Nothing Special   »   [go: up one dir, main page]

JP2010055942A - Separator for nonaqueous secondary battery and nonaqueous secondary battery - Google Patents

Separator for nonaqueous secondary battery and nonaqueous secondary battery Download PDF

Info

Publication number
JP2010055942A
JP2010055942A JP2008219721A JP2008219721A JP2010055942A JP 2010055942 A JP2010055942 A JP 2010055942A JP 2008219721 A JP2008219721 A JP 2008219721A JP 2008219721 A JP2008219721 A JP 2008219721A JP 2010055942 A JP2010055942 A JP 2010055942A
Authority
JP
Japan
Prior art keywords
heat
separator
secondary battery
porous layer
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008219721A
Other languages
Japanese (ja)
Inventor
Susumu Honda
勧 本多
Satoshi Nishikawa
聡 西川
Atsuhiro Otsuka
淳弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008219721A priority Critical patent/JP2010055942A/en
Publication of JP2010055942A publication Critical patent/JP2010055942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator excellent in heat durability, a shut-down function, oxidation resistance, flame resistance and the like. <P>SOLUTION: The separator for a nonaqueous secondary battery is formed by a fine porous film mainly formed of a thermoplastic resin and having the shut-down function and a heat resistant porous layer mainly formed of a heat resistant resin and having heat resistant porous layers laminated on one side or both sides of the fine porous film. In addition, an inorganic filler such as metallic hydroxide or metallic oxide is included in the heat resistant porous layer. Furthermore, an oxygen index (JIS K7201) for the heat resistant porous layer fulfills a formula: 100≥(oxygen index for the heat resistant porous layer)≥(oxygen index for the heat resistant resin layer)+10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水系二次電池用セパレータに関するものであり、特に非水系二次電池の安全性を向上させる技術に関するものである。   The present invention relates to a separator for a non-aqueous secondary battery, and more particularly to a technique for improving the safety of a non-aqueous secondary battery.

非水電解質電池、特に、リチウムイオン二次電池に代表される非水系二次電池は、高エネルギー密度であり、携帯電話・ノートパソコンといった携帯用電子機器の主電源として広範に普及している。このリチウムイオン二次電池は、更なる高エネルギー密度化が求められているが、安全性の確保が技術的な課題となっている。リチウムイオン二次電池の安全性確保においてセパレータの役割は重要であり、シャットダウン機能を有するという観点から、現状ではポリオレフィン、特にポリエチレン微多孔膜が用いられている。ここで、シャットダウン機能とは、電池の温度が上昇したときに、微多孔膜の孔が閉塞し電流を遮断する機能のことを言い、電池の熱暴走を食い止める働きがある。   Nonaqueous electrolyte batteries, particularly nonaqueous secondary batteries represented by lithium ion secondary batteries, have a high energy density and are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers. This lithium ion secondary battery is required to have a higher energy density, but ensuring safety is a technical issue. The role of the separator is important in ensuring the safety of the lithium ion secondary battery, and from the viewpoint of having a shutdown function, polyolefins, particularly polyethylene microporous membranes are currently used. Here, the shutdown function refers to a function of blocking pores in the microporous membrane when the temperature of the battery rises, and blocking the current, and has a function of preventing thermal runaway of the battery.

一方、リチウムイオン二次電池は、年々高エネルギー密度化がなされており、安全性確保のためシャットダウン機能に加えて耐熱性も要求されてきている。しかしながら、シャットダウン機能は、ポリエチレンの溶融による孔の閉塞をその作動原理としているので耐熱性と相反するものである。このため、シャットダウン機能が作動した後、さらに電池がシャットダウン機能が作動する温度以上に曝され続けることで、セパレータの溶融(いわゆるメルトダウン)が進行してしまう場合がある。このメルトダウンの結果、電池内部で短絡が生じ、これに伴って大きな熱が発生してしまい、電池は発煙・発火・爆発といった危険に曝されることになる。このため、セパレータにはシャットダウン機能に加えて、シャットダウン機能が作動する温度近傍でメルトダウンが生じない程度の、十分な耐熱性が要求される。   On the other hand, lithium ion secondary batteries have been increased in energy density year by year, and heat resistance has been required in addition to a shutdown function to ensure safety. However, the shutdown function is contrary to heat resistance because the operating principle is to close the hole by melting polyethylene. For this reason, after the shutdown function is activated, the battery may continue to be exposed to a temperature higher than the temperature at which the shutdown function is activated, whereby the separator may be melted (so-called meltdown). As a result of this meltdown, a short circuit occurs inside the battery, and as a result, a large amount of heat is generated, and the battery is exposed to dangers such as smoke, ignition, and explosion. For this reason, in addition to the shutdown function, the separator is required to have sufficient heat resistance that does not cause meltdown in the vicinity of the temperature at which the shutdown function operates.

この点において、従来、耐熱性とシャットダウン機能を両立させるために、ポリオレフィン微多孔膜の片面又は両面(表面と裏面)に耐熱性多孔質層を被覆させたり、耐熱性繊維からなる不織布を積層させるという技術が提案されている。例えば、ポリエチレン微多孔膜の片面又は両面に、湿式塗工法により芳香族アラミド等の耐熱性高分子からなる耐熱性多孔質層を積層した非水電解質電池セパレータが知られている(特許文献1〜4参照)。   In this regard, conventionally, in order to achieve both heat resistance and a shutdown function, one surface or both surfaces (front and back surfaces) of the polyolefin microporous film are coated with a heat resistant porous layer, or a nonwoven fabric made of heat resistant fibers is laminated. The technology is proposed. For example, a nonaqueous electrolyte battery separator is known in which a heat-resistant porous layer made of a heat-resistant polymer such as aromatic aramid is laminated on one side or both sides of a polyethylene microporous membrane by a wet coating method (Patent Documents 1 to 3). 4).

このような非水電解質電池セパレータは、ポリエチレンの融点近傍(140℃程度)でシャットダウン機能が作動すると共に、耐熱性多孔質層が十分な耐熱性を示すことにより200℃以上においてもメルトダウンが発生しないため、優れた耐熱性及びシャットダウン機能を発揮する。   Such a non-aqueous electrolyte battery separator operates with a shutdown function near the melting point of polyethylene (about 140 ° C), and the heat-resistant porous layer exhibits sufficient heat resistance, so that meltdown occurs even at 200 ° C or higher. Therefore, it exhibits excellent heat resistance and shutdown function.

ところで、非水電解質電池の安全性を確保するためには、セパレータのシャットダウン機能と耐熱性は重要な側面であるが、長期耐久性という観点にたてば、正・負極での酸化還元によるセパレータの劣化とそれに伴う機械的強度の低下を防ぐために、別途耐酸化性も重要である。   By the way, in order to ensure the safety of the nonaqueous electrolyte battery, the shutdown function and heat resistance of the separator are important aspects, but from the viewpoint of long-term durability, the separator by oxidation and reduction at the positive and negative electrodes In addition, oxidation resistance is also important in order to prevent deterioration of the steel and accompanying reduction in mechanical strength.

特許文献5は、ポリエチレン微多孔膜と酸素指数が26以上である耐熱性多孔質層とが積層されたセパレータ構成を提案しており、これによると、耐熱性多孔質層を正極側に配置することによって、セパレータの耐酸化性が向上するとされている。しかし、このように酸素指数が高い層で被覆しても、ポリエチレン微多孔膜が燃焼しやすいことには変わりがなく、難燃性という観点からは更なる改良が望まれていた。   Patent Document 5 proposes a separator configuration in which a polyethylene microporous film and a heat-resistant porous layer having an oxygen index of 26 or more are laminated. According to this, the heat-resistant porous layer is arranged on the positive electrode side. Therefore, it is said that the oxidation resistance of the separator is improved. However, even when coated with a layer having a high oxygen index as described above, the polyethylene microporous membrane is still easily combusted, and further improvement has been desired from the viewpoint of flame retardancy.

特開2002−355938号公報JP 2002-355938 A 特開2005−209570号公報JP 2005-209570 A 特開2005−285385号公報JP 2005-285385 A 特開2000−030686号公報JP 2000-030686 A 特開2006−269359号公報JP 2006-269359 A

前述のように、耐熱性、シャットダウン機能、耐酸化性及び難燃性という機能を全て満足した実用的なセパレータは得られていないのが現状である。そこで本発明は耐熱性、シャットダウン機能、耐酸化性及び難燃性に優れたセパレータを提供することを目的とする。   As described above, a practical separator that satisfies all the functions of heat resistance, shutdown function, oxidation resistance and flame retardancy has not been obtained. Then, this invention aims at providing the separator excellent in heat resistance, a shutdown function, oxidation resistance, and a flame retardance.

上記課題を解決するために、本発明は以下の構成を採用する。
(1)主として熱可塑性樹脂にて形成されシャットダウン機能を有する微多孔膜と、主として耐熱性樹脂にて形成され前記微多孔膜の片面又は両面に積層された耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、該耐熱性多孔質層に無機フィラーが含まれており、該耐熱性多孔質層の酸素指数(JIS・K・7201)が下記式を満たすことを特徴とする非水系二次電池用セパレータ。
100≧(耐熱性多孔質層の酸素指数)≧(耐熱性樹脂の酸素指数)+10
(2)前記耐熱性多孔質層の酸素指数(JIS・K・7201)が、30〜100であることを特徴とする上記(1)に記載の非水系二次電池用セパレータ。
(3)前記無機フィラーが、金属水酸化物であることを特徴とする上記(1)又は(2)に記載の非水系二次電池用セパレータ。
(4)前記耐熱性多孔質層において、前記無機フィラーの重量分率が30〜95重量%であることを特徴とする上記(1)〜(3)に記載の非水系二次電池用セパレータ。
(5)前記無機フィラーの平均粒子径が0.1〜1μmの範囲であることを特徴とする上記(1)〜(4)に記載の非水系二次電池用セパレータ。
(6)前記耐熱性多孔質層において、前記無機フィラーの比表面積が4〜200m/gであることを特徴とする上記(1)〜(5)に記載の非水系二次電池用セパレータ。
(7)前記耐熱性樹脂が、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上であることを特徴とする上記(1)〜(6)に記載の非水系二次電池用セパレータ。
(8)前記芳香族ポリアミドが、メタ型全芳香族ポリアミドであることを特徴とする上記(7)に記載の非水系二次電池用セパレータ。
(9)前記熱可塑性樹脂が、ポリオレフィンを主体とする熱可塑性樹脂であることを特徴とする上記(1)〜(8)のいずれかに記載の非水系二次電池用セパレータ。
(10)リチウムのドープ・脱ドープにより起電力を得る非水系二次電池において、上記(1)〜(9)のいずれかに記載の非水系二次電池用セパレータを用いることを特徴とする非水系二次電池。
In order to solve the above problems, the present invention employs the following configuration.
(1) A non-porous membrane comprising a microporous membrane formed mainly of a thermoplastic resin and having a shutdown function, and a heat-resistant porous layer formed mainly of a heat-resistant resin and laminated on one or both surfaces of the microporous membrane. A separator for an aqueous secondary battery, wherein the heat resistant porous layer contains an inorganic filler, and the oxygen index (JIS K 7201) of the heat resistant porous layer satisfies the following formula: Separator for non-aqueous secondary battery.
100 ≧ (oxygen index of heat-resistant porous layer) ≧ (oxygen index of heat-resistant resin) +10
(2) The non-aqueous secondary battery separator according to (1) above, wherein the heat resistant porous layer has an oxygen index (JIS · K · 7201) of 30 to 100.
(3) The separator for a nonaqueous secondary battery according to (1) or (2), wherein the inorganic filler is a metal hydroxide.
(4) The nonaqueous secondary battery separator according to any one of (1) to (3) above, wherein the inorganic filler has a weight fraction of 30 to 95% by weight in the heat resistant porous layer.
(5) The nonaqueous secondary battery separator as described in (1) to (4) above, wherein the inorganic filler has an average particle size in the range of 0.1 to 1 μm.
(6) The separator for a nonaqueous secondary battery according to (1) to (5) above, wherein the inorganic filler has a specific surface area of 4 to 200 m 2 / g in the heat resistant porous layer.
(7) The heat-resistant resin is one or more selected from the group consisting of aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide (1) ) To (6) A separator for a non-aqueous secondary battery.
(8) The separator for a nonaqueous secondary battery according to (7), wherein the aromatic polyamide is a meta-type wholly aromatic polyamide.
(9) The separator for a nonaqueous secondary battery according to any one of (1) to (8), wherein the thermoplastic resin is a thermoplastic resin mainly composed of polyolefin.
(10) In a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, the non-aqueous secondary battery separator according to any one of (1) to (9) is used. Water-based secondary battery.

本発明によれば、耐熱性、シャットダウン機能、耐酸化性及び難燃性のいずれにも優れた非水系二次電池用セパレータが提供され、リチウムイオン二次電池等の非水系二次電池の安全性及び耐久性を向上させるのに有効である。   ADVANTAGE OF THE INVENTION According to this invention, the separator for non-aqueous secondary batteries excellent in all of heat resistance, a shutdown function, oxidation resistance, and a flame retardance is provided, and the safety | security of non-aqueous secondary batteries, such as a lithium ion secondary battery, is provided. It is effective in improving the durability and durability.

[非水系二次電池用セパレータ]
本発明は、主として熱可塑性樹脂にて形成されシャットダウン機能を有する微多孔膜と、主として耐熱性樹脂にて形成され前記微多孔膜の片面又は両面に積層された耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、該耐熱性多孔質層に無機フィラーが含まれており、該耐熱性多孔質層の酸素指数(JIS・K・7201)が下記式を満たすことを特徴とする非水系二次電池用セパレータである。
100≧(耐熱性多孔質層の酸素指数)≧(耐熱性樹脂の酸素指数)+10
[Separator for non-aqueous secondary battery]
The present invention includes a microporous membrane that is mainly formed of a thermoplastic resin and has a shutdown function, and a heat-resistant porous layer that is mainly formed of a heat-resistant resin and is laminated on one or both sides of the microporous membrane. A separator for a non-aqueous secondary battery, wherein the heat-resistant porous layer contains an inorganic filler, and the oxygen index (JIS · K · 7201) of the heat-resistant porous layer satisfies the following formula: This is a separator for a non-aqueous secondary battery.
100 ≧ (oxygen index of heat-resistant porous layer) ≧ (oxygen index of heat-resistant resin) +10

本発明の非水系二次電池用セパレータにおいて、無機フィラーは、非水系二次電池用セパレータに耐酸化性と難燃性を付与する上で有効に機能する。無機フィラーの中でも金属水酸化物は、加熱すると脱水反応が起こり酸化物となり水が放出される。さらにこの脱水反応は大きな吸熱を伴う反応である。この脱水反応時に水を放出することと、この反応の吸熱により、酸素遮断効果及び難燃効果が得られる。また、水を放出するため可燃性である電解液を水で希釈し、セパレータだけでなく電解液にも効果があり、電池そのものを難燃化する上で有効である。   In the non-aqueous secondary battery separator of the present invention, the inorganic filler functions effectively in imparting oxidation resistance and flame retardancy to the non-aqueous secondary battery separator. Among inorganic fillers, when a metal hydroxide is heated, a dehydration reaction occurs and water is released as an oxide. Furthermore, this dehydration reaction is a reaction with a large endotherm. By releasing water during the dehydration reaction and the endothermic reaction, an oxygen blocking effect and a flame retardant effect can be obtained. In addition, an electrolyte that is flammable to release water is diluted with water and is effective not only for the separator but also for the electrolyte, and is effective in making the battery itself flame-retardant.

以上のように本発明の非水系二次電池用セパレータは、耐熱性多孔質層に無機フィラーが含まれていることで、この耐熱性多孔質層の燃焼性の尺度である酸素指数が高くなり、難燃性が向上し、更に耐久性や耐高温酸化性も向上する。   As described above, the non-aqueous secondary battery separator of the present invention includes an inorganic filler in the heat-resistant porous layer, so that the oxygen index, which is a measure of the flammability of the heat-resistant porous layer, is increased. In addition, flame retardancy is improved, and durability and high-temperature oxidation resistance are also improved.

本発明において、耐熱性多孔質層の酸素指数が、(耐熱性樹脂の酸素指数+10)よりも小さい場合、十分な難燃性、耐久性、耐酸化性等の効果が得られない。従って、耐熱性多孔質層の酸素指数は、(耐熱性樹脂の酸素指数+10)に等しいかより大きい必要があるが、耐熱性多孔質層の酸素指数が30〜100である場合が好ましい。より好ましくは、耐熱性多孔質層の酸素指数が(耐熱性樹脂の酸素指数+20)の値以上で、かつ耐熱性多孔質層の酸素指数が45〜100の場合である。耐熱性多孔質層の酸素指数は、耐熱性樹脂の種類、無機フィラーの種類、無機フィラーの含有量、無機フィラーのサイズ、無機フィラーの比表面積等により制御することが可能である。   In the present invention, when the oxygen index of the heat resistant porous layer is smaller than (oxygen index of the heat resistant resin +10), effects such as sufficient flame retardancy, durability, and oxidation resistance cannot be obtained. Therefore, the oxygen index of the heat-resistant porous layer needs to be equal to or greater than (oxygen index of the heat-resistant resin + 10), but the oxygen index of the heat-resistant porous layer is preferably 30 to 100. More preferably, the oxygen index of the heat resistant porous layer is not less than the value of (oxygen index of the heat resistant resin + 20) and the oxygen index of the heat resistant porous layer is 45 to 100. The oxygen index of the heat resistant porous layer can be controlled by the type of the heat resistant resin, the type of the inorganic filler, the content of the inorganic filler, the size of the inorganic filler, the specific surface area of the inorganic filler, and the like.

本発明で用いられる耐熱性樹脂は、融点200℃以上のポリマーあるいは融点を有しないが分解温度が200℃以上のポリマーが適当であり、好ましくは、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上ものである。特に、耐高温酸化性及び耐久性の観点から芳香族ポリアミドが好適であり、多孔質層を形成し易いという観点から、ポリメタフェニレンイソフタルアミド等のメタ型全芳香族ポリアミドがさらに好適である。   The heat-resistant resin used in the present invention is suitably a polymer having a melting point of 200 ° C. or higher, or a polymer having a melting point of 200 ° C. or higher, preferably aromatic polyamide, polyimide, polyethersulfone, polysulfone, One or more selected from the group consisting of polyether ketone and polyether imide. In particular, an aromatic polyamide is preferable from the viewpoint of high-temperature oxidation resistance and durability, and a meta-type wholly aromatic polyamide such as polymetaphenylene isophthalamide is more preferable from the viewpoint of easily forming a porous layer.

無機フィラーとしては、例えば金属水酸化物、金属酸化物、金属窒化物、炭酸塩、硫酸塩、粘土鉱物等が挙げられる。金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素、ベーマイト等、金属酸化物としては、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化珪素、 酸化イットリウム、酸化セリウム、酸化錫、酸化鉄等、金属窒化物としは、窒化アルミニウム、窒化ホウ素、窒化チタニウム等、炭酸塩としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等、硫酸塩としては、硫酸バリウム、硫酸カルシウム等、粘土鉱物としては、ケイ酸カルシウム、タルク、マイカ、モンモリロナイト、ハイドロタルサイト、ベントナイト、ゼオライト、セピオライト、カオリン、ヘクトライト、サポナイト、スチブンサイト、バイデライト等が挙げられ、もしくはこれらの2種以上の組合せが挙げられる。   Examples of the inorganic filler include metal hydroxide, metal oxide, metal nitride, carbonate, sulfate, clay mineral and the like. Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, boron hydroxide, and boehmite. Examples of the metal oxide include aluminum oxide, oxidized Titanium, zinc oxide, silicon oxide, yttrium oxide, cerium oxide, tin oxide, iron oxide, etc., as metal nitride, aluminum nitride, boron nitride, titanium nitride, etc., as carbonate, calcium carbonate, magnesium carbonate, barium carbonate Etc., sulfate as barium sulfate, calcium sulfate, etc., clay mineral as calcium silicate, talc, mica, montmorillonite, hydrotalcite, bentonite, zeolite, sepiolite, kaolin, hectorite, saponite, stevensite, beidelite, etc. Is Or a combination of two or more of these.

これらの無機フィラーの中でも、難燃性、耐酸化性の点で、金属水酸化物が好ましい。本発明において、金属水酸化物は200℃〜400℃の加熱により脱水反応を生じるものであることが好ましく、さらに250℃〜350℃の範囲であればより好ましい。非水系二次電池では正極の分解に伴う発熱が最も危険と考えられており、この分解は300℃近傍で起こる。故に、金属水酸化物の脱水反応の発生温度が200℃〜400℃の範囲であれば、非水系二次電池の発熱を防ぐ上で特に有効である。なお、200℃以上においては、負極はほぼ活性を失っているので、生成した水と反応し発熱反応を引き起こすことはなく安全である。また、金属水酸化物の発熱反応温度が400℃を超える場合、非水系二次電池の発熱を好適に防止できないおそれがあるため好ましくない。この点、水酸化アルミニウムは250〜300℃の温度範囲で脱水反応が起こり、水酸化マグネシウムは350〜400℃の温度範囲で脱水反応が起こるため、本発明では水酸化アルミニウム及び水酸化マグネシウムの少なくともいずれか一方を用いることが好ましい。   Among these inorganic fillers, metal hydroxides are preferable in terms of flame retardancy and oxidation resistance. In this invention, it is preferable that a metal hydroxide produces a dehydration reaction by the heating of 200 to 400 degreeC, and it is more preferable if it is the range of 250 to 350 degreeC. In non-aqueous secondary batteries, heat generation due to the decomposition of the positive electrode is considered to be the most dangerous, and this decomposition occurs in the vicinity of 300 ° C. Therefore, when the generation temperature of the metal hydroxide dehydration reaction is in the range of 200 ° C. to 400 ° C., it is particularly effective in preventing heat generation of the non-aqueous secondary battery. At 200 ° C. or higher, the negative electrode almost loses its activity, so that it does not react with the generated water to cause an exothermic reaction and is safe. Further, when the exothermic reaction temperature of the metal hydroxide exceeds 400 ° C., it is not preferable because the heat generation of the nonaqueous secondary battery may not be suitably prevented. In this respect, aluminum hydroxide undergoes a dehydration reaction in the temperature range of 250 to 300 ° C., and magnesium hydroxide undergoes a dehydration reaction in the temperature range of 350 to 400 ° C. Therefore, in the present invention, at least aluminum hydroxide and magnesium hydroxide are used. Either one is preferably used.

特に、水酸化アルミニウム(脱水反応温度:250〜300℃)は、脱水に伴う吸熱反応を有効に活用することを考えると無機フィラーとして最も好ましい。さらに、水酸化アルミニウムを適用した場合、シャットダウン特性の観点においても、水酸化マグネシウム等の他の金属水酸化物に比較して良好な特性を示す。具体的には、シャットダウン特性の測定において、100℃をやや超えた温度において10倍程度の抵抗上昇が認められ、シャットダウン温度を低下させる効果があり、この挙動は電池の安全性確保において有効に機能する。本質的なシャットダウンは、ポリエチレンの融点近傍において認められるが、このときの抵抗上昇の程度を高くする効果もある。この挙動はより薄いポリエチレン微多孔膜を基材に適用した場合に有効となる。   In particular, aluminum hydroxide (dehydration reaction temperature: 250 to 300 ° C.) is most preferable as an inorganic filler in view of effectively utilizing the endothermic reaction accompanying dehydration. Furthermore, when aluminum hydroxide is applied, it also exhibits better characteristics than other metal hydroxides such as magnesium hydroxide in terms of shutdown characteristics. Specifically, in the measurement of shutdown characteristics, a resistance increase of about 10 times is observed at a temperature slightly exceeding 100 ° C., which has the effect of lowering the shutdown temperature. This behavior functions effectively in ensuring the safety of the battery. To do. Although an essential shutdown is observed near the melting point of polyethylene, there is also an effect of increasing the degree of resistance increase at this time. This behavior is effective when a thinner polyethylene microporous membrane is applied to the substrate.

本発明のセパレータ構成において、耐熱性多孔質層はセパレータに耐熱性を付与する機能があるが、この層に前記のような無機フィラーを添加することで、高温時の短絡防止や寸法安定性といった観点から耐熱性多孔質層の耐熱性をより向上させることができる。また、一般的に耐熱性多孔質層で被覆したセパレータは、この耐熱層が強く静電気を帯びる傾向にあり、このような観点からハンドリング性が好ましくないことが多い。ここにおいて、耐熱性多孔質層に水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物を添加した場合は、帯電した電荷の減衰が速くなるため、帯電を低いレベルに保つことが可能となり、ハンドリング性が改善される。このような理由から、耐熱性多孔質層中へこのような無機フィラーを添加することは好適である。   In the separator configuration of the present invention, the heat-resistant porous layer has a function of imparting heat resistance to the separator. By adding an inorganic filler as described above to this layer, such as prevention of short circuit at high temperatures and dimensional stability, etc. From the viewpoint, the heat resistance of the heat resistant porous layer can be further improved. In general, a separator coated with a heat-resistant porous layer tends to be strongly charged with static electricity, and handling properties are often not preferable from such a viewpoint. Here, when a metal hydroxide such as aluminum hydroxide or magnesium hydroxide is added to the heat-resistant porous layer, the charged charge decays quickly, so that the charge can be kept at a low level. Improved. For these reasons, it is preferable to add such an inorganic filler into the heat-resistant porous layer.

非水系二次電池において、フッ酸は正極活物質を侵し耐久性を低下させる要因となっているが、水酸化アルミニウムや水酸化マグネシウムはフッ酸を吸着・共沈させる機能があるため、電解液中のフッ酸濃度を低いレベルに維持することが可能であり、本発明の非水系二次電池用セパレータを用いることで非水系二次電池の耐久性を改善することが可能となる。このような観点からも、無機フィラーとして水酸化アルミニウムや水酸化マグネシウムは好ましい。   In non-aqueous secondary batteries, hydrofluoric acid is a factor that impairs the positive electrode active material and lowers durability, but aluminum hydroxide and magnesium hydroxide have the function of adsorbing and co-precipitating hydrofluoric acid. It is possible to maintain the hydrofluoric acid concentration at a low level, and the durability of the non-aqueous secondary battery can be improved by using the non-aqueous secondary battery separator of the present invention. Also from such a viewpoint, aluminum hydroxide and magnesium hydroxide are preferable as the inorganic filler.

本発明では前記耐熱性多孔質層において無機フィラーの重量分率は、特に限定されるものではないが、30〜95重量%であることが好ましく、さらに50〜85重量%であることが好ましい。無機フィラーの重量分率が30%より低いと、高温における寸法安定性といった耐熱性にかかわる特性や耐酸化性が不十分となる。また、95重量%より高いと、耐熱性多孔質層の強度が不足し粉落ちの問題からハンドリング性が不良となったり、成形性が困難となったりという不具合が生じ好ましくない。無機フィラーの重量分率を調整することで、耐熱性多孔質層の酸素指数を制御することが可能である。   In the present invention, the weight fraction of the inorganic filler in the heat resistant porous layer is not particularly limited, but is preferably 30 to 95% by weight, and more preferably 50 to 85% by weight. When the weight fraction of the inorganic filler is lower than 30%, characteristics related to heat resistance such as dimensional stability at high temperature and oxidation resistance become insufficient. On the other hand, if it is higher than 95% by weight, the strength of the heat-resistant porous layer is insufficient, resulting in problems such as poor handling properties and difficulty in moldability due to the problem of powder falling. It is possible to control the oxygen index of the heat-resistant porous layer by adjusting the weight fraction of the inorganic filler.

本発明では前記耐熱性多孔質層において無機フィラーの平均粒子径は特に限定されるものではないが、0.1〜1μmの範囲が好ましい。無機フィラーの平均粒子径が1μmを超えると耐熱性多孔質層の高温時の耐短絡性が低下し好ましくない。さらに、耐熱性多孔質層を適切な厚みで成形する上で支障をきたすといった不具合もある。また、無機フィラーの平均粒子径が0.1μmより小さくなると塗膜強度が低下し粉落ちの課題が生じるだけでなく、このように小さいものを用いることはコスト上の観点から実質的に困難である。   In the present invention, the average particle size of the inorganic filler in the heat resistant porous layer is not particularly limited, but is preferably in the range of 0.1 to 1 μm. When the average particle diameter of the inorganic filler exceeds 1 μm, the short circuit resistance at high temperature of the heat resistant porous layer is lowered, which is not preferable. Further, there is a problem that it hinders the formation of the heat-resistant porous layer with an appropriate thickness. Moreover, when the average particle size of the inorganic filler is smaller than 0.1 μm, not only the coating strength is lowered and the problem of powder falling occurs, but it is substantially difficult to use such a small one from the viewpoint of cost. is there.

本発明では前記耐熱性多孔質層において無機フィラーの比表面積は特に限定はされるものではないが、4〜200m/gの範囲が好ましく、さらに5〜200m/gの範囲であることが好ましい。無機フィラーの比表面積が4m/g未満であると難燃性効果が低下し好ましくない。さらに、耐熱性多孔質層を適切な厚みで成形する上で支障をきたすといった不具合もある。また、無機フィラーの比表面積が200m/gより大きくなると塗膜強度が低下し粉落ちの課題が生じるだけでなく、このようなものを用いることはコスト上の観点から実質的に困難である。 Is not particularly limited is the specific surface area of the inorganic filler in the heat resistant porous layer in the present invention, that the scope of 4~200m 2 / g is in the range of preferably, further 5 to 200 m 2 / g preferable. If the specific surface area of the inorganic filler is less than 4 m 2 / g, the flame retardant effect is lowered, which is not preferable. Further, there is a problem that it hinders the formation of the heat-resistant porous layer with an appropriate thickness. Further, when the specific surface area of the inorganic filler is larger than 200 m 2 / g, not only the coating strength is reduced and the problem of powder falling off occurs, but it is substantially difficult to use such a material from the viewpoint of cost. .

本発明において、耐熱性樹脂にて形成される耐熱性多孔質層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層を意味する。この耐熱性多孔質層の空孔率は、60〜90%の範囲が好適である。耐熱性多孔質層の空孔率が90%を超えると、耐熱性が不十分となる傾向にあり好ましくない。また、60%より低いとサイクル特性や保存特性、放電性が低下する傾向となり好ましくない。耐熱性多孔質層の厚みは2μm以上が好適である。耐熱性多孔質層の厚みが2μmより薄くなると十分な耐熱性を得ることが困難となる。なお、耐熱性多孔質層は、主として、即ち、約90重量%以上が耐熱性樹脂からなるものであれば良く、約10重量%以下の、電池特性に影響を与えない他の成分を含んでいても良い。   In the present invention, the heat-resistant porous layer formed of a heat-resistant resin has a structure in which a large number of micropores are connected to each other, and these micropores are connected to each other. It means a layer through which gas or liquid can pass. The porosity of the heat resistant porous layer is preferably in the range of 60 to 90%. When the porosity of the heat resistant porous layer exceeds 90%, the heat resistance tends to be insufficient, which is not preferable. On the other hand, if it is lower than 60%, the cycle characteristics, storage characteristics and discharge properties tend to decrease, which is not preferable. The thickness of the heat resistant porous layer is preferably 2 μm or more. When the thickness of the heat-resistant porous layer is less than 2 μm, it becomes difficult to obtain sufficient heat resistance. Note that the heat-resistant porous layer may be mainly composed of a heat-resistant resin in an amount of about 90% by weight or more, and includes about 10% by weight or less of other components that do not affect the battery characteristics. May be.

本発明において前記耐熱性多孔質層は、前記微多孔膜の少なくとも一方の面に形成すればよいが、ハンドリング性、耐久性及び熱収縮の抑制効果の観点から、表裏両面に形成した方がより好ましい。   In the present invention, the heat-resistant porous layer may be formed on at least one surface of the microporous membrane, but from the viewpoint of handling properties, durability, and the effect of suppressing heat shrinkage, it is more preferable to form the heat-resistant porous layer on both front and back surfaces. preferable.

本発明において微多孔膜に用いられる熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、好ましくはポリオレフィンであり、特に好ましいのは、ポリエチレンである。本発明で用いられるポリエチレンは、特に限定されるものではないが、高密度ポリエチレンや、高密度ポリエチレンと超高分子量ポリエチレンの混合物が好適である。また、例えば、ポリエチレン以外に、ポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して用いても良い。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。なお、微多孔膜は、主として、即ち、約90重量%以上が熱可塑性樹脂からなるものであれば良く、約10重量%以下の、電池特性に影響を与えない他の成分を含んでいても良い。   As the thermoplastic resin used for the microporous membrane in the present invention, a thermoplastic resin having a melting point of less than 200 ° C. is suitable, preferably a polyolefin, and particularly preferably polyethylene. The polyethylene used in the present invention is not particularly limited, but high-density polyethylene or a mixture of high-density polyethylene and ultrahigh molecular weight polyethylene is suitable. For example, in addition to polyethylene, other polyolefins such as polypropylene and polymethylpentene may be mixed and used. A microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do. The microporous membrane may be mainly composed of a thermoplastic resin in an amount of about 90% by weight or more, and may contain about 10% by weight or less of other components that do not affect the battery characteristics. good.

微多孔膜の空孔率は20〜60%のものが好ましい。微多孔膜の空孔率が20%未満となると、セパレータの膜抵抗が高くなり過ぎ、電池の出力を顕著に低下させるため好ましくない。また、60%を超えると、シャットダウン特性の低下が顕著となり好ましくない。この微多孔膜のガーレ値(JIS・P8117)は、10〜500sec/100cc以下が好ましい。微多孔膜のガーレ値が500sec/100ccより高いと、イオン透過性が不十分となりセパレータの抵抗が高くなるという不具合が生じる。微多孔膜のガーレ値が10sec/100ccより低いと、シャットダウン機能の低下が著しく実用的でない。微多孔膜の膜厚は、5μm以上であることが好ましい。この微多孔膜の膜厚が5μmより薄いと、引張強度や突刺強度といった機械物性が不十分となり好ましくない。   The porosity of the microporous membrane is preferably 20 to 60%. When the porosity of the microporous membrane is less than 20%, the membrane resistance of the separator becomes too high, and the output of the battery is remarkably reduced. On the other hand, if it exceeds 60%, the shutdown characteristic is remarkably deteriorated. The Gurley value (JIS P8117) of this microporous membrane is preferably 10 to 500 sec / 100 cc or less. If the Gurley value of the microporous membrane is higher than 500 sec / 100 cc, the ion permeability is insufficient and the resistance of the separator increases. When the Gurley value of the microporous film is lower than 10 sec / 100 cc, the shutdown function is remarkably not practical. The thickness of the microporous membrane is preferably 5 μm or more. If the thickness of the microporous film is less than 5 μm, mechanical properties such as tensile strength and puncture strength are insufficient, which is not preferable.

本発明の非水系二次電池用セパレータの膜厚は25μm以下が好ましく、さらに20μm以下が好ましい。セパレータの膜厚が25μmを超えると、これを適用した電池のエネルギー密度や出力特性が低下し好ましくない。非水系二次電池用セパレータの物性としては、ガーレ値(JIS・P8117)が10〜1000sec/100cc、好ましくは100〜400sec/100ccである。ガーレ値が10sec/100cc未満である場合は、微多孔膜のガーレ値が低過ぎであり、シャットダウン機能の低下が著しく実用的でない。ガーレ値が1000sec/100ccを超えると、イオン透過性が不十分となり、セパレータの膜抵抗が増加して電池の出力低下を招くという不具合が生じる。膜抵抗は0.5〜10ohm・cm、好ましくは1〜5ohm・cmである。突き刺し強度は10〜1000g、好ましくは200〜600gの範囲のものである。 The film thickness of the separator for non-aqueous secondary batteries of the present invention is preferably 25 μm or less, more preferably 20 μm or less. When the thickness of the separator exceeds 25 μm, the energy density and output characteristics of a battery to which the separator is applied are undesirably lowered. As a physical property of the separator for non-aqueous secondary batteries, the Gurley value (JIS P8117) is 10 to 1000 sec / 100 cc, preferably 100 to 400 sec / 100 cc. When the Gurley value is less than 10 sec / 100 cc, the Gurley value of the microporous membrane is too low, and the deterioration of the shutdown function is extremely impractical. When the Gurley value exceeds 1000 sec / 100 cc, the ion permeability becomes insufficient, resulting in a problem that the membrane resistance of the separator is increased and the output of the battery is lowered. The membrane resistance is 0.5 to 10 ohm · cm 2 , preferably 1 to 5 ohm · cm 2 . The puncture strength is in the range of 10 to 1000 g, preferably 200 to 600 g.

[非水系二次電池用セパレータの製造方法]
本発明の非水系二次電池用セパレータの製造方法は特に限定されないが、例えば、以下の(i)〜(iv)の工程を経て製造することが可能である。即ち、(i)主として耐熱性樹脂の水溶性有機溶剤溶液に、無機フィラーを分散させ、塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーを、主として熱可塑性樹脂からなる微多孔膜の片面又は両面に塗工する工程と、(iii)塗工された前記微多孔膜を、水又は水と前記有機溶剤の混合液からなる凝固液中に浸漬して耐熱性高分子を凝固させる工程と、(iv)この凝固工程後の前記微多孔膜を、水洗し乾燥する工程と、を実施することからなる製造方法である。
[Method for producing separator for non-aqueous secondary battery]
Although the manufacturing method of the separator for non-aqueous secondary batteries of this invention is not specifically limited, For example, it is possible to manufacture through the following processes (i)-(iv). That is, (i) a step of dispersing an inorganic filler in a water-soluble organic solvent solution mainly of a heat resistant resin to prepare a coating slurry; and (ii) the obtained coating slurry is mainly made of a thermoplastic resin. (Iii) the coated microporous film is immersed in a coagulating liquid composed of water or a mixture of water and the organic solvent, and has a high heat resistance. This is a production method comprising: solidifying molecules; and (iv) washing and drying the microporous membrane after the solidification step.

耐熱性樹脂として、例えば、芳香族ジカルボン酸と芳香族ジアミンとから得られる芳香族ポリアミドを用いる場合には、前記工程(i)で、芳香族ジカルボン酸と芳香族ジアミンを、生成するポリアミドに対し良溶媒である有機溶媒中で反応せしめて芳香族ポリアミドを製造(溶液重合)し、直接、塗工液を製造することができる。   For example, when an aromatic polyamide obtained from an aromatic dicarboxylic acid and an aromatic diamine is used as the heat resistant resin, in the step (i), the aromatic dicarboxylic acid and the aromatic diamine are produced with respect to the generated polyamide. An aromatic polyamide can be produced by reacting in an organic solvent, which is a good solvent (solution polymerization), and a coating solution can be produced directly.

上記いずれの場合も、耐熱性高分子の水溶性有機溶剤溶液に、好ましくは、重量分率で30〜95重量%の無機フィラーを分散させ、塗工用スラリー(塗工液)を作製すれば良い。無機フィラーの分散性が良好でない場合は、無機フィラーをシランカップリング剤等で表面処理し、分散性を改善する手法も適用可能である。そして、得られた塗工用スラリーを、前記微多孔膜の片面又は両面に塗工すれば良い。   In any of the above cases, preferably, 30 to 95% by weight of an inorganic filler is dispersed in a water-soluble organic solvent solution of a heat-resistant polymer to prepare a coating slurry (coating liquid). good. When the dispersibility of the inorganic filler is not good, a method of improving the dispersibility by surface-treating the inorganic filler with a silane coupling agent or the like is also applicable. And what is necessary is just to apply the obtained slurry for coating to the single side | surface or both surfaces of the said microporous film.

前記工程(i)において、ポリアミドに対し良溶媒である有機溶媒又は水溶性有機溶媒(溶剤)としては、特に限定されないが、具体的には極性溶剤が好ましく、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。また、これらの極性溶剤に耐熱性高分子に対して貧溶剤となる溶剤も、一部混合して用いることもできる。このような溶剤を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶剤としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。   In the step (i), the organic solvent or the water-soluble organic solvent (solvent) that is a good solvent for the polyamide is not particularly limited, but specifically, a polar solvent is preferable, for example, N-methylpyrrolidone, dimethylacetamide, Examples thereof include dimethylformamide and dimethyl sulfoxide. In addition, a solvent that becomes a poor solvent for the heat-resistant polymer can be mixed with these polar solvents. By applying such a solvent, a microphase separation structure is induced, and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferable, and polyhydric alcohols such as glycol are particularly preferable.

工程(ii)では、微多孔膜の少なくとも一方の表面に耐熱性樹脂の塗工液を塗工する。本発明においては、微多孔膜の両面に塗工するのが好ましい。塗工液の濃度は4〜9重量%、微多孔膜への塗工量は2〜3g/m程度が好ましい。塗工する方法は、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。塗膜を均一に塗布するという観点において、特にリバースロールコーター法が好適である。より具体的には、例えば、ポリエチレン微多孔膜の両面に耐熱性高分子の塗工液を塗工する場合は、一対のマイヤーバーの間を通してポリエチレン微多孔膜の両面に過剰に塗工液を塗布し、これを一対のリバースロールコーターの間を通し、過剰な塗工液を掻き落すことで精密計量するという方法が挙げられる。 In step (ii), a heat-resistant resin coating solution is applied to at least one surface of the microporous membrane. In the present invention, it is preferable to apply on both surfaces of the microporous membrane. The concentration of the coating solution is preferably 4 to 9% by weight, and the coating amount on the microporous membrane is preferably about 2 to 3 g / m 2 . Examples of the coating method include knife coater method, gravure coater method, screen printing method, Mayer bar method, die coater method, reverse roll coater method, ink jet method, spray method, roll coater method and the like. From the viewpoint of uniformly applying the coating film, the reverse roll coater method is particularly suitable. More specifically, for example, in the case of applying a heat-resistant polymer coating solution on both sides of a polyethylene microporous membrane, an excessive coating solution is applied to both sides of the polyethylene microporous membrane through a pair of Meyer bars. There is a method in which the liquid is applied and precisely measured by passing it between a pair of reverse roll coaters and scraping off the excess coating liquid.

工程(iii)では、塗工された微多孔膜を、耐熱性樹脂を凝固させることが可能な凝固液中に浸漬することで、耐熱性高分子を凝固させ、多孔質層を成形する。凝固の方法としては、凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に浸漬する方法などが挙げられる。凝固液は、耐熱性高分子を凝固できるものであれば特に限定されないが、水又は塗工液に用いた有機溶媒に水を適当量混合させたものが好ましい。ここで、水の混合量は凝固液に対して40〜80重量%が好適である。水の量が40重量%より少ないと耐熱性樹脂を凝固するのに必要な時間が長くなったり、凝固が不十分になるという問題が生じる。また、80重量%より多いと溶剤回収においてコスト高となったり、凝固液と接触する表面の凝固が速すぎ、表面が十分に多孔化されないという問題が生じる。   In the step (iii), the heat-resistant polymer is solidified by immersing the coated microporous film in a coagulating liquid capable of coagulating the heat-resistant resin, thereby forming a porous layer. Examples of the coagulation method include a method of spraying a coagulation liquid with a spray and a method of immersing in a bath (coagulation bath) containing the coagulation liquid. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant polymer, but is preferably water or an organic solvent used for the coating liquid mixed with an appropriate amount of water. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. When the amount of water is less than 40% by weight, there arises a problem that the time required for solidifying the heat-resistant resin becomes long or the solidification becomes insufficient. On the other hand, when the amount is more than 80% by weight, there arises a problem that the cost for solvent recovery becomes high, or the surface that comes into contact with the coagulating liquid is solidified too quickly and the surface is not sufficiently porous.

工程(iv)は、工程(iii)に引き続き、得られたセパレータから水洗で凝固液を除去し、次いで乾燥する工程である。乾燥方法は特に限定されないが、乾燥温度は50〜80℃が適当であり、高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
[非水系二次電池]
非水系二次電池用セパレータが、前記のような熱可塑性樹脂を主として形成された微多孔膜と、その片面又は両面に積層された前記のような耐熱性高分子を主として形成された耐熱性多孔質層とからなるものである限り、本発明の非水系二次電池用セパレータは、公知のいかなる構成の非水系二次電池にも適用することができ、安全性に優れた電池が得られる。
Step (iv) is a step of removing the coagulating liquid from the obtained separator by washing with water, and then drying, following step (iii). The drying method is not particularly limited, but a drying temperature of 50 to 80 ° C. is appropriate. When a high drying temperature is applied, a method of contacting with a roll in order to prevent a dimensional change due to heat shrinkage occurs. It is preferable to apply.
[Non-aqueous secondary battery]
A separator for a non-aqueous secondary battery is a microporous membrane mainly formed of the thermoplastic resin as described above, and a heat resistant porous mainly formed of the heat resistant polymer as described above laminated on one or both sides thereof. As long as it consists of a porous layer, the separator for non-aqueous secondary batteries of the present invention can be applied to any known non-aqueous secondary battery, and a battery with excellent safety can be obtained.

適用される非水系二次電池の種類や構成は、何ら限定されるものではないが、本発明の非水系二次電池用セパレータは、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池に好適に応用することができる。中でも、リチウムイオン二次電池への適用が好ましい。   The type and configuration of the applied non-aqueous secondary battery is not limited in any way, but the non-aqueous secondary battery separator of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium. It can be suitably applied to a battery. Among these, application to a lithium ion secondary battery is preferable.

一般に非水系二次電池とは、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造となっているものをいう。負極は、負極活物質、導電助剤、バインダーからなる負極合剤が集電体(銅箔、ステンレス箔、ニッケル箔等)上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズかが用いられる。正極は、正極活物質、導電助剤、バインダーからなる正極合剤が集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePOが用いられる。電解液は、リチウム塩、例えば、LiPF、LiBF、LiClOを非水系溶媒に溶解した構成である。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。 In general, a non-aqueous secondary battery means a battery element in which a negative electrode and a positive electrode are opposed to each other with a separator interposed therebetween and an electrolytic solution is impregnated, and this is enclosed in an exterior. The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive, and a binder is formed on a current collector (copper foil, stainless steel foil, nickel foil, etc.). As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, or tin is used. The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive, and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O. 4 and LiFePO 4 are used. The electrolytic solution has a configuration in which a lithium salt, for example, LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and vinylene carbonate. Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.

本発明の実施例において、各種の物性値及び性能の測定方法は以下のとおりである。   In the examples of the present invention, various physical property values and performance measuring methods are as follows.

[金属水酸化物の平均粒子径]
レーザー回折式粒度分布測定装置を用いて測定を行った。分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X−100」を微量用いた。体積粒度分布における中心粒子径(D50)を平均粒子径とした。
[Average particle diameter of metal hydroxide]
Measurement was performed using a laser diffraction particle size distribution measuring apparatus. Water was used as a dispersion medium, and a small amount of nonionic surfactant “Triton X-100” was used as a dispersant. The central particle size (D50) in the volume particle size distribution was taken as the average particle size.

[無機フィラーの比表面積値]
無機フィラーの比表面積値は、窒素吸着によるBET法での比表面積値から求めた。具体的には、無機フィラーの粉末を使用し、吸着等温線から得られたBETプロット(3点)を解析し算出した。ガス吸着に際しては、ユアサアイオニクス(株)社製全自動ガス吸着装置「NOVA−1200」を使用した。
[Specific surface area of inorganic filler]
The specific surface area value of the inorganic filler was determined from the specific surface area value by the BET method by nitrogen adsorption. Specifically, the inorganic filler powder was used, and the BET plot (three points) obtained from the adsorption isotherm was analyzed and calculated. For gas adsorption, a fully automatic gas adsorption device “NOVA-1200” manufactured by Yuasa Ionics Co., Ltd. was used.

[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用い、接触端子に1.2kg/cmの荷重が印加されるような条件で測定した。
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter, and measurement was performed under a condition that a load of 1.2 kg / cm 2 was applied to the contact terminal.

[透気度]
透気度(秒/100cc)はJIS・P8117に従い測定した。
[Air permeability]
The air permeability (second / 100 cc) was measured according to JIS P8117.

[空孔率]
構成材料がa、b、c…、nからなり、構成材料の重量がWa、Wb、Wc…、Wn(g・cm)であり、それぞれの真密度がda、db、dc…、dn(g/cm)で、着目する層の膜厚をt(cm)としたとき、空孔率ε(%)は
ε={1−(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
より求めた。
[Porosity]
The constituent materials are a, b, c..., N, and the weights of the constituent materials are Wa, Wb, Wc..., Wn (g · cm 2 ), and their true densities are da, db, dc. g / cm 3 ), where the thickness of the layer of interest is t (cm), the porosity ε (%) is ε = {1− (Wa / da + Wb / db + Wc / dc +... + Wn / dn) / t } × 100
I asked more.

[熱収縮率]
サンプルを18cm(MD方向)×6cm(TD方向)に切り出す。TD方向を2等分する線上に上部から2cm、17cmの箇所(点A、点B)に印をする。また、MD方向を2等分する線上に左から1cm、5cmの箇所(点C、点D)に印をする。これにクリップをつけ(クリップをつける場所はMD方向の上部2cm以内の箇所)175℃に調整したオーブンの中につるし、無張力下で30分間熱処理をする。2点AB間、CD間の長さを熱処理前後で測定し、以下の式から熱収縮率を求めた。
MD方向熱収縮率={(熱処理前のABの長さ−熱処理後のABの長さ)/熱処理前のABの長さ}×100
TD方向熱収縮率={(熱処理前のCDの長さ−熱処理後のCDの長さ)/熱処理前のCDの長さ}×100
[Heat shrinkage]
A sample is cut into 18 cm (MD direction) × 6 cm (TD direction). Mark 2 cm and 17 cm points (Point A, Point B) from the top on a line that bisects the TD direction. Also, mark the points 1 cm and 5 cm (point C, point D) from the left on the line that bisects the MD direction. A clip is attached to this (the place where the clip is attached is within 2 cm in the upper part in the MD direction), and it is hung in an oven adjusted to 175 ° C. and heat-treated for 30 minutes under no tension. The length between the two points AB and the CD was measured before and after the heat treatment, and the thermal shrinkage rate was obtained from the following equation.
MD direction thermal shrinkage = {(AB length before heat treatment−AB length after heat treatment) / AB length before heat treatment} × 100
TD direction thermal contraction rate = {(length of CD before heat treatment−length of CD after heat treatment) / length of CD before heat treatment} × 100

[シャットダウン(SD)特性]
まず、セパレータをΦ19mmに打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾する。そしてセパレータに電解液を含浸させSUS板(Φ15.5mm)に挟んだ。ここで電解液は1M LiBF プロピレンカーボネート/エチレンカーボネート(1/1重量比)を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定し、抵抗値が上昇することでシャットダウン機能の有無を○×で評価し、表1に示した。
[Shutdown (SD) characteristics]
First, the separator is punched to Φ19 mm, dipped in a 3% by weight methanol solution of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P), and air-dried. Then, the separator was impregnated with the electrolytic solution and sandwiched between SUS plates (Φ15.5 mm). Here, 1 M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) was used as the electrolytic solution. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple, and put it in the oven. The temperature of the cell is measured at a rate of temperature increase of 1.6 ° C / min. Simultaneously, alternating current with an amplitude of 10 mV and a frequency of 1 kHz is applied to measure the resistance of the cell. The results are shown in Table 1.

[酸素指数]
スガ試験機社製の燃焼性試験機ON−1を用いて、JIS・K7201に従い測定した。
[Oxygen index]
Using a flammability tester ON-1 manufactured by Suga Test Instruments Co., Ltd., the measurement was performed according to JIS K7201.

[実施例1]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィンとデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却して、60℃で8分、95℃で15分乾燥し、ゲル状テープ(ベーステープ)を作製した。該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。このポリエチレン微多孔膜の物性は、膜厚12.0μm、空孔率36%、透気度301秒/100cc、26秒/100cc・μmであった。
[Example 1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. A polyethylene solution was prepared by dissolving GUR2126 and GURX143 in a mixed solvent of liquid paraffin and decalin such that the polyethylene concentration was 30% by weight so that the ratio was 1: 9 (weight ratio). The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio). This polyethylene solution was extruded from a die at 148 ° C., cooled in a water bath, and dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes to produce a gel tape (base tape). The base tape was stretched by biaxial stretching, which was sequentially performed with longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The properties of the polyethylene microporous film were as follows: film thickness 12.0 μm, porosity 36%, air permeability 301 seconds / 100 cc, 26 seconds / 100 cc · μm.

メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と平均粒子径0.8μm、BET比表面積6.7m/gの水酸化アルミニウム(昭和電工社製;H−43M)が重量比で25:75となるように調整し、これらをメタ型全芳香族ポリアミド濃度が5.5重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に混合し塗工用スラリーを得た。 Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, and aluminum hydroxide (manufactured by Showa Denko KK; H-43M) having an average particle diameter of 0.8 μm and a BET specific surface area of 6.7 m 2 / g ) Is adjusted to a weight ratio of 25:75, and dimethylacetamide (DMAc) and tripropylene glycol (TPG) are mixed at a weight ratio of 50 so that the concentration of the meta-type wholly aromatic polyamide is 5.5% by weight. Was mixed with a mixed solvent of 50 to obtain a slurry for coating.

一対のマイヤーバー(番手#6)を20μmのクリアランスで対峙させた。マイヤーバーに上記塗工用スラリーを適量のせ、一対のマイヤーバー間にポリエチレン微多孔膜を通すことでポリエチレン微多孔膜の両面に塗工用スラリーを塗工した。これを重量比で水:DMAc:TPG=50:25:25で40℃となっている凝固液中に浸漬した。次いで水洗・乾燥を行い、該ポリエチレン微多孔膜の表裏に耐熱性多孔質層を形成し、本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は18.0μmで、耐熱性多孔質層の厚みは6.0μm、空孔率は71%、透気度310秒/100ccであった。セパレータの熱収縮率、シャットダウン特性及び耐熱性多孔質層の酸素指数の値は、以下の実施例と比較例のものと共に、まとめて表1及び表2に示した。なお、メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)の酸素指数は22であった。   A pair of Meyer bars (count # 6) was confronted with a clearance of 20 μm. An appropriate amount of the above slurry for coating was placed on a Mayer bar, and the coating slurry was applied to both sides of the polyethylene microporous membrane by passing the polyethylene microporous membrane between a pair of Meyer bars. This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 50: 25: 25 and 40 ° C. Next, washing with water and drying were performed to form heat-resistant porous layers on the front and back of the polyethylene microporous membrane, thereby obtaining a separator for a non-aqueous secondary battery of the present invention. The thickness of the obtained separator was 18.0 μm, the thickness of the heat-resistant porous layer was 6.0 μm, the porosity was 71%, and the air permeability was 310 seconds / 100 cc. Table 1 and Table 2 collectively show the thermal contraction rate, shutdown characteristics, and oxygen index value of the heat-resistant porous layer of the separator together with those of the following examples and comparative examples. The oxygen index of Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, was 22.

[実施例2]
水酸化アルミニウム(昭和電工社製;H−43M)をビーズミル処理した平均粒子径0.3μm、BET比表面積9.4m/gの水酸化アルミニウムを使用した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は17.9μmで、耐熱性多孔質層の厚みは5.9μm、空孔率は70%、透気度305秒/100ccであった。
[Example 2]
The same method as in Example 1 except that aluminum hydroxide (made by Showa Denko KK; H-43M) was bead milled and used was aluminum hydroxide having an average particle size of 0.3 μm and a BET specific surface area of 9.4 m 2 / g. Thus, a separator for a non-aqueous secondary battery of the present invention was obtained. The thickness of the obtained separator was 17.9 μm, the thickness of the heat-resistant porous layer was 5.9 μm, the porosity was 70%, and the air permeability was 305 seconds / 100 cc.

[実施例3]
メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と平均粒子径0.8μm、BET比表面積6.7m/gの水酸化アルミニウム(昭和電工社製;H−43M)が重量比で50:50となるように変更した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は19.2μmで、耐熱性多孔質層の厚みは7.2μm、空孔率は69%、透気度340秒/100ccであった。
[Example 3]
Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, and aluminum hydroxide (manufactured by Showa Denko KK; H-43M) having an average particle diameter of 0.8 μm and a BET specific surface area of 6.7 m 2 / g ) Was obtained by the same method as in Example 1 except that the weight ratio was changed to 50:50. The thickness of the separator obtained was 19.2 μm, the thickness of the heat-resistant porous layer was 7.2 μm, the porosity was 69%, and the air permeability was 340 seconds / 100 cc.

[実施例4]
メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と平均粒子径0.8μm、BET比表面積6.7m/gの水酸化アルミニウム(昭和電工社製;H−43M)が重量比で70:30となるように変更した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は19.5μmで、耐熱性多孔質層の厚みは7.5μm、空孔率は71%、透気度350秒/100ccであった。
[Example 4]
Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, and aluminum hydroxide (manufactured by Showa Denko KK; H-43M) having an average particle diameter of 0.8 μm and a BET specific surface area of 6.7 m 2 / g ) Was obtained in the same manner as in Example 1 except that the weight ratio was changed to 70:30. The thickness of the separator obtained was 19.5 μm, the thickness of the heat-resistant porous layer was 7.5 μm, the porosity was 71%, and the air permeability was 350 seconds / 100 cc.

[実施例5]
水酸化アルミニウム(昭和電工社製;H−43M)に替えて、平均粒子径0.8μm、BET比表面積6.8m/gの水酸化マグネシウム(協和化学工業社製:キスマ5P)を使用した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は22.1μmで、耐熱性多孔質層の厚みは10.1μm、空孔率は69%、透気度320秒/100ccであった。
[Example 5]
Instead of aluminum hydroxide (Showa Denko; H-43M), magnesium hydroxide having an average particle size of 0.8 μm and a BET specific surface area of 6.8 m 2 / g (Kyowa Chemical Industry Co., Ltd .: Kisuma 5P) was used. Except for the above, a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 1. The thickness of the obtained separator was 22.1 μm, the thickness of the heat-resistant porous layer was 10.1 μm, the porosity was 69%, and the air permeability was 320 seconds / 100 cc.

[実施例6]
メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と平均粒子径0.6μm、BET比表面積15m/gのベーマイトが重量比で40:60となるように調整した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は18.8μmで、耐熱性多孔質層の厚みは6.8μm、空孔率は72%、透気度345秒/100ccであった。
[Example 6]
Conex (registered trademark; manufactured by Teijin Techno Products), a meta-type wholly aromatic polyamide, and boehmite with an average particle diameter of 0.6 μm and a BET specific surface area of 15 m 2 / g were adjusted to a weight ratio of 40:60. Except for the above, a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 1. The thickness of the obtained separator was 18.8 μm, the thickness of the heat-resistant porous layer was 6.8 μm, the porosity was 72%, and the air permeability was 345 seconds / 100 cc.

[実施例7]
メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と平均粒子径0.5μm、BET比表面積6.4m/gのアルミナ(昭和電工社製;AL160SG−3)が重量比で15:85となるように調整した以外は、実施例1と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は20.2μmで、耐熱性多孔質層の厚みは8.2μm、空孔率は74%、透気度365秒/100ccであった。
[Example 7]
Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, and alumina (manufactured by Showa Denko; AL160SG-3) having an average particle diameter of 0.5 μm and a BET specific surface area of 6.4 m 2 / g A non-aqueous secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the weight ratio was adjusted to 15:85. The film thickness of the obtained separator was 20.2 μm, the thickness of the heat-resistant porous layer was 8.2 μm, the porosity was 74%, and the air permeability was 365 seconds / 100 cc.

[比較例1]
ポリエチレン微多孔膜としては、実施例1と同様のものを用いた。メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)をメタ型全芳香族ポリアミド濃度が6.0重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比60:40となっている混合溶媒に混合し塗工用ドープを得た。
[Comparative Example 1]
The same polyethylene microporous membrane as that used in Example 1 was used. Conex (registered trademark; manufactured by Teijin Techno Products), a meta-type wholly aromatic polyamide, was added to dimethylacetamide (DMAc) and tripropylene glycol (TPG) so that the meta-type wholly aromatic polyamide concentration was 6.0% by weight. Was mixed with a mixed solvent having a weight ratio of 60:40 to obtain a dope for coating.

一対のマイヤーバー(番手#6)を20μmのクリアランスで対峙させた。マイヤーバーに上記塗工用スラリーを適量のせ、一対のマイヤーバー間にポリエチレン微多孔膜を通すことでポリエチレン微多孔膜の両面に塗工用ドープを塗工した。これを重量比で水:DMAc:TPG=50:30:20で40℃となっている凝固液中に浸漬した。次いで水洗・乾燥を行い、該ポリエチレン微多孔膜の表裏に耐熱性多孔質層を形成し、非水系二次電池用セパレータを得た。得られたセパレータの膜厚は20.0μmで、耐熱性多孔質層の厚みは8.0μm、空孔率は73%、透気度380秒/100ccであった。   A pair of Meyer bars (count # 6) was confronted with a clearance of 20 μm. An appropriate amount of the above slurry for coating was placed on a Mayer bar, and a polyethylene microporous film was passed between a pair of Mayer bars, whereby a coating dope was applied to both sides of the polyethylene microporous film. This was immersed in a coagulation liquid having a weight ratio of water: DMAc: TPG = 50: 30: 20 and 40 ° C. Next, washing with water and drying were performed to form a heat-resistant porous layer on the front and back of the polyethylene microporous membrane, thereby obtaining a separator for a non-aqueous secondary battery. The film thickness of the obtained separator was 20.0 μm, the thickness of the heat-resistant porous layer was 8.0 μm, the porosity was 73%, and the air permeability was 380 seconds / 100 cc.

[比較例2]
メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と、平均粒子径0.8μm、BET比表面積6.7m/gのの水酸化アルミニウム(昭和電工社製;H−43M)が重量比で80:20となるように変更した以外は実施例1と同様の方法で、本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は19.5μmで、耐熱性多孔質層の厚みは7.5μm、空孔率は71%、透気度365秒/100ccであった。
[Comparative Example 2]
Conex (registered trademark; manufactured by Teijin Techno Products), a meta-type wholly aromatic polyamide, and aluminum hydroxide having an average particle diameter of 0.8 μm and a BET specific surface area of 6.7 m 2 / g (manufactured by Showa Denko KK; H The separator for non-aqueous secondary batteries of the present invention was obtained in the same manner as in Example 1 except that -43M) was changed to 80:20 by weight. The film thickness of the obtained separator was 19.5 μm, the thickness of the heat-resistant porous layer was 7.5 μm, the porosity was 71%, and the air permeability was 365 seconds / 100 cc.

[比較例3]
水酸化アルミニウム(昭和電工社製;H−43M)に替えて、平均粒子径8μm、BET比表面積2m/gの水酸化アルミニウム(昭和電工社製;H−32)を使用した以外は、実施例1と同様の方法で非水系二次電池用セパレータの作製を試みた。しかし、耐熱性多孔質層を適切な厚みで成形することが困難であった。
[Comparative Example 3]
Except for using aluminum hydroxide (Showa Denko KK; H-32) having an average particle diameter of 8 μm and a BET specific surface area of 2 m 2 / g in place of aluminum hydroxide (Showa Denko; H-43M) An attempt was made to produce a non-aqueous secondary battery separator in the same manner as in Example 1. However, it has been difficult to form the heat-resistant porous layer with an appropriate thickness.

[比較例4]
平均粒子径8μm、BET比表面積2m/gの水酸化アルミニウム(昭和電工社製;H−32)をビーズミル処理して平均粒子径4.0μm、BET比表面積3.5m/gの水酸化アルミニウムを作製し、これを無機フィラーとして使用した以外は、実施例4と同様の方法で本発明の非水系二次電池用セパレータを得た。得られたセパレータの膜厚は20.4μmで、耐熱性多孔質層の厚みは8.4μm、空孔率は71%、透気度365秒/100ccであった。
[Comparative Example 4]
Aluminum hydroxide having an average particle diameter of 8 μm and a BET specific surface area of 2 m 2 / g (made by Showa Denko KK; H-32) was subjected to bead mill treatment and hydroxylated with an average particle diameter of 4.0 μm and a BET specific surface area of 3.5 m 2 / g. A separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as in Example 4 except that aluminum was prepared and used as an inorganic filler. The film thickness of the obtained separator was 20.4 μm, the thickness of the heat-resistant porous layer was 8.4 μm, the porosity was 71%, and the air permeability was 365 seconds / 100 cc.

[実施例と比較例で得られたセパレータを用いた非水系二次電池の性能の評価]
(1)非水系二次電池の試作
コバルト酸リチウム(LiCoO;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
[Evaluation of non-aqueous secondary battery performance using separators obtained in Examples and Comparative Examples]
(1) Trial manufacture of non-aqueous secondary battery: Lithium cobaltate (LiCoO 2 ; manufactured by Nippon Chemical Industry Co., Ltd.) powder 89.5 parts by weight, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd .; trade name Denka Black) 4.5 parts by weight, These were kneaded using an N-methyl-2pyrrolidone solvent so as to be 6 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.

メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。   87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.

上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。 The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used as the electrolytic solution.

(2)釘刺試験
実施例、比較例のセパレータを用いて上記の方法に従い非水系二次電池を作製した。得られた電池を電池電圧が4.2Vになるまで充電した後、その電圧で充電電量が100mAになるまで定電圧充電し、満充電状態にした。充電した電池を2.5mmΦの鉄製釘を貫通させた。この釘刺試験の結果を難燃性の指標として用いた。ラミネートフィルムの開封が完全に認められず難燃性に優れたものは○、ラミネートフィルムの開封が明らかに認められ難燃性に劣るものは×と評価し、表2に示した。
(2) Nail penetration test A non-aqueous secondary battery was produced according to the above method using the separators of Examples and Comparative Examples. The obtained battery was charged until the battery voltage became 4.2 V, and then charged at a constant voltage until the charge amount was 100 mA at that voltage, and the battery was fully charged. The charged battery was passed through a 2.5 mmφ iron nail. The result of this nail penetration test was used as an index of flame retardancy. Table 2 shows the case where the unsealing of the laminate film was not completely recognized and the flame retardancy was excellent, and the case where the opening of the laminate film was clearly recognized and the flame retardance was inferior was evaluated as x.

(3)耐酸化性評価
実施例、比較例のセパレータを用いて上記の方法に従い非水系二次電池を作製した。この電池を60℃で8mA、4.3Vの定電流、定電圧充電を100時間した後、セルを分解しセパレータを観察した。その結果、セパレータの変色が全く認められず耐酸化性に優れるものは○、セパレータの変色が若干認められるものは△、セパレータの変色が明らかに認められ耐酸化性に劣るものは×で評価し、表2に示した。
(3) Evaluation of oxidation resistance Non-aqueous secondary batteries were produced according to the above method using the separators of Examples and Comparative Examples. This battery was charged with 8 mA, 4.3 V constant current and constant voltage at 60 ° C. for 100 hours, and then the cell was disassembled and the separator was observed. As a result, no change in separator color was observed and excellent oxidation resistance was evaluated as ◯, a slight change in separator color was evaluated as △, and a slight change in separator color was observed as inferior in oxidation resistance was evaluated as ×. The results are shown in Table 2.

Figure 2010055942
Figure 2010055942

Figure 2010055942
Figure 2010055942

実施例1−7と比較例1,2との比較から、耐熱性多孔質層の酸素指数が(耐熱樹脂の酸素指数+10)であれば、耐熱性、シャットダウン機能、耐酸化性及び難燃性の全てにおいて問題のないセパレータが得られることが分かる。また、無機フィラーの含有量が30重量%であれば好ましく、無機フィラーの含有量が増えるほど耐熱性多孔質層の酸素指数も上がり特性も向上することが分かる。実施例1−6と実施例7との比較から、無機フィラーに金属水酸化物を用いればアルミナを用いた場合に比べて耐酸化性及び難燃性が向上することが分かる。実施例1と比較例3との比較から、無機フィラーの粒径が1μm超かつ比表面積が4.0m/g未満であると良好な耐熱性多孔質層を得るのが困難であることが分かる。また、実施例1及び2と比較例4との比較から、無機フィラーの比表面積が4.0m/g以上であると難燃性がより良好になることが分かる。 From comparison between Example 1-7 and Comparative Examples 1 and 2, if the oxygen index of the heat-resistant porous layer is (oxygen index of heat-resistant resin +10), heat resistance, shutdown function, oxidation resistance and flame retardancy It can be seen that a separator having no problem can be obtained in all of the above. Further, it is preferable that the content of the inorganic filler is 30% by weight, and it can be seen that as the content of the inorganic filler increases, the oxygen index of the heat-resistant porous layer increases and the characteristics improve. From a comparison between Example 1-6 and Example 7, it can be seen that if a metal hydroxide is used as the inorganic filler, the oxidation resistance and flame retardancy are improved as compared with the case where alumina is used. From comparison between Example 1 and Comparative Example 3, it may be difficult to obtain a good heat-resistant porous layer when the particle size of the inorganic filler exceeds 1 μm and the specific surface area is less than 4.0 m 2 / g. I understand. Moreover, it turns out from a comparison with Example 1 and 2 and the comparative example 4 that a flame retardance becomes more favorable in the specific surface area of an inorganic filler being 4.0 m < 2 > / g or more.

Claims (10)

主として熱可塑性樹脂にて形成されシャットダウン機能を有する微多孔膜と、主として耐熱性樹脂にて形成され前記微多孔膜の片面又は両面に積層された耐熱性多孔質層とを備えた非水系二次電池用セパレータであって、
該耐熱性多孔質層に無機フィラーが含まれており、該耐熱性多孔質層の酸素指数(JIS・K・7201)が下記式を満たすことを特徴とする非水系二次電池用セパレータ。
100≧(耐熱性多孔質層の酸素指数)≧(耐熱性樹脂の酸素指数)+10
Non-aqueous secondary comprising a microporous membrane mainly made of thermoplastic resin and having a shutdown function, and a heat-resistant porous layer mainly made of heat-resistant resin and laminated on one or both sides of the microporous membrane A battery separator,
A separator for a non-aqueous secondary battery, wherein the heat-resistant porous layer contains an inorganic filler, and the oxygen index (JIS · K · 7201) of the heat-resistant porous layer satisfies the following formula.
100 ≧ (oxygen index of heat-resistant porous layer) ≧ (oxygen index of heat-resistant resin) +10
前記耐熱性多孔質層の酸素指数(JIS・K・7201)が、30〜100であることを特徴とする請求項1に記載の非水系二次電池用セパレータ。   2. The separator for a non-aqueous secondary battery according to claim 1, wherein the heat resistant porous layer has an oxygen index (JIS · K · 7201) of 30 to 100. 3. 前記無機フィラーが、金属水酸化物であることを特徴とする請求項1又は2に記載の非水系二次電池用セパレータ。   The non-aqueous secondary battery separator according to claim 1, wherein the inorganic filler is a metal hydroxide. 前記耐熱性多孔質層において、前記無機フィラーの重量分率が30〜95重量%であることを特徴とする請求項1〜3のいずれかに記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the inorganic filler has a weight fraction of 30 to 95 wt% in the heat resistant porous layer. 前記無機フィラーの平均粒子径が0.1〜1μmの範囲であることを特徴とする請求項1〜4のいずれかに記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein an average particle size of the inorganic filler is in a range of 0.1 to 1 µm. 前記耐熱性多孔質層において、前記無機フィラーの比表面積が4〜200m/gであることを特徴とする請求項1〜5のいずれかに記載の非水系二次電池用セパレータ。 The non-aqueous secondary battery separator according to claim 1, wherein the inorganic filler has a specific surface area of 4 to 200 m 2 / g in the heat-resistant porous layer. 前記耐熱性樹脂が、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上であることを特徴とする請求項1〜6いずれか1項に記載の非水系二次電池用セパレータ。   The heat-resistant resin is one or more selected from the group consisting of aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. A separator for a non-aqueous secondary battery according to claim 1. 前記芳香族ポリアミドが、メタ型全芳香族ポリアミドであることを特徴とする請求項7に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 7, wherein the aromatic polyamide is a meta-type wholly aromatic polyamide. 前記熱可塑性樹脂が、ポリオレフィンを主体とする熱可塑性樹脂であることを特徴とする請求項1〜8のいずれか1項に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to any one of claims 1 to 8, wherein the thermoplastic resin is a thermoplastic resin mainly composed of polyolefin. リチウムのドープ・脱ドープにより起電力を得る非水系二次電池において、請求項1〜9のいずれか1項に記載の非水系二次電池用セパレータを用いることを特徴とする非水系二次電池。   A non-aqueous secondary battery using the non-aqueous secondary battery separator according to any one of claims 1 to 9 in a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium. .
JP2008219721A 2008-08-28 2008-08-28 Separator for nonaqueous secondary battery and nonaqueous secondary battery Pending JP2010055942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219721A JP2010055942A (en) 2008-08-28 2008-08-28 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219721A JP2010055942A (en) 2008-08-28 2008-08-28 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2010055942A true JP2010055942A (en) 2010-03-11

Family

ID=42071634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219721A Pending JP2010055942A (en) 2008-08-28 2008-08-28 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2010055942A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069582A (en) * 2011-09-22 2013-04-18 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2013077162A1 (en) 2011-11-25 2013-05-30 日産自動車株式会社 Separator for electrical device, and electrical device using same
JP2015505137A (en) * 2011-12-13 2015-02-16 コカン カンパニー リミテッドKokam Co.,Ltd. High heat-resistant composite separator for lithium secondary battery and lithium secondary battery including the same
KR20200121747A (en) 2019-04-16 2020-10-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery porous layer
KR20200121748A (en) 2019-04-16 2020-10-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery porous layer
CN114267923A (en) * 2021-12-23 2022-04-01 中材锂膜有限公司 Battery isolation membrane, preparation method thereof and secondary battery
WO2024138291A1 (en) * 2022-12-26 2024-07-04 中材锂膜有限公司 Battery separator coating material, and battery separator and preparation method therefor and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002839A (en) * 1999-06-21 2001-01-09 Nitto Denko Corp Flame-retarded composition and adhesive member
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
WO2007088707A1 (en) * 2006-02-01 2007-08-09 Maruo Calcium Co., Ltd. Micropore forming agent for porous resin film and composition for porous resin film containing the agent
JP2007321302A (en) * 2006-06-01 2007-12-13 Teijin Techno Products Ltd Flame-retardant wholly aromatic polyamide fiber
WO2008062727A1 (en) * 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002839A (en) * 1999-06-21 2001-01-09 Nitto Denko Corp Flame-retarded composition and adhesive member
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
WO2007088707A1 (en) * 2006-02-01 2007-08-09 Maruo Calcium Co., Ltd. Micropore forming agent for porous resin film and composition for porous resin film containing the agent
JP2007321302A (en) * 2006-06-01 2007-12-13 Teijin Techno Products Ltd Flame-retardant wholly aromatic polyamide fiber
WO2008062727A1 (en) * 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069582A (en) * 2011-09-22 2013-04-18 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2013077162A1 (en) 2011-11-25 2013-05-30 日産自動車株式会社 Separator for electrical device, and electrical device using same
CN103947010A (en) * 2011-11-25 2014-07-23 日产自动车株式会社 Separator for electrical device, and electrical device using same
JPWO2013077162A1 (en) * 2011-11-25 2015-04-27 日産自動車株式会社 Separator for electric device and electric device using the same
US9412987B2 (en) 2011-11-25 2016-08-09 Nissan Motor Co., Ltd. Separator for electric device and electric device using the same
JP2015505137A (en) * 2011-12-13 2015-02-16 コカン カンパニー リミテッドKokam Co.,Ltd. High heat-resistant composite separator for lithium secondary battery and lithium secondary battery including the same
KR20200121747A (en) 2019-04-16 2020-10-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery porous layer
KR20200121748A (en) 2019-04-16 2020-10-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery porous layer
CN111834596A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer for nonaqueous electrolyte secondary battery
CN111834595A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer for nonaqueous electrolyte secondary battery
US11769909B2 (en) 2019-04-16 2023-09-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery porous layer
CN114267923A (en) * 2021-12-23 2022-04-01 中材锂膜有限公司 Battery isolation membrane, preparation method thereof and secondary battery
WO2023115898A1 (en) * 2021-12-23 2023-06-29 中材锂膜有限公司 Battery separator film, preparation method therefor and secondary battery
WO2024138291A1 (en) * 2022-12-26 2024-07-04 中材锂膜有限公司 Battery separator coating material, and battery separator and preparation method therefor and application thereof

Similar Documents

Publication Publication Date Title
JP4364940B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
JP5778378B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP5308118B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP4653849B2 (en) Non-aqueous secondary battery separator
JP2010123383A (en) Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery
JP2010092718A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2014083988A1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US20130273408A1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2010055942A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2011108444A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011198553A (en) Polyolefin fine porous membrane, separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020235508A1 (en) Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery
JP2011192528A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011129304A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011192529A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011204587A (en) Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
JP2011028947A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012048987A (en) Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery
JP2011113921A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5400671B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP5583998B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2010092717A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012099349A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011210573A (en) Separator for nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312