Nothing Special   »   [go: up one dir, main page]

JP2010075859A - Automobile members - Google Patents

Automobile members Download PDF

Info

Publication number
JP2010075859A
JP2010075859A JP2008247771A JP2008247771A JP2010075859A JP 2010075859 A JP2010075859 A JP 2010075859A JP 2008247771 A JP2008247771 A JP 2008247771A JP 2008247771 A JP2008247771 A JP 2008247771A JP 2010075859 A JP2010075859 A JP 2010075859A
Authority
JP
Japan
Prior art keywords
coating film
automobile member
electrodeposition coating
corrosion resistance
organic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008247771A
Other languages
Japanese (ja)
Other versions
JP5293050B2 (en
Inventor
Atsushi Morishita
敦司 森下
Akihiro Miyasaka
明博 宮坂
Masahiro Fuda
雅裕 布田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008247771A priority Critical patent/JP5293050B2/en
Publication of JP2010075859A publication Critical patent/JP2010075859A/en
Application granted granted Critical
Publication of JP5293050B2 publication Critical patent/JP5293050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automobile member which can be produced in an existing process, and which is environmentally considered and extremely excellent in corrosion resistance even if the film thickness of an electrodeposition coating is half or less of the film thickness that was conventionally required. <P>SOLUTION: The automobile member has an organic coating film (A) containing a conductive particle (&alpha;) and a rust prevention pigment (&beta;) on at least one face of a metallic material, and an electrodeposition coating film (B) formed from the electrodeposition coating which does not substantially contain lead on the upper layer of the organic coating film (A). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、平面部のみならず傷部、端面部、加工部の耐食性も極めて優れる自動車部材(交換用補修部材なども含む)に関する。   The present invention relates to an automobile member (including a repair member for replacement) that is extremely excellent in corrosion resistance of not only a flat portion but also a scratched portion, an end surface portion, and a processed portion.

自動車部材は、鋼板等の金属材を素材とし、(i)ブランキング、(ii)プレス加工、(iii)組立て・接合、(iv)洗浄、(v)化成処理、(vi)電着塗装の工程を経て製造され、外面で使われる部材は、更に中・上塗り等の塗装が施されるのが一般的である。自動車部材の耐食性は、化成処理を施した後の電着塗装の被覆によって確保していることが多いが、袋状部品の内面の合わせ部や折り曲げヘム部等では、電着塗装の付きまわりが悪く、電着塗装の膜厚を十分に確保することが難しい。そのため、シーラー、アドヒーシブ、ワックス等の防錆副資材の適用によって、それらの耐食性を補っている。その他にも、腐食環境の厳しい自動車部材の耐食性を担保するために、防水シート等の様々な防錆副資材が用いられているのが現状である。これらの防錆副資材は、自動車製造コストの増加要因になっていることは言うまでもなく、生産性低下、車体重量増加の要因にもなっているため、これら副資材を削減しても耐食性が確保できる、もしくは電着塗装の膜厚が十分に得られなくても耐食性が確保できる自動車部材が強く望まれている。   Automobile parts are made of metal materials such as steel plates, and are (i) blanking, (ii) press working, (iii) assembly / joining, (iv) cleaning, (v) chemical conversion treatment, (vi) electrodeposition coating In general, the members manufactured through the process and used on the outer surface are further subjected to coating such as intermediate coating or top coating. The corrosion resistance of automobile parts is often ensured by the electrodeposition coating after the chemical conversion treatment, but the electrodeposition coating around the inner part of the bag-shaped part or the folded hem part is not Unfortunately, it is difficult to ensure a sufficient film thickness for electrodeposition coating. Therefore, the corrosion resistance is supplemented by the application of rust prevention auxiliary materials such as sealers, adhesives, and waxes. In addition, in order to ensure the corrosion resistance of automobile parts having a severe corrosive environment, various rust prevention auxiliary materials such as waterproof sheets are currently used. Needless to say, these rust-proof secondary materials are factors that increase automobile manufacturing costs, but also reduce productivity and increase vehicle weight, so corrosion resistance is ensured even if these secondary materials are reduced. There is a strong demand for an automobile member that can ensure corrosion resistance even if the film thickness of electrodeposition coating cannot be obtained sufficiently.

従来、自動車部材の防錆対策として、素材である金属材の耐食性を向上させる研究開発が盛んに行われてきた。例えば、特許文献1では、金属材表面に亜鉛(Zn)を含有した塗膜を形成する手法が開示されている。しかしながら、このようなZn含有塗膜は、プレス成形時に著しい塗膜剥離が生じ、塗膜が剥離した部分の耐食性が低下してしまうという問題があった。   Conventionally, as a rust prevention measure for automobile members, research and development for improving the corrosion resistance of a metal material as a raw material has been actively conducted. For example, Patent Document 1 discloses a technique for forming a coating film containing zinc (Zn) on the surface of a metal material. However, such a Zn-containing coating film has a problem that remarkable coating film peeling occurs at the time of press molding, and the corrosion resistance of the portion where the coating film has peeled is lowered.

このような塗装金属材に対して、特許文献2や特許文献3には、Zn等の導電顔料を含まない薄膜の塗膜を有した表面処理鋼板が開示されている。しかしながら、これらの薄膜の塗膜では大幅な耐食性の改善効果は認められず、電着塗装の膜厚確保、防錆副資材の適用前提で耐食性を確保していた。   In contrast to such a coated metal material, Patent Literature 2 and Patent Literature 3 disclose a surface-treated steel sheet having a thin film coating that does not contain a conductive pigment such as Zn. However, these coatings of thin films did not show a significant improvement in corrosion resistance, and ensured corrosion resistance on the premise of ensuring the film thickness of electrodeposition coating and applying anticorrosive auxiliary materials.

一方、最近では化成処理、電着塗装工程の省略を目的とした塗装金属材が開発されている。例えば、特許文献4、特許文献5では、導電顔料を含有する塗装金属材が開示されているが、電着塗装を省略できるまでの高い耐食性を担保することはできず、実用化には至っていない。   On the other hand, recently, paint metal materials have been developed for the purpose of omitting the chemical conversion treatment and the electrodeposition coating process. For example, Patent Document 4 and Patent Document 5 disclose a coated metal material containing a conductive pigment, but it cannot ensure high corrosion resistance until electrodeposition coating can be omitted, and has not been put into practical use. .

ところで、昨今の環境対応の流れを受けて、特許文献6に開示されているような従来耐食性機能の高い防錆顔料として使用されていた鉛を実質的に含有しない無鉛性電着塗料が開発され、実用化されている。このように防錆能の高い鉛化合物を実質的に含まない電着塗装では、耐食性が十分に確保できない懸念がある。特に、防錆顔料に起因する傷部、端面部、加工部の耐食性や薄膜での耐食性が低下する懸念がある。   By the way, in response to the recent trend of environmental measures, a lead-free electrodeposition coating material substantially free of lead, which has been used as a conventional anticorrosive pigment having a high corrosion resistance function as disclosed in Patent Document 6, has been developed. Has been put to practical use. As described above, there is a concern that the corrosion resistance cannot be sufficiently ensured by the electrodeposition coating which does not substantially contain a lead compound having a high rust prevention ability. In particular, there is a concern that the corrosion resistance of the scratched part, the end face part, and the processed part due to the anticorrosive pigment and the corrosion resistance of the thin film are lowered.

特開昭55−17508号公報JP-A-55-17508 特公平4−48348号公報Japanese Patent Publication No. 4-48348 特開平2−15177号公報Japanese Patent Laid-Open No. 2-15177 特開平10−128906号公報JP-A-10-128906 特開2000−70842号公報JP 2000-70842 A 特開2005−194390号公報JP 2005-194390 A

本発明は、前記現状に鑑み、既存プロセスで製造が可能で、環境に配慮し、電着塗装膜厚が従来必要とされる膜厚の半分以下であっても、極めて優れた耐食性(平面部だけでなく、傷部、端面部、加工部も含む)を有する自動車部材を提供することを目的とするものである。すなわち、プレス加工、溶接による接合が可能な塗装金属材を素材とし、実質的に鉛を含まない電着塗料による塗装を薄膜で用いても極めて優れた耐食性を有する自動車部材を提供することを目的とするものである。   In view of the present situation, the present invention can be manufactured by an existing process, is environmentally friendly, and has extremely excellent corrosion resistance (planar portion) even when the electrodeposition coating film thickness is less than half of the conventionally required film thickness. It is an object to provide an automobile member having not only a scratched part, an end face part, and a processed part. That is, an object of the present invention is to provide an automobile member having an extremely excellent corrosion resistance even when a coating metal material that can be joined by press working and welding is used as a raw material and coating with an electrodeposition coating material that does not substantially contain lead is used as a thin film. It is what.

本発明の主旨とするところは、
(1) 金属材の少なくとも片面に、導電性粒子(α)及び防錆顔料(β)を含有する有機塗膜(A)を有し、前記有機塗膜の上層に鉛を実質的に含まない電着塗料から形成される電着塗膜(B)を有することを特徴とする、自動車部材、
(2) 前記自動車部材の上層に更に一層以上の塗膜を有することを特徴とする、(1)に記載の自動車部材、
(3) 前記有機塗膜(A)の厚みをTとし、前記電着塗膜(B)の厚みをTとしたときに、T≧2μm、T≧3μm、T+T≧8μmを満足することを特徴とする、(1)もしくは(2)に記載の自動車部材、
(4) 前記電着塗膜(B)の膜厚Tの最小値が10μm以下であることを特徴とする、(1)から(3)のいずれかに記載の自動車部材、
(5) 前記導電性粒子(α)がフェロシリコンを含有することを特徴とする、(1)から(4)のいずれかに記載の自動車部材、
(6) 前記フェロシリコンに含まれるSiの含有量が70質量%以上であることを特徴とする、(5)に記載の自動車部材、
(7) 前記有機塗膜(A)に含まれる前記導電性粒子(α)の含有量が15〜60体積%であることを特徴とする、(1)から(6)のいずれかに記載の自動車部材、
(8) 前記防錆顔料(β)がクロムを含有しないことを特徴とする、(1)から(7)のいずれかに記載の自動車部材、
(9) 前記防錆顔料(β)がケイ酸イオン、リン酸イオン、バナジン酸イオンのうち1種以上を放出できる化合物を含むことを特徴とする、(1)から(8)のいずれかに記載の自動車部材、
(10) 前記有機塗膜(A)に含まれる前記防錆顔料(β)の含有量が2〜25体積%であることを特徴とする、(1)から(9)のいずれかに記載の自動車部材、
(11) 前記有機塗膜(A)中のバインダー成分がウレタン結合を含む樹脂を含有していることを特徴とする、(1)から(10)のいずれかに記載の自動車部材、
(12) 前記金属材が亜鉛系もしくはアルミニウム系めっき鋼板であることを特徴とする、(1)から(11)のいずれかに記載の自動車部材
である。
The main point of the present invention is that
(1) It has an organic coating film (A) containing conductive particles (α) and an antirust pigment (β) on at least one side of a metal material, and lead is not substantially contained in the upper layer of the organic coating film. An automobile member characterized by having an electrodeposition coating (B) formed from an electrodeposition coating;
(2) The automobile member according to (1), further comprising one or more coating films on the upper layer of the automobile member,
(3) When T A is the thickness of the organic coating film (A) and T B is the thickness of the electrodeposition coating film (B), T A ≧ 2 μm, T B ≧ 3 μm, T A + T B ≧ The automobile member according to (1) or (2), characterized by satisfying 8 μm,
(4) the collector, wherein the minimum value of the thickness T B of the coating film (B) is 10μm or less, an automobile member according to any one of (1) to (3),
(5) The automobile member according to any one of (1) to (4), wherein the conductive particles (α) contain ferrosilicon.
(6) The automobile member according to (5), wherein the content of Si contained in the ferrosilicon is 70% by mass or more,
(7) The content of the conductive particles (α) contained in the organic coating film (A) is 15 to 60% by volume, according to any one of (1) to (6), Automotive parts,
(8) The automobile member according to any one of (1) to (7), wherein the rust preventive pigment (β) does not contain chromium,
(9) The rust preventive pigment (β) contains a compound capable of releasing at least one of silicate ions, phosphate ions, and vanadate ions, according to any one of (1) to (8), Automotive parts as described,
(10) The content of the anticorrosive pigment (β) contained in the organic coating film (A) is 2 to 25% by volume, according to any one of (1) to (9), Automotive parts,
(11) The automobile member according to any one of (1) to (10), wherein the binder component in the organic coating film (A) contains a resin containing a urethane bond,
(12) The automobile member according to any one of (1) to (11), wherein the metal material is a zinc-based or aluminum-based plated steel plate.

本発明の自動車部材は、非常に耐食性に優れるため、腐食環境の厳しい部材や電着塗装の付き回り性の悪い部材への適用による信頼性の向上が期待できる。更に、自動車製造コストの増加、生産性低下、車体重量増加の要因となっている各種防錆副資材の削減が期待できる。加えて、既存プロセスでの製造も可能であり、更に、鉛を実質的に含まないので環境対応部材としても有望であり、自動車分野への寄与は非常に大きい。   Since the automobile member of the present invention is extremely excellent in corrosion resistance, it can be expected to improve reliability by applying it to a member having a severe corrosive environment or a member having poor adhesion property of electrodeposition coating. Furthermore, it can be expected to reduce various rust-preventing auxiliary materials that are the cause of an increase in automobile manufacturing cost, a decrease in productivity, and an increase in the weight of the vehicle body. In addition, it can be manufactured by an existing process, and further, since it does not substantially contain lead, it is also promising as an environmentally friendly member, and its contribution to the automobile field is very large.

本発明は、平面部のみならず傷部、端面部、加工部の耐食性も極めて優れる自動車部材(交換用補修部材なども含む)に関するものである。詳しくは、有機塗膜を有する金属材をプレス加工、接合した後に電着塗装し、場合によって更にその上層に中・上塗り等を塗装した耐食性に極めて優れる自動車部材を提供するものである。   The present invention relates to an automobile member (including a repair member for replacement) that is extremely excellent in corrosion resistance of not only a flat portion but also a scratched portion, an end surface portion, and a processed portion. More specifically, the present invention provides an automobile member that is extremely excellent in corrosion resistance, in which a metal material having an organic coating film is subjected to electrodeposition coating after being pressed and joined, and in some cases, an intermediate layer or a top coat is further coated thereon.

自動車部材の素材として用いる塗装金属材は、電着塗装される前にプレス成形、溶接による接合が施される。そのため、溶接ができるように有機塗膜中に導電性粒子を添加する必要がある。加えて、有機塗膜中に導電性粒子を添加し導電性を確保することで、有機塗膜の上層に電着塗膜を形成させることもできる。すなわち、導電性粒子は、溶接性や電着塗装性を確保するために添加が必須となる。ところが、導電性粒子の添加は有機塗膜を脆くするため、プレス成形の際に塗膜に割れや傷が生じ易くなり、そこが腐食の起点になって耐食性が低下する場合がある。また、切断端面部や溶接部に至っては、有機塗膜の被覆が得られないため、それらの箇所の防錆は非常に難しい。これらの防錆を担保するためには、自己補修機能を持つ防錆顔料を塗膜中に添加することが好適である。しかしながら、これらの防錆顔料は、導電性粒子を添加し脆くなった有機塗膜に適用しても、プレス成形の際に塗膜に割れや傷が生じるため、これらの塗膜欠陥部から防錆顔料中の有効成分が流れ出してしまい、その効果の持続性は期待できない。このため、導電性粒子を含有する有機塗膜に防錆顔料を添加しても加工部等においては導電性粒子だけが残存する事となるため、長期に渡る耐食性を確保することは困難である。   Painted metal materials used as materials for automobile members are joined by press molding and welding before electrodeposition coating. Therefore, it is necessary to add conductive particles in the organic coating film so that welding can be performed. In addition, by adding conductive particles in the organic coating film to ensure conductivity, an electrodeposition coating film can be formed on the upper layer of the organic coating film. That is, the conductive particles must be added to ensure weldability and electrodeposition coating properties. However, the addition of the conductive particles makes the organic coating film brittle, so that the coating film is likely to be cracked or scratched during press molding, which may become a starting point of corrosion and decrease the corrosion resistance. In addition, since the organic coating film cannot be obtained at the cut end face part or the welded part, it is very difficult to prevent rust at those places. In order to ensure these rust preventions, it is preferable to add a rust prevention pigment having a self-repair function to the coating film. However, even if these anticorrosive pigments are applied to organic coatings that have become brittle due to the addition of conductive particles, cracks and scratches occur in the coatings during press molding. The active ingredient in the rust pigment flows out, and the sustainability of the effect cannot be expected. For this reason, even if a rust preventive pigment is added to an organic coating film containing conductive particles, only the conductive particles remain in the processed part and the like, so it is difficult to ensure long-term corrosion resistance. .

一方、電着塗膜はプレス成形、溶接による接合の後に施されるため、切断端面部や溶接部もある程度電着塗膜で覆うことができる。電着塗膜中にも防錆顔料は含有しているが、その効果は大きくはない。そのため、主に塗膜のバリア性に頼って耐食性を担保している電着塗膜は、塗膜厚が確保できなければ、十分な耐食性は得られない。また、膜厚が十分であっても防錆顔料の自己補修機能が低いため、電着塗膜に傷等の欠陥部があると、その部分から急激に腐食が進行する。昨今の鉛フリー化によりその傾向は顕著である。   On the other hand, since the electrodeposition coating is applied after press molding and welding, the cut end face portion and the welded portion can be covered to some extent with the electrodeposition coating. Although the rust preventive pigment is contained in the electrodeposition coating film, the effect is not great. For this reason, an electrodeposition coating film that ensures corrosion resistance mainly by relying on the barrier properties of the coating film cannot provide sufficient corrosion resistance unless the coating film thickness can be secured. In addition, even if the film thickness is sufficient, the self-repair function of the anticorrosive pigment is low, so that if the electrodeposition coating film has a defective part such as a scratch, corrosion rapidly proceeds from that part. The trend is remarkable due to the recent lead-free.

そこで、本発明者らは、上述した課題を解決するために鋭意検討の結果、以下で説明するように、素材として用いる金属材に施す有機塗膜を自己補修機能重視の防錆塗膜に設計し、その上層にバリア性を有する電着塗膜を施すことで、その複合効果により優れた耐食性を確保できることを見出した。すなわち、自己補修機能を持つ有機塗膜で傷部、端面部、加工部の耐食性を担保し、その上層の電着塗膜でその機能を長期に渡って保持することが可能であることを見出し、平面部だけでなく、傷部、端面部、加工部も含む耐食性を長期に渡って保持することに成功した。   Therefore, as a result of intensive studies to solve the above-mentioned problems, the present inventors designed an organic coating film applied to a metal material used as a material as a rust-proof coating film with an emphasis on the self-repair function, as described below. And it discovered that the corrosion resistance which was excellent by the composite effect can be ensured by giving the electrodeposition coating film which has barrier property to the upper layer. That is, it was found that the organic coating film having a self-repairing function can ensure the corrosion resistance of the scratched part, the end face part, and the processed part, and the function can be maintained over a long period of time by the upper electrodeposition coating film. The corrosion resistance including not only the flat part but also the scratched part, the end face part and the processed part was successfully maintained for a long time.

これら、塗装金属材上の有機塗膜や電着塗膜をそれぞれ単層で使用する場合には上述した課題があるが、これらの塗膜を組み合わせることで非常に優れた耐食性を確保することができる。すなわち、自己補修機能を持つ防錆顔料を含有する有機塗膜を下層にし、バリア効果を有する電着塗膜を上層とすることで、下層塗膜中の防錆顔料の持続性が向上し、長期に渡る耐食性を確保することができる。加えて、プレス加工で生じた有機塗膜の欠損部にも電着塗膜が入り込んでその欠損部を修復してくれる効果、切断端面部や溶接部等の有機塗膜が覆っていない部分に電着塗膜が覆い、バリアしてくれる効果等の上層電着塗膜による下層有機塗膜の弱点を補う効果と、逆に電着塗膜の塗装欠陥部や塗装後に生じた傷部等を下地の有機塗膜中に含まれる防錆顔料が補修してくれる効果、等も期待できる。   When using these organic coatings and electrodeposition coatings on coated metal materials in a single layer, there are the above-mentioned problems, but combining these coatings can ensure very good corrosion resistance. it can. That is, by making the organic coating film containing a rust preventive pigment having a self-repairing function as a lower layer, and making the electrodeposition coating film having a barrier effect an upper layer, the durability of the rust preventive pigment in the lower layer coating film is improved. Long-term corrosion resistance can be ensured. In addition, the electrodeposition coating also enters the defective part of the organic coating produced by pressing and repairs the defective part, and the organic coating such as the cut end face and welded part is not covered The electrodeposition coating covers and barriers the effect of compensating the weakness of the lower layer organic coating by the upper layer coating, and conversely the coating defects of the electrodeposition coating and scratches caused after coating The effect of repairing the anticorrosive pigment contained in the underlying organic coating can also be expected.

また、本願発明の電着塗膜は腐食因子に対するバリア効果よりも、下層有機塗膜の防錆顔料を保持する効果を主目的としているため、ある程度下地の有機塗膜を覆ってさえいれば、腐食因子に対するバリア効果が期待できない10μm以下の薄膜でも十分に長期に渡る耐食性を確保することができる。   In addition, since the electrodeposition coating film of the present invention is mainly intended to retain the anticorrosive pigment of the lower organic coating film rather than the barrier effect against the corrosion factor, as long as the organic coating film is covered to some extent, Even a thin film having a thickness of 10 μm or less, which cannot be expected to have a barrier effect against a corrosion factor, can sufficiently secure long-term corrosion resistance.

以下に、本発明の好適な実施の形態を、詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の自動車部材は金属材の少なくとも片面に、導電性粒子(α)及び防錆顔料(β)を含有する有機塗膜(A)を有し、その上層に鉛を実質的に含まない電着塗料から形成される電着塗膜(B)を有することを特徴とする。   The automobile member of the present invention has an organic coating film (A) containing conductive particles (α) and a rust preventive pigment (β) on at least one surface of a metal material, and an electric layer substantially free of lead in the upper layer. It has the electrodeposition coating film (B) formed from a coating material.

本発明の自動車部材の製造方法に特に制限はないが、前記有機塗膜(A)を少なくとも片面に有する金属材を素材とし、(i)ブランキング、(ii)プレス加工、(iii)組立て・接合、(iv)洗浄、(v)化成処理、(vi)電着塗装の工程を経て製造されることが一般的である。   Although there is no particular limitation on the method for producing an automobile member of the present invention, a metal material having the organic coating film (A) on at least one side is used as a raw material, and (i) blanking, (ii) press working, (iii) assembly / Generally, it is manufactured through steps of bonding, (iv) cleaning, (v) chemical conversion treatment, and (vi) electrodeposition coating.

前記(v)化成処理工程は、金属材と電着塗膜との密着性を向上させることを目的として、金属材の表面に化成処理皮膜を形成させる工程である。本発明の自動車部材における金属材の表面に有機塗膜(A)を有する部位では、有機塗膜(A)の効果により、化成処理皮膜がなくても電着塗膜との良好な密着性を確保できる。したがって、有機塗膜(A)が金属材両面に塗装されている場合等は、化成処理工程を省略することができる。また、有機塗膜(A)を有する金属板が化成処理工程を経ても、有機塗膜(A)上には化成処理皮膜はほとんど付着しないが、仮に付着したとしても本発明の趣旨を損なうものではない。   The (v) chemical conversion treatment step is a step of forming a chemical conversion treatment film on the surface of the metal material for the purpose of improving the adhesion between the metal material and the electrodeposition coating film. In the part which has the organic coating film (A) on the surface of the metal material in the automobile member of the present invention, due to the effect of the organic coating film (A), good adhesion with the electrodeposition coating film is obtained even without the chemical conversion coating film. It can be secured. Therefore, when the organic coating film (A) is coated on both surfaces of the metal material, the chemical conversion treatment step can be omitted. Moreover, even if the metal plate having the organic coating film (A) undergoes a chemical conversion treatment step, the chemical conversion coating film hardly adheres to the organic coating film (A), but even if it is temporarily attached, the purpose of the present invention is impaired. is not.

本発明に用いる金属材としては特に限定されるものではなく、例えば、鋼製、アルミニウム製、銅製、チタン製等の各種金属、または合金製の材料(板材、管材、線材、形材等、及び、それらを成形・接合したもの)や、それらに亜鉛、アルミニウム、ニッケル、クロム、銅、コバルト、シリコン、鉄、マグネシウム、カルシウム、マンガン等の任意の金属または合金によるめっきを施した金属材等を使用することができる。中でも本発明に用いる金属材として好適なものは、鋼板、めっき鋼板、アルミニウム板であり、より好適なものは亜鉛系めっき鋼板、アルミニウム系めっき鋼板である。   The metal material used in the present invention is not particularly limited. For example, various metals such as steel, aluminum, copper, and titanium, or alloy materials (plate material, pipe material, wire material, shape material, etc., and , Molded or joined them), and metal materials plated with any metal or alloy such as zinc, aluminum, nickel, chromium, copper, cobalt, silicon, iron, magnesium, calcium, manganese, etc. Can be used. Among these, steel plates, plated steel plates, and aluminum plates are preferable as metal materials used in the present invention, and zinc-based plated steel plates and aluminum-based plated steel plates are more preferable.

亜鉛系めっき鋼板としては、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−鉄めっき鋼板、亜鉛−クロムめっき鋼板、亜鉛−アルミニウムめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板、亜鉛−アルミニウム−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウム−シリコンめっき鋼板等の亜鉛系めっき鋼板、さらにはこれらのめっき層に少量の異種金属元素または不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有したもの、シリカ、アルミナ、チタニア等の無機物を分散させたものが含まれる。
アルミニウム系めっき鋼板としては、アルミニウムまたはアルミニウムとシリコン、亜鉛、マグネシウムの少なくとも1種とからなる合金、例えば、アルミニウム−シリコンめっき鋼板、アルミニウム−亜鉛めっき鋼板、アルミニウム−シリコン−マグネシウムめっき鋼板等が挙げられる。更には以上のめっきと他の種類のめっき、例えば鉄めっき、鉄−リンめっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきにも適用可能である。めっき方法は特に限定されるものではなく、公知の電気めっき法、溶融めっき法、蒸着めっき法、分散めっき法、真空めっき法等のいずれの方法でもよい。
Zinc-coated steel sheets include galvanized steel sheets, zinc-nickel plated steel sheets, zinc-iron plated steel sheets, zinc-chromium plated steel sheets, zinc-aluminum plated steel sheets, zinc-titanium plated steel sheets, zinc-magnesium plated steel sheets, zinc-manganese. Galvanized steel sheets such as plated steel sheets, zinc-aluminum-magnesium plated steel sheets, zinc-aluminum-magnesium-silicon-plated steel sheets, and cobalt, molybdenum, tungsten, nickel as a small amount of different metal elements or impurities in these plated layers Examples include those containing titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic, etc., and those in which inorganic substances such as silica, alumina, titania, etc. are dispersed.
Examples of the aluminum-based plated steel sheet include aluminum or an alloy composed of aluminum and at least one of silicon, zinc, and magnesium, such as an aluminum-silicon plated steel sheet, an aluminum-zinc plated steel sheet, and an aluminum-silicon-magnesium plated steel sheet. . Furthermore, the present invention can also be applied to multilayer plating in combination with the above plating and other types of plating such as iron plating, iron-phosphorus plating, nickel plating, cobalt plating and the like. The plating method is not particularly limited, and any known method such as an electroplating method, a hot dipping method, a vapor deposition plating method, a dispersion plating method, and a vacuum plating method may be used.

本発明に用いる有機塗膜(A)は、導電性粒子(α)及び防錆顔料(β)を含有していれば特に限定されるものではないが、公知の有機樹脂をバインダー成分とし、そのバインダー中に公知の導電性粒子、防錆顔料を分散させたもの等を使用することができる。これらについては、後ほど詳述する。   The organic coating film (A) used in the present invention is not particularly limited as long as it contains conductive particles (α) and a rust preventive pigment (β). The thing in which well-known electroconductive particle and the antirust pigment were disperse | distributed in the binder can be used. These will be described in detail later.

本発明に用いる電着塗膜(B)は、鉛(鉛化合物中の鉛も含む)を実質的に含有していない電着塗料から形成されるものであれば特に限定されるものではない。本明細書で実質的に含有していないということは、環境に悪影響を与えるような量で鉛を含まないことを意味し、具体的には、電着塗料中に含まれる鉛の量が10ppm以下であることをいう。   The electrodeposition coating film (B) used for this invention will not be specifically limited if it is formed from the electrodeposition coating material which does not contain lead (including the lead in a lead compound) substantially. The phrase “substantially free” as used herein means that lead is not contained in an amount that adversely affects the environment. Specifically, the amount of lead contained in the electrodeposition paint is 10 ppm. It means the following.

電着塗膜は、一般的には水溶性あるいは水分散性の電着塗料を満たした塗料槽内に被塗装物を浸漬し、槽内に別に設けた電極との間に直流電圧を印加することで被塗装物表面に塗膜形成成分を析出させる塗装方式で形成される。すなわち、本発明における被塗装物は、導電性粒子(α)及び防錆顔料(β)を含有する有機塗膜(A)を少なくとも片面に有する金属板であり、その成形品や成形品が溶接等で接合された部材を含む。電着塗料には、塗膜形成成分が正に帯電したカチオン型電着塗料と負に帯電したアニオン型電着塗料とがあるが、本発明に用いる電着塗料としては、耐食性の観点からカチオン型電着塗料が好ましい。電着塗膜を形成するための基体樹脂としては、例えば、ビスフェノールA型エポキシ樹脂をポリエーテル、ポリエステル、ポリアミド等で可塑変性し、アミノ化合物で分子中に多数のアミノ基を導入したポリアミン樹脂を酢酸等の低分子有機酸で中和して水に分散させたもの等が使用できるが、特に限定されるものではない。硬化剤には、トリレンジイソシアネート(TDI)やジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)などのポリイソシアネートのアルコールブロック体が主に使用されるが、その使用形態は樹脂に組み込まれて使用される場合と単純に混合されて使用される場合があり、使用量は全樹脂固形分の20〜30%程度が一般的である。また、水溶性樹脂や界面活性剤などを基体樹脂や顔料の分散安定剤として使用することもでき、水溶性アルコールやケトン類の溶剤を、樹脂の分散安定化や電着塗装性の調整のために使用することもできる。触媒として、錫イオン、セリウムイオン、ビスマスイオン、銅イオン、亜鉛イオン等を使用することもできる。   Electrodeposition coatings generally immerse the object in a paint tank filled with a water-soluble or water-dispersible electrodeposition paint, and apply a DC voltage between the electrodes separately provided in the tank. By this, it forms by the coating system which deposits a coating-film formation component on the to-be-coated object surface. That is, the object to be coated in the present invention is a metal plate having an organic coating film (A) containing conductive particles (α) and a rust preventive pigment (β) on at least one side, and the molded product or the molded product is welded. Etc., and members joined by, for example. Electrodeposition paints include cation-type electrodeposition paints with positively charged film forming components and anion-type electrodeposition paints with negative charge. The electrodeposition paints used in the present invention are cationic from the viewpoint of corrosion resistance. A type electrodeposition paint is preferred. As a base resin for forming an electrodeposition coating film, for example, a polyamine resin in which a bisphenol A type epoxy resin is plastically modified with polyether, polyester, polyamide, etc., and a large number of amino groups are introduced into the molecule with an amino compound. Although what neutralized with low molecular organic acids, such as an acetic acid, and disperse | distributed to water can be used, it does not specifically limit. Alcohol blocks of polyisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and hexamethylene diisocyanate (HDI) are mainly used as the curing agent. In some cases, it is used in a simple mixture, and the amount used is generally about 20 to 30% of the total resin solids. Water-soluble resins and surfactants can also be used as dispersion stabilizers for base resins and pigments. Solvents such as water-soluble alcohols and ketones are used to stabilize resin dispersion and adjust electrodeposition coating properties. Can also be used. As the catalyst, tin ions, cerium ions, bismuth ions, copper ions, zinc ions, and the like can also be used.

本発明に用いる電着塗膜(B)には、必要に応じて着色顔料、防錆顔料、体質顔料を含有させてもよい。例えば、カーボンブラックのような着色顔料、カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカ、クレー、及びシリカのような体質顔料、リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、亜リン酸亜鉛、シアン化亜鉛、酸化亜鉛、トリポリリン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸カルシウム、及びリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のような防錆顔料、等を使用することができる。   The electrodeposition coating film (B) used in the present invention may contain a color pigment, a rust preventive pigment, and an extender pigment as necessary. For example, pigments such as carbon black, extender pigments such as kaolin, talc, aluminum silicate, calcium carbonate, mica, clay, and silica, zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, phosphorous acid Zinc, zinc cyanide, zinc oxide, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate, and rust preventive pigments such as aluminum phosphomolybdate and aluminum phosphomolybdate can be used. .

本発明の自動車部材は、電着塗装を施した後に、必要に応じて、更に一層以上の塗装をすることができる。例えば、自動車の外面側に要求される意匠性、耐久性、耐チッピング性等を満足するために、公知の中塗り、上塗り塗装を施すことも可能である。必要に応じて、更にその上層にクリアガード塗装を施すことも可能である。   The automobile member of the present invention can be further coated as required after electrodeposition coating. For example, in order to satisfy the design properties, durability, chipping resistance, and the like required on the outer surface side of an automobile, it is possible to apply a known intermediate coating or top coating. If necessary, it is possible to further apply a clear guard coating on the upper layer.

本発明の自動車部材の前記有機塗膜(A)、前記電着塗膜(B)が順次形成されている部位において、前記有機塗膜(A)の厚みをTとし、前記電着塗膜(B)の厚みをTとしたときに、Tを1μm以上確保することで、従来技術に対する耐食性向上効果が確認できるが、安定した効果を得るためには2μm以上とすることが好ましい。尚、耐食性の観点からは膜厚上限を規定する必要は無いが、安定した電着塗装性や、溶接性の確保、塗料コスト等の観点から10μm以下とすることが好ましい。また、Tについては2μm以上確保する事で従来技術に対する耐食性向上効果が確認できるが、安定した効果を得るためには3μm以上とすることが好ましい。尚、耐食性の観点からの膜厚上限は無いが、20μmを超えても性能向上の効果は期待できない事から、塗料コスト、電力コスト、生産性などの観点から20μm以下とすることが好ましい。ただし、電着塗膜の膜厚は、塗装対象物の形状、電極との距離、塗料の性状等により同一部材であっても大きくばらつくため、均一な膜厚を得ることや、局部的な付着量過多発生をなくすことは困難であり、また、膜厚が厚い事による性能への悪影響はないことから、必ずしも自動車部材全面の膜厚が20μm以下である必要は無く、また部分的な異常膜厚部の発生についても特に問題とはしない。 The organic coating of automobile parts of the present invention (A), at the site where the electrodeposition coating film (B) are sequentially formed, the thickness of the organic coating film (A) and T A, the electrodeposition coating the thickness of (B) is taken as T B, by securing the T a or 1 [mu] m, although the corrosion resistance improving effect of the prior art can be confirmed, in order to obtain a stable effect is preferably at least 2 [mu] m. In addition, although it is not necessary to prescribe | regulate a film thickness upper limit from a corrosion-resistant viewpoint, it is preferable to set it as 10 micrometers or less from viewpoints, such as ensuring stable electrodeposition coating property, weldability, and coating cost. Although for the T B can confirm the corrosion resistance improvement effect over the prior art in that the securing or 2 [mu] m, in order to obtain a stable effect is preferably at least 3 [mu] m. In addition, although there is no upper limit of the film thickness from the viewpoint of corrosion resistance, the effect of improving the performance cannot be expected even if it exceeds 20 μm, and therefore it is preferably 20 μm or less from the viewpoint of paint cost, power cost, productivity, and the like. However, the film thickness of the electrodeposition coating film varies widely even with the same member depending on the shape of the object to be coated, the distance from the electrode, the properties of the paint, etc. It is difficult to eliminate the excessive amount, and since there is no adverse effect on the performance due to the thick film thickness, it is not always necessary that the film thickness of the entire surface of the automobile member be 20 μm or less, and a partially abnormal film The occurrence of thick parts is not particularly a problem.

より安定した耐食性を確保するためには、すべての部位が、T≧2μm、T≧3μm、T+T≧8μmを満足することが好ましい。Tが2μm未満、Tが3μm未満、T+Tが8μm未満であると、十分な耐食性が得られない可能性がある。より好ましい膜厚の下限条件はT≧3μm、T≧5μm、T+T≧10μmである。 In order to ensure more stable corrosion resistance, it is preferable that all parts satisfy T A ≧ 2 μm, T B ≧ 3 μm, and T A + T B ≧ 8 μm. If T A is less than 2 μm, T B is less than 3 μm, and T A + T B is less than 8 μm, sufficient corrosion resistance may not be obtained. More preferable lower limit conditions of the film thickness are T A ≧ 3 μm, T B ≧ 5 μm, and T A + T B ≧ 10 μm.

本発明の自動車部材は、前記有機塗膜(A)、前記電着塗膜(B)が順次形成されている部位において、前記電着塗膜(B)の最も薄い部分の膜厚Tが10μm以下であっても、従来の自動車部材同等以上の耐食性を確保することができる。現状、電着塗膜は、通常10〜25μm程度の厚みで使用されている。従来の自動車部材では、電着塗膜の厚みが10μmを下回ると耐食性が極端に低下するため、10μm以上を確保する必要があり、好ましくは20μm程度の厚みを確保する必要があった。そのため、電着塗装の付きまわりの悪い部位の電着塗膜厚を確保するために、部材全体の塗膜厚を上げる等の対策を講じ、生産性や経済性の低下を招いていた。本発明の自動車部材は、前記電着塗膜(B)の最も薄い部分の膜厚Tが10μm以下であっても、2μm以上、好ましくは3μm以上、より好ましくは5μm以上であれば十分な耐食性が得られるため、本発明を電着塗膜の付きまわりの悪い部位を含む自動車部材に適用した場合、特に有効である。 Automobile parts of the present invention, the organic coating film (A), at the site where the electrodeposition coating film (B) are sequentially formed, is the thinnest portion of the thickness T B of the electrodeposition coating film (B) Even when the thickness is 10 μm or less, corrosion resistance equal to or higher than that of a conventional automobile member can be ensured. At present, the electrodeposition coating is usually used in a thickness of about 10 to 25 μm. In a conventional automobile member, when the thickness of the electrodeposition coating film is less than 10 μm, the corrosion resistance is extremely lowered, so that it is necessary to secure 10 μm or more, and it is necessary to secure a thickness of about 20 μm. For this reason, in order to secure the electrodeposition coating thickness of the part where the electrodeposition coating is poor, measures such as increasing the coating thickness of the entire member have been taken, leading to a decrease in productivity and economy. Automobile parts of the present invention, the electrodeposition coating the film thickness T B of the thinnest portion of (B) is not more 10μm or less, 2 [mu] m or more, preferably 3μm or more, sufficient if more preferably 5μm or more Since corrosion resistance can be obtained, the present invention is particularly effective when applied to an automobile member including a portion where the electrodeposition coating is poor.

前記有機塗膜(A)、前記電着塗膜(B)の厚みは、各々の塗膜を有する金属材断面の観察や電磁膜厚計等の利用により測定できる。その他に、単位面積当りに付着した塗膜の質量を、塗膜の比重又は塗料の乾燥後比重で除算して算出してもよい。塗膜の付着質量は、塗装前後の質量差、塗装後の塗膜を剥離した前後の質量差、または、塗膜を蛍光X線分析して予め皮膜中の含有量が分かっている元素の存在量を測定する等、既存の手法から適切に選択すればよい。塗膜の比重又は塗料の乾燥後比重は、単離した塗膜の容積と質量を測定する、適量の塗料を容器に取り乾燥させた後の容積と質量を測定する、または、皮膜構成成分の配合量と各成分の既知の比重から計算する等、既存の手法から適切に選択すればよい。   The thickness of the organic coating film (A) and the electrodeposition coating film (B) can be measured by observing a cross section of a metal material having each coating film or using an electromagnetic film thickness meter. In addition, the mass of the coating film adhered per unit area may be calculated by dividing by the specific gravity of the coating film or the specific gravity after drying of the coating material. The adhesion mass of the coating is the mass difference before and after coating, the mass difference before and after peeling the coating after coating, or the presence of an element whose content in the coating is known in advance by fluorescent X-ray analysis. What is necessary is just to select appropriately from the existing methods, such as measuring quantity. The specific gravity of the paint film or the specific gravity after drying of the paint is measured by measuring the volume and mass of the isolated paint film, measuring the volume and mass after taking an appropriate amount of paint in a container and drying it, or What is necessary is just to select suitably from the existing method, such as calculating from a compounding quantity and the known specific gravity of each component.

次に、本発明の導電性粒子(α)及び防錆顔料(β)を含有する有機塗膜(A)について、さらに詳細に述べる。また、有機塗膜(A)と金属材との間に下地処理を施す場合についても述べる。   Next, the organic coating film (A) containing the conductive particles (α) and the rust preventive pigment (β) of the present invention will be described in more detail. In addition, a case where a base treatment is applied between the organic coating film (A) and the metal material will be described.

本発明の有機塗膜(A)には、塗膜を保持するためのバインダー成分が含まれる。そのバインダー成分に特に制限はないが、有機樹脂を使用することが好適である。有機樹脂に特に制限はないが、例えば、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂、ポリオレフィン樹脂、ブチラール樹脂、エーテル樹脂、スルフォン樹脂、ポリアミド樹脂、ポリイミド樹脂、アミノ樹脂、フェノール樹脂、塩化ビニル樹脂、ポリビニルアルコール樹脂、イソシアネート樹脂等の樹脂、これらの共重合樹脂、これらの混合物、複合物等が例示できる。常温で硬化乾燥するもの、熱で硬化乾燥するもの、紫外線や電子線等のエネルギー線で硬化乾燥するもの、等の公知の技術から選択すれば良い。また、これらの樹脂を主成分とするフィルムをラミネートして、被覆金属板を製造することもできる。   The organic coating film (A) of the present invention contains a binder component for holding the coating film. Although there is no restriction | limiting in particular in the binder component, It is suitable to use an organic resin. The organic resin is not particularly limited. For example, urethane resin, epoxy resin, acrylic resin, polyester resin, fluorine resin, silicon resin, polyolefin resin, butyral resin, ether resin, sulfone resin, polyamide resin, polyimide resin, amino resin, Examples thereof include resins such as phenol resins, vinyl chloride resins, polyvinyl alcohol resins, isocyanate resins, copolymer resins thereof, mixtures thereof, composites, and the like. What is necessary is just to select from well-known techniques, such as what is hardened and dried at normal temperature, what is hardened and dried with heat, what is hardened and dried with energy rays such as ultraviolet rays and electron beams. In addition, a coated metal plate can be produced by laminating films containing these resins as main components.

これらの中でも、特に、塗膜中にウレタン結合を含む樹脂が使用される場合に、耐食性、加工性、導電性が高いレベルで並立できる。これは、ウレタン結合を持つ樹脂が柔軟性に優れ、溶接用の電極によって圧力をかけられた場合に容易に変形して、導電性粒子同士の接触を特に確実にすること、柔軟性によって成形加工時の塗膜の割れや亀裂を防止しやすいこと、化学的に強固な結合であるため劣化に強いこと等の理由によると考えられる。加えて、塗膜中にウレタン結合を含む樹脂が使用される場合に、優れた上層の電着塗膜との密着性を担保することができる。   Among these, particularly when a resin containing a urethane bond is used in the coating film, the corrosion resistance, workability, and conductivity can be arranged side by side. This is because a resin having a urethane bond is excellent in flexibility, and easily deforms when pressure is applied by a welding electrode, and particularly ensures contact between conductive particles. It is thought that this is because it is easy to prevent cracking and cracking of the coating film at the time, and it is strong against deterioration because it is a chemically strong bond. In addition, when a resin containing a urethane bond is used in the coating film, excellent adhesion with the upper electrodeposition coating film can be ensured.

本発明の導電性粒子(α)としては、特に制限がなく公知の物質を用いることができる。例えば、Zn、Ni、Fe、Al、Ag、Au、Cu、Mg、Cr、Sn、ステンレス鋼、Si等の金属、合金や半導体の粒子、リン化鉄、フェロシリコン、フェロマンガン等の鉄系化合物、NiO、ZnO等の酸化物系の粒子、カーボンブラック、グラファイト、カーボンナノチューブ等のカーボン系粒子、等を例示することができる。粒子の形状は、特に限定されるものではなく、塊状、フレーク状、球状、不定形、繊維状、ウィスカー状、鎖状等である。これらの導電性粒子は、単独で使用してもよいし、2種以上混合して使用してもよい。   There are no particular limitations on the conductive particles (α) of the present invention, and known substances can be used. For example, metals such as Zn, Ni, Fe, Al, Ag, Au, Cu, Mg, Cr, Sn, stainless steel, and Si, particles of alloys and semiconductors, iron compounds such as iron phosphide, ferrosilicon, and ferromanganese Examples thereof include oxide particles such as NiO and ZnO, and carbon particles such as carbon black, graphite, and carbon nanotube. The shape of the particles is not particularly limited, and may be a lump shape, flake shape, spherical shape, indefinite shape, fiber shape, whisker shape, chain shape, or the like. These conductive particles may be used alone or in combination of two or more.

これらの導電性粒子の中でも、特に、フェロシリコンが好ましい。フェロシリコンは、導電性を持ち、また、それ自体に耐食性向上効果もある。すなわち、一般的に相反する導電性と耐食性とを同時に向上させることのできる導電性粒子であり、溶接性や電着塗装性を担保しながら耐食性を向上させるには極めて好適である。耐食性を向上する機構は十分に解明されていないが、塗膜下が腐食によってアルカリ環境となったときに溶解し、強固なシリカ被膜を形成して腐食を抑制するためと推定される。フェロシリコンにも、Siの含有量の異なる種類があるが、特にSi含有量が70質量%以上のフェロシリコン、例えば、Si含有率が75〜80質量%のJIS2号フェロシリコン等を導電性粒子として用いることで、溶接性や電着塗装性を確保できると同時に耐食性が向上する。   Among these conductive particles, ferrosilicon is particularly preferable. Ferrosilicon has conductivity and has an effect of improving corrosion resistance. That is, they are generally conductive particles that can simultaneously improve contradictory conductivity and corrosion resistance, and are extremely suitable for improving corrosion resistance while ensuring weldability and electrodeposition coating properties. Although the mechanism for improving the corrosion resistance has not been fully elucidated, it is presumed that it dissolves when the coating layer becomes an alkaline environment due to corrosion and forms a strong silica coating to suppress corrosion. Ferrosilicon also has different types of Si content. In particular, ferrosilicon having a Si content of 70% by mass or more, for example, JIS No. 2 ferrosilicon having a Si content of 75 to 80% by mass, and the like are conductive particles. As a result, it is possible to ensure weldability and electrodeposition coating properties and improve corrosion resistance.

本発明の有機塗膜(A)に含まれる導電性粒子(α)の含有量は、15〜60体積%であることが好ましい。15体積%未満であると十分な溶接性や電着塗装性が得られない可能性があり、60体積%を超えると、有機塗膜(A)が脆くなり長期に渡る耐食性が低下する可能性や上層の電着塗膜(B)との密着性が低下する可能性がある。導電性粒子(α)にフェロシリコンを含む場合、フェロシリコンとしての含有量も15〜60体積%であることが好ましい。15体積%未満であると十分な溶接性や電着塗装性が得られない可能性があり、60体積%を超えると、有機塗膜(A)が脆くなり長期に渡る耐食性が低下する可能性や上層の電着塗膜(B)との密着性が低下する可能性がある。   It is preferable that content of the electroconductive particle ((alpha)) contained in the organic coating film (A) of this invention is 15-60 volume%. If it is less than 15% by volume, sufficient weldability and electrodeposition coating properties may not be obtained. If it exceeds 60% by volume, the organic coating film (A) may become brittle and long-term corrosion resistance may be reduced. In addition, the adhesion with the electrodeposition coating film (B) of the upper layer may be lowered. When the conductive particles (α) contain ferrosilicon, the content as ferrosilicon is preferably 15 to 60% by volume. If it is less than 15% by volume, sufficient weldability and electrodeposition coating properties may not be obtained. If it exceeds 60% by volume, the organic coating film (A) may become brittle and long-term corrosion resistance may be reduced. In addition, the adhesion with the electrodeposition coating film (B) of the upper layer may be lowered.

本発明の防錆顔料(β)としては特に限定されないが、例えば、ストロンチウムクロメート、カルシウムクロメートのような6価クロム酸塩等、公知の防錆顔料を用いることができる。   Although it does not specifically limit as a rust preventive pigment ((beta)) of this invention, For example, well-known rust preventive pigments, such as hexavalent chromate salts, such as strontium chromate and calcium chromate, can be used.

防錆顔料としてクロムを含む化合物の使用を回避したい場合は、ケイ酸イオン、リン酸イオン、バナジン酸イオンのうち、一種類以上を放出する防錆顔料等を使用することが好適である。これらの防錆顔料を用いた場合、電着塗装を施す際に有機塗膜(A)と形成される電着塗膜(B)との界面がアルカリ環境になり、一部溶解し、前記イオンを放出する。放出されたイオンは、形成される電着塗膜(B)にも取り込まれ、電着塗膜(B)の架橋剤、もしくは架橋剤の触媒として作用することが考えられる。したがって、これらの防錆顔料は、有機塗膜(A)の防錆顔料としての作用のみならず、電着塗膜(B)の架橋密度を上げ、バリア性を向上させる効果も併せ持つため、その相乗効果により優れた耐食性を発現すると考えられる。これらの防錆顔料は、各々単独でも優れた防錆効果、電着塗膜のバリア性向上効果を発揮するが、中でもリン酸イオン、バナジン酸イオンを同時に放出できる防錆顔料が、防錆効果の観点でより好ましい。有機塗膜中で放出されたケイ酸イオン、リン酸イオン、バナジン酸イオンは難溶性の塩や酸化物の被膜を形成し、腐食を抑制すると考えられる。リン酸イオン、バナジン酸イオンが共存することで特に優れた防錆効果を発揮する理由は明確ではないが、両者の共存被膜は各々単独よりも更に緻密で強固な被膜を形成することが優れた防錆効果を発揮する理由として推定される。   When it is desired to avoid the use of a compound containing chromium as a rust preventive pigment, it is preferable to use a rust preventive pigment that releases one or more of silicate ions, phosphate ions, and vanadate ions. When these anticorrosive pigments are used, the interface between the organic coating film (A) and the formed electrodeposition coating film (B) becomes an alkaline environment when electrodeposition coating is applied, and partly dissolves the ions. Release. It is considered that the released ions are taken into the formed electrodeposition coating film (B) and act as a crosslinking agent for the electrodeposition coating film (B) or as a catalyst for the crosslinking agent. Therefore, these rust preventive pigments not only act as a rust preventive pigment of the organic coating film (A), but also have an effect of increasing the crosslinking density of the electrodeposition coating film (B) and improving the barrier property. It is thought that excellent corrosion resistance is expressed by a synergistic effect. Each of these anti-corrosion pigments exhibits excellent anti-rust effect and improved barrier property of the electrodeposition coating film, but among them, anti-rust pigments that can simultaneously release phosphate ions and vanadate ions have anti-rust effects. From the viewpoint of It is considered that silicate ions, phosphate ions and vanadate ions released in the organic coating film form a hardly soluble salt or oxide film to suppress corrosion. The reason why a particularly excellent antirust effect is exhibited by the coexistence of phosphate ions and vanadate ions is not clear, but the coexisting coatings of both were excellent in forming a denser and stronger coating than each of them. It is presumed as a reason for exhibiting a rust prevention effect.

ケイ酸イオンを放出する化合物としては、例えば、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウム等が挙げられる。   Examples of the compound that releases silicate ions include calcium silicate, aluminum silicate, magnesium silicate, sodium silicate, potassium silicate, lithium silicate, and the like.

リン酸イオンは、水溶液中において単独で存在することが少なく、種々の形態、例えば、縮合体として存在するが、そのような場合でも、本明細書中の「リン酸イオン」とは縮合リン酸イオンも含む概念と理解される。   Phosphate ions are rarely present alone in an aqueous solution and exist in various forms, for example, as condensates. Even in such a case, “phosphate ion” in the present specification means condensed phosphate. It is understood as a concept including ions.

リン酸イオンを放出する化合物としては、オルトリン酸、縮合リン、種々の金属のオルトリン酸塩又は縮合リン酸塩、五酸化リン、リン酸塩鉱物、市販の複合リン酸塩顔料、又は、これらの混合物などが挙げられる。ここで言うオルトリン酸塩の中には、その一水素塩(HPO 2−)の塩、二水素塩(HPO )も含むものとする。また、縮合リン酸塩の中にも水素塩を含むこととする。また、縮合リン酸塩には、メタリン酸塩も含み、通常のポリリン酸塩、ポリメタリン酸塩も含むものとする。リン化合物の具体例としては、リン酸塩鉱物、例えば、モネタイト、トルフィル石、ウィトロック石、ゼノタイム、スターコライト、ストルーブ石、ラン鉄鉱石や、市販の複合リン酸塩顔料、例えば、ポリリン酸シリカ等や、複合リン酸、例えば、ピロリン酸、メタリン酸や、複合リン酸塩、例えば、メタリン酸塩、テトラメタリン酸塩、ヘキサメタリン酸塩、ピロリン酸塩、酸性ピロリン酸塩、トリポリリン酸塩や、あるいはこれらの混合物が挙げられる。リン酸塩を形成する金属種は特に限定的でなく、アルカリ金属、アルカリ土類金属、その他の典型元素の金属種又は遷移金属が挙げられる。好ましい金属種の例としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、マンガン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、鉛、錫等が挙げられる。 Compounds that release phosphate ions include orthophosphoric acid, condensed phosphorus, orthophosphates or condensed phosphates of various metals, phosphorus pentoxide, phosphate minerals, commercially available complex phosphate pigments, or these A mixture etc. are mentioned. The orthophosphate referred to here includes salts of its monohydrogen salt (HPO 4 2− ) and dihydrogen salt (H 2 PO 4 ). The condensed phosphate includes a hydrogen salt. In addition, the condensed phosphate includes metaphosphate, and includes ordinary polyphosphate and polymetaphosphate. Specific examples of the phosphorus compound include phosphate minerals such as monetite, tolufilite, witrockite, xenotime, starcolite, struvite, lanthanum ore, and commercially available complex phosphate pigments such as polyphosphoric acid. Silica, etc., complex phosphates such as pyrophosphate, metaphosphate, complex phosphates such as metaphosphate, tetrametaphosphate, hexametaphosphate, pyrophosphate, acidic pyrophosphate, tripolyphosphate Or a mixture thereof. The metal species forming the phosphate is not particularly limited, and examples thereof include alkali metal, alkaline earth metal, metal species of other typical elements, and transition metals. Examples of preferable metal species include magnesium, calcium, strontium, barium, titanium, zirconium, manganese, iron, cobalt, nickel, zinc, aluminum, lead, tin and the like.

この他に、バナジル、チタニル、ジルコニル等、オキソカチオンも含まれる。特に好ましいのは、カルシウム、マグネシウムである。アルカリ金属の多量の使用は、好ましくない。アルカリ金属のリン酸塩を用いた場合、焼成生成物が水に溶解し過ぎる傾向にある。しかしながら、アルカリ金属のリン酸塩を用いた場合において、水への溶解性の制御を防錆剤製造時あるいはその他の時点で実施できれば、使用しても良い。そのような制御は、例えば、水への溶解性の防止のためのマトリックス材(特に、ガラス状物質)の使用、あるいはコーティング等種々の態様が挙げられる。   In addition, oxo cations such as vanadyl, titanyl, zirconyl and the like are also included. Particularly preferred are calcium and magnesium. The use of a large amount of alkali metal is not preferred. When an alkali metal phosphate is used, the fired product tends to dissolve too much in water. However, when an alkali metal phosphate is used, it may be used as long as the solubility in water can be controlled at the time of production of the rust inhibitor or at other times. Such control includes, for example, various modes such as the use of a matrix material (particularly, a glassy substance) for preventing solubility in water, or coating.

バナジン酸イオンを放出する化合物としては、バナジウムの原子価が0、2、3、4又は5のいずれか1つの価数又は2種以上の価数を有する化合物であり、これらの酸化物、水酸化物、種々の金属の酸素酸塩、バナジル化合物、ハロゲン化物、硫酸塩、金属粉等が挙げられる。これらは、加熱時又は水の存在下で分解して、酸素と反応し高級化する。例えば、金属粉又は2価の化合物は、最終的に3、4、5価のいずれかの化合物に変化する。0価のもの、例えば、バナジウム金属粉は、上記の理由で使用可能であるが、酸化反応が不十分等の問題があるので、実用上好ましくない。5価のバナジウム化合物を1つの成分として含むのも好ましい。5価のバナジウム化合物は、バナジン酸イオンを有し、リン酸イオンと加熱反応し、ヘテロポリマーを作り易い。バナジウム化合物の具体例としては、バナジウム(II)化合物、例えば、酸化バナジウム(II)、水酸化バナジウム(II)、バナジウム(III)化合物、例えば、酸化バナジウム(III)、バナジウム(IV)化合物、例えば、酸化バナジウム(IV)、ハロゲン化バナジル等、バナジウム(V)化合物、例えば、酸化バナジウム(V)、バナジン酸塩、例えば、種々の金属のオルトバナジン酸塩、メタバナジン酸塩又はピロバナジン酸塩、ハロゲン化バナジル等、又はこれらの混合物が挙げられる。バナジン酸塩の金属種は、リン酸塩で示したものと同じ物が挙げられる。これは、バナジウムの酸化物と種々の金属の酸化物、水酸化物、炭酸塩等とを600℃以上に焼成して作っても良い。この場合も、アルカリ金属は溶解性の故にあまり好ましくないが、リン酸塩において説明した適当な処理をして溶解性を制御すれば、これらの使用も差し支えない。また、ハロゲン化物、硫酸塩も同様である。   The compound that releases vanadate ions is a compound having a valence of vanadium of any one of 0, 2, 3, 4 or 5, or a valence of two or more. These oxides, water Examples thereof include oxides, oxyacid salts of various metals, vanadyl compounds, halides, sulfates, and metal powders. These decompose when heated or in the presence of water and react with oxygen to be upgraded. For example, a metal powder or a divalent compound finally changes to a trivalent, tetravalent, or pentavalent compound. Zero-valent ones, such as vanadium metal powder, can be used for the above reasons, but are not preferred in practice because of problems such as insufficient oxidation reaction. It is also preferable to contain a pentavalent vanadium compound as one component. The pentavalent vanadium compound has vanadate ions and reacts with phosphate ions by heating to easily form a heteropolymer. Specific examples of vanadium compounds include vanadium (II) compounds, such as vanadium (II) oxide, vanadium (II) hydroxide, vanadium (III) compounds, such as vanadium (III) oxide, vanadium (IV) compounds, such as Vanadium (IV) oxide, vanadyl halide, etc., vanadium (V) compounds such as vanadium oxide (V), vanadate, such as orthovanadate, metavanadate or pyrovanadate of various metals, halogen And vanadyl chloride, or a mixture thereof. Examples of the vanadate metal species are the same as those shown for phosphate. This may be made by baking an oxide of vanadium and various metal oxides, hydroxides, carbonates, etc. at 600 ° C. or higher. In this case as well, alkali metals are not preferred because of their solubility, but they can be used if the solubility is controlled by appropriate treatment as described for phosphate. The same applies to halides and sulfates.

配合するリン酸イオン源とバナジン酸イオン源との比は、PとVのモル比に換算して1:3〜100:1とするのが好ましい。バナジン酸イオン源の量が上記モル比で1:3を超える場合には、リン酸塩イオンによる防錆効果が低下し、バナジン酸イオン源の量が上記モル比で100:1よりも少ない場合には、バナジン酸イオンによるオキシダイザー機能が不十分であるため、好ましくない。 The ratio of the phosphate ion source and vanadate ion source to be blended is preferably 1: 3 to 100: 1 in terms of the molar ratio of P 2 O 5 and V 2 O 5 . When the amount of vanadate ion source exceeds 1: 3 in the above molar ratio, the rust prevention effect due to phosphate ions is reduced, and the amount of vanadate ion source is less than 100: 1 in the above molar ratio Is not preferred because the oxidizer function by vanadate ions is insufficient.

これらの防錆顔料と一緒にさらにシリカを添加すると、耐食性がより一層向上する。シリカとしては、例えば、ヒュームドシリカ、コロイダルシリカ、凝集シリカ等が挙げられる。また、カルシウム沈着シリカを用いることもできる。   When silica is further added together with these rust preventive pigments, the corrosion resistance is further improved. Examples of silica include fumed silica, colloidal silica, and agglomerated silica. Calcium deposited silica can also be used.

すなわち、優れた耐食性を確保するためのより好ましい導電性粒子(α)、防錆顔料(β)の態様は、導電性粒子(α)にフェロシリコンを使用し、防錆顔料(β)にリン酸イオン、バナジン酸イオンを同時に放出できる化合物、及びシリカを共存させることである。   That is, the more preferable aspect of the conductive particles (α) and the rust preventive pigment (β) for ensuring excellent corrosion resistance is that ferrosilicon is used for the conductive particles (α) and the rust preventive pigment (β) is phosphorus. A compound capable of simultaneously releasing acid ions, vanadate ions, and silica coexist.

防錆顔料(β)の含有量は、有機塗膜中に2〜25体積%であることが望ましい。好ましくは3〜20体積%である。2%未満であると、十分な耐食性が得られない可能性があり、25体積%を超えると、溶接性や加工性が低下する可能性や電着塗膜(B)の上層に中塗り、上塗り塗装を施した際の耐水密着性が低下する可能性がある。防錆顔料(β)にケイ酸イオン、リン酸イオン、バナジン酸イオンのうち、1種以上を放出できる化合物を含む場合にも、その含有量は該化合物合計で有機塗膜中に2〜25体積%であることが望ましい。2%未満であると、十分な耐食性が得られない可能性があり、25体積%を超えると、溶接性や加工性が低下する可能性や電着塗膜(B)の上層に中塗り、上塗り塗装を施した際の耐水密着性が低下する可能性がある。   The content of the rust preventive pigment (β) is desirably 2 to 25% by volume in the organic coating film. Preferably it is 3-20 volume%. If it is less than 2%, sufficient corrosion resistance may not be obtained, and if it exceeds 25% by volume, the weldability and workability may be lowered, or an intermediate coating may be applied to the upper layer of the electrodeposition coating film (B). There is a possibility that the water-resistant adhesion when the top coat is applied is lowered. Even when the anticorrosive pigment (β) contains a compound capable of releasing one or more of silicate ion, phosphate ion and vanadate ion, the content is 2 to 25 in the organic coating film in total. It is desirable to be volume%. If it is less than 2%, sufficient corrosion resistance may not be obtained, and if it exceeds 25% by volume, the weldability and workability may be lowered, or an intermediate coating may be applied to the upper layer of the electrodeposition coating film (B). There is a possibility that the water-resistant adhesion when the top coat is applied is lowered.

本発明の有機塗膜(A)を形成する方法は、公知の方法によることができる。例えば、バインダー成分に導電性粒子を混合した塗料を製造し、この塗料を塗布することによって製造できる。バインダー成分や含有成分によって、必要に応じて熱で溶剤などを揮発させたり、硬化させたり、あるいはエネルギー線で硬化する等、公知の方法で成膜することができる。塗布の方法は、公知の方法によることができ、例えば、ロールコーター、ローラー塗装、はけ塗り、カーテンコーター、ダイコーター、スライドコーター、静電塗布、スプレー塗布、浸漬塗布、エアナイフ塗布等が例示できる。塗料の形態も、粉体、固体、溶剤系、水系等、特に限定されるものではない。固体塗料に熱をかけて溶融して、ダイで押し出しながら被覆することも可能である。   The method for forming the organic coating film (A) of the present invention can be a known method. For example, it can be produced by producing a paint in which conductive particles are mixed with a binder component and applying the paint. Depending on the binder component and the contained components, the film can be formed by a known method such as volatilization of a solvent with heat, curing, or curing with an energy beam, if necessary. The coating method can be a known method, and examples thereof include a roll coater, roller coating, brush coating, curtain coater, die coater, slide coater, electrostatic coating, spray coating, dip coating, and air knife coating. . The form of the paint is not particularly limited, such as powder, solid, solvent-based, and water-based. It is also possible to melt the solid paint by applying heat and coat it while extruding it with a die.

あるいは、導電性粒子を予めフィルム層中に練り混み、このフィルムをラミネートすることによっても、被覆金属板を製造することができる。ラミネートには、接着剤を使用してもよいし、フィルムを熱溶融して直接金属板にラミネートしても良い。   Alternatively, the coated metal plate can also be produced by kneading conductive particles in advance in the film layer and laminating the film. For laminating, an adhesive may be used, or the film may be heat-melted and directly laminated on a metal plate.

本発明における有機塗膜(A)は、金属の少なくとも片面に形成されればよいが、両面に形成してもよい。片面に形成した場合、もう片面には、何らかの処理層や被覆層を形成してもよいし、金属面のままでも良い。   The organic coating film (A) in the present invention may be formed on at least one side of the metal, but may be formed on both sides. When it is formed on one side, some treatment layer or coating layer may be formed on the other side, or it may be a metal surface.

本発明の金属板と有機塗膜(A)との密着性を向上したり、耐食性を向上したりする目的で、下地処理層を形成しても良い。下地処理層としては、公知の技術を使用することができ、例えば、リン酸塩系処理、3価クロム酸処理、クロメート処理、Zr系処理、Ti系処理、Mn系処理、Ni系処理、Co系処理、V系処理、カップリング剤(Si系、Ti系等)処理、有機物による処理等が例示できる。下地処理層は1層である必要はなく、例えば、リン酸亜鉛処理層を形成して、その上にシーリング処理をする、酸性Ni含有液による前調整後にクロメート処理を施す、等の複数の処理を組み合わせても良い。   You may form a base-treatment layer for the purpose of improving the adhesiveness of the metal plate of this invention, and an organic coating film (A), or improving corrosion resistance. A known technique can be used for the base treatment layer. For example, phosphate treatment, trivalent chromic acid treatment, chromate treatment, Zr treatment, Ti treatment, Mn treatment, Ni treatment, Co Examples thereof include system processing, V system processing, coupling agent (Si system, Ti system, etc.) processing, processing with organic substances, and the like. The base treatment layer does not need to be a single layer. For example, a zinc phosphate treatment layer is formed and a sealing treatment is performed thereon, and a plurality of treatments such as a chromate treatment is performed after preconditioning with an acidic Ni-containing liquid. May be combined.

下地処理層を形成する前に、あるいは下地処理層を形成しない場合には被覆層を形成する前に、金属板表面を公知の方法で処理することができる。例えば、水や湯、脱脂液による脱脂、酸やアルカリによるエッチング、ぶらし等による機械的な研削、等の処理をすることができる。   The metal plate surface can be treated by a known method before forming the base treatment layer or before forming the coating layer when the base treatment layer is not formed. For example, treatments such as degreasing with water or hot water or a degreasing solution, etching with acid or alkali, mechanical grinding by hanging, etc. can be performed.

以下、本発明の実施例について説明する。但し、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to these examples.

(実施例1)
(1)金属材
使用した金属材の種類を、表1に示す。金属材の基材には、板厚0.8mmの軟鋼板を使用した。
Example 1
(1) Metal materials Table 1 shows the types of metal materials used. A mild steel plate having a thickness of 0.8 mm was used as the metal base material.

Figure 2010075859
Figure 2010075859

(2)下地処理層
下地処理層の内容を、表2に示す。下地処理層を形成するための水性の処理液を所定の付着量になるようにバーコートし、到達板温度70℃の条件で乾燥させた。
(2) Ground treatment layer Table 2 shows the contents of the ground treatment layer. An aqueous treatment liquid for forming the base treatment layer was bar-coated so as to have a predetermined adhesion amount, and dried under the condition of a reaching plate temperature of 70 ° C.

Figure 2010075859
Figure 2010075859

(3)有機塗膜
有機塗膜を構成する樹脂の内容を表3に、導電性粒子の内容を表4に、防錆顔料の内容を表5にそれぞれ示す。下地処理層を形成した金属材上に有機塗膜を形成するための溶剤系塗料を所定の乾燥膜厚になるようにバーコートし、到達板温度200℃の条件で焼付けた後、直ちに水冷した。
(3) Organic coating The contents of the resin constituting the organic coating are shown in Table 3, the contents of the conductive particles are shown in Table 4, and the contents of the rust preventive pigment are shown in Table 5, respectively. A solvent-based paint for forming an organic coating film is bar-coated on the metal material on which the base treatment layer is formed so as to have a predetermined dry film thickness, baked at a reaching plate temperature of 200 ° C., and then immediately cooled with water. .

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

(4)試料調整(その1)
上記(3)で作製した塗装金属材を以下の試験片に加工した。
試験片A:70×150mmサイズの平板(平面部、端面部調査用試験片)
試験片B:70×150mmサイズの平板(傷部調査用試験片)
試験片C:円筒カップ成形加工品(加工部調査用試験片)
試験片Cの円筒カップ成形はポンチ径50mmφ、ポンチ肩半径3mm、ダイス径50mmφ、ダイス肩半径3mm、絞り比1.8、しわ押さえ圧1トン、加工油(PG3080/日本工作油社製)塗布の条件で実施した。
(4) Sample preparation (part 1)
The coated metal material produced in the above (3) was processed into the following test pieces.
Test piece A: flat plate of 70 × 150 mm size (planar and end surface test specimens)
Specimen B: 70 × 150 mm size flat plate (scratch investigation specimen)
Specimen C: Cylindrical cup-molded product (test piece for processing section investigation)
Cylindrical cup molding of test piece C is applied with punch diameter 50mmφ, punch shoulder radius 3mm, die diameter 50mmφ, die shoulder radius 3mm, drawing ratio 1.8, wrinkle holding pressure 1 ton, processing oil (PG3080 / manufactured by Nippon Kogyo Oil Co., Ltd.) It carried out on condition of this.

(5)洗浄
上記(4)で作製した試験片A、B、CをサーフクリーナーEC92(日本ペイント社製)の2質量%水溶液で40℃、2分間スプレー処理(脱脂)した後、水道水で30秒間スプレー処理(水洗)した。
(5) Washing After the test pieces A, B and C prepared in the above (4) were sprayed (degreased) for 2 minutes with a 2% by weight aqueous solution of Surf Cleaner EC92 (manufactured by Nippon Paint Co., Ltd.) with tap water, Spray treatment (washed with water) for 30 seconds.

(6)化成処理
上記(5)で洗浄した試験片A、B、Cをサーフファイン5N−8(日本ペイント社製)の0.1質量%水溶液で40℃、30秒間スプレー処理(表面調整)し、続いてSD5350(日本ペイント社製)の6質量%水溶液で35℃、2分間スプレー処理(化成処理)した後、水道水で30秒間スプレー処理(水洗)した。
(6) Chemical conversion treatment The test pieces A, B and C washed in (5) above were sprayed with a 0.1% by weight aqueous solution of Surffine 5N-8 (manufactured by Nippon Paint Co., Ltd.) at 40 ° C. for 30 seconds (surface adjustment). Subsequently, after spray treatment (chemical conversion treatment) at 35 ° C. for 2 minutes with a 6 mass% aqueous solution of SD5350 (manufactured by Nippon Paint Co., Ltd.), it was sprayed with tap water (water washing) for 30 seconds.

(7)電着塗装
上記(6)の化成処理工程を経た試験片A、B、Cをパワーニクス110(日本ペイント社製、鉛を実質的に含まない塗料)を用いて所定の乾燥膜厚になるように電着塗装し、水道水で30秒間スプレー処理(水洗)した後、170℃で20分間加熱して焼付けを行った。
(7) Electrodeposition coating The test pieces A, B, and C that have undergone the chemical conversion treatment step in (6) above have a predetermined dry film thickness using Powernics 110 (manufactured by Nippon Paint Co., Ltd., paint that does not substantially contain lead). The electrodeposition coating was performed, and after spraying (washing with water) for 30 seconds with tap water, baking was performed by heating at 170 ° C. for 20 minutes.

(8)試料調整(その2)
上記(7)で電着塗装を施した試験片Aについては下半分にカッターナイフでクロスカットを入れた後、上下左右端面、裏面を塗装シールした(上半分は平面部、下半分は傷部調査用)。試験片Bについては、上下端面、裏面のみ塗装シールした(左右端面で端面部を調査)。試験片Cについては、端面、裏面を塗装シールした(成形品肩部、側面部で加工部を調査)。
(8) Sample preparation (2)
For the test piece A subjected to electrodeposition coating in (7) above, the lower half was cross-cut with a cutter knife, and then the upper, lower, left and right end surfaces and the back surface were painted and sealed (the upper half was a flat part and the lower half was a scratched part) For research). About the test piece B, only the upper and lower end surfaces and the back surface were painted and sealed (the end surface portion was investigated at the left and right end surfaces). About the test piece C, the end surface and the back surface were paint-sealed (the processed part was investigated in the shoulder part and the side part of the molded product).

(9)中塗り・上塗り塗装
上記(7)で電着塗装を施した試験片について、OP−2(日本ペイント社製)を用いて乾燥膜厚35μmになるように、スプレー塗装し、140℃で20分間加熱して焼付けを行い、中塗り塗膜を形成した。次いで、中塗り塗膜上にOP−058(日本ペイント社製)を用いて乾燥膜厚35μmになるように、スプレー塗装し、140℃で20分間加熱して焼付けを行い、上塗り塗膜を形成した。
(9) Intermediate coating / top coating The test piece subjected to electrodeposition coating in (7) above was spray-coated using OP-2 (manufactured by Nippon Paint Co., Ltd.) to a dry film thickness of 35 μm, and 140 ° C. And baked for 20 minutes to form an intermediate coating film. Next, spray coating is performed on the intermediate coating film using OP-058 (manufactured by Nippon Paint Co., Ltd.) to a dry film thickness of 35 μm, and baking is performed by heating at 140 ° C. for 20 minutes to form a top coating film. did.

(10)試料調整(その3)
上記(9)で中塗り・上塗り塗装を施した試験片Aについては下半分にカッターナイフでクロスカットを入れた後、上下左右端面、裏面を塗装シールした(上半分は平面部、下半分は傷部調査用)。試験片Bについては、上下端面、裏面のみ塗装シールした(左右端面で端面部を調査)。試験片Cについては、端面、裏面を塗装シールした(成形品肩部、側面部で加工部を調査)。
(10) Sample preparation (part 3)
For test piece A with the intermediate coating and top coating applied in (9) above, the lower half was cross-cut with a cutter knife, and then the top, bottom, left, and right end surfaces and the back surface were painted and sealed (the upper half was the flat surface and the lower half was For wound investigation). About the test piece B, only the upper and lower end surfaces and the back surface were painted and sealed (the end surface portion was investigated at the left and right end surfaces). About the test piece C, the end surface and the back surface were paint-sealed (the processed part was investigated in the shoulder part and the side part of the molded product).

上記(8)もしくは(10)で作製した試験片の内容を、表6に示す。各塗膜層の膜厚は、切断した試験片をエポキシ樹脂中に埋め込み、切断面を研磨した後、その切断面を光学顕微鏡で観察することにより実測した。上記(8)で作製した試験片については、下記に示す耐食性試験を実施し、上記(10)で作製した試験片については、下記に示す耐食性試験と耐水密着性試験(試験片Bのみ)を実施した。   Table 6 shows the contents of the test piece prepared in the above (8) or (10). The film thickness of each coating layer was measured by embedding the cut specimen in an epoxy resin, polishing the cut surface, and observing the cut surface with an optical microscope. The test piece prepared in the above (8) is subjected to the corrosion resistance test shown below, and the test piece prepared in the above (10) is subjected to the following corrosion resistance test and water-resistant adhesion test (only the test piece B). Carried out.

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

<耐食性試験>
塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとしたサイクル腐食試験を実施した。塩水噴霧の条件は、JIS Z 2371のとおりとした。乾燥条件は、温度60℃、湿度30%RH以下とし、湿潤条件は、温度50℃、湿度95%RH以上とした。平面部、クロスカット部(試験片A)、端面部(試験片B)、加工部(試験片C)の赤錆発生状況を、以下の評価基準により評価した。
<Corrosion resistance test>
A cyclic corrosion test was performed with a total of 8 hours of 2 hours of salt spray, 4 hours of drying, and 2 hours of wetness as one cycle. The salt spray conditions were as per JIS Z 2371. The drying conditions were a temperature of 60 ° C. and a humidity of 30% RH or less, and the wet conditions were a temperature of 50 ° C. and a humidity of 95% RH or more. The occurrence of red rust in the flat portion, cross-cut portion (test piece A), end face portion (test piece B), and processed portion (test piece C) was evaluated according to the following evaluation criteria.

評点5:600サイクルで赤錆発生なし
評点4:450サイクルで赤錆発生なし
評点3:300サイクルで赤錆発生なし
評点2:150サイクルで赤錆発生なし
評点1:150サイクルで赤錆発生あり
Score 5: No red rust generated in 600 cycles Score 4: No red rust generated in 450 cycles Score 3: No red rust generated in 300 cycles Score 2: No red rust generated in 150 cycles Score 1: Red rust generated in 150 cycles

<耐水密着性>
40℃の純水に240時間浸漬した後、試験片Bの中央部にカッターナイフで2mm間隔の碁盤目(100個)を形成し、その面に粘着テープを貼り付けた後、そのテープを剥離して、剥離した塗膜の数を測定した。
<Water-resistant adhesion>
After immersing in pure water at 40 ° C. for 240 hours, a grid (100 pieces) with a 2 mm interval is formed in the center of test piece B with a cutter knife, and an adhesive tape is applied to the surface, and then the tape is peeled off. Then, the number of peeled coating films was measured.

上記(8)で作製した有機塗膜(A)+電着塗膜(B)の性能調査結果を表7に示す。本発明の実施例は、いずれの試料形態においても評点3以上の優れた平面部、クロスカット部、端面部、加工部の耐食性を示した。また、実施例の構成によっては、評点4、5と、より良好な耐食性を示している。なお、No.42は、耐食性には優れるが防錆顔料にCrを含有している。   Table 7 shows the performance investigation results of the organic coating film (A) + electrodeposition coating film (B) prepared in (8) above. The examples of the present invention showed excellent corrosion resistance of the flat portion, the cross cut portion, the end face portion, and the processed portion having a rating of 3 or more in any sample form. Moreover, depending on the structure of an Example, the grades 4 and 5 and the better corrosion resistance are shown. In addition, No. 42 is excellent in corrosion resistance, but contains Cr as a rust preventive pigment.

一方、本発明の範囲を外れた比較例である、有機塗膜(A)に防錆顔料を含まないNo.51、有機塗膜(A)がないNo.52〜54、電着塗膜(B)がないNo.55、56は、いずれも評点2以下の耐食性が低下する試料形態がある。   On the other hand, No. which does not contain a rust preventive pigment in the organic coating film (A) which is a comparative example out of the scope of the present invention. 51, no organic coating film (A). No. 52-54, no electrodeposition coating film (B). Each of 55 and 56 has a sample form in which the corrosion resistance with a rating of 2 or less is lowered.

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

上記(10)で作製した有機塗膜(A)+電着塗膜(B)+中塗り、上塗り塗膜の性能調査結果を、表8に示す。本発明の実施例は、いずれの試料形態においても評点3以上の優れた平面部、クロスカット部、端面部、加工部の耐食性と剥離数1以下の優れた耐水密着性を示した。また、実施例の構成によっては、評点4、5と、より優れた耐食性を示し、剥離数0のより耐水密着性を示している。なお、No.42は、耐食性、耐水密着性には優れるが、防錆顔料にCrを含有している。   Table 8 shows the performance investigation results of the organic coating film (A) + electrodeposition coating film (B) + intercoat and top coating film prepared in (10) above. The examples of the present invention showed excellent corrosion resistance of the flat part, cross-cut part, end face part and processed part with a rating of 3 or more and excellent water-resistant adhesion with a peel number of 1 or less in any sample form. Moreover, depending on the structure of an Example, the rating 4 and 5 and the more excellent corrosion resistance are shown, and the water-resistant adhesiveness of the peeling number 0 is shown more. In addition, No. 42 is excellent in corrosion resistance and water adhesion, but contains Cr in the rust preventive pigment.

一方、本発明の範囲を外れた比較例である、有機塗膜(A)に防錆顔料を含まないNo.51、有機塗膜(A)がないNo.52〜54、いずれも評点2以下の耐食性が低下する試料形態がある。また、電着塗膜(B)がないNo.55、56は、評点3以上の優れた平面部、クロスカット部、端面部、加工部の耐食性を有しているが、耐水密着性が悪い。   On the other hand, No. which does not contain a rust preventive pigment in the organic coating film (A) which is a comparative example out of the scope of the present invention. 51, no organic coating film (A). 52-54, there is a sample form in which the corrosion resistance with a rating of 2 or less decreases. In addition, No. having no electrodeposition coating film (B). Although 55 and 56 have the corrosion resistance of the plane part, crosscut part, end surface part, and process part which were excellent in the grade 3 or more, water-resistant adhesiveness is bad.

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

(実施例2)
上記(1)〜(3)と同じ要領で有機塗膜(A)を両面に施した金属材を作製し、以下の試験片に加工した。
試験片D:袋状加工品(電着付きまわり不良部調査用試験片)
試験片Dの袋状加工品は、角筒成形加工品を2個作製し、各々の凸形状が上下になるように合わせ、フランジ部をレーザー溶接で接合することで作製した。袋状部品の上下に20mmφの電着孔を開けた。角筒成形はポンチサイズ65mm×115mm、ポンチ肩半径10mm、ダイス肩半径:5mm、成形速度:40spm、成形高さ:50mm、しわ押さえ圧:4トン、加工油(PG3080/日本工作油社製)塗布の条件でクランクプレス成形機を用いて実施した。
(Example 2)
The metal material which gave the organic coating film (A) on both surfaces in the same way as said (1)-(3) was produced, and it processed into the following test pieces.
Specimen D: Bag-like processed product (test specimen for investigating defective areas with electrodeposition)
The bag-like processed product of the test piece D was manufactured by preparing two square tube molded processed products, aligning each convex shape up and down, and joining the flange portions by laser welding. Electrodeposition holes with a diameter of 20 mm were formed above and below the bag-shaped part. Square tube molding is punch size 65mm x 115mm, punch shoulder radius 10mm, die shoulder radius: 5mm, molding speed: 40spm, molding height: 50mm, wrinkle holding pressure: 4 tons, processing oil (PG3080 / manufactured by Nippon Kogyo Oil Co., Ltd.) It implemented using the crank press molding machine on the conditions of application | coating.

次いで、上記(5)〜(7)と同じ要領で化成処理、電着塗装を施した。袋状加工品の外面部が所定の乾燥膜厚になるように電着塗装した。作製した試験片の内容を表9に示す。袋状加工品内面部における電着塗膜が外面部よりも薄い(電着塗膜のつきまわりが悪い)部位A、Bを切り出し、上記耐食性試験を実施した。この時の部位A、Bの実績膜厚は、表9に示した。耐食性試験結果を表10に示す。   Subsequently, chemical conversion treatment and electrodeposition coating were performed in the same manner as the above (5) to (7). Electrodeposition coating was performed so that the outer surface of the bag-like processed product had a predetermined dry film thickness. Table 9 shows the contents of the prepared test pieces. Sites A and B where the electrodeposition coating film on the inner surface of the bag-like processed product is thinner than the outer surface (the electrodeposition coating is poor) were cut out and the above corrosion resistance test was performed. The actual film thicknesses of the parts A and B at this time are shown in Table 9. Table 10 shows the results of the corrosion resistance test.

Figure 2010075859
Figure 2010075859

Figure 2010075859
Figure 2010075859

本発明の実施例は、電着塗装の付きまわりの悪い薄膜部位においても評点5の優れた耐食性を示した。一方、有機塗膜(A)がない比較例は、電着塗装の付きまわりの悪い薄膜部位において耐食性が低下していた。   The examples of the present invention showed excellent corrosion resistance with a rating of 5 even in a thin film portion with poor electrodeposition coating. On the other hand, in the comparative example without the organic coating film (A), the corrosion resistance was lowered in the thin film portion where the electrodeposition coating was poor.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想定し得ることは明らかであり、それらについても当然に発明の技術的範囲に属するものと了解される。
As mentioned above, although preferred embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be envisaged within the scope of the claims, and these are naturally within the technical scope of the invention. Is done.

Claims (12)

金属材の少なくとも片面に、導電性粒子(α)及び防錆顔料(β)を含有する有機塗膜(A)を有し、
前記有機塗膜の上層に鉛を実質的に含まない電着塗料から形成される電着塗膜(B)を有することを特徴とする、自動車部材。
At least one surface of the metal material has an organic coating film (A) containing conductive particles (α) and an antirust pigment (β),
An automobile member having an electrodeposition coating film (B) formed from an electrodeposition coating material substantially free of lead in the upper layer of the organic coating film.
前記自動車部材の上層に更に一層以上の塗膜を有することを特徴とする、請求項1に記載の自動車部材。   The automobile member according to claim 1, further comprising one or more coating films on an upper layer of the automobile member. 前記有機塗膜(A)の厚みをTとし、前記電着塗膜(B)の厚みをTとしたときに、T≧2μm、T≧3μm、T+T≧8μmを満足することを特徴とする、請求項1もしくは2に記載の自動車部材。 When T A is the thickness of the organic coating film (A) and T B is the thickness of the electrodeposition coating film (B), T A ≧ 2 μm, T B ≧ 3 μm, and T A + T B ≧ 8 μm are satisfied. The automobile member according to claim 1 or 2, wherein 前記電着塗膜(B)の膜厚Tの最小値が10μm以下であることを特徴とする、請求項1から3のいずれかに記載の自動車部材。 The conductive wherein the minimum value of the thickness T B of the coating film (B) is 10μm or less, an automobile member according to any one of claims 1 to 3. 前記導電性粒子(α)がフェロシリコンを含有することを特徴とする、請求項1から4のいずれかに記載の自動車部材。   The automobile member according to any one of claims 1 to 4, wherein the conductive particles (α) contain ferrosilicon. 前記フェロシリコンに含まれるSiの含有量が70質量%以上であることを特徴とする、請求項5に記載の自動車部材。   The automobile member according to claim 5, wherein a content of Si contained in the ferrosilicon is 70% by mass or more. 前記有機塗膜(A)に含まれる前記導電性粒子(α)の含有量が15〜60体積%であることを特徴とする、請求項1から6のいずれかに記載の自動車部材。   The automobile member according to claim 1, wherein the content of the conductive particles (α) contained in the organic coating film (A) is 15 to 60% by volume. 前記防錆顔料(β)がクロムを含有しないことを特徴とする、請求項1から7のいずれかに記載の自動車部材。   The automobile member according to any one of claims 1 to 7, wherein the rust preventive pigment (β) does not contain chromium. 前記防錆顔料(β)がケイ酸イオン、リン酸イオン、バナジン酸イオンのうち1種以上を放出できる化合物を含むことを特徴とする、請求項1から8のいずれかに記載の自動車部材。   The automobile member according to any one of claims 1 to 8, wherein the antirust pigment (β) contains a compound capable of releasing at least one of silicate ions, phosphate ions, and vanadate ions. 前記有機塗膜(A)に含まれる前記防錆顔料(β)の含有量が2〜25体積%であることを特徴とする、請求項1から9のいずれかに記載の自動車部材。   The automobile member according to any one of claims 1 to 9, wherein the content of the anticorrosive pigment (β) contained in the organic coating film (A) is 2 to 25% by volume. 前記有機塗膜(A)中のバインダー成分がウレタン結合を含む樹脂を含有していることを特徴とする、請求項1から10のいずれかに記載の自動車部材。   The automobile component according to any one of claims 1 to 10, wherein the binder component in the organic coating film (A) contains a resin containing a urethane bond. 前記金属材が亜鉛系めっき鋼板もしくはアルミニウム系めっき鋼板であることを特徴とする、請求項1から11のいずれかに記載の自動車部材。
The automobile member according to any one of claims 1 to 11, wherein the metal material is a zinc-based plated steel plate or an aluminum-based plated steel plate.
JP2008247771A 2008-09-26 2008-09-26 Automotive parts Active JP5293050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247771A JP5293050B2 (en) 2008-09-26 2008-09-26 Automotive parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247771A JP5293050B2 (en) 2008-09-26 2008-09-26 Automotive parts

Publications (2)

Publication Number Publication Date
JP2010075859A true JP2010075859A (en) 2010-04-08
JP5293050B2 JP5293050B2 (en) 2013-09-18

Family

ID=42206927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247771A Active JP5293050B2 (en) 2008-09-26 2008-09-26 Automotive parts

Country Status (1)

Country Link
JP (1) JP5293050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501724A (en) * 2012-10-24 2016-01-21 マグナ インターナショナル インコーポレイテッド Laser metal deposition welding of automotive parts
JP2017121778A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Coated steel sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340035A (en) * 1976-09-25 1978-04-12 Kansai Paint Co Ltd Coating method
JPH09169078A (en) * 1995-12-19 1997-06-30 Kobe Steel Ltd Resin coated steel panel excellent in electrodeposition coating properties and press moldability
JPH10128906A (en) * 1996-10-29 1998-05-19 Nkk Corp Weldable pre-primed steel plate for automotive vehicle with superior corrosion resistivity and workability
JPH11264076A (en) * 1998-01-14 1999-09-28 Nippon Paint Co Ltd Chemical conversion treatment for low lead ed
JP2000191959A (en) * 1998-12-28 2000-07-11 Nippon Paint Co Ltd Cationic electrodeposition coating composition
JP2004183054A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp High strength coated steel sheet for automotive use
JP2005194390A (en) * 2004-01-07 2005-07-21 Nippon Paint Co Ltd Lead-free cationic electrodeposition coating composition
JP2006082296A (en) * 2004-09-14 2006-03-30 Nippon Steel Corp Precoated metal sheet excellent in corrosion resistance
JP2007268764A (en) * 2006-03-30 2007-10-18 Nippon Steel Corp Coated metal material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340035A (en) * 1976-09-25 1978-04-12 Kansai Paint Co Ltd Coating method
JPH09169078A (en) * 1995-12-19 1997-06-30 Kobe Steel Ltd Resin coated steel panel excellent in electrodeposition coating properties and press moldability
JPH10128906A (en) * 1996-10-29 1998-05-19 Nkk Corp Weldable pre-primed steel plate for automotive vehicle with superior corrosion resistivity and workability
JPH11264076A (en) * 1998-01-14 1999-09-28 Nippon Paint Co Ltd Chemical conversion treatment for low lead ed
JP2000191959A (en) * 1998-12-28 2000-07-11 Nippon Paint Co Ltd Cationic electrodeposition coating composition
JP2004183054A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp High strength coated steel sheet for automotive use
JP2005194390A (en) * 2004-01-07 2005-07-21 Nippon Paint Co Ltd Lead-free cationic electrodeposition coating composition
JP2006082296A (en) * 2004-09-14 2006-03-30 Nippon Steel Corp Precoated metal sheet excellent in corrosion resistance
JP2007268764A (en) * 2006-03-30 2007-10-18 Nippon Steel Corp Coated metal material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501724A (en) * 2012-10-24 2016-01-21 マグナ インターナショナル インコーポレイテッド Laser metal deposition welding of automotive parts
CN105408052A (en) * 2012-10-24 2016-03-16 麦格纳国际公司 Laser metal deposition welding of automotive parts
US10124441B2 (en) 2012-10-24 2018-11-13 Magna International Inc. Laser metal deposition welding of automotive parts
JP2017121778A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Coated steel sheet

Also Published As

Publication number Publication date
JP5293050B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
RU2592895C2 (en) Metal sheet with coating for use in cars with excellent suitability for contact welding, corrosion resistance and formability
KR101599167B1 (en) Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
KR102025218B1 (en) Hot pressed steels
CA2831402A1 (en) Surface-treated steel sheet and method of manufacturing the same
JP6123969B1 (en) Surface-treated steel sheet and painted parts
EP2940186A1 (en) Surface treatment composition for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanised steel sheet
KR20120094066A (en) Galvanized steel sheet
EP0119608B1 (en) Coating composite for extended corrosion resistance
JP3903740B2 (en) Organic coated steel plate with excellent corrosion resistance
TWI592516B (en) Fuel tank steel plate
KR20170118844A (en) Galvanized steel plate
JP6441655B2 (en) Ground treatment liquid, method for producing organic coated galvanized steel pipe using ground treatment liquid, and organic coated galvanized steel pipe
JP5293050B2 (en) Automotive parts
JP4123702B2 (en) Organic coated steel plate with excellent corrosion resistance
JP3835017B2 (en) Zn-plated surface-treated steel sheet for fuel containers
JP3911966B2 (en) Organic coated steel plate with excellent corrosion resistance
JP3867202B2 (en) Method for producing zinc-based plated steel sheet with excellent white rust resistance
JPS642670B2 (en)
JP3412541B2 (en) Organic coated steel sheet with excellent corrosion resistance
JP4419262B2 (en) Steel plate for high corrosion resistant fuel tank
JP2007268764A (en) Coated metal material
WO2023190971A1 (en) Surface-treated steel sheet
JPH05311454A (en) Composite coated aluminum plate or aluminum alloy plate excellent in press moldability, scratch resistance, filiform erosion resistance and image clarity
WO2023190979A1 (en) Surface-treated steel plate and method for manufacturing component
JP4344219B2 (en) Inorganic organic composite-treated zinc-coated steel sheet with excellent corrosion resistance after electrodeposition coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350