Nothing Special   »   [go: up one dir, main page]

JP2010073533A - Chargeable and dischargeable battery - Google Patents

Chargeable and dischargeable battery Download PDF

Info

Publication number
JP2010073533A
JP2010073533A JP2008240571A JP2008240571A JP2010073533A JP 2010073533 A JP2010073533 A JP 2010073533A JP 2008240571 A JP2008240571 A JP 2008240571A JP 2008240571 A JP2008240571 A JP 2008240571A JP 2010073533 A JP2010073533 A JP 2010073533A
Authority
JP
Japan
Prior art keywords
chargeable
material layer
active material
battery
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008240571A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakai
哲男 境
Tomoaki Takasaki
智昭 高崎
Takashi Mukai
孝志 向井
Tsutomu Iwaki
勉 岩城
Kazuo Tsutsumi
香津雄 堤
Kazuya Nishimura
和也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kawasaki Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008240571A priority Critical patent/JP2010073533A/en
Publication of JP2010073533A publication Critical patent/JP2010073533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chargeable and dischargeable battery excellent in output characteristics. <P>SOLUTION: The chargeable and dischargeable battery is formed by forming a battery active material layer 2 on a surface of a fibrous material 1 having electron conductivity, coating it with a material 3 not having electron conductivity but having ion conductivity, forming a counter electrode active material layer 4, and then forming a material layer 5 having electron conductivity thereon. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充放電可能な電池に関する。   The present invention relates to a chargeable / dischargeable battery.

現在、汎用の水溶液を電解液とする二次電池は、板状の正極、セパレータ、同じく板状の負極で構成されている。アルカリ二次電池では、一般に、水酸化リチウムを溶解した苛性カリ、苛性ソーダなどの水溶液を電解液として用いて構成され、鉛蓄電池では、希硫酸が用いられて電池が構成されている。   Currently, a secondary battery using a general-purpose aqueous solution as an electrolyte includes a plate-like positive electrode, a separator, and a plate-like negative electrode. In general, an alkaline secondary battery is configured using an aqueous solution of caustic potash, caustic soda, or the like in which lithium hydroxide is dissolved, and a lead acid battery is configured using dilute sulfuric acid.

電池の形状としては、角型、コイン型、円筒型が一般的である。角型やコイン型は、正極と負極とを、セパレータを介して交互に並べ、それぞれ一括して、正極端子、負極端子を取り出している。特に、鉛蓄電池では、この構造が一般的である。また、アルカリ電池では円筒型が多く、正極、セパレータ、負極からなる電極群を捲回して電槽に挿入し、蓋と缶を絶縁して、それぞれを正極、負極の端子としている。また、リチウムイオン電池では、円筒型とともに角型にも、このような構成が採用されている。   As the shape of the battery, a rectangular shape, a coin shape, and a cylindrical shape are common. In the square type and the coin type, positive electrodes and negative electrodes are alternately arranged via separators, and a positive electrode terminal and a negative electrode terminal are taken out collectively. In particular, this structure is common in lead acid batteries. Alkaline batteries have many cylindrical types, and an electrode group consisting of a positive electrode, a separator, and a negative electrode is wound and inserted into a battery case, and a lid and a can are insulated to serve as positive and negative terminals, respectively. Further, in the lithium ion battery, such a configuration is adopted for both the cylindrical type and the square type.

電極としては、広く普及しているニッケル−カドミウム電池やニッケル−水素電池などのアルカリ二次電池では、高容量用としては、比較的厚さの厚い0.65〜0.8mm程度のものが用いられ、高出力用としては、それ以下の0.4〜0.6mm程度のものが用いられる。   As electrodes, alkaline secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries that are widely used have a relatively thick thickness of about 0.65 to 0.8 mm for high capacity use. For high output, a lower one of about 0.4 to 0.6 mm is used.

また、これらアルカリ二次電池の電極は、正極としては、焼結式や発泡状ニッケル式の電極がよく知られ、負極としては、パンチングメタルなどの二次元構造の集電体にペーストとして塗着、加圧したペースト式の電極が主に採用されている。正極の集電体として、焼結式のものは、パンチングメタルなどにカーボニルニッケルを焼結して得られる焼結体であり、発泡状ニッケル式のものは、発泡状樹脂にニッケルめっきした後に樹脂を焼却除去して得られる多孔体である。その他に、機械加工で凹凸を形成した多孔体も数多く提案されているが、実用レベルに達していない。鉛蓄電池では、ペースト式が主流で、アルカリ二次電池に比べると、厚さの大きい電極が採用されている。   In addition, as the positive electrode, a sintered or foamed nickel electrode is well known as an electrode of these alkaline secondary batteries, and as a negative electrode, a paste is applied to a current collector having a two-dimensional structure such as a punching metal. A pressurized paste-type electrode is mainly employed. As the positive electrode current collector, the sintered type is a sintered body obtained by sintering carbonyl nickel on a punching metal or the like, and the foamed nickel type is a resin after nickel plating is applied to the foamed resin. Is a porous body obtained by incineration removal. In addition, many porous bodies with irregularities formed by machining have been proposed, but have not reached the practical level. In the lead storage battery, the paste type is the mainstream, and an electrode having a large thickness is employed as compared with the alkaline secondary battery.

セパレータとしては、アルカリ二次電池では、主に厚さが80〜200μm程度のポリアミド製不織布や親水処理したポリオレフィン系不織布が主流である。鉛蓄電池では、紙、多孔性ポリオレフィン板やガラス繊維布が用いられており、一般的には、充放電反応に直接関与する硫酸を多く含浸しておく必要があるので、アルカリ二次電池用よりも厚いセパレータが用いられる。   As the separator, in the alkaline secondary battery, a polyamide nonwoven fabric having a thickness of about 80 to 200 μm or a polyolefin-based nonwoven fabric subjected to hydrophilic treatment is mainly used. In lead-acid batteries, paper, porous polyolefin plates and glass fiber cloth are used, and generally it is necessary to impregnate a large amount of sulfuric acid directly involved in the charge / discharge reaction. A thicker separator is also used.

リチウムイオン電池などでは、集電体として、正極にはアルミニウム箔が、負極には銅箔が用いられ、前者にはリチウム金属酸化物が、後者には炭素材料が、それぞれスラリーを塗着して用いられる。電解質としては、有機溶媒にリチウム塩を溶解した溶液が一般的である。   In a lithium ion battery or the like, as the current collector, an aluminum foil is used for the positive electrode, a copper foil is used for the negative electrode, a lithium metal oxide is applied to the former, and a carbon material is applied to the latter. Used. As an electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is common.

さらに、従来の正極、セパレータ、負極からなる電極群とはまったく異なる電池構造であって、集電体として、電子伝導性を有する繊維体を用いて構成する電池が提案されている(特許文献1参照)。この電池は、特に高出力を目的にしている。   Further, there has been proposed a battery having a completely different battery structure from a conventional electrode group composed of a positive electrode, a separator, and a negative electrode, and using a fibrous body having electronic conductivity as a current collector (Patent Document 1). reference). This battery is particularly intended for high output.

なお、それぞれの電極の外周部に電極活物質を形成してなる長尺の負極材または正極材のいずれか一方の電極材を芯材とし、その外周部に高分子固体電解質を介して他方の電極材を同軸に設け、これらを外装材によって封装するコード状の電池が提案されている(特許文献2参照)。   In addition, either the long negative electrode material formed by forming an electrode active material on the outer peripheral portion of each electrode or the positive electrode material is used as a core material, and the other outer periphery is interposed with a polymer solid electrolyte. A cord-shaped battery in which electrode materials are provided coaxially and sealed with an exterior material has been proposed (see Patent Document 2).

この電池の構成は、基本的には、汎用のルクランシェタイプの乾電池と同じである。つまり、乾電池では、中央に正極材、周辺部に負極材、その間に電解質を配し、円筒型になっている。特許文献2では、電解質を固体電解質とし、全体を可撓性のコード状に構成することが提案されている。
特開2003−317794号公報 特開2001−110445号公報
The configuration of this battery is basically the same as that of a general-purpose Luclanche type dry battery. That is, in the dry battery, a positive electrode material is provided at the center, a negative electrode material is provided at the peripheral portion, and an electrolyte is provided between them. In Patent Document 2, it is proposed that the electrolyte is a solid electrolyte and the whole is formed into a flexible cord.
JP 2003-317794 A JP 2001-110445 A

本発明は、特許文献1で提案された電池をさらに改良して、より高出力化を可能にすることを意図する。   The present invention intends to further improve the battery proposed in Patent Document 1 to enable higher output.

なお、特許文献2で提案された電池構成では、高出力は達成できない。この特許文献2には、具体的な電極の厚さは記載されていないが、正極、負極各1個でコード状の電池を形成していることから、高出力用ではない。例えば、汎用のニッケル−水素電池やニッケル−カドミウム電池では、正極の厚さが負極よりも大きいが、高出力用では最も厚くても0.6mm程度であり、負極はそれより薄いので、各々1個で形成したものは、コードの概念から外れる。   Note that the battery configuration proposed in Patent Document 2 cannot achieve high output. Although the specific thickness of the electrode is not described in Patent Document 2, a cord-like battery is formed by one positive electrode and one negative electrode, and is not for high output. For example, in a general-purpose nickel-hydrogen battery or nickel-cadmium battery, the thickness of the positive electrode is larger than that of the negative electrode, but for high power use, the thickness is about 0.6 mm at most, and the negative electrode is thinner than that. What is made up of pieces deviates from the concept of codes.

一方、汎用のニッケル−水素電池やニッケル−カドミウム電池では、電極の厚さは、最も薄くしても400μm程度あり、活物質内をイオンや電子が移動する拡散が律速になっているので、一層の高出力化は困難である。   On the other hand, in a general-purpose nickel-hydrogen battery or nickel-cadmium battery, the thickness of the electrode is about 400 μm even if it is the thinnest, and the diffusion of ions and electrons moving through the active material is rate limiting. It is difficult to increase the output.

鉛蓄電池では、電極、セパレータともに、さらに厚いので、高出力化は一層困難である。   In a lead storage battery, since both the electrode and the separator are thicker, it is more difficult to increase the output.

従来の板状の電極では、厚さを薄くするには、角型電池では数多くの電極を重ねる必要があり、円筒型電池では電極の長さを長くして捲回する必要があり、こういった観点からも高出力化には限界があった。   In the conventional plate-like electrode, in order to reduce the thickness, it is necessary to stack a large number of electrodes in the case of a square battery, and in the case of a cylindrical battery, it is necessary to wind the electrode with a long length. From this point of view, there was a limit to higher output.

本発明の課題は、ファイバー構成の充放電可能な電池であって、一層高出力化された電池を提供することにある。   An object of the present invention is to provide a battery having a fiber configuration and capable of being charged / discharged, which has a higher output.

本発明者は、上記課題を解決するために鋭意検討した結果、電池活物質において電子伝導性が極めて小さいものや反応するために移動しなければならない物質が巨大なものは、移動距離を極力短くすることにより高出力が可能になるので、電子等の移動通路を小さくすることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the battery active material has extremely low electronic conductivity or has a large amount of material that must be moved to react. As a result, high output becomes possible, and it has been found that the movement path of electrons and the like can be made small, and the present invention has been completed.

すなわち、本発明は、下記に示すとおりの充放電可能な電池を提供するものである。
項1. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成してなる充放電可能な電池。
項2. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなる充放電可能な電池。
項3. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなり、中心部の繊維状物質と外周の材料層から、それぞれ端子を取り出してなる充放電可能な電池。
項4. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなり、中心部の繊維状物質と外周の材料層から、それぞれ端子を取り出したものを素電池とし、この素電池を束状で並べるか、織物状とし、正極端子と負極端子を取り付けてなる充放電可能な電池。
項5. 電子伝導性のある繊維状物質からなる集電体が、1本または複数本ある項1〜4のいずれか1項に記載の充放電可能な電池。
項6. 繊維状物質の直径が、0.1〜300μmである項1〜5のいずれか1項に記載の充放電可能な電池。
項7. 繊維状物質の直径が、0.5〜200μmである項1〜5のいずれか1項に記載の充放電可能な電池。
項8. 電子伝導性のある繊維状物質が、金属、炭素系繊維、表面を金属メッキした有機系繊維、または無機系材料からなる項1〜7のいずれか1項に記載の充放電可能な電池。
項9. 電子伝導性のある繊維状物質が正極の集電体であり、外周の材料層が負極の集電体である項2〜8のいずれか1項に記載の充放電可能な電池。
項10. 電子伝導性のある繊維状物質の表面に、水酸化ニッケルを主とする活物質層を形成してなる項9に記載の充放電可能な電池。
項11. 電子伝導性のある繊維状物質が、ニッケルまたはニッケル合金からなる項9に記載の充放電可能な電池。
項12. 電子伝導性のある繊維状物質が負極の集電体であり、外周の材料層が正極である項2〜8のいずれか1項に記載の充放電可能な電池。
項13. 電子伝導性のある繊維状物質が負極の集電体で、水素吸蔵合金を主とする層を形成してなる請求項12に記載の充放電可能な電池。
項14. イオン伝導性のある多孔質層上に、水素吸蔵合金を主とする層を形成してなる項9に記載の充放電可能な電池。
項15. 電子伝導性のある繊維状物質が負極の集電体で、亜鉛を主とする層を形成してなる項12に記載の充放電可能な電池。
項16. イオン伝導性のある多孔質層上に、亜鉛を主とする層を形成してなる項9に記載の充放電可能な電池。
項17. 負極の集電体が、ニッケル、銅、炭素繊維または黒鉛繊維からなる項12に記載の充放電可能な電池。
項18. 電解液として苛性アルカリ水溶液を含浸してなる項9〜17のいずれか1項に記載の充放電可能な電池。
項19. イオン伝導性のある物質が、固体電解質またはゲル電解質からなる項1〜4のいずれか1項に記載の充放電可能な電池。
That is, this invention provides the battery which can be charged / discharged as shown below.
Item 1. Charge / discharge is possible by forming a battery active material layer on the surface of a fibrous material with electron conductivity, covering it with an ion conductive material without electron conductivity, and forming a counter electrode active material layer. Battery.
Item 2. A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. A chargeable / dischargeable battery formed by forming a conductive material layer.
Item 3. A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. A chargeable / dischargeable battery that is formed by forming a conductive material layer and taking out terminals from the fibrous material at the center and the material layer at the outer periphery.
Item 4. A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. Formed by forming a conductive material layer, from the fibrous material in the center and the material layer of the outer periphery, each cell is taken as a unit cell, and this unit cell is arranged in a bundle or a fabric shape, A chargeable / dischargeable battery comprising a positive terminal and a negative terminal.
Item 5. Item 5. The chargeable / dischargeable battery according to any one of Items 1 to 4, wherein the current collector made of a fibrous substance having electron conductivity has one or more current collectors.
Item 6. Item 6. The chargeable / dischargeable battery according to any one of Items 1 to 5, wherein the fibrous substance has a diameter of 0.1 to 300 µm.
Item 7. Item 6. The chargeable / dischargeable battery according to any one of Items 1 to 5, wherein the fibrous substance has a diameter of 0.5 to 200 μm.
Item 8. Item 8. The chargeable / dischargeable battery according to any one of Items 1 to 7, wherein the fibrous substance having electron conductivity is made of a metal, a carbon-based fiber, an organic fiber having a metal-plated surface, or an inorganic material.
Item 9. Item 9. The chargeable / dischargeable battery according to any one of Items 2 to 8, wherein the fibrous substance having electron conductivity is a positive electrode current collector and the outer peripheral material layer is a negative electrode current collector.
Item 10. Item 10. The chargeable / dischargeable battery according to Item 9, wherein an active material layer mainly composed of nickel hydroxide is formed on the surface of a fibrous material having electron conductivity.
Item 11. Item 10. The chargeable / dischargeable battery according to Item 9, wherein the fibrous substance having electron conductivity is made of nickel or a nickel alloy.
Item 12. Item 9. The chargeable / dischargeable battery according to any one of Items 2 to 8, wherein the fibrous substance having electron conductivity is a negative electrode current collector, and the outer peripheral material layer is a positive electrode.
Item 13. The chargeable / dischargeable battery according to claim 12, wherein the fibrous material having electron conductivity is a negative electrode current collector and a layer mainly composed of a hydrogen storage alloy is formed.
Item 14. Item 10. The chargeable / dischargeable battery according to Item 9, wherein a layer mainly composed of a hydrogen storage alloy is formed on a porous layer having ion conductivity.
Item 15. Item 13. The chargeable / dischargeable battery according to Item 12, wherein the fibrous substance having electron conductivity is a negative electrode current collector and a layer mainly composed of zinc is formed.
Item 16. Item 10. The chargeable / dischargeable battery according to Item 9, wherein a layer mainly composed of zinc is formed on a porous layer having ion conductivity.
Item 17. Item 13. The chargeable / dischargeable battery according to Item 12, wherein the negative electrode current collector is made of nickel, copper, carbon fiber, or graphite fiber.
Item 18. Item 18. The chargeable / dischargeable battery according to any one of Items 9 to 17, wherein the battery is impregnated with an aqueous caustic solution as an electrolytic solution.
Item 19. Item 5. The chargeable / dischargeable battery according to any one of Items 1 to 4, wherein the ion-conductive substance is a solid electrolyte or a gel electrolyte.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の充放電可能な電池の基本構造は、電子伝導性のある繊維状物質を活物質保持体および集電体とし、その表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、その上に対極活物質層を形成し、さらにその上に集電体層を形成するものである。   The basic structure of the chargeable / dischargeable battery according to the present invention is that a fibrous material having electron conductivity is used as an active material holder and a current collector, a battery active material layer is formed on the surface, and an electron conductivity is formed thereon. Without covering with an ion conductive material, a counter electrode active material layer is formed thereon, and a current collector layer is further formed thereon.

中心部の繊維状物質は、1本でもよいが、複数本(例えば2〜30本程度)まとめて用いてもよい。用いる繊維状物質の太さは高出力に関係しており、構造は円柱形に限定されず、角柱のような形状も採用可能であるが、繊維径に換算すると、好ましくは0.1〜300μm程度、より好ましくは0.5〜200μm程度が採用される。これより細いと工業的に取扱いが困難となるおそれがあり、これより太いと出力特性が期待できなくなるおそれがある。また、このような径の繊維状集電体を用いることにより、例えばリチウムイオン電池のような箔状集電体と異なり、活物質層が円筒形状になるため、活物質層と集電体との間に、膨張等に伴う両物質境界の円周方向への剪断応力が発生せず、活物質層が剥離しにくい。たとえ剥離しても、活物質層は集電体を円筒形状に囲んでいるので、接触が不良になることはなく、内部抵抗が抑えられる。結果として高出力、長寿命が可能となる。   The number of fibrous substances in the center may be one, or a plurality (for example, about 2 to 30) may be used together. The thickness of the fibrous material to be used is related to high output, and the structure is not limited to a cylindrical shape, and a shape such as a prism can also be adopted, but when converted to a fiber diameter, preferably 0.1 to 300 μm. About, more preferably, about 0.5 to 200 μm is employed. If it is thinner than this, it may be difficult to handle industrially, and if it is thicker than this, the output characteristics may not be expected. Also, by using a fibrous current collector with such a diameter, the active material layer has a cylindrical shape unlike a foil-like current collector such as a lithium ion battery, for example. During this period, no shear stress is generated in the circumferential direction at the boundary between the two materials due to expansion or the like, and the active material layer is difficult to peel off. Even if the active material layer is peeled off, the active material layer surrounds the current collector in a cylindrical shape, so that the contact does not become poor and the internal resistance is suppressed. As a result, high output and long life are possible.

なお、本発明では、繊維状物質を長くすれば容量は大きくなる。しかしながら、繊維径を小さくしているので、容量は、1セルでは例えば1〜100mAhのように小さいので、用途に合わせて、一対の正極および負極の組み合わせを複数集めて用いられる。以下、この一対を、素電池という。   In the present invention, the capacity increases as the fibrous material is lengthened. However, since the fiber diameter is small, the capacity is as small as 1 to 100 mAh, for example, in one cell. Therefore, a plurality of combinations of a pair of positive electrodes and negative electrodes are used according to the application. Hereinafter, this pair is referred to as a unit cell.

このような素電池を、束状に並べるか、または、織物を形成させ、正極端子と負極端子を取り付ける。この素電池の正極の集電体を一体にし、さらに負極の集電体を一体にすれば、並列に並べたことになり、電圧一定で容量が増すことになり、この構成で実際に使用される。   Such unit cells are arranged in a bundle or a fabric is formed, and a positive electrode terminal and a negative electrode terminal are attached. If the positive electrode current collector of this unit cell is integrated, and further the negative electrode current collector is integrated, it will be arranged in parallel, and the capacity will increase at a constant voltage, which is actually used in this configuration. The

さらに、外周を正極とした素電池と、外周を負極とした素電池とを結合すれば、直列接続になるので、容量一定で電圧が増すことになる。この場合に当然共通電解液にならないよう素電池を隔離する配慮は必要である。予備用、非常用などの高い電圧を要する用途では、まず並列、次いで直列に接続して用いる。   Furthermore, if a unit cell with the outer periphery as a positive electrode and a unit cell with the outer periphery as a negative electrode are combined, they are connected in series, so that the voltage increases with a constant capacity. In this case, it is necessary to take care to isolate the unit cell so that it does not become a common electrolyte. In applications requiring a high voltage, such as preliminary and emergency use, they are first connected in parallel and then in series.

この場合に、それぞれの端子を束状に並べて円筒型や角型に集合させてもよく、また素電池を織物状とし、正極端子と負極端子を取り付けてもよい。   In this case, the terminals may be arranged in a bundle and assembled into a cylindrical shape or a rectangular shape, or the unit cell may be made into a woven shape, and the positive electrode terminal and the negative electrode terminal may be attached.

中心部を形成する集電体としての繊維状物質は、負極用では、電子伝導性で耐電解液性があればよく、正極用で完全充電を要する場合は、この他に耐酸化性が必要である。繊維状物質の材料としては、金属、炭素系繊維、表面を金属メッキした有機系繊維、無機系材料が選ばれる。   The fibrous material as the current collector that forms the center of the negative electrode needs to be electronically conductive and resistant to electrolytes for the negative electrode. In addition, if the full charge is required for the positive electrode, oxidation resistance is required. It is. As the material of the fibrous substance, metal, carbon fiber, organic fiber whose surface is metal-plated, or inorganic material is selected.

本発明の構成では、中心部を正極とした場合には外周部は負極となり、逆に中心部を負極とした場合には外周部は正極となる。水溶液電解液を用いる二次電池では、充電末期に、負極において正極からの酸素を水に戻す機能が要求されるので、容量を大きくする必要があり、中心部正極で、外周部負極とするのが好ましい。   In the configuration of the present invention, when the central portion is a positive electrode, the outer peripheral portion is a negative electrode. Conversely, when the central portion is a negative electrode, the outer peripheral portion is a positive electrode. In a secondary battery using an aqueous electrolyte, at the end of charging, a function of returning oxygen from the positive electrode back to water is required at the negative electrode. Therefore, it is necessary to increase the capacity. Is preferred.

しかしながら、逆に中心部を負極とした場合の繊維状物質の材料として、入手が容易な炭素系繊維、特に黒鉛繊維が使用可能となる長所がある。すなわち、中心部を負極とした場合の繊維状物質の材料として、アルカリ二次電池では、ニッケルなどの正極用に用いる材料の他に、銅、炭素繊維、黒鉛繊維などが使用可能である。鉛蓄電池では、炭素系や鉛、鉛合金が利用できる。   However, on the contrary, there is an advantage that carbon-based fibers, particularly graphite fibers, which can be easily obtained can be used as the material of the fibrous substance when the negative electrode is the central part. That is, as the material of the fibrous substance when the central portion is a negative electrode, copper, carbon fiber, graphite fiber, or the like can be used in the alkaline secondary battery in addition to the material used for the positive electrode such as nickel. For lead-acid batteries, carbon, lead, and lead alloys can be used.

本発明の電池が最も適しているのが、アルカリ電解液を用いる電池用であり、正極材料として実用化されているほとんどが、水酸化ニッケルである。水酸化ニッケルを主とした材料とし、集電体としての電子伝導性、耐アルカリ性の他に耐酸化性も重要で、ニッケル、ステンレス鋼のようなニッケル合金、鉄などにニッケルめっきした材料が選ばれる。その他に、鉛蓄電池の場合には、鉛や鉛合金繊維、炭素繊維などが使用できる。   The battery of the present invention is most suitable for a battery using an alkaline electrolyte, and nickel hydroxide is most practically used as a positive electrode material. Nickel hydroxide is the main material. In addition to electron conductivity and alkali resistance as a current collector, oxidation resistance is also important. Nickel alloys such as nickel and stainless steel, and materials plated with nickel are selected. It is. In addition, in the case of a lead storage battery, lead, lead alloy fiber, carbon fiber, or the like can be used.

一方の負極としては、活物質として水素吸蔵合金が最も適しており、カドミウムが次に有力である。寿命をそれほど重視しない用途では、電位および製法で優れている亜鉛などが使用可能であり、完全充放電しない予備用などの密閉型でなくてもよければ、安価で資源的にも豊富な鉄が使える。鉛蓄電池では、正極、負極ともに、鉛系の粉末を用いる。   As one negative electrode, a hydrogen storage alloy is most suitable as an active material, and cadmium is the next most promising. In applications where life is not so important, zinc and other materials that are superior in potential and manufacturing method can be used. If it is not necessary to use a sealed type such as a spare type that does not fully charge and discharge, inexpensive and resource-rich iron can be used. It can be used. In a lead-acid battery, lead-based powder is used for both the positive electrode and the negative electrode.

電解質としては、アルカリ二次電池の苛性アルカリ水溶液、鉛蓄電池の希硫酸の他に、固体電解質やゲル電解質が適用可能である。   As an electrolyte, a solid electrolyte or a gel electrolyte can be applied in addition to a caustic aqueous solution of an alkaline secondary battery and a dilute sulfuric acid of a lead storage battery.

電子伝導性が無くイオン伝導性のある物質、すなわちセパレータとして、イオン交換膜、多孔性フッ素樹脂、ポリエチレンやポリプロピレンなどの不織布などが使用可能である。また、アルカリ電解液を用いた開放型電池系には、ポリビニルアルコールのような半透過性膜も使用可能である。   An ion exchange membrane, a porous fluororesin, a non-woven fabric such as polyethylene or polypropylene, etc. can be used as a substance having no electron conductivity and ion conductivity, that is, a separator. A semipermeable membrane such as polyvinyl alcohol can also be used for an open battery system using an alkaline electrolyte.

水やアルコールなどに可溶な溶剤に溶解する樹脂を用いて、溶剤に溶解した樹脂から溶剤を抽出して多孔性とした樹脂も一例として挙げられ、微多孔性であり耐電解液性材料を選ぶことにより、長寿命用に適したセパレータとなる。   An example is a resin made porous by extracting a solvent from a resin dissolved in a solvent using a resin soluble in a solvent soluble in water, alcohol, etc. By selecting, it becomes a separator suitable for long life.

このように電子伝導性の繊維状材料を中心に、活物質材料、イオン伝導性層、対極活物質層、必要に応じて集電体層を形成して得られる電池は、中心部の繊維状材料の径をμmオーダーにすることにより、活物質層も数μm〜数10μmのように薄くしてイオンや電子の移動距離を極めて小さくできることから、特に高出力用に適した充放電可能な二次電池の素電池が得られる。   Thus, the battery obtained by forming the active material, the ion conductive layer, the counter electrode active material layer, and the current collector layer as required, mainly in the electron conductive fibrous material, By making the diameter of the material on the order of μm, the active material layer can be made as thin as several μm to several tens of μm and the moving distance of ions and electrons can be made extremely small. A secondary battery cell is obtained.

この繊維状材料を一方の極とし、外側に設けた対極の集電層とを備え、それぞれを複数本まとめて接続することにより、所望の容量の電源を得る。すなわち、まず、繊維状材料からなる集電体を一括にし、対極の集電層を一括にして、素電池を並列的に接続することにより所望の容量とする。これが単電池であり、電解液を注入し、封口して完成する。ここで、活物質層は、加圧した状態であることが好ましい。なお、電解質として流動性のないゲルや固体を用いると、活物質の集電体からの剥離が抑制できる。   This fibrous material is used as one pole, and provided with a current collecting layer of a counter electrode provided outside, and a plurality of each are connected together to obtain a power source with a desired capacity. That is, first, a current collector made of a fibrous material is batched, and a counter current collector layer is batched, and unit cells are connected in parallel to obtain a desired capacity. This is a single cell, which is filled with an electrolyte and sealed. Here, the active material layer is preferably in a pressurized state. Note that when a non-fluid gel or solid is used as the electrolyte, peeling of the active material from the current collector can be suppressed.

また、本発明の充放電可能な二次電池は、電子伝導性のある繊維状物質の表面を活物質で被覆し、その上にイオン伝導性のある多孔質な物質、対極活物質、集電層、さらに必要に応じて集電体で構成した素電池である。   In addition, the secondary battery capable of charging and discharging according to the present invention covers the surface of an electron conductive fibrous material with an active material, and further has an ion conductive porous material, a counter electrode active material, a current collector. It is a unit cell composed of a layer and, if necessary, a current collector.

例えば、通常の円筒型構造や角型構造の電池に用いられる金属製の電槽を用いる場合には、これが一方の極になるので、繊維構成の素電池を一括集合して、電槽に挿入すれば、汎用のアルカリ二次電池のように、外側の集電体は省略することが可能である。すなわち、中心部の電子伝導性繊維、活物質層、セパレータ、対極活物質層、あるいは、中心部の電子伝導性繊維、その上に順次、活物質層、セパレータ、対極活物質層、電子伝導層、電槽の構成になる。また、中心部の電子伝導性繊維、その上に順次、活物質層、セパレータ、対極活物質層、電槽の構成も採用できる。   For example, when using a metal battery case that is used for a battery with a normal cylindrical structure or a square structure, this is one of the poles. Then, the outer current collector can be omitted as in a general-purpose alkaline secondary battery. That is, an electron conductive fiber, an active material layer, a separator, a counter electrode active material layer in the center part, or an electron conductive fiber in the center part, and then an active material layer, a separator, a counter electrode active material layer, and an electron conduction layer in that order. It becomes the configuration of the battery case. Moreover, the structure of the active material layer, a separator, a counter electrode active material layer, and a battery case can also be employ | adopted in order on the electron conductive fiber of a center part.

その他に、繊維状素電池を、縦糸と横糸として、縦糸と横糸から各々正極と負極の端子を取り出すことにより、織物状に電池を組み立てることも可能である。   In addition, it is also possible to assemble the battery in a woven shape by taking out the positive electrode and negative electrode terminals from the warp and weft as the warp and weft.

本発明の電池の構成においては、例えば、正極活物質が水酸化ニッケルで負極活物質が水素吸蔵合金、正極活物質が水酸化ニッケルで負極活物質がカドミウム、正極活物質が水酸化ニッケルで負極活物質が鉄、正極活物質が水酸化ニッケルで負極活物質が亜鉛の各電池、さらに、正極活物質が二酸化鉛で負極活物質が鉛の鉛蓄電池、への適用も可能である。   In the configuration of the battery of the present invention, for example, the positive electrode active material is nickel hydroxide, the negative electrode active material is a hydrogen storage alloy, the positive electrode active material is nickel hydroxide, the negative electrode active material is cadmium, the positive electrode active material is nickel hydroxide, and the negative electrode The present invention can also be applied to batteries in which the active material is iron, the positive electrode active material is nickel hydroxide, and the negative electrode active material is zinc. Furthermore, the present invention can be applied to lead acid batteries in which the positive electrode active material is lead dioxide and the negative electrode active material is lead.

電子伝導性のある繊維状物質としては、炭素繊維、金属繊維などの電子伝導性のある物質、表面に金属メッキした有機繊維、無機繊維、繊維状のプラスチック、ゴムなどが使用可能である。ここで、繊維状物質としては、円筒状構造の他に、断面径が十分に小さい棒状物質、細長い箔状の物質なども含まれる。これらの円筒状、棒状、箔状材料の表面に、例えば、10μm以下の厚さで電池活物質層を形成し得る。   As the fibrous substance having electron conductivity, an electron conductive substance such as carbon fiber or metal fiber, organic fiber with metal plating on the surface, inorganic fiber, fibrous plastic, rubber or the like can be used. Here, in addition to the cylindrical structure, the fibrous material includes a rod-shaped material having a sufficiently small cross-sectional diameter, an elongated foil-shaped material, and the like. A battery active material layer can be formed on the surface of these cylindrical, rod-like, and foil-like materials, for example, with a thickness of 10 μm or less.

上記の構成においては、素電池を並べるか、または織物として積層したユニットを、圧縮し圧密状態として電池セルに組み込むことができる。例えば、基本ユニットを、多孔性もしくは無孔性の絶縁体、または融解性もしくは非融解性の絶縁体からなる帯状体または紐状体で縛り、圧密状態とすることもできる。   In the above configuration, a unit in which unit cells are arranged or laminated as a woven fabric can be compressed and consolidated in a battery cell. For example, the basic unit can be made into a compacted state by being bound with a band or string-like body made of a porous or non-porous insulator, or a meltable or non-meltable insulator.

素電池を1セルずつ、あるいは複数個束にして織物とする場合は、平織り、綾織り、トンキャップ織りなどとすることができる。   When the unit cells are woven into one cell or a bundle, a plain weave, twill weave, toncap weave, etc. can be used.

繊維状物質の表面に電池活物質層を形成する際は、繊維状物質を1本用いてもよく、複数本まとめて用いてもよい。   When forming the battery active material layer on the surface of the fibrous material, one fibrous material may be used, or a plurality of fibrous materials may be used together.

繊維状物質の表面に電池活物質層を形成する方法としては、活物質粉末を水溶液のスラリー状にして塗着する、いわゆるスラリーあるいはペースト式と呼ばれる方式が、種々の活物質への適用性が高い。ここで、一般に増粘剤と結着剤が使用される。増粘剤で最も一般的なのが、カルボキシメチルセルロース(CMC)であり、各種天然多糖類も利用される。   As a method for forming the battery active material layer on the surface of the fibrous material, a so-called slurry or paste method in which the active material powder is applied in the form of a slurry of an aqueous solution is applicable to various active materials. high. Here, a thickener and a binder are generally used. The most common thickener is carboxymethylcellulose (CMC), and various natural polysaccharides are also used.

ペースト式の結着剤としては、各種の合成樹脂が検討されているが、耐酸化性で、耐電解液性であればよい。正極には、ポリオレフィン、フッ素樹脂が好ましく、負極には、その他に合成ゴム(SBR)なども利用可能である。これらの結着剤の添加量は、0.5〜5重量%程度である。   Various types of synthetic resins have been studied as paste-type binders, but any oxidation resistance and electrolyte resistance may be used. Polyolefin and fluororesin are preferable for the positive electrode, and synthetic rubber (SBR) can also be used for the negative electrode. The amount of these binders added is about 0.5 to 5% by weight.

その他に、直接、樹脂とともに活物質を固定する方法もある。活物質として、水酸化ニッケルを例に挙げる。水酸化ニッケルは130℃以上にすると利用率が低下するので、軟化温度が120℃以下の熱可塑性樹脂、硬化温度が常温から120℃までの樹脂、蒸発温度が120℃以下の溶剤に溶解する樹脂などを用いる。樹脂としては、ポリエチレン、ポリプロピレンが好ましい。   In addition, there is a method of directly fixing the active material together with the resin. An example of the active material is nickel hydroxide. When nickel hydroxide is used at 130 ° C. or higher, the utilization factor decreases. Therefore, a thermoplastic resin having a softening temperature of 120 ° C. or lower, a resin having a curing temperature from room temperature to 120 ° C., and a resin that dissolves in a solvent having an evaporation temperature of 120 ° C. or lower. Etc. are used. As the resin, polyethylene and polypropylene are preferable.

さらに、エチレン−酢酸ビニルコポリマー、エポキシ樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、フェノール樹脂などが挙げられるが、いずれも耐酸化性に問題があるので、正極用よりは負極用に適している。   Further, ethylene-vinyl acetate copolymer, epoxy resin, polyurethane resin, unsaturated polyester resin, phenol resin, and the like can be mentioned. Since all of these have problems in oxidation resistance, they are more suitable for the negative electrode than for the positive electrode.

樹脂を溶解する溶剤としては、トルエン、キシレン、NMP、DMF、アセトン、アルコールなどの有機溶剤が挙げられ、水溶液系に比べると製法や環境上に問題があるが、使用可能である。この場合、活物質と樹脂を溶剤に溶解した溶液を表面に塗布した後、減圧下または常圧下で溶剤を加熱除去すればよい。   Examples of the solvent for dissolving the resin include organic solvents such as toluene, xylene, NMP, DMF, acetone, and alcohol, which are problematic in terms of production method and environment as compared with aqueous solutions, but can be used. In this case, after applying a solution obtained by dissolving the active material and the resin in a solvent to the surface, the solvent may be removed by heating under reduced pressure or normal pressure.

また、活物質層の導電性を向上させるために、カーボンブラック、炭素繊維、炭素箔、炭素ウィスカー、ニッケル微粒子、ニッケル箔、ニッケルウィスカーなどの導電性素材を添加してもよい。なお、水酸化ニッケルに関しては、コバルト化合物が最も有効である。   Moreover, in order to improve the electroconductivity of an active material layer, you may add electroconductive materials, such as carbon black, carbon fiber, carbon foil, carbon whisker, nickel microparticles, nickel foil, nickel whisker. As for nickel hydroxide, a cobalt compound is most effective.

活物質層にこのような導電性素材(導電剤)を添加する手段としては、通常は、活物質粉末と導電剤粉末を混合し、溶剤に溶解させた樹脂を添加する方法が一般的である。その他、導電剤と溶解させた樹脂を混合し分散させる方法や、導電剤と溶剤を混合し分散させた後に樹脂を溶解させて混合し分散させる方法などもある。樹脂や溶剤の量、種類等を変えることで、特性の異なる活物質層を形成することができる。   As a means for adding such a conductive material (conductive agent) to the active material layer, generally, a method of mixing the active material powder and the conductive agent powder and adding a resin dissolved in a solvent is common. . In addition, there are a method of mixing and dispersing a conductive agent and a dissolved resin, a method of mixing and dispersing a conductive agent and a solvent, and then dissolving and mixing and dispersing the resin. An active material layer having different characteristics can be formed by changing the amount and type of the resin and the solvent.

また、繊維状物質の表面に活物質層を形成する手段として、溶融メッキを用いることができる。溶融メッキの方法は、繊維状物質を連続的に供給してその表面にメッキしてもよいし、繊維状物質をバッチで供給してその表面にメッキしてもよい。この場合、組成の種類や濃度、温度などが異なる電解浴を複数回用いて、特性の異なる析出物を表面に被覆することができる。また、処理時間を変化させて、特性の異なる析出物を表面に被覆することができる。   Further, hot dipping can be used as a means for forming an active material layer on the surface of the fibrous material. In the hot dipping method, the fibrous material may be continuously supplied and plated on the surface, or the fibrous material may be supplied in batches and plated on the surface. In this case, it is possible to coat the surface with precipitates having different characteristics by using an electrolytic bath different in composition type, concentration, temperature and the like a plurality of times. In addition, precipitates having different characteristics can be coated on the surface by changing the treatment time.

さらに、繊維状物質の表面にアルカリ二次電池の負極活物質として水素吸蔵合金を用いる場合には、焼結法、スパッタリング、蒸着などが採用できる。   Furthermore, when a hydrogen storage alloy is used as the negative electrode active material of the alkaline secondary battery on the surface of the fibrous material, a sintering method, sputtering, vapor deposition, or the like can be employed.

その他に、同じく正極活物質の水酸化ニッケルに関しては、焼結式ニッケル極の製法に用いられる電気分解による電解析出法(電析)を利用することができる。この場合、種類や濃度、pH、温度などが異なる電解浴を複数回用いて、特性の異なる析出物で表面を被覆することができる。また、電流密度を変化させて、特性の異なる析出物で表面を被覆することができる。さらに、電池活物質を微粒子として電解浴中に懸濁させ、共析メッキ法でメッキ金属内に電池活物質を取り込み、共析させることも可能である。   In addition, regarding nickel hydroxide as the positive electrode active material, the electrolytic deposition method (electrodeposition) by electrolysis used in the method for producing a sintered nickel electrode can be used. In this case, the surface can be coated with precipitates having different characteristics by using electrolytic baths of different types, concentrations, pH, temperature, etc., multiple times. Further, the surface can be coated with precipitates having different characteristics by changing the current density. Furthermore, it is possible to suspend the battery active material as fine particles in the electrolytic bath, and to incorporate the battery active material into the plating metal by the eutectoid plating method to cause eutectoid.

一方の極の集電体として繊維状導電性材料を用い、その周辺に活物質層、セパレータ、対極活物質層、および集電層で構成される電池構造において、具体例として、繊維状集電体が円柱構造の場合は、径として例えば5〜30μm程度を選び、活物質層として厚さ5〜40μm、セパレータとして厚さ10〜60μmの範囲を選ぶことにより、高出力の充放電が可能になる。   As a specific example of a battery structure in which a fibrous conductive material is used as a current collector of one electrode and an active material layer, a separator, a counter electrode active material layer, and a current collecting layer are provided around the conductive material, When the body has a cylindrical structure, for example, a diameter of about 5 to 30 μm is selected, a thickness of 5 to 40 μm is selected as the active material layer, and a thickness of 10 to 60 μm is selected as the separator, thereby enabling high output charge / discharge. Become.

本発明の充放電可能な電池は、水溶液を電解液とする二次電池、具体的にはニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−鉄電池、ニッケル−亜鉛電池、鉛蓄電池などに適用可能である。さらに、リチウムイオン電池を代表とする非水電解質系二次電池にも適用可能である。   The chargeable / dischargeable battery of the present invention can be applied to a secondary battery using an aqueous solution as an electrolyte, specifically a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-iron battery, a nickel-zinc battery, a lead storage battery, etc. It is. Furthermore, the present invention can also be applied to non-aqueous electrolyte secondary batteries typified by lithium ion batteries.

本発明の充放電可能な電池は、携帯用、据置用、移動用などの電源が対象となるが、例えば、完全充放電しない条件で使われ、その上、大電流放電が必要な予備用電源に、最適な電池である。   The chargeable / dischargeable battery according to the present invention is intended for portable, stationary, and mobile power supplies. For example, the power supply is used as a spare power supply that is used under conditions that do not fully charge and discharge, and that requires a large current discharge. It is an optimal battery.

本発明の充放電可能な電池は、極めて出力特性に優れている。   The chargeable / dischargeable battery of the present invention is extremely excellent in output characteristics.

以下、本発明の実施形態について説明する。本発明は、下記の実施形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.

図1は、中心の繊維状集電体1と並行の素電池の概略断面図である。形状は基本的に円柱状である。1が繊維状集電体(繊維状物質)、2がその活物質層、3が電子伝導性は無くイオン伝導性のある物質からなるセパレータ、4が対極活物質層である。5が対極用集電体(外周の材料層)であり、電槽をかねる場合もある。ニッケル−水素電池の場合では、2を水素吸蔵合金極とした場合は4がニッケル活物質であり、5がその集電体で電槽を兼ねてもよい。この実施形態では、活物質層2が繊維状集電体1の周囲に円管状に配されているので、繊維状集電体1と活物質層2との間に多少のズレが生じても、絶縁することが無く、導電性が確保されて耐久性が高い。   FIG. 1 is a schematic cross-sectional view of a unit cell parallel to a central fibrous current collector 1. The shape is basically cylindrical. 1 is a fibrous current collector (fibrous material), 2 is an active material layer thereof, 3 is a separator made of a material having no electron conductivity and ion conductivity, and 4 is a counter electrode active material layer. Reference numeral 5 denotes a counter electrode current collector (an outer peripheral material layer), which may serve as a battery case. In the case of a nickel-hydrogen battery, when 2 is a hydrogen storage alloy electrode, 4 is a nickel active material, and 5 is a current collector that may also serve as a battery case. In this embodiment, since the active material layer 2 is arranged in a circular shape around the fibrous current collector 1, even if some deviation occurs between the fibrous current collector 1 and the active material layer 2. Insulation, electrical conductivity is ensured and durability is high.

図2は、図1で示した素電池を用いて、高容量や高電圧にするために並列や直列に接続した状態を示す、繊維状集電体1と並行の概略断面図である。1が繊維状集電体(繊維状物質)、2がその活物質層、3が電子伝導性は無くイオン伝導性のある物質からなるセパレータ、4が対極活物質層である。5が対極用集電体(外周の材料層)であり、電槽をかねる場合もある。本実施形態では、繊維状集電体の径は、0.1〜300μm、好ましくは0.5〜200μmのように細いので、このように集合(積層)して用いる。ここで、素電池の繊維状集電体とする活物質がすべて同じであれば、並列接続で高容量となる。高電圧にするためには集合した電池を、直列に接続すればよい。   FIG. 2 is a schematic cross-sectional view in parallel with the fibrous current collector 1, showing a state in which the unit cell shown in FIG. 1 is connected in parallel or in series in order to increase the capacity or voltage. 1 is a fibrous current collector (fibrous material), 2 is an active material layer thereof, 3 is a separator made of a material having no electron conductivity and ion conductivity, and 4 is a counter electrode active material layer. Reference numeral 5 denotes a counter electrode current collector (an outer peripheral material layer), which may serve as a battery case. In the present embodiment, the diameter of the fibrous current collector is 0.1 to 300 μm, preferably 0.5 to 200 μm, and is used by being assembled (laminated) in this way. Here, if all the active materials used as the fibrous current collector of the unit cell are the same, the capacity is increased by parallel connection. In order to increase the voltage, the assembled batteries may be connected in series.

図3は、繊維状集電体1に直角方向の断面の概略図である。1つの円柱が素電池であり、1が繊維状集電体(繊維状物質)、2がその活物質層、3が電子伝導性は無くイオン伝導性のある物質からなるセパレータ、4が対極活物質層である。例えば、ニッケル−水素電池の場合、2を負極とした場合に水素吸蔵合金極になり、4がニッケル極になる。5がニッケル極の集電体で電槽を兼ねている。素電池間の接続を並列的とした例である。この場合に、外側の活物質層が導電性であれば、その集電体5は省略することも可能である。   FIG. 3 is a schematic view of a cross section perpendicular to the fibrous current collector 1. One column is a unit cell, 1 is a fibrous current collector (fibrous material), 2 is an active material layer thereof, 3 is a separator made of a material having no electron conductivity and ionic conductivity, and 4 is a counter electrode active. It is a material layer. For example, in the case of a nickel-hydrogen battery, when 2 is a negative electrode, it becomes a hydrogen storage alloy electrode, and 4 becomes a nickel electrode. 5 is a nickel electrode current collector that also serves as a battery case. This is an example in which the connection between the unit cells is parallel. In this case, if the outer active material layer is conductive, the current collector 5 can be omitted.

図4および図5は、それぞれ素電池内の繊維状集電体1を複数本用いて構成した素電池群を直列に接続した際の概略断面図である。図5の6は、各素電池の接続用に配した接続板である。これらの実施形態のように、繊維状集電体1を複数本用いて構成すると、短絡が発生しても、短絡した繊維状集電体のみが焼き切れて短絡が解消する。   FIG. 4 and FIG. 5 are schematic cross-sectional views when a unit cell group configured by using a plurality of fibrous current collectors 1 in each unit cell is connected in series. Reference numeral 6 in FIG. 5 denotes a connection plate arranged for connecting each unit cell. As in these embodiments, when a plurality of fibrous current collectors 1 are used, even if a short circuit occurs, only the shorted fibrous current collector burns out and the short circuit is eliminated.

電池を高容量または高電圧にするためには、上記のように、素電池を並列または直列に接続すればよい。   In order to make the battery have a high capacity or a high voltage, the unit cells may be connected in parallel or in series as described above.

本発明の実施の第1形態として、最も実用的に有効なニッケル−水素電池を例として挙げる。実施の第1形態では、ペースト式ニッケル極を正極とし、水素吸蔵合金を負極とした具体例として述べる。繊維状材料にニッケル繊維を用いて正極とした。これを、平均粒径5μmに粉砕した水酸化コバルトおよび同じく平均粒径5μmに粉砕した水酸化ニッケル粉末に、増粘剤として0.5重量%程度のCMC水溶液、結着剤として3重量%程度のフッ素樹脂ディスパージョンを用いて作製したスラリー中に、浸漬し、引上げた後に乾燥して正極活物質層を形成した。   As the first embodiment of the present invention, the most practically effective nickel-hydrogen battery is taken as an example. In the first embodiment, a specific example will be described in which a paste-type nickel electrode is used as a positive electrode and a hydrogen storage alloy is used as a negative electrode. A nickel fiber was used as the fibrous material to form a positive electrode. This was added to cobalt hydroxide ground to an average particle size of 5 μm and nickel hydroxide powder ground to an average particle size of 5 μm to a CMC aqueous solution of about 0.5% by weight as a thickener and about 3% by weight as a binder. Were immersed in a slurry prepared using a fluororesin dispersion of, and then pulled up and dried to form a positive electrode active material layer.

次いで、これを、ジメチルスルフォキシド(DMSO)にポリエーテルサルフォン(PES)を溶解させた溶液に、浸漬して引上げた。DMSOを水で抽出し、PESを固化することにより、多孔質膜を形成した。平均厚さは、20μmとした。   Subsequently, this was pulled up by being immersed in a solution in which polyethersulfone (PES) was dissolved in dimethyl sulfoxide (DMSO). DMSO was extracted with water, and PES was solidified to form a porous membrane. The average thickness was 20 μm.

負極として公知のMmNi系合金粉末を平均粒径4μmに粉砕し、CMCを増粘剤とし、結着剤としてスチレンブタジエンゴム(SBR)を用いて作製したスラリー中に、浸漬し、引上げた後に乾燥して負極合金層を形成した。 After pulverizing an MmNi 5- based alloy powder known as a negative electrode to an average particle size of 4 μm, using CMC as a thickener, and styrene butadiene rubber (SBR) as a binder, dipping and pulling up It dried and the negative electrode alloy layer was formed.

実施の第1形態では、負極に導電性があるので、これを活物質と同時に導電層とした。その上にさらに、公知の活性化処理の後、ニッケル無電解めっきをして、導電層としてニッケル層を形成すれば、導電性は向上する。   In the first embodiment, since the negative electrode has conductivity, it is used as a conductive layer simultaneously with the active material. On top of that, if a nickel layer is formed as a conductive layer by performing nickel electroless plating after a known activation treatment, the conductivity is improved.

このようにして得られた素電池は、図3および図4に示すように、正極はニッケル繊維の断面が露出した状態とし、負極は水素吸蔵合金層が露出した状態にして、金属製の電槽に挿入した。電槽が負極端子になる。正極端子は一括して、同じく金属製の蓋に溶接して電池を構成した。負極と電槽は、十分押付ける状態を作ることが好ましい。これは、電極と電槽との電気的な接続を十分行なうことと、充放電の繰返しによる電極の膨れや活物質の脱落による放電特性の劣化を抑える効果がある。電槽の形状としては、円筒型でも角型でも平板状でもよく、形状に制限はない。   As shown in FIGS. 3 and 4, the unit cell obtained in this way has a positive electrode with the nickel fiber cross-section exposed and a negative electrode with the hydrogen storage alloy layer exposed. Inserted into the bath. The battery case becomes the negative terminal. The positive electrode terminal was collectively welded to a metal lid to constitute a battery. It is preferable that the negative electrode and the battery case are sufficiently pressed. This has the effect of sufficiently performing electrical connection between the electrode and the battery case, and suppressing deterioration of discharge characteristics due to swelling of the electrode due to repeated charge / discharge and dropping of the active material. The shape of the battery case may be cylindrical, rectangular or flat, and there is no limitation on the shape.

ここでは、水溶液電解液を用い、水酸化リチウム(例えば10g/リットル)を含む30重量%苛性カリ水溶液を注入した。   Here, an aqueous electrolyte solution was used, and a 30% by weight aqueous caustic potash solution containing lithium hydroxide (for example, 10 g / liter) was injected.

本発明の実施の第2形態による電池製造の別の例を示す。上記の実施の第1形態とは別の電気分解によるニッケル活物質を、電解析出法により、基材であるニッケル繊維上に形成した。つまり、硝酸ニッケル浴中で、ニッケル繊維を陰極とし、ニッケル板を陽極として電気分解を行い、ニッケル表面に、ニッケル/水酸化ニッケルを電解析出させた。以下は、PESをDMSOに溶解させた樹脂液に、上記のファイバーを浸漬して引上げた。これを水に浸漬し、DMSOを水で抽出し、PESを固化することにより、多孔質膜を形成した。これを、酸化カドミウム粉末にカドミウム粉末を加え、これにSBRをバインダーとして、CMC水溶液を増粘剤として添加して作製したスラリー中に、浸漬した後、直ちに乾燥して負極活物質層を形成した。この上に、無電解めっきでニッケル層を形成しても良い。しかし、このままでも、金属電槽に入れて充電することにより、混在させているカドミウム金属の導電性で、全体の充電が可能である。   6 shows another example of battery manufacture according to the second embodiment of the present invention. A nickel active material obtained by electrolysis different from that in the first embodiment was formed on the nickel fiber as the base material by electrolytic deposition. That is, in a nickel nitrate bath, electrolysis was performed using nickel fibers as a cathode and a nickel plate as an anode, and nickel / nickel hydroxide was electrolytically deposited on the nickel surface. In the following, the above fiber was dipped in a resin solution in which PES was dissolved in DMSO and pulled up. This was immersed in water, DMSO was extracted with water, and PES was solidified to form a porous membrane. This was immersed in a slurry prepared by adding cadmium powder to cadmium oxide powder, adding SBR as a binder, and adding a CMC aqueous solution as a thickener, and then immediately drying to form a negative electrode active material layer. . On top of this, a nickel layer may be formed by electroless plating. However, even in this state, the entire battery can be charged with the conductivity of the mixed cadmium metal by charging in a metal battery case.

このようにして得られた素電池は、正極はニッケル繊維の断面が露出した状態とし、負極はカドミウムと酸化カドミウム混合層が露出した状態にして、金属製の電槽に挿入した。実施の第1形態と同じで、電槽が負極端子になる。正極端子は一括して、同じく金属製の蓋に溶接して電池を構成した。この実施の第2形態でも、負極と電槽は、十分押付ける状態を作ることが好ましい。これは、電極と電槽との電気的な接続が十分行なわれ、充放電の繰返しによる電極の膨れや活物質の脱落による放電特性の劣化を抑える効果がある。   The unit cell thus obtained was inserted in a metal battery case with the positive electrode exposed in a cross section of nickel fiber and the negative electrode exposed in a mixed layer of cadmium and cadmium oxide. As in the first embodiment, the battery case serves as a negative electrode terminal. The positive electrode terminal was collectively welded to a metal lid to constitute a battery. Also in this second embodiment, it is preferable that the negative electrode and the battery case are sufficiently pressed. This has the effect that the electrical connection between the electrode and the battery case is sufficiently performed, and the deterioration of the discharge characteristics due to the swelling of the electrode due to repeated charging and discharging and the dropping of the active material is suppressed.

本発明の実施の第3形態として、実施の第1形態で記載した構成の素電池の外側に、集電体としてニッケル板を取付けた。   As a third embodiment of the present invention, a nickel plate is attached as a current collector outside the unit cell having the configuration described in the first embodiment.

この構成で、各素電池の正極端子の位置を揃え、逆の位置にある負極の集電体も並べた。各々の集電体に、素電池の正極端子および負極端子を、それぞれ押しつけた。溶接は、より好ましい手段である。各々の端子を外に出して、ラミネートで包めば、平板状電池になる。電解液は、あらかじめセパレータに含浸しておいた。   With this configuration, the positions of the positive terminals of each unit cell were aligned, and the negative electrode current collectors at the opposite positions were also arranged. The positive electrode terminal and negative electrode terminal of the unit cell were pressed against each current collector. Welding is a more preferred means. If each terminal is taken out and wrapped with a laminate, a flat battery is obtained. The electrolyte was impregnated in advance in the separator.

次いで、本実施の形態の電池について、充電および放電の詳細を説明する。本実施の形態では、ニッケル繊維のような電子伝導性のある繊維状物質の表面に、薄い電池活物質層を形成することにより、電子やイオンの移動距離を極めて短くすることが可能となり、電子やイオンの拡散が、従来の電池と比べて飛躍的に促進され、高出力充放電が大幅に改良された。例えば、公称容量10Ahの角型ニッケル−水素電池で、比較の焼結式ニッケル−水素電池が10C放電で平均電圧1Vであるのに対して、本実施形態の電池は1.2Vであり、20C放電で、前者が0.9Vであるのに対して、本実施形態の電池は1.1Vを示した。利用率も、10Cで比較のニッケル−水素電池が終止電圧0.8Vで80%であるのに対して、本実施形態の電池は92%を示した。20Cでは、それぞれ、70%、85%であった。   Next, details of charging and discharging will be described for the battery of the present embodiment. In this embodiment, by forming a thin battery active material layer on the surface of a fibrous material having electron conductivity such as nickel fiber, it becomes possible to extremely shorten the moving distance of electrons and ions. Compared with conventional batteries, the diffusion of ions and ions has been greatly accelerated, and the high power charge / discharge has been greatly improved. For example, in a prismatic nickel-hydrogen battery having a nominal capacity of 10 Ah, the comparative sintered nickel-hydrogen battery has a discharge voltage of 10 C and an average voltage of 1 V, whereas the battery of this embodiment has a voltage of 1.2 V and 20 C. In the discharge, the former was 0.9V, while the battery of this embodiment showed 1.1V. The utilization rate of the battery of the present embodiment was also 92%, while the comparative nickel-hydrogen battery at 10C was 80% at a final voltage of 0.8V. At 20C, they were 70% and 85%, respectively.

以上のことより、本発明の電池は高出力であることがわかる。また、大きな電流で充電することが可能である。   From the above, it can be seen that the battery of the present invention has a high output. In addition, charging with a large current is possible.

本発明の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of this invention. 本発明の他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す他の概略断面図である。It is another schematic sectional drawing which shows other embodiment of this invention. 本発明のさらに他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of this invention. 本発明のさらに他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of this invention.

符号の説明Explanation of symbols

1 繊維状集電体(繊維状物質)
2 活物質層
3 セパレータ
4 対極活物質層
5 対極用集電体(外周の材料層)
6 接続板
1 Fibrous current collector (fibrous material)
2 Active Material Layer 3 Separator 4 Counter Electrode Active Material Layer 5 Counter Electrode Current Collector (Outer Material Layer)
6 Connection board

Claims (19)

電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成してなる充放電可能な電池。   Charge / discharge is possible by forming a battery active material layer on the surface of a fibrous material with electron conductivity, covering it with an ion conductive material without electron conductivity, and forming a counter electrode active material layer. Battery. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなる充放電可能な電池。   A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. A chargeable / dischargeable battery formed by forming a conductive material layer. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなり、中心部の繊維状物質と外周の材料層から、それぞれ端子を取り出してなる充放電可能な電池。   A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. A chargeable / dischargeable battery that is formed by forming a conductive material layer and taking out terminals from the fibrous material at the center and the material layer at the outer periphery. 電子伝導性のある繊維状物質の表面に電池活物質層を形成し、その上を電子伝導性が無くイオン伝導性のある物質で被覆し、さらに対極活物質層を形成し、その上に電子伝導性のある材料層を形成してなり、中心部の繊維状物質と外周の材料層から、それぞれ端子を取り出したものを素電池とし、この素電池を束状で並べるか、織物状とし、正極端子と負極端子を取り付けてなる充放電可能な電池。   A battery active material layer is formed on the surface of a fibrous material having electron conductivity, and is coated with a material having no electron conductivity and ion conductivity, and a counter electrode active material layer is formed thereon, and an electron is formed thereon. Formed by forming a conductive material layer, from the fibrous material in the center and the material layer of the outer periphery, each cell is taken as a unit cell, and this unit cell is arranged in a bundle or a fabric shape, A chargeable / dischargeable battery comprising a positive terminal and a negative terminal. 電子伝導性のある繊維状物質からなる集電体が、1本または複数本ある請求項1〜4のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to any one of claims 1 to 4, wherein there is one or a plurality of current collectors made of a fibrous substance having electron conductivity. 繊維状物質の直径が、0.1〜300μmである請求項1〜5のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 1, wherein the fibrous substance has a diameter of 0.1 to 300 μm. 繊維状物質の直径が、0.5〜200μmである請求項1〜5のいずれか1項に記載の充放電可能な電池。   The diameter of a fibrous substance is 0.5-200 micrometers, The battery which can be charged / discharged of any one of Claims 1-5. 電子伝導性のある繊維状物質が、金属、炭素系繊維、表面を金属メッキした有機系繊維、または無機系材料からなる請求項1〜7のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to any one of claims 1 to 7, wherein the fibrous substance having electron conductivity is made of a metal, a carbon-based fiber, an organic fiber having a metal-plated surface, or an inorganic material. 電子伝導性のある繊維状物質が正極の集電体であり、外周の材料層が負極の集電体である請求項2〜8のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 2, wherein the fibrous substance having electron conductivity is a positive electrode current collector, and the outer peripheral material layer is a negative electrode current collector. 電子伝導性のある繊維状物質の表面に、水酸化ニッケルを主とする活物質層を形成してなる請求項9に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 9, wherein an active material layer mainly composed of nickel hydroxide is formed on the surface of a fibrous substance having electron conductivity. 電子伝導性のある繊維状物質が、ニッケルまたはニッケル合金からなる請求項9に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 9, wherein the fibrous substance having electron conductivity is made of nickel or a nickel alloy. 電子伝導性のある繊維状物質が負極の集電体であり、外周の材料層が正極である請求項2〜8のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 2, wherein the fibrous substance having electron conductivity is a negative electrode current collector, and the outer peripheral material layer is a positive electrode. 電子伝導性のある繊維状物質が負極の集電体で、水素吸蔵合金を主とする層を形成してなる請求項12に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 12, wherein the fibrous substance having electron conductivity is a negative electrode current collector and a layer mainly composed of a hydrogen storage alloy is formed. イオン伝導性のある多孔質層上に、水素吸蔵合金を主とする層を形成してなる請求項9に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 9, wherein a layer mainly composed of a hydrogen storage alloy is formed on a porous layer having ion conductivity. 電子伝導性のある繊維状物質が負極の集電体で、亜鉛を主とする層を形成してなる請求項12に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 12, wherein the fibrous substance having electron conductivity is a negative electrode current collector and a layer mainly composed of zinc is formed. イオン伝導性のある多孔質層上に、亜鉛を主とする層を形成してなる請求項9に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 9, wherein a layer mainly composed of zinc is formed on a porous layer having ion conductivity. 負極の集電体が、ニッケル、銅、炭素繊維または黒鉛繊維からなる請求項12に記載の充放電可能な電池。   The chargeable / dischargeable battery according to claim 12, wherein the current collector of the negative electrode is made of nickel, copper, carbon fiber, or graphite fiber. 電解液として苛性アルカリ水溶液を含浸してなる請求項9〜17のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to any one of claims 9 to 17, wherein the battery is impregnated with a caustic aqueous solution as an electrolytic solution. イオン伝導性のある物質が、固体電解質またはゲル電解質からなる請求項1〜4のいずれか1項に記載の充放電可能な電池。   The chargeable / dischargeable battery according to any one of claims 1 to 4, wherein the ion-conductive substance comprises a solid electrolyte or a gel electrolyte.
JP2008240571A 2008-09-19 2008-09-19 Chargeable and dischargeable battery Pending JP2010073533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240571A JP2010073533A (en) 2008-09-19 2008-09-19 Chargeable and dischargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240571A JP2010073533A (en) 2008-09-19 2008-09-19 Chargeable and dischargeable battery

Publications (1)

Publication Number Publication Date
JP2010073533A true JP2010073533A (en) 2010-04-02

Family

ID=42205120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240571A Pending JP2010073533A (en) 2008-09-19 2008-09-19 Chargeable and dischargeable battery

Country Status (1)

Country Link
JP (1) JP2010073533A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129412A (en) * 2008-11-28 2010-06-10 Seiko Epson Corp Electrochemical device
WO2012097457A1 (en) * 2011-01-21 2012-07-26 Liu, Hao Cylindrical shaped ion-exchange battery
JP2013534698A (en) * 2010-06-28 2013-09-05 エルジー・ケム・リミテッド Negative electrode for cable-type secondary battery and cable-type secondary battery having the same
JP2013540339A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Cable type secondary battery
JP2013540340A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Negative electrode for cable type secondary battery and method for producing the same
JP2013543643A (en) * 2010-10-26 2013-12-05 エルジー・ケム・リミテッド Cable type secondary battery
KR20140054131A (en) * 2011-08-02 2014-05-08 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Biocompatible wire battery
JP2014089973A (en) * 2013-12-20 2014-05-15 Seiko Epson Corp Electrochemical device
JP2014531120A (en) * 2011-10-25 2014-11-20 エルジー・ケム・リミテッド Secondary battery negative electrode and secondary battery including the same
JP2015135829A (en) * 2010-05-20 2015-07-27 エルジー・ケム・リミテッド Cable-type secondary battery having metal-coated polymer current collector
WO2015199520A3 (en) * 2015-04-02 2016-03-31 Тоо "Институт Аккумуляторов" Non-flowing zn/niooh storage battery
JP2017004854A (en) * 2015-06-12 2017-01-05 日本碍子株式会社 Nickel zinc battery
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
JP2019135702A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Secondary battery
JP2019135703A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Secondary battery
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888019A (en) * 1994-09-20 1996-04-02 Sony Corp Sealed storage battery
JPH097629A (en) * 1995-06-14 1997-01-10 Mitsubishi Materials Corp Tubular battery
JPH11265730A (en) * 1998-03-16 1999-09-28 Mitsubishi Paper Mills Ltd Linear lithium secondary battery
JP2001110445A (en) * 1999-10-12 2001-04-20 Sony Corp Cord type battery
JP2007533098A (en) * 2004-04-12 2007-11-15 キョンサン ナショナル ユニバーシティ Yarn-type flexible battery
WO2007135331A1 (en) * 2006-05-24 2007-11-29 Electricite De France Textile electrode and accumulator containing such an electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888019A (en) * 1994-09-20 1996-04-02 Sony Corp Sealed storage battery
JPH097629A (en) * 1995-06-14 1997-01-10 Mitsubishi Materials Corp Tubular battery
JPH11265730A (en) * 1998-03-16 1999-09-28 Mitsubishi Paper Mills Ltd Linear lithium secondary battery
JP2001110445A (en) * 1999-10-12 2001-04-20 Sony Corp Cord type battery
JP2007533098A (en) * 2004-04-12 2007-11-15 キョンサン ナショナル ユニバーシティ Yarn-type flexible battery
WO2007135331A1 (en) * 2006-05-24 2007-11-29 Electricite De France Textile electrode and accumulator containing such an electrode

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129412A (en) * 2008-11-28 2010-06-10 Seiko Epson Corp Electrochemical device
EP3057160A3 (en) * 2010-05-20 2016-10-19 LG Chem, Ltd. Cable-type secondary battery having metal-coated polymer current collector
JP2015135829A (en) * 2010-05-20 2015-07-27 エルジー・ケム・リミテッド Cable-type secondary battery having metal-coated polymer current collector
US8785020B2 (en) 2010-06-28 2014-07-22 Lg Chem, Ltd. Anode for cable-type secondary battery and cable-type secondary battery including the anode
JP2013534698A (en) * 2010-06-28 2013-09-05 エルジー・ケム・リミテッド Negative electrode for cable-type secondary battery and cable-type secondary battery having the same
US9406926B2 (en) 2010-06-28 2016-08-02 Lg Chem, Ltd. Anode for cable-type secondary battery and cable-type secondary battery including the anode
JP2013540340A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Negative electrode for cable type secondary battery and method for producing the same
JP2013540339A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Cable type secondary battery
US9673485B2 (en) 2010-10-19 2017-06-06 Lg Chem, Ltd. Anode of cable-type secondary battery and manufacturing method thereof
JP2013543643A (en) * 2010-10-26 2013-12-05 エルジー・ケム・リミテッド Cable type secondary battery
WO2012097457A1 (en) * 2011-01-21 2012-07-26 Liu, Hao Cylindrical shaped ion-exchange battery
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
KR20140054131A (en) * 2011-08-02 2014-05-08 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Biocompatible wire battery
JP2014524643A (en) * 2011-08-02 2014-09-22 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Biocompatible wire battery
KR101943292B1 (en) * 2011-08-02 2019-01-29 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Biocompatible wire battery
JP2014531120A (en) * 2011-10-25 2014-11-20 エルジー・ケム・リミテッド Secondary battery negative electrode and secondary battery including the same
US10775644B2 (en) 2012-01-26 2020-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
JP2014089973A (en) * 2013-12-20 2014-05-15 Seiko Epson Corp Electrochemical device
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10386656B2 (en) 2014-08-21 2019-08-20 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10367233B2 (en) 2014-08-21 2019-07-30 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10374216B2 (en) 2014-08-21 2019-08-06 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10598958B2 (en) 2014-08-21 2020-03-24 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10558062B2 (en) 2014-08-21 2020-02-11 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical device
EP3089241A1 (en) 2015-04-02 2016-11-02 Institute of Batteries, LLC Flow-assist-free zn/niooh battery
WO2015199520A3 (en) * 2015-04-02 2016-03-31 Тоо "Институт Аккумуляторов" Non-flowing zn/niooh storage battery
JP2017004854A (en) * 2015-06-12 2017-01-05 日本碍子株式会社 Nickel zinc battery
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
JP2019135703A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Secondary battery
JP2019135702A (en) * 2018-02-05 2019-08-15 株式会社豊田中央研究所 Secondary battery

Similar Documents

Publication Publication Date Title
JP2010073533A (en) Chargeable and dischargeable battery
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
JP6367390B2 (en) Production of large capacity prism lithium ion alloy anode
US8420259B2 (en) Electrodes including an embedded compressible or shape changing component
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
KR102166391B1 (en) Secondary zinc-manganese dioxide batteries for high power applications
KR101413774B1 (en) Coated electrode and organic electrolyte capacitor
JP2003317794A (en) Fiber cell and its manufacturing method
US4224392A (en) Nickel-oxide electrode structure and method of making same
CN104795567B (en) Aquo-lithium ion/sodium-ion battery based on iodide ion solution anode and organic matter cathode
CN103700798A (en) Fiber chemical energy storage power supply and preparation method thereof
CN106469821B (en) A kind of half fluidised form lithium flow battery
US20220069286A1 (en) Polymer embedded electrodes for batteries
JP2013206623A (en) Fiber electrode and fiber battery including fiber electrode
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2010140941A (en) Capacitor
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
CN212182476U (en) High-energy-density and high-power-density aluminum ion battery
CN113793980A (en) Rechargeable organic calcium ion battery and preparation method thereof
US11641041B2 (en) Rechargeable zinc-air battery with perforated-shell active particles
JP5557227B2 (en) Nickel positive electrode for fiber batteries
JP5924670B2 (en) Battery having sheet-like fiber positive electrode and manufacturing method thereof
JP2008181825A (en) Nickel electrode for alkaline cell
US20220384856A1 (en) Mitigating the zincate effect in energy dense manganese dioxide electrodes
KR102306925B1 (en) Reversible manganese dioxide electrode, method for making same, use thereof, and rechargeable alkaline manganese-cell comprising the electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820