Nothing Special   »   [go: up one dir, main page]

JP2010063534A - Graft material and method of manufacturing the same - Google Patents

Graft material and method of manufacturing the same Download PDF

Info

Publication number
JP2010063534A
JP2010063534A JP2008230971A JP2008230971A JP2010063534A JP 2010063534 A JP2010063534 A JP 2010063534A JP 2008230971 A JP2008230971 A JP 2008230971A JP 2008230971 A JP2008230971 A JP 2008230971A JP 2010063534 A JP2010063534 A JP 2010063534A
Authority
JP
Japan
Prior art keywords
layer
apatite
magnesium hydroxide
magnesium
transplant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008230971A
Other languages
Japanese (ja)
Inventor
Masahito Tamai
将人 玉井
Hiroshi Kakidate
浩 垣立
Mao Hayashi
真生 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008230971A priority Critical patent/JP2010063534A/en
Publication of JP2010063534A publication Critical patent/JP2010063534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture a graft material showing high biocompatibility in a short time without requiring heating at a high temperature and a special manufacturing device. <P>SOLUTION: A method of manufacturing the graft material includes: a step S1 of immersing a base material of the graft material made of pure magnesium or a magnesium alloy in a corrosion accelerating material to form a layer of magnesium hydroxide on a surface of the base material of the graft material; a step S2 of washing the corrosion accelerating material adhering to the surface of the layer of the magnesium hydroxide; and a step S4 of forming an apatite layer on the surface of the layer of the magnesium hydroxide by immersing the base material of the graft material in a solution containing calcium ions and phosphate ions of an amount to be supersaturated relative to the apatite. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移植材とその製造方法に関するものである。   The present invention relates to a transplant material and a method for producing the same.

従来、金属等からなる移植物の生体親和性を向上するために移植物の基材表面にアパタイト層をコーティングする技術が知られている(例えば、特許文献1〜特許文献3参照。)。
特許文献1の技術は、プラズマ溶射による方法あるいはアパタイトペーストを被膜する方法である。特許文献2の技術は、レーザやイオンビームを用いる方法である。特許文献3の技術は、基材表面にシリカゲルを結合させた後に疑似体液に浸漬してアパタイト層を形成するものである。
Conventionally, a technique for coating an apatite layer on the surface of a base material of an implant in order to improve the biocompatibility of the implant made of metal or the like is known (see, for example, Patent Documents 1 to 3).
The technique of Patent Document 1 is a method by plasma spraying or a method of coating an apatite paste. The technique of Patent Document 2 is a method using a laser or an ion beam. The technique of Patent Document 3 is to form an apatite layer by bonding silica gel to the surface of a substrate and then immersing it in a simulated body fluid.

特開2000−129314号公報JP 2000-129314 A 特開平6−285149号公報JP-A-6-285149 特開平5−103829号公報JP-A-5-103829

しかしながら、特許文献1の技術は、基材を1000℃以上に加熱しなければならないという不都合がある。また、特許文献2の技術は、特殊な製造装置が必要となりコストがかかるという不都合がある。また、特許文献3の技術は、上記不都合はないものの、生体親和性に乏しいシリカゲルを用いる必要があり、体内に移植される移植材としては好ましくない。   However, the technique of Patent Document 1 has a disadvantage that the substrate must be heated to 1000 ° C. or higher. In addition, the technique of Patent Document 2 has a disadvantage that a special manufacturing apparatus is required and costs are increased. Moreover, although the technique of patent document 3 does not have the said inconvenience, it is necessary to use a silica gel with poor biocompatibility, and it is not preferable as a transplant material transplanted in the body.

本発明は上述した事情に鑑みてなされたものであって、生体親和性の高い移植材、および、高温加熱や特別な製造装置を必要とせず、短時間で簡易に上記移植材を製造することができる製造方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and does not require a biocompatible graft material and high-temperature heating or a special production apparatus, and can easily produce the graft material in a short time. It aims at providing the manufacturing method which can do.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、純マグネシウムまたはマグネシウム合金からなる移植材基材を腐食促進材に浸漬して、該移植材基材の表面に水酸化マグネシウム層を形成するステップと、水酸化マグネシウム層の表面に付着している腐食促進材を洗浄するステップと、アパタイトに対して過飽和となる量のカルシウムイオンとリン酸イオンとを含む溶液に浸漬して、水酸化マグネシウム層の表面にアパタイト層を形成するステップとを含む移植材の製造方法を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes a step of immersing an implant base material made of pure magnesium or a magnesium alloy in a corrosion promoting material to form a magnesium hydroxide layer on the surface of the implant base material, and adhering to the surface of the magnesium hydroxide layer A step of cleaning the corrosion-promoting material, and a step of forming an apatite layer on the surface of the magnesium hydroxide layer by immersing in a solution containing calcium ions and phosphate ions in amounts supersaturated with respect to the apatite The manufacturing method of the transplant containing this is provided.

本発明によれば、純マグネシウムまたはマグネシウム合金からなる移植材基材を腐食促進材に浸漬することにより、移植材基材の表面の腐食が促進されて水酸化マグネシウム層が形成され、その後、アパタイトに対して過飽和となる量のカルシウムイオンとリン酸イオンとを含む溶液(疑似体液)に浸漬することにより、水酸化マグネシウム層の水酸基を核として表面にアパタイトが析出し、アパタイト層が形成される。   According to the present invention, by immersing a transplant base material made of pure magnesium or a magnesium alloy in a corrosion promoting material, corrosion of the surface of the transplant base material is promoted to form a magnesium hydroxide layer, and then apatite is formed. By immersing in a solution (pseudo body fluid) containing calcium ions and phosphate ions in a supersaturated amount, apatite is deposited on the surface with the hydroxyl group of the magnesium hydroxide layer as a nucleus, and an apatite layer is formed. .

純マグネシウムやマグネシウム合金は、ステントや骨固定材を初めとする医療応用が検討されているが、そのまま移植したのでは体内での急激な腐食に伴って多量に発生する水素により移植部位に炎症反応が引き起こされる。これに対して、本発明によれば、表面を被覆するアパタイト層によって急激な腐食が防止され、炎症反応の発生を抑制することができる。そして、本発明によれば、珪素原子のような生体親和性の低い物質を含有させることなく、表面にアパタイト層を備えて生体親和性の高い移植材を、特別な製造装置を使用することなく、また高温に加熱することなく、簡易に製造することができる。   Pure magnesium and magnesium alloys are being studied for medical applications such as stents and bone anchoring materials, but if transplanted as they are, inflammatory reaction at the transplant site due to hydrogen generated in large quantities due to rapid corrosion in the body Is caused. On the other hand, according to the present invention, rapid corrosion is prevented by the apatite layer covering the surface, and the occurrence of an inflammatory reaction can be suppressed. And according to the present invention, without including a substance having low biocompatibility such as silicon atoms, a transplantation material having apatite layer on the surface and having high biocompatibility can be used without using a special production apparatus. Moreover, it can be easily produced without heating to a high temperature.

上記発明においては、前記腐食促進材は、塩化物イオン、フッ化物イオンまたはリン酸イオンの少なくとも1つを含有することが好ましい。
また、上記発明においては、前記水酸化マグネシウムを形成するステップが、室温以上の腐食促進材に浸漬することが好ましい。
また、上記発明においては、前記アパタイト層を形成するステップが、10℃〜60℃の温度範囲の溶液に浸漬することが好ましい。
In the said invention, it is preferable that the said corrosion promoter contains at least 1 of a chloride ion, a fluoride ion, or a phosphate ion.
Moreover, in the said invention, it is preferable that the step which forms the said magnesium hydroxide is immersed in the corrosion promoting material more than room temperature.
Moreover, in the said invention, it is preferable that the step which forms the said apatite layer is immersed in the solution of the temperature range of 10 to 60 degreeC.

また、本発明は、純マグネシウムまたはマグネシウム合金からなる移植材基材の表面に、水酸化マグネシウムからなる中間層を介して、アパタイト層がコーティングされている移植材を提供する。
本発明によれば、最表面にコーティングされているアパタイト層によって純マグネシウムまたはマグネシウム合金の急激な腐食が抑制され、水素発生が抑えられるので、移植部位における炎症の発生を抑制することができる。特に、中間層を生体親和性の高い水酸化マグネシウムを採用することで、移植部位に親和させて、体内に異物を残さないようにすることができる。
The present invention also provides a graft material in which an apatite layer is coated on the surface of a graft material base made of pure magnesium or a magnesium alloy via an intermediate layer made of magnesium hydroxide.
According to the present invention, the rapid corrosion of pure magnesium or a magnesium alloy is suppressed by the apatite layer coated on the outermost surface and hydrogen generation is suppressed, so that the occurrence of inflammation at the transplant site can be suppressed. In particular, by adopting magnesium hydroxide having high biocompatibility for the intermediate layer, it is possible to make the intermediate layer compatible with the transplanted site so that no foreign matter remains in the body.

本発明によれば、高温加熱や特別な製造装置を必要とせず、短時間で簡易に製造することができるという効果を奏する。   According to the present invention, there is an effect that it can be easily manufactured in a short time without requiring high-temperature heating or a special manufacturing apparatus.

以下、本発明の一実施形態に係る移植材1とその製造方法について、図面を参照して以下に説明する。
本実施形態に係る移植材1は、図1に示されるように、マグネシウム合金からなる移植材基材2の表面に、水酸化マグネシウムからなる中間層3を介してアパタイト層4がコーティングされることにより構成されている。
Hereinafter, an implant 1 according to an embodiment of the present invention and a manufacturing method thereof will be described below with reference to the drawings.
As shown in FIG. 1, the graft material 1 according to the present embodiment has an apatite layer 4 coated on the surface of a graft material base 2 made of a magnesium alloy via an intermediate layer 3 made of magnesium hydroxide. It is comprised by.

本実施形態に係る移植材1は、以下のようにして製造することができる。
すなわち、本実施形態に係る移植材1の製造方法は、図2に示されるように、マグネシウム合金からなる移植材基材2を腐食促進材に浸漬して、該移植材基材2の表面に水酸化マグネシウムからなる中間層3を形成するステップS1と、中間層3の表面に付着している腐食促進材を洗浄するステップS2と、洗浄された移植材基材2を乾燥させるステップS3、アパタイトに対して過飽和となる量のカルシウムイオンとリン酸イオンとを含む溶液(疑似体液)に移植材基材2を浸漬して、中間層3の表面にアパタイト層4を形成するステップS4とを含んでいる。
The transplant 1 according to this embodiment can be manufactured as follows.
That is, in the method for manufacturing the transplant material 1 according to the present embodiment, as shown in FIG. 2, the transplant material base 2 made of a magnesium alloy is immersed in a corrosion promoting material, and the surface of the transplant material base 2 is immersed. Step S1 for forming the intermediate layer 3 made of magnesium hydroxide; Step S2 for cleaning the corrosion promoting material adhering to the surface of the intermediate layer 3; Step S3 for drying the cleaned implant base material 2; Apatite A step S4 of immersing the transplant base material 2 in a solution (pseudo body fluid) containing calcium ions and phosphate ions in a supersaturated amount to form an apatite layer 4 on the surface of the intermediate layer 3. It is out.

腐食促進材としては、塩化物イオン、フッ素イオンまたはリン酸イオンの少なくとも1種類を含む溶液である。例えば、生理食塩水を挙げることができる。中間層3を形成するステップS1は、室温、例えば、37℃で、例えば、24時間行われる。
このステップS1においては、マグネシウム合金からなる移植材基材2の表面が急速に腐食されるため、多量の水素が発生する。しかしながら、このステップS1は体外において行われるため、炎症が発生する不都合はない。
The corrosion accelerator is a solution containing at least one kind of chloride ion, fluorine ion or phosphate ion. For example, physiological saline can be mentioned. Step S1 for forming the intermediate layer 3 is performed at room temperature, for example, 37 ° C., for example, for 24 hours.
In this step S1, since the surface of the graft material base 2 made of a magnesium alloy is rapidly corroded, a large amount of hydrogen is generated. However, since this step S1 is performed outside the body, there is no inconvenience that inflammation occurs.

洗浄するステップS2は、例えば、純水で3回洗浄する。洗浄回数は任意でよい。
乾燥させるステップS3は、例えば、自然乾燥で乾燥させる。乾燥方法も、自然乾燥に限られず、強制乾燥させてもよい。
In step S2 for cleaning, for example, cleaning is performed three times with pure water. The number of washings may be arbitrary.
In step S3 of drying, for example, natural drying is performed. The drying method is not limited to natural drying, and may be forced to dry.

アパタイト層4を形成するステップS4は、アパタイトに対して過飽和となる量のカルシウムイオンとリン酸イオンとを含む溶液(疑似体液:SBF)に、中間層3が形成された移植材基材2を浸漬する。このステップS2は、10℃〜60℃の温度範囲、例えば、37℃で2週間にわたって行われる。このステップS4においては、移植材基材2の表面を覆う中間層3の水酸基を核として表面にアパタイトが析出し、均一なコーティングとなる。このステップS4の温度および時間は任意に設定してよい。   In step S4 for forming the apatite layer 4, the transplant base material 2 on which the intermediate layer 3 is formed in a solution (pseudo body fluid: SBF) containing calcium ions and phosphate ions in an amount supersaturated with respect to the apatite. Immerse. This step S2 is performed for 2 weeks at a temperature range of 10 ° C to 60 ° C, for example, 37 ° C. In this step S4, apatite precipitates on the surface with the hydroxyl group of the intermediate layer 3 covering the surface of the graft base material 2 as a nucleus, and a uniform coating is obtained. You may set arbitrarily the temperature and time of this step S4.

本実施形態に係る移植材1の製造方法によれば、従来のように、高温の処理ステップを経ることなく、特殊な製造装置を使用することなく、生体親和性の乏しいシリカゲルを使用することなく、簡易に生体親和性の高い移植材1を製造することができるという利点がある。   According to the method for manufacturing the transplant 1 according to the present embodiment, as in the past, without using a high-temperature processing step, without using a special manufacturing apparatus, without using silica gel with poor biocompatibility. There is an advantage that the transplant 1 having high biocompatibility can be easily produced.

また、このようにして製造された移植材1は、移植部位に移植されることにより、体液内に浸漬された状態となっても、内側のマグネシウム合金が、アパタイト層4によって保護されて、急速に腐食することがなく、水素の急激な発生が抑えられて、移植部位の炎症の発生を抑制することができるという利点がある。
この場合に、中間層3である水酸化マグネシウム層も高い生体親和性を有するので、移植後に体内に異物を残さずに済むという利点がある。
なお、本実施形態においては、移植材基材2をマグネシウム合金により構成したが、これに代えて、純マグネシウムにより構成してもよい。
Moreover, even if the transplant 1 manufactured in this way is transplanted to a transplant site and is immersed in a body fluid, the inner magnesium alloy is protected by the apatite layer 4 and rapidly. There is an advantage that the generation of hydrogen can be suppressed without causing corrosion, and the generation of inflammation at the transplant site can be suppressed.
In this case, since the magnesium hydroxide layer as the intermediate layer 3 also has high biocompatibility, there is an advantage that no foreign matter is left in the body after transplantation.
In addition, in this embodiment, although the transplant base material 2 was comprised with the magnesium alloy, it may replace with this and may comprise with pure magnesium.

本発明の一実施形態に係る移植材を示す縦断面図である。It is a longitudinal cross-sectional view which shows the transplant material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る移植材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the transplant material which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 移植材
2 移植材基材
3 中間層(水酸化マグネシウム層)
4 アパタイト層
S1 水酸化マグネシウム層を形成するステップ
S2 洗浄するステップ
S4 アパタイト層を形成するステップ
DESCRIPTION OF SYMBOLS 1 transplant material 2 transplant material base material 3 intermediate | middle layer (magnesium hydroxide layer)
4 Apatite layer S1 Step of forming a magnesium hydroxide layer S2 Step of cleaning S4 Step of forming an apatite layer

Claims (5)

純マグネシウムまたはマグネシウム合金からなる移植材基材を腐食促進材に浸漬して、該移植材基材の表面に水酸化マグネシウム層を形成するステップと、
水酸化マグネシウム層の表面に付着している腐食促進材を洗浄するステップと、
アパタイトに対して過飽和となる量のカルシウムイオンとリン酸イオンとを含む溶液に浸漬して、水酸化マグネシウム層の表面にアパタイト層を形成するステップとを含む移植材の製造方法。
Immersing an implant base material made of pure magnesium or a magnesium alloy in a corrosion promoting material to form a magnesium hydroxide layer on the surface of the implant base material;
Cleaning the corrosion promoting material adhering to the surface of the magnesium hydroxide layer;
A step of immersing in a solution containing calcium ions and phosphate ions in an amount supersaturated with respect to the apatite to form an apatite layer on the surface of the magnesium hydroxide layer.
前記腐食促進材は、塩化物イオン、フッ化物イオンまたはリン酸イオンの少なくとも1つを含有する請求項1に記載の移植材の製造方法。   The said corrosion promoter is a manufacturing method of the transplant material of Claim 1 containing at least 1 of a chloride ion, a fluoride ion, or a phosphate ion. 前記水酸化マグネシウムを形成するステップが、室温以上の腐食促進材に浸漬する請求項1または請求項2に記載の移植材の製造方法。   The method for producing a transplant material according to claim 1 or 2, wherein the step of forming the magnesium hydroxide is immersed in a corrosion promoting material at room temperature or higher. 前記アパタイト層を形成するステップが、10℃〜60℃の温度範囲の溶液に浸漬する請求項1から請求項3のいずれかに記載の移植材の製造方法。   The method for producing a transplant material according to any one of claims 1 to 3, wherein the step of forming the apatite layer is immersed in a solution having a temperature range of 10 ° C to 60 ° C. 純マグネシウムまたはマグネシウム合金からなる移植材基材の表面に、水酸化マグネシウムからなる中間層を介して、アパタイト層がコーティングされている移植材。   An implant in which an apatite layer is coated on the surface of an implant base made of pure magnesium or a magnesium alloy via an intermediate layer made of magnesium hydroxide.
JP2008230971A 2008-09-09 2008-09-09 Graft material and method of manufacturing the same Pending JP2010063534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230971A JP2010063534A (en) 2008-09-09 2008-09-09 Graft material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230971A JP2010063534A (en) 2008-09-09 2008-09-09 Graft material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010063534A true JP2010063534A (en) 2010-03-25

Family

ID=42189684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230971A Pending JP2010063534A (en) 2008-09-09 2008-09-09 Graft material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010063534A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148682A (en) * 2008-12-25 2010-07-08 National Institute For Materials Science Medical biological absorbent member and method of manufacturing the same
JP2010174363A (en) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg-BASED STRUCTURED MEMBER
WO2016013594A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人物質・材料研究機構 Bioabsorbable member for medical use and method for producing same
JP2018114187A (en) * 2017-01-19 2018-07-26 国立研究開発法人物質・材料研究機構 Medical biological absorbent member and manufacturing method therefor
JP2020156528A (en) * 2019-03-25 2020-10-01 学校法人 芝浦工業大学 High-purity magnesium-made medical implant and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285212A (en) * 1991-11-19 1993-11-02 Ishifuku Metal Ind Co Ltd Method of treating surface of implantation material
JP2005034630A (en) * 2003-06-25 2005-02-10 Kobe Steel Ltd Ceramic member for implanting in living body, and its production method
WO2007108450A1 (en) * 2006-03-20 2007-09-27 National Institute For Materials Science Biodegradable magnesium material for medical use
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2010057590A (en) * 2008-09-02 2010-03-18 Olympus Corp Graft material and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285212A (en) * 1991-11-19 1993-11-02 Ishifuku Metal Ind Co Ltd Method of treating surface of implantation material
JP2005034630A (en) * 2003-06-25 2005-02-10 Kobe Steel Ltd Ceramic member for implanting in living body, and its production method
WO2007108450A1 (en) * 2006-03-20 2007-09-27 National Institute For Materials Science Biodegradable magnesium material for medical use
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2010057590A (en) * 2008-09-02 2010-03-18 Olympus Corp Graft material and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148682A (en) * 2008-12-25 2010-07-08 National Institute For Materials Science Medical biological absorbent member and method of manufacturing the same
JP2010174363A (en) * 2009-02-02 2010-08-12 National Institute For Materials Science Mg-BASED STRUCTURED MEMBER
WO2016013594A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人物質・材料研究機構 Bioabsorbable member for medical use and method for producing same
JPWO2016013594A1 (en) * 2014-07-24 2017-04-27 国立研究開発法人物質・材料研究機構 Medical bioabsorbable member and method for producing the same
JP2018114187A (en) * 2017-01-19 2018-07-26 国立研究開発法人物質・材料研究機構 Medical biological absorbent member and manufacturing method therefor
JP2020156528A (en) * 2019-03-25 2020-10-01 学校法人 芝浦工業大学 High-purity magnesium-made medical implant and method for producing the same
JP7313612B2 (en) 2019-03-25 2023-07-25 学校法人 芝浦工業大学 Medical implant made of high-purity magnesium and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective
Gnedenkov et al. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8 Ca alloy: Formation and corrosion behaviour
JP3198125B2 (en) Manufacturing method of implant
Salman et al. Preparation and characterization of hydroxyapatite coating on AZ31 Mg alloy for implant applications
JP2010063534A (en) Graft material and method of manufacturing the same
Chu et al. Surface modification of biomedical magnesium alloy wires by micro-arc oxidation
Qu et al. Improvement of bonding strength between biomimetic apatite coating and substrate
WO2009147819A1 (en) Bone-repairing material and method for producing the same
JP2010057590A (en) Graft material and method of manufacturing the same
Zhai et al. Fluoride coatings on magnesium alloy implants
WO2015147184A1 (en) Magnesium alloy pipe material, method for manufacturing same, stent formed using magnesium alloy pipe material, and method for manufacturing same
KR101737358B1 (en) Surface treated Method of Dental implants using plasma electrolytic oxidation
FR2982620A1 (en) METALLIC MATERIALS WITH SURFACE LAYER OF CALCIUM PHOSPHATE AND METHODS FOR PREPARING THE SAME
KR101283780B1 (en) Titanium implant and preparation method thereof
JP5339347B2 (en) A medical bioabsorbable member and a method for producing the same.
JP2002102330A (en) Bioimplant material and method of manufacturing the same
CN101342387A (en) Activation method for quickly generating phosphatic rock on titanium coating surface
RU2508130C1 (en) Fabrication of cardio implant from titanium nickelid-based alloy with surface layer modified by ion-plasma processing
JP2008125622A (en) Biodegradable magnesium material
Gopi et al. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy
Shi et al. Preparation of Dicalcium Phosphate Anhydrous (Monetite) Biological Coating on Titanium by Spray‐Drying Method
JP2008237425A (en) Surface treatment method of titanium or titanium alloy
Kwok et al. Surface treatments of nearly equiatomic NiTi alloy (nitinol) for surgical implants
JP2010125156A (en) Implantation material and method of manufacturing the same
KR101296591B1 (en) Post treatment device for ha coating layer of dental implant surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917