオゾン溶存地下水排出ライン20を接続した。 A 2.5 L / min ozone gas mixing pump 17 is installed at the bottom of the injection well 12, one end of the groundwater supply line 19 is connected to the suction side of the ozone gas mixing pump 17, and the discharge side of the ozone gas mixing pump 17 is connected to the discharge side of the ozone gas mixing pump 17. An ozone-dissolved groundwater discharge line 20 was connected.
オゾンガス混合ポンプ17に接続されていない地下水供給ライン19の片端は注入井12内の地下水中に位置するようにした。 One end of the groundwater supply line 19 that is not connected to the ozone gas mixing pump 17 is located in the groundwater in the injection well 12.
注入井12の頭部に注入井ガス吸引口14と0.2m3/hのガス吸引ブロアー15を設置した。この後、オゾンガス混合ポンプ17とガス吸引ブロアー15を作動した。その結果、間も無く地下水のPCE濃度が急激に減少し、浄化開始約7ヵ月後に0.001ppmに到達したため浄化処理を休止した。その後約2ヶ月間観測井でのモニターを継続したが、地下水中のPCE濃度の上昇は見られず、0.001ppm以下を推移した。 An injection well gas suction port 14 and a 0.2 m 3 / h gas suction blower 15 were installed at the head of the injection well 12. Thereafter, the ozone gas mixing pump 17 and the gas suction blower 15 were operated. As a result, the PCE concentration in groundwater decreased rapidly and reached 0.001 ppm about 7 months after the start of purification, so the purification treatment was suspended. Thereafter, monitoring at the observation well was continued for about two months, but no increase in PCE concentration in the groundwater was observed, and it remained below 0.001 ppm.
深さ約8m、幅約4m、長さ約12mにおよぶトリクロロエチレンで汚染された汚染土壌領域に対して従来技術となる図3に示す設備を実施例1と同じ仕様で設置した。地下水中の初期トリクロロエチレン濃度16ppmに対し、3ヶ月経過したところで浄化完了が2年以上と予想されたために、図1に示す設備を実施例1と同じ仕様で設置し処理を実施した。この結果、浄化開始6ヶ月後に0.001ppmに到達したため浄化処理を休止した。その後約2ヶ月間モニタリングを継続したが、地下水中のトリクロロエチレン濃度の上昇は見られず、0.001ppm以下を推移した。 The equipment shown in FIG. 3, which is a conventional technology, was installed with the same specifications as in Example 1 for a contaminated soil region contaminated with trichlorethylene having a depth of about 8 m, a width of about 4 m, and a length of about 12 m. Since the completion of purification was expected to be 2 years or more after 3 months with respect to the initial trichlorethylene concentration of 16 ppm in the groundwater, the equipment shown in FIG. As a result, since the concentration reached 0.001 ppm 6 months after the start of purification, the purification treatment was suspended. Thereafter, monitoring was continued for about two months, but no increase in the concentration of trichlorethylene in the groundwater was observed, and it remained below 0.001 ppm.
以上のことから、従来の一般的な揮発性汚染物質の処理方法である揚水後のオゾン曝気と紫外線照射処理に対し、本発明を用いることにより、処理期間を70%程度短縮できることが明らかとなった。 From the above, it becomes clear that the treatment period can be shortened by about 70% by using the present invention for ozone aeration and ultraviolet irradiation treatment after pumping, which is a conventional treatment method for volatile pollutants. It was.
本発明によれば、揮発性汚染物質を包含する飽和帯および不飽和帯を含む汚染地下領域に対し、揚水曝気処理による浄化方法において、低コストで浄化処理期間を短縮し、かつ周辺環境に対し安全である浄化を行うことができるので、工場跡地等で揮発性汚染物質で汚染された土壌の修復に利用可能である。 According to the present invention, in a purification method using a pumped water aeration process for a contaminated underground region including a saturated zone and an unsaturated zone containing volatile pollutants, the purification treatment period can be shortened at a low cost, and the surrounding environment can be reduced. Since it can be purified safely, it can be used to repair soil contaminated with volatile pollutants at the factory site.
1 曝気槽
2 オゾン発生装置
3 紫外線照射装置
4 余剰オゾンガス分解槽
5 活性炭槽
6 揚水井
7 水中ポンプ
8 不飽和帯
9 飽和帯(帯水層)
10 地下水位
11 地下水流
12 注入井
13 オゾン溶存地下水注入口
14 注入井内ガス吸引口
15 ガス吸引ブロワー
16 オゾンガス吸引口
17 オゾンガス混合ポンプ
18 オゾンガス供給ライン
19 地下水供給ライン
20 オゾン溶存地下水排出ライン
21 観測井
22 無孔管
23 多孔管
DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Ozone generator 3 Ultraviolet irradiation apparatus 4 Surplus ozone gas decomposition tank 5 Activated carbon tank 6 Pumping well 7 Submersible pump 8 Unsaturation zone 9 Saturation zone (Aquifer)
DESCRIPTION OF SYMBOLS 10 Groundwater level 11 Groundwater flow 12 Injection well 13 Ozone dissolved groundwater inlet 14 Injection well gas suction port 15 Gas suction blower 16 Ozone gas suction port 17 Ozone gas mixing pump 18 Ozone gas supply line 19 Groundwater supply line 20 Ozone dissolved groundwater discharge line 21 Observation well 22 Nonporous tube 23 Porous tube
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249255A JP2010075887A (en) | 2008-09-26 | 2008-09-26 | Cleaning method of contaminated soil and groundwater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249255A JP2010075887A (en) | 2008-09-26 | 2008-09-26 | Cleaning method of contaminated soil and groundwater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010075887A true JP2010075887A (en) | 2010-04-08 |
Family
ID=42206954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008249255A Pending JP2010075887A (en) | 2008-09-26 | 2008-09-26 | Cleaning method of contaminated soil and groundwater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010075887A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607449A (en) * | 2014-12-25 | 2015-05-13 | 虢洪根 | Method for purifying polluted soil layers through ozone catalyzed by light |
CN109821888A (en) * | 2019-01-25 | 2019-05-31 | 北京博诚立新环境科技股份有限公司 | A kind of aeration zone contaminated soil biology in situ renovation method |
CN113426815A (en) * | 2021-07-08 | 2021-09-24 | 合肥工业大学 | Method for restoring VOCs pollution of low-permeability soil body by in-situ enhanced aeration |
CN113532940A (en) * | 2021-06-23 | 2021-10-22 | 成都理工大学 | Multifunctional test testing equipment for repairing heterogeneous soil groundwater |
CN114029325A (en) * | 2021-11-08 | 2022-02-11 | 核工业北京化工冶金研究院 | A method for replacing and repairing groundwater in an in-situ leaching uranium mining base by means of pumping and injecting |
CN114195283A (en) * | 2021-11-08 | 2022-03-18 | 上海化工院环境工程有限公司 | A progressive circulation type polluted groundwater remediation device and its application |
-
2008
- 2008-09-26 JP JP2008249255A patent/JP2010075887A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607449A (en) * | 2014-12-25 | 2015-05-13 | 虢洪根 | Method for purifying polluted soil layers through ozone catalyzed by light |
CN109821888A (en) * | 2019-01-25 | 2019-05-31 | 北京博诚立新环境科技股份有限公司 | A kind of aeration zone contaminated soil biology in situ renovation method |
CN113532940A (en) * | 2021-06-23 | 2021-10-22 | 成都理工大学 | Multifunctional test testing equipment for repairing heterogeneous soil groundwater |
CN113532940B (en) * | 2021-06-23 | 2022-08-30 | 成都理工大学 | Multifunctional test testing equipment for repairing heterogeneous soil groundwater |
CN113426815A (en) * | 2021-07-08 | 2021-09-24 | 合肥工业大学 | Method for restoring VOCs pollution of low-permeability soil body by in-situ enhanced aeration |
CN113426815B (en) * | 2021-07-08 | 2022-07-19 | 合肥工业大学 | A method for in-situ enhanced aeration to repair VOCs pollution in low-permeability soil |
CN114029325A (en) * | 2021-11-08 | 2022-02-11 | 核工业北京化工冶金研究院 | A method for replacing and repairing groundwater in an in-situ leaching uranium mining base by means of pumping and injecting |
CN114195283A (en) * | 2021-11-08 | 2022-03-18 | 上海化工院环境工程有限公司 | A progressive circulation type polluted groundwater remediation device and its application |
CN114195283B (en) * | 2021-11-08 | 2024-01-23 | 上海化工院环境工程有限公司 | Gradual circulation type polluted underground water restoration device and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100850165B1 (en) | Purification and purification method of contaminated soil and groundwater by oxidizer injection and electric resistance heating method | |
KR101691425B1 (en) | Complex Purification System of Oil-polluted Underground Water by Physical and Chemical | |
JP3728510B2 (en) | Soil pollution countermeasure method and soil pollution countermeasure system | |
JP2010075887A (en) | Cleaning method of contaminated soil and groundwater | |
JP5205010B2 (en) | In-situ purification method for contaminated groundwater | |
CN115180765B (en) | Underground water circulation well temperature control method, system and device | |
JP2002159959A (en) | Method and device for purifying underground polluted region | |
JP5430056B2 (en) | Treatment method of contaminated soil | |
KR102215046B1 (en) | Method for remeding contaminated material in subsurface using radical- inducers and persulfate | |
JP3192078B2 (en) | Soil purification method and device | |
JP4405692B2 (en) | Purification method for underground pollution area | |
US20140120018A1 (en) | Process and Apparatus to Remove and Destroy Volatile Organic Compounds By Atomizing Water in Ozone Atmosphere | |
JP3716998B2 (en) | Soil purification method and apparatus | |
JP2010075883A (en) | Cleaning method of contaminated soil and groundwater | |
JP5528840B2 (en) | Method and apparatus for treating chemical contamination | |
JP5612820B2 (en) | Purification method for organic chlorine chemical contamination | |
JP2015160175A (en) | In-situ purification method for contaminated soil and contaminated groundwater | |
JP2012035181A (en) | In situ purification method of contaminated soil and groundwater | |
JP4112122B2 (en) | How to remove harmful substances in groundwater | |
JP3923403B2 (en) | Soil and groundwater purification methods | |
JP2004167426A (en) | Cleaning method of contamination due to chemical substance and cleaning system therefor | |
JP2003181448A (en) | Method and apparatus for treating VOC contaminated water | |
JP4055076B2 (en) | Contaminated soil purification equipment | |
CN111977754A (en) | Composite efficient reinforced remediation equipment for soil groundwater and water body organic pollution and application | |
KR100377911B1 (en) | Integrated treatment facilities for remediation of mobile contaminants of soil and groundwater by the direction of flowpath, and it's installation metnod |