Nothing Special   »   [go: up one dir, main page]

JP2010054144A - Oxygen combustion boiler system and combustion method - Google Patents

Oxygen combustion boiler system and combustion method Download PDF

Info

Publication number
JP2010054144A
JP2010054144A JP2008220684A JP2008220684A JP2010054144A JP 2010054144 A JP2010054144 A JP 2010054144A JP 2008220684 A JP2008220684 A JP 2008220684A JP 2008220684 A JP2008220684 A JP 2008220684A JP 2010054144 A JP2010054144 A JP 2010054144A
Authority
JP
Japan
Prior art keywords
exhaust gas
facility
boiler
dry
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008220684A
Other languages
Japanese (ja)
Other versions
JP5183372B2 (en
Inventor
Teruyuki Okazaki
輝幸 岡崎
Tsutomu Shibata
強 柴田
Masayuki Taniguchi
正行 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008220684A priority Critical patent/JP5183372B2/en
Publication of JP2010054144A publication Critical patent/JP2010054144A/en
Application granted granted Critical
Publication of JP5183372B2 publication Critical patent/JP5183372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E20/344

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler system capable of further suppressing the generation of a nitrogen oxide while recovering a carbon dioxide in a furnace of a pulverizing coal firing boiler, as an increase of carbon dioxide emission is cited as a factor of global warming, and nitrogen oxide emission is recently controlled under severe environmental restriction as it is an air-pollution substance badly affecting a human body. <P>SOLUTION: In this oxygen combustion boiler system, a dry recirculated exhaust gas dehumidified by moisture eliminating equipment is allowed to flow into a reduction atmosphere region in the boiler from a dry recirculated exhaust gas supply port. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は粉砕した石炭を酸素製造装置で生成した酸素と再循環した排ガスで燃焼する酸素燃焼ボイラの構造およびその燃焼方式に関するものである。   The present invention relates to a structure of an oxyfuel boiler that combusts pulverized coal with oxygen generated by an oxygen production apparatus and recirculated exhaust gas, and a combustion system thereof.

近年、二酸化炭素の排出量増大が地球温暖化の原因として挙げられている。とりわけ、石炭を利用した発電システムは他の化石燃料に比べ、単位発熱量当たりの二酸化炭素の発生量が多い。そのため、二酸化炭素回収・隔離技術の研究開発が盛んに取り組まれている。そのうち、酸素燃焼ボイラシステムは、システムから直接的に二酸化炭素を回収する方法として着目されている。酸素燃焼ボイラは酸素製造装置において予め空気から窒素を分離して生成した酸素と、燃焼排ガスの一部を再循環したガスとを混合し、その混合ガスで石炭を燃焼するシステムである。混合ガスの主成分は酸素,二酸化炭素,水蒸気からなる。空気で石炭を燃焼する従来のボイラと異なり、燃焼時に窒素が少ないため、排ガス中の二酸化炭素濃度を高めることができる。さらに本システムでは燃焼時に発生した排ガス中の水分を除去することで、全排ガス中の二酸化炭素濃度を90%以上にできるため、二酸化炭素を分離するための設備がなくても、そのまま二酸化炭素を回収できる特徴がある。   In recent years, an increase in carbon dioxide emissions has been cited as a cause of global warming. In particular, coal-based power generation systems generate more carbon dioxide per unit calorific value than other fossil fuels. For this reason, research and development of carbon dioxide capture and sequestration technology has been actively pursued. Among them, the oxyfuel boiler system is attracting attention as a method for recovering carbon dioxide directly from the system. An oxyfuel boiler is a system in which oxygen generated by separating nitrogen from air in advance in an oxygen production apparatus is mixed with gas obtained by recirculating part of combustion exhaust gas, and coal is burned with the mixed gas. The main components of the mixed gas are oxygen, carbon dioxide, and water vapor. Unlike conventional boilers that burn coal with air, the amount of carbon dioxide in the exhaust gas can be increased because there is less nitrogen during combustion. Furthermore, in this system, by removing the moisture in the exhaust gas generated during combustion, the carbon dioxide concentration in the entire exhaust gas can be increased to 90% or more, so even if there is no facility for separating carbon dioxide, the carbon dioxide can be used as it is. There are features that can be recovered.

ここで、まず現在提案されている酸素燃焼ボイラシステムを特許文献1で説明する。   Here, the oxyfuel boiler system currently proposed is first described in Patent Document 1.

本特許文献では回収した二酸化炭素と酸素を利用して燃焼するボイラシステムであるが、一旦二酸化炭素が液化されるため、ボイラに二酸化炭素を再循環ガスとして戻すためには再度気化するためのエネルギーが必要となる。従って、本システムではプラントの効率の大幅な低下は避けられない。また、本特許文献のバーナーは燃料と酸化剤を別々に分けて供給して燃焼する。所謂、拡散燃焼バーナーである。このバーナーは燃料と酸化剤の混ざり方の不均一性からバーナー近傍で局所的に酸化剤の残存量の多い領域ができる。本領域に窒素が存在すると、窒素酸化物が多量に発生する原因となる。   In this patent document, it is a boiler system that burns using recovered carbon dioxide and oxygen. However, since carbon dioxide is once liquefied, energy for vaporizing again to return carbon dioxide to the boiler as a recirculated gas. Is required. Therefore, a significant reduction in plant efficiency is inevitable with this system. Further, the burner of this patent document separately supplies fuel and oxidant and burns them. It is a so-called diffusion combustion burner. In this burner, a region having a large residual amount of oxidant is formed in the vicinity of the burner due to non-uniformity in the mixing of fuel and oxidant. If nitrogen is present in this region, a large amount of nitrogen oxide is generated.

次に、ボイラ火炉から排出された燃焼排ガスは除塵された後、ボイラ火炉の燃焼装置(バーナー)へ再循環される特許文献2がある。このようなシステムとすると燃焼装置付近に水分の多い燃焼排ガスが再循環して戻される。燃焼装置(バーナー)近傍は燃焼により高温で還元雰囲気であるため、水分からOHラジカルが生成する。石炭中には窒素成分が数%含まれているため、石炭燃焼によって生じたシアンやアンモニアとOHラジカルが反応して、窒素酸化物を発生する原因となる。   Next, there is Patent Document 2 in which the combustion exhaust gas discharged from the boiler furnace is dust-removed and then recirculated to the boiler furnace combustion device (burner). With such a system, the flue gas having a high water content is recirculated back to the vicinity of the combustion device. Since the vicinity of the combustion apparatus (burner) is a reducing atmosphere at a high temperature by combustion, OH radicals are generated from moisture. Since the coal contains several percent of nitrogen components, cyanide and ammonia generated by coal combustion react with OH radicals, which causes generation of nitrogen oxides.

特開平5−231609号公報JP-A-5-231609 特開平6−94212号公報JP-A-6-94212

窒素酸化物は人体に影響する大気汚染物質であるため、近年の厳しい環境規制下で排出量が管理されている。そのため、窒素酸化物の発生量を抑制しなければならない。本発明の目的は、二酸化炭素を回収しながら、さらに窒素酸化物の発生を抑制する酸素燃焼ボイラシステムを提案することである。   Since nitrogen oxides are air pollutants that affect the human body, emissions are controlled under recent strict environmental regulations. Therefore, the generation amount of nitrogen oxides must be suppressed. An object of the present invention is to propose an oxyfuel boiler system that further suppresses the generation of nitrogen oxides while recovering carbon dioxide.

上記目的を達成するため酸素燃焼ボイラシステムにおいて、水分除去設備で減湿した乾燥排ガスをボイラ内の還元雰囲気領域に乾燥再循環排ガス供給口から流入させる。   In order to achieve the above object, in the oxyfuel boiler system, the dry exhaust gas dehumidified by the moisture removal equipment is caused to flow into the reducing atmosphere region in the boiler from the dry recirculation exhaust gas supply port.

本発明によれば、水分を除去した乾燥再循環排ガスがボイラ火炉の還元雰囲気に戻される。これにより、還元雰囲気の二酸化炭素濃度が上昇し、石炭粒子の還元反応が進む。バーナーで生じた局所的な酸化領域も還元雰囲気にすることも可能である。前記還元反応が起きると一酸化炭素濃度が上昇し、窒素酸化物の濃度が低下する。   According to the present invention, the dry recirculated exhaust gas from which moisture has been removed is returned to the reducing atmosphere of the boiler furnace. As a result, the carbon dioxide concentration in the reducing atmosphere is increased, and the reduction reaction of the coal particles proceeds. It is also possible to make the local oxidation region generated in the burner a reducing atmosphere. When the reduction reaction occurs, the carbon monoxide concentration increases and the nitrogen oxide concentration decreases.

以下、図面を用いて本発明の酸素燃焼ボイラシステムについて説明する。ただし、本発明は実施例に限定されるものではない。   The oxyfuel boiler system of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the examples.

本発明の実施例を図1で説明する。図1は本発明の酸素燃焼ボイラシステムの構成図である。本実施例では図1のように、前後壁に上中下3段のバーナーが配置している酸素燃焼ボイラである。バーナー1は缶前後で向き合う対向燃焼方式である。バーナーの配置は他の方式でも良い。ボイラ火炉2のバーナー近傍は還元雰囲気の燃焼状態とし、バーナー上部の酸化用ガス供給口3から投入された酸素によってバーナー部から上昇してきた燃焼ガスを酸化する、いわゆる二段燃焼を採用した構成である。二段燃焼とは窒素酸化物の発生量を低減する燃焼方法である。燃焼用の酸素は酸素製造設備4において生成する。酸素製造設備4は空気から酸素と窒素を分離する装置である。尚、生成した窒素は煙突5直前で排ガスと混合して系外に排出する。酸素は分離のレベルによって純度を高くすることもできるが、高くするほど生成にかかる費用も高くなる。そのため、発電プラントでは微量の窒素が残存する状態で使用すると考えられている。また、ボイラ火炉2内は通常、負圧で運転される。このため、インリークにより空気(窒素)がボイラ火炉2に流入してくる。ボイラ火炉2内で発生する窒素酸化物はこれらのガスに由来するものと、石炭内に含まれる窒素分に由来するものがある。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of an oxyfuel boiler system according to the present invention. In this embodiment, as shown in FIG. 1, the oxyfuel boiler has three upper and lower burners arranged on the front and rear walls. The burner 1 is an opposed combustion system that faces the can before and after. The burner may be arranged in other ways. The vicinity of the burner of the boiler furnace 2 is in a reducing atmosphere combustion state, and the so-called two-stage combustion is employed in which the combustion gas rising from the burner portion is oxidized by oxygen input from the oxidizing gas supply port 3 at the top of the burner. is there. Two-stage combustion is a combustion method that reduces the amount of nitrogen oxide generated. Oxygen for combustion is generated in the oxygen production facility 4. The oxygen production facility 4 is a device that separates oxygen and nitrogen from air. The generated nitrogen is mixed with exhaust gas immediately before the chimney 5 and discharged out of the system. Although the purity of oxygen can be increased depending on the level of separation, the higher the cost, the higher the cost for production. Therefore, it is considered that the power plant is used in a state where a trace amount of nitrogen remains. Moreover, the boiler furnace 2 is normally operated at a negative pressure. For this reason, air (nitrogen) flows into the boiler furnace 2 due to inleakage. Nitrogen oxides generated in the boiler furnace 2 include those derived from these gases and those derived from nitrogen contained in the coal.

ボイラ火炉2で生じた1000℃以上の燃焼排ガスは、水冷管で構成されたボイラ火炉壁面やボイラ火炉下流に設置された熱交換器6で熱吸収された後、煙道を通って排ガス処理設備に流れていく。   The combustion exhaust gas of 1000 ° C. or more generated in the boiler furnace 2 is absorbed by the heat exchanger 6 installed downstream of the boiler furnace wall and the boiler furnace composed of water-cooled pipes, and then passes through the flue to treat the exhaust gas. To flow.

排ガス処理設備では、まず燃焼排ガス中の飛灰を除塵装置7で除塵し、その後、脱硫装置8で硫黄酸化物を除去する。除塵装置としては乾式の電気集塵機が一般的である。脱塵後、燃焼排ガスは燃焼排ガス中の水分を水分除去装置9で除去する。水分除去設備の出口において、燃焼排ガス中の水分は飽和状態であり、この状態の燃焼排ガスを以後、乾燥燃焼排ガスと呼ぶ。そして、乾燥燃焼排ガスは二酸化炭素回収設備10に送られ、この時点で乾燥燃焼排ガス中の二酸化炭素の濃度は90%以上となる。二酸化炭素回収設備10において、二酸化炭素を除去した乾燥燃焼排ガスは酸素製造設備4で発生した窒素と混合して、煙突へと送られ、系外へ排出される。尚、水分除去装置9はシェルアンドチューブ熱交換器やスクラバなどが選択できる。また、二酸化炭素回収設備10は圧縮機を使って液化させる方式や膜を利用して分離する方式などが選択できる。   In the exhaust gas treatment facility, first, fly ash in the combustion exhaust gas is removed by the dust removing device 7 and then the sulfur oxide is removed by the desulfurizing device 8. A dry electrostatic precipitator is generally used as the dust removing device. After dedusting, the combustion exhaust gas removes moisture in the combustion exhaust gas with a moisture removing device 9. At the outlet of the moisture removal facility, the moisture in the combustion exhaust gas is saturated, and the combustion exhaust gas in this state is hereinafter referred to as dry combustion exhaust gas. Then, the dry combustion exhaust gas is sent to the carbon dioxide recovery facility 10, and at this time, the concentration of carbon dioxide in the dry combustion exhaust gas becomes 90% or more. In the carbon dioxide recovery facility 10, the dry combustion exhaust gas from which carbon dioxide has been removed is mixed with nitrogen generated in the oxygen production facility 4, sent to the chimney, and discharged out of the system. As the moisture removing device 9, a shell and tube heat exchanger, a scrubber, or the like can be selected. The carbon dioxide recovery facility 10 can be selected from a method of liquefying using a compressor and a method of separating using a membrane.

本実施例では脱塵した直後に燃焼排ガスの一部を再循環する再循環排ガスライン11と脱塵・脱硫後に水分除去装置9で水分を除去した燃焼排ガス(乾燥燃焼排ガス)の一部を再循環する乾燥再循環排ガスライン12とを有する。また、これらのラインには酸素製造設備4から酸素を供給するラインが繋がれている。これらラインは配管等の設備である。酸素を供給するラインは、再循環排ガスラインの複数の系統のうちの任意の系統に、前記酸素製造設備で製造された酸素を供給できる複数の系統を有する。再循環排ガスライン11と乾燥再循環排ガスライン12は、二酸化炭素回収設備の煙道上流に設置された少なくとも1つ以上の再循環ガス取出し口から排ガスを取り出す。   In this embodiment, a part of the combustion exhaust gas (dry combustion exhaust gas) from which moisture has been removed by the moisture removal device 9 after dedusting / desulfurization and the recirculation exhaust gas line 11 for recirculating part of the combustion exhaust gas immediately after dedusting is recycled. And a circulating recirculation exhaust gas line 12. These lines are connected to a line for supplying oxygen from the oxygen production facility 4. These lines are equipment such as piping. The line for supplying oxygen has a plurality of systems capable of supplying oxygen produced by the oxygen production facility to an arbitrary system among the plurality of systems of the recirculation exhaust gas line. The recirculation exhaust gas line 11 and the dry recirculation exhaust gas line 12 extract exhaust gas from at least one or more recirculation gas outlets installed upstream of the flue of the carbon dioxide recovery facility.

前者のラインの排ガスは熱交換器6で加熱されたあと、酸素製造設備4で生成した酸素を混合して、バーナー1と酸化用ガス供給口3へ送られる。一方、後者のラインの排ガスは熱交換器6で加熱されたあと、一部は石炭供給設備13に送られ、粉砕後の微粉炭を搬送するのに用いる。残りの排ガスは乾燥再循環排ガス供給口14へ送られる。石炭供給設備13に送った乾燥再循環排ガスは微粉炭を乾燥する役割も兼ね備えている。また、微粉炭の着火性を良くするため、石炭供給設備13の下流において酸素製造設備4で生成された酸素を混合している。   After the exhaust gas in the former line is heated by the heat exchanger 6, the oxygen produced in the oxygen production facility 4 is mixed and sent to the burner 1 and the oxidizing gas supply port 3. On the other hand, after the exhaust gas in the latter line is heated by the heat exchanger 6, a part of the exhaust gas is sent to the coal supply facility 13 and used to convey the pulverized coal after pulverization. The remaining exhaust gas is sent to the dry recirculation exhaust gas supply port 14. The dry recirculated exhaust gas sent to the coal supply facility 13 also has a role of drying the pulverized coal. Moreover, in order to improve the ignitability of pulverized coal, oxygen produced by the oxygen production facility 4 is mixed downstream of the coal supply facility 13.

酸素燃焼ボイラは排ガスを循環するため、再循環排ガスの取出し口より後流の機器に流れるガス量が空気焚きの石炭燃焼ボイラに比べて少なく、機器を小型にできる利点がある。   Since the oxyfuel boiler circulates the exhaust gas, the amount of gas flowing from the recirculation exhaust gas outlet to the downstream device is smaller than that of the air-fired coal combustion boiler, and there is an advantage that the device can be downsized.

なお、図を見やすくするため再循環する排ガスは図1の左側(缶前)のバーナーや供給口にしか供給されていない。実際は図の右側(缶後)のバーナーや供給口にも供給される。   In order to make the drawing easier to see, the recirculated exhaust gas is supplied only to the burner and supply port on the left side (before the can) in FIG. Actually, it is also supplied to the burner and supply port on the right side of the figure (after the can).

本実施例において、乾燥再循環ガスは乾燥再循環排ガス供給口14からボイラ火炉2内の還元雰囲気の領域15に投入する。すなわち、乾燥再循環排ガスはボイラ火炉2内の還元雰囲気の領域15に投入するため、乾燥再循環排ガス供給口14は酸化用ガス供給口3よりも必ず下側に設置される。本位置に設置したときの効果は図11を利用して説明する。バーナー1は同心多重円管構造をしている場合が多く、その中央から燃料を、その周囲に酸化剤を流すことが多い。この場合、バーナーの噴流の中心付近は燃料超過の還元雰囲気22となるが、その周囲は局所的に酸化雰囲気となる。このとき、ボイラ火炉2の内壁面近傍を上昇するガスに再循環ガス24を混合すると、局所的に酸化する領域23を還元雰囲気にすることができる。還元域を広げることで、酸化域から発生する窒素酸化物を抑制できる。   In this embodiment, the dry recirculation gas is fed from the dry recirculation exhaust gas supply port 14 into the reducing atmosphere region 15 in the boiler furnace 2. That is, since the dry recirculated exhaust gas is put into the reducing atmosphere region 15 in the boiler furnace 2, the dry recirculated exhaust gas supply port 14 is always installed below the oxidizing gas supply port 3. The effect when installed at this position will be described with reference to FIG. In many cases, the burner 1 has a concentric multi-circular tube structure, and in many cases, fuel flows from the center and an oxidant flows around the fuel. In this case, the vicinity of the center of the jet of the burner becomes a reducing atmosphere 22 in excess of fuel, but the surrounding area is locally an oxidizing atmosphere. At this time, when the recirculation gas 24 is mixed with the gas rising in the vicinity of the inner wall surface of the boiler furnace 2, the region 23 to be locally oxidized can be made a reducing atmosphere. By expanding the reduction zone, nitrogen oxides generated from the oxidation zone can be suppressed.

図2は乾燥再循環ガスの別の投入構成図である。図1において乾燥再循環排ガス供給口14は酸化用ガス供給口3とバーナーの間に設置されているが、乾燥再循環排ガスが還元雰囲気内に投入できるのであれば、図2のようにボイラ火炉最下部に乾燥再循環排ガス供給口14を設けても良い。この場合、投入口が1箇所になるので、再循環に関係する配管などが1系列となって製作コストが安くなる利点がある。再循環するガス量はボイラ火炉2で発生するガス量の6割〜8割程度になり、流量が膨大である。実運用上一系統となると費用上の効果は大きい。   FIG. 2 is another input configuration diagram of the dry recirculation gas. In FIG. 1, the dry recirculation exhaust gas supply port 14 is installed between the oxidizing gas supply port 3 and the burner. However, if the dry recirculation exhaust gas can be introduced into the reducing atmosphere, a boiler furnace as shown in FIG. A dry recirculation exhaust gas supply port 14 may be provided at the bottom. In this case, since there is only one insertion port, there is an advantage that the manufacturing cost is reduced because the piping related to recirculation becomes one line. The amount of gas to be recirculated is about 60% to 80% of the amount of gas generated in the boiler furnace 2, and the flow rate is enormous. The cost effect is large when it is one system in actual operation.

図3は石炭粒子存在下における一酸化炭素濃度と窒素酸化物濃度の関係を示す図である。ここで図3に示すように、実験事実として石炭粒子存在下において、一酸化炭素濃度の高い還元雰囲気の場では、窒素酸化物の発生量が抑制される。そのため、本発明では還元雰囲気の場に二酸化炭素を吹き込むことで、石炭粒子表面で二酸化炭素が還元反応を起こし、一酸化炭素を生成する反応を促進する。図4に石炭表面における二酸化炭素の還元反応のイメージを示す。一酸化炭素濃度の高い還元雰囲気の場では、前記の還元反応が進みやすい状態になる。   FIG. 3 is a diagram showing the relationship between carbon monoxide concentration and nitrogen oxide concentration in the presence of coal particles. Here, as shown in FIG. 3, as an experimental fact, in the presence of coal particles, the generation amount of nitrogen oxide is suppressed in a reducing atmosphere with a high carbon monoxide concentration. For this reason, in the present invention, carbon dioxide is blown into the field of the reducing atmosphere, so that carbon dioxide causes a reduction reaction on the surface of the coal particles and promotes a reaction for generating carbon monoxide. FIG. 4 shows an image of the reduction reaction of carbon dioxide on the coal surface. In a reducing atmosphere with a high carbon monoxide concentration, the reduction reaction tends to proceed.

また、乾燥再循環排ガスに水分が無いので、乾燥再循環排ガス供給口14近傍に水分由来のOHラジカルが発生しない。図5は還元雰囲気における窒素酸化物の反応経路を示す図である。図5の反応経路に示すように、OHラジカルは窒素酸化物を発生する原因となる。例えば、乾燥再循環排ガスに水分が存在すると、1000℃を超える高温のガス中では、水からOHラジカルが発生する。石炭中の窒素成分に由来して生じるシアン(HCN)はOHラジカルが存在すると、まずCNとなり、その後NCOとなって、最終的に窒素酸化物(NO)となる。よって、OHラジカルの発生を抑制すると窒素酸化物の発生も抑制される。   Further, since there is no moisture in the dry recirculation exhaust gas, no OH radicals derived from water are generated in the vicinity of the dry recirculation exhaust gas supply port 14. FIG. 5 is a diagram showing a reaction path of nitrogen oxides in a reducing atmosphere. As shown in the reaction path of FIG. 5, OH radicals cause generation of nitrogen oxides. For example, when moisture exists in the dry recirculated exhaust gas, OH radicals are generated from water in a high-temperature gas exceeding 1000 ° C. When OH radicals are present, cyan (HCN) generated from the nitrogen component in coal first becomes CN, then becomes NCO, and finally becomes nitrogen oxide (NO). Therefore, when generation of OH radicals is suppressed, generation of nitrogen oxides is also suppressed.

本実施例では脱硝装置を記載していない例で説明している。しかし、脱硝装置がシステム中に存在しても成り立つ。尚、脱硝装置は一般に熱交換器6の下流に設置される。   In this embodiment, the denitration apparatus is not described. However, even if a denitration apparatus is present in the system, it can be established. The denitration apparatus is generally installed downstream of the heat exchanger 6.

上述したように、空気から酸素を分離する酸素製造設備と、石炭を乾燥粉砕する石炭供給設備と、酸素製造設備で製造された酸素と石炭供給設備より供給された石炭を燃焼するバーナーと、バーナーを壁面に備えたボイラと、ボイラの燃焼排ガスを排出するボイラから煙突までの煙道と、煙道の下流に設置され、排ガスから二酸化炭素を分離する二酸化炭素回収設備と、煙道の中途から排ガスの一部を抜き出してボイラに再循環する再循環排ガス設備と、煙道の排ガスと再循環排ガス設備の排ガスの熱交換をする熱交換設備と、再循環排ガス設備の任意の系統に前記酸素製造設備で製造された酸素を供給できる複数の系統を有する酸素供給設備と、二酸化炭素回収設備の煙道上流に設置された再循環ガス取出し口と、排ガスを減湿する水分除去設備とを有し、再循環排ガス設備は前記水分除去設備で減湿した乾燥排ガスを再循環する再循環排ガス設備であり、乾燥排ガスをボイラ内の還元雰囲気領域に流入させる乾燥再循環排ガス供給口を有することを特徴とする酸素燃焼ボイラシステムを提供することにより、水分を除去した乾燥再循環排ガスがボイラ火炉の還元雰囲気に戻される。これにより、還元雰囲気の二酸化炭素濃度が上昇し、石炭粒子の還元反応が進む。バーナーで生じた局所的な酸化領域も還元雰囲気にすることが可能である。前記還元反応が起きると一酸化炭素濃度が上昇し、窒素酸化物の濃度が低下する。さらに、窒素酸化物の発生を抑制できるので、燃料成分の違う(窒素含有量の多い)炭種に対応可能となる。また、脱硝にかかる費用も低減できる。   As described above, an oxygen production facility that separates oxygen from air, a coal supply facility that dry-pulverizes coal, a burner that burns oxygen produced in the oxygen production facility and coal supplied from the coal supply facility, and a burner A boiler with a wall, a flue from the boiler to the chimney that discharges the combustion exhaust gas of the boiler, a carbon dioxide recovery facility that is installed downstream of the flue and separates carbon dioxide from the exhaust, and from the middle of the flue A recirculation exhaust gas facility for extracting a part of the exhaust gas and recirculating it to the boiler, a heat exchange facility for exchanging heat between the flue exhaust gas and the exhaust gas of the recirculation exhaust gas facility, and the oxygen in any system of the recirculation exhaust gas facility Oxygen supply equipment that has multiple systems that can supply oxygen produced by the production equipment, a recirculation gas outlet installed upstream of the flue of the carbon dioxide recovery equipment, and moisture removal that reduces exhaust gas The recirculation exhaust gas facility is a recirculation exhaust gas facility for recirculating the dry exhaust gas dehumidified by the moisture removal facility, and the dry recirculation exhaust gas supply port for flowing the dry exhaust gas into the reducing atmosphere region in the boiler By providing an oxyfuel boiler system characterized by having a dry recirculated exhaust gas from which moisture has been removed is returned to the reducing atmosphere of the boiler furnace. As a result, the carbon dioxide concentration in the reducing atmosphere is increased, and the reduction reaction of the coal particles proceeds. A local oxidation region generated in the burner can also be a reducing atmosphere. When the reduction reaction occurs, the carbon monoxide concentration increases and the nitrogen oxide concentration decreases. Furthermore, since generation | occurrence | production of nitrogen oxide can be suppressed, it becomes possible to respond to coal types having different fuel components (high nitrogen content). Moreover, the cost for denitration can be reduced.

また、空気から酸素を分離する酸素製造設備で製造された酸素と石炭を乾燥粉砕する石炭供給設備より供給された石炭をボイラで燃焼し、ボイラの燃焼排ガスを減湿して乾燥排ガスを生成し、乾燥排ガスを前記ボイラ内の還元雰囲気領域に流入させる酸素燃焼ボイラシステムの燃焼方法により、バーナーで生じた局所的な酸化領域も還元雰囲気にすることが可能である。   In addition, oxygen produced in an oxygen production facility that separates oxygen from air and coal supplied from a coal supply facility that dryly pulverizes coal are burned in a boiler, and the exhaust gas from the boiler is dehumidified to produce dry exhaust gas. By the combustion method of the oxyfuel boiler system that allows dry exhaust gas to flow into the reducing atmosphere region in the boiler, the local oxidation region generated by the burner can be made a reducing atmosphere.

また、酸素製造設備で製造された酸素とボイラで発生した燃焼排ガスの混合ガスをバーナーの下流で供給するための酸化用ガス供給口と、酸化用ガス供給口より上流で、かつ、バーナーより下流に前記乾燥再循環排ガスを供給する乾燥再循環排ガス供給口を有することにより、バーナーで生じた局所的な酸化領域も還元雰囲気にすることも可能である。   Also, an oxidizing gas supply port for supplying a mixed gas of oxygen produced by the oxygen production facility and combustion exhaust gas generated in the boiler downstream of the burner, upstream of the oxidizing gas supply port, and downstream of the burner By providing the dry recirculation exhaust gas supply port for supplying the dry recirculation exhaust gas, the local oxidation region generated in the burner can also be made a reducing atmosphere.

また、ボイラ最下部に乾燥再循環排ガス供給口を有することにより窒素酸化物の発生抑制をしつつ、製作コストが安くすることができる。   In addition, by providing the dry recirculation exhaust gas supply port at the bottom of the boiler, the production cost can be reduced while suppressing the generation of nitrogen oxides.

また、水分除去設備で減湿した乾燥排ガスを乾燥再循環排ガス供給口からボイラに戻す系統と、石炭供給設備に戻す系統とを有することにより、窒素酸化物の発生抑制をしつつ、水分が少ないのでミルにおいて石炭を乾燥する能力を高くすることができる。   In addition, by having a system for returning the dried exhaust gas dehumidified in the moisture removal equipment to the boiler from the dry recirculation exhaust gas supply port and a system for returning it to the coal supply equipment, there is little moisture while suppressing the generation of nitrogen oxides. Therefore, the ability to dry coal in the mill can be increased.

図6は乾燥再循環ガスに酸素を投入する構成図である。実施例1の酸素燃焼ボイラにおいて、乾燥再循環排ガスに酸素を混ぜて、乾燥再循環排ガス供給口14からボイラ火炉内の還元雰囲気の領域15に排ガスを投入する実施例を図6に示す。   FIG. 6 is a block diagram for introducing oxygen into the dry recirculation gas. In the oxyfuel boiler of the first embodiment, FIG. 6 shows an embodiment in which oxygen is mixed with the dry recirculated exhaust gas and the exhaust gas is introduced from the dry recirculated exhaust gas supply port 14 into the reducing atmosphere region 15 in the boiler furnace.

素反応ベースの詳細な化学反応解析を実施すると、バーナーに50%〜65%程度、乾燥再循環排ガスに8%〜15%程度、酸化用ガスに27〜35%程度の酸素重量比で酸素を混入すると、窒素酸化物の発生量がより抑制される結果を得た。本知見に従うと、乾燥再循環排ガスに適量の酸素を混ぜて投入すると窒素酸化物の発生量を抑制できる。ただし、酸素量が多すぎると、燃焼ガス温度が高くなり、サーマルNOxが多量に発生して窒素酸化物の生成量が増大する可能性があることも分かった。従って、投入する酸素は発生する窒素酸化物の量をモニタリングしながら、流量調節弁16を利用して適量投入することが望ましい。   When a detailed chemical reaction analysis based on elementary reaction is performed, oxygen is supplied at a weight ratio of about 50% to 65% for the burner, about 8% to 15% for the exhaust gas for dry recirculation, and about 27 to 35% for the oxidizing gas. When it mixed, the result that the generation amount of nitrogen oxide was suppressed more was obtained. According to this knowledge, the generation amount of nitrogen oxides can be suppressed by adding an appropriate amount of oxygen to the dry recirculated exhaust gas. However, it has also been found that if the amount of oxygen is too large, the combustion gas temperature increases, and a large amount of thermal NOx is generated, resulting in an increase in the amount of nitrogen oxide produced. Accordingly, it is desirable to input an appropriate amount of oxygen using the flow control valve 16 while monitoring the amount of nitrogen oxide generated.

このように、水分除去設備で減湿した乾燥再循環排ガスに供給する酸素量を調整可能な酸素流量調整弁を有することにより、窒素酸化物の発生抑制をコントロールすることができる。   Thus, by having the oxygen flow rate adjustment valve capable of adjusting the amount of oxygen supplied to the dry recirculated exhaust gas dehumidified by the moisture removal equipment, it is possible to control the suppression of nitrogen oxide generation.

図7は再循環ガスの取出し口を脱硫後に設置した構成図である。実施例1の酸素燃焼ボイラにおいて、再循環排ガスライン11のガスの取出口が脱塵・脱硫後である実施例を図7に示す。   FIG. 7 is a configuration diagram in which a recirculation gas outlet is installed after desulfurization. In the oxyfuel boiler of the first embodiment, an embodiment in which the gas outlet of the recirculation exhaust gas line 11 is after dedusting / desulfurization is shown in FIG.

脱塵・脱硫後のガスを再循環するため、再循環排ガス中には硫黄酸化物の含有量は少ない。このため仮に再循環ガスの配管内でガスが露点に達しても、硫黄酸化物に起因する硫酸の発生量はほとんどない。硫酸は強い酸化性をもつため、発生すると配管を腐食する恐れがある。通常は露点に達しないように配管を保温するので、このような事象は起きないが、本実施例のようにすれば本質的に安全な設計となる。また、ボイラ火炉2内の還元雰囲気の領域15に硫黄酸化物を含んだガスを戻すと、硫化水素が生成してボイラ火炉内面の配管を腐食する恐れがある。そのため、硫黄分の高い石炭を使用する場合は、再循環ガスを脱硫した方が良い。   Since the gas after dedusting / desulfurization is recycled, the content of sulfur oxides in the recirculated exhaust gas is small. For this reason, even if the gas reaches the dew point in the recirculated gas pipe, there is almost no sulfuric acid generated due to the sulfur oxide. Sulfuric acid has a strong oxidizing property, and if it is generated, it may corrode the piping. Normally, since the pipe is kept warm so that the dew point is not reached, such an event does not occur. However, the present embodiment provides an essentially safe design. Moreover, if the gas containing sulfur oxides is returned to the reducing atmosphere region 15 in the boiler furnace 2, hydrogen sulfide may be generated to corrode piping on the inner surface of the boiler furnace. Therefore, when using coal with a high sulfur content, it is better to desulfurize the recycle gas.

このように、再循環ガス取出し口から取り出された排ガスを再循環する複数の再循環排ガス設備のうち、少なくとも一つは脱硫装置の下流に配置することにより、硫酸の発生量を抑制することができる。   As described above, at least one of the plurality of recirculation exhaust gas facilities for recirculating the exhaust gas taken out from the recirculation gas outlet can be disposed downstream of the desulfurization apparatus, thereby suppressing the amount of sulfuric acid generated. it can.

実施例1の酸素燃焼ボイラにおいて、除塵装置7の下流から再循環排ガスを取り出し、再循環排ガスライン11を途中で分岐し、一方のラインに水分除去装置17を取り付けた実施例を図8に示す。本実施例のように排ガス中の水分除去を、再循環排ガスライン途中の水分除去装置17と二酸化炭素の回収直前の水分除去装置9を分けると、ボイラ火炉に戻す乾燥再循環ガスで要求される残留水分比と二酸化炭素回収設備10で要求される残留水分比を個別にコントロール可能となる。二酸化炭素回収設備10には二酸化炭素の回収をより効率的にするため、できる限り水分のない排ガスを供給する必要がある。従って、二酸化炭素の回収直前の水分除去装置9は高性能な装置となる。一方、再循環排ガスライン途中の水分除去装置17は二酸化炭素の回収直前の水分除去装置9に比べ、性能が低くても良い。これにより、再循環排ガスライン途中の水分除去装置17の製作コストは二酸化炭素の回収直前の水分除去装置9より低く抑えることが可能となる。また、再循環排ガスライン途中の水分除去装置17で上流における排ガスの水分を除去するため、二酸化炭素の回収直前の水分除去装置9の処理容量を小さくすることが可能となる。   FIG. 8 shows an embodiment in which the recirculated exhaust gas is taken out from the downstream of the dust removing device 7 in the oxyfuel boiler of the first embodiment, the recirculated exhaust gas line 11 is branched in the middle, and the moisture removing device 17 is attached to one line. . When the moisture removal device 17 in the middle of the recirculation exhaust gas line and the moisture removal device 9 just before the recovery of carbon dioxide are separated as in this embodiment, the dry recirculation gas returned to the boiler furnace is required. The residual moisture ratio and the residual moisture ratio required by the carbon dioxide recovery facility 10 can be individually controlled. In order to make the carbon dioxide recovery facility 10 more efficient in recovering carbon dioxide, it is necessary to supply exhaust gas with as little water as possible. Therefore, the water removal device 9 immediately before the recovery of carbon dioxide is a high-performance device. On the other hand, the water removal device 17 in the middle of the recirculation exhaust gas line may have lower performance than the water removal device 9 immediately before the recovery of carbon dioxide. Thereby, the production cost of the water removal device 17 in the middle of the recirculation exhaust gas line can be kept lower than that of the water removal device 9 immediately before the recovery of carbon dioxide. Further, since the moisture in the exhaust gas upstream is removed by the moisture removing device 17 in the middle of the recirculated exhaust gas line, the processing capacity of the moisture removing device 9 immediately before the recovery of carbon dioxide can be reduced.

本実施例では除塵装置と脱硫装置の間から再循環排ガスを取り出しているが、除塵装置の下流であればどこでも良い。例えば、脱硫装置の下流でも良い。   In this embodiment, the recirculated exhaust gas is taken out from between the dust removal device and the desulfurization device, but may be anywhere as long as it is downstream of the dust removal device. For example, it may be downstream of the desulfurizer.

このように、水除去設備を複数有し、一方の水除去設備は、再循環排ガス取出し口から排ガスをボイラ火炉に戻す再循環排ガス設備内に配置し、他方の水除去設備は、再循環ガス取出し口よりも下流の煙道に配置したことにより、乾燥再循環ガスで要求される残留水分比と二酸化炭素回収設備10で要求される残留水分比を個別にコントロール可能である。また、再循環排ガスライン途中の水分除去装置17の製作コストは二酸化炭素の回収直前の水分除去装置9より低く抑えることができる。   Thus, there are a plurality of water removal facilities, one water removal facility is disposed in the recirculation exhaust gas facility that returns the exhaust gas from the recirculation exhaust gas outlet to the boiler furnace, and the other water removal facility is the recirculation gas. By disposing in the flue downstream from the take-out port, the residual moisture ratio required for the dry recirculation gas and the residual moisture ratio required for the carbon dioxide recovery facility 10 can be individually controlled. Moreover, the manufacturing cost of the water removal apparatus 17 in the middle of the recirculation exhaust gas line can be kept lower than that of the water removal apparatus 9 immediately before the recovery of carbon dioxide.

実施例1の酸素燃焼ボイラにおいて、石炭供給設備13内のミル18へ乾燥再循環排ガスを投入するライン19とそれをバイパスするライン20を設置した実施例を図9に示す。ミル18で粉砕された後の石炭の粒径は小さいので(数十ミクロン程度)、着火・爆発の危険性を考慮する必要がある。本実施例では、乾燥再循環排ガスのバイパスライン20において予め酸素と乾燥再循環排ガスと混合した後、微粉炭と混合する。微粉炭と高濃度の酸素が混合して、何らかの着火源があると爆発の危険性が高まる。本実施例は、微粉炭に直接酸素を吹き込まず、酸素と乾燥再循環排ガスと混合したガスを吹き込むことで、着火・爆発の危険性を小さくする。   In the oxyfuel boiler of the first embodiment, FIG. 9 shows an embodiment in which a line 19 for feeding dry recirculated exhaust gas to a mill 18 in the coal supply facility 13 and a line 20 for bypassing it are installed. Since the particle size of coal after being pulverized by the mill 18 is small (about several tens of microns), it is necessary to consider the risk of ignition and explosion. In this embodiment, oxygen and dry recirculation exhaust gas are mixed in advance in the dry recirculation exhaust gas bypass line 20 and then mixed with pulverized coal. The risk of an explosion increases if there is any ignition source that is a mixture of pulverized coal and high-concentration oxygen. In this embodiment, oxygen is not directly blown into pulverized coal, but a gas mixed with oxygen and dry recirculated exhaust gas is blown to reduce the risk of ignition and explosion.

このように、乾燥再循環排ガスが石炭供給設備をバイパスする設備と、バイパスに酸素を供給する設備とを有することにより、微粉炭の着火・爆発の危険性を小さくすることができる。   Thus, the risk of ignition / explosion of pulverized coal can be reduced by having the equipment for the dry recirculation exhaust gas to bypass the coal supply equipment and the equipment for supplying oxygen to the bypass.

実施例1の酸素燃焼ボイラにおいて、系外に設けられた燃焼設備21で発生した燃焼排ガスをボイラ火炉2に投入する実施例を図10に示す。例えば、ボイラ敷地内から発生するごみや地域のごみを燃やす他の燃焼設備21から生じる燃焼排ガスをボイラ火炉2に投入する。本実施例のように、系外に設けられた燃焼設備21から生じる排ガスの組成も大部分が、二酸化炭素や水分からなるので、水分を除去すると実施例1で示したような乾燥再循環ガスと同等の排ガスを供給することが可能となる。系外に設けられた燃焼設備21から生じる排ガスは高温であるので、熱交換器で除熱した後、水分を除去し、ボイラ火炉2の乾燥再循環排ガス供給口14からボイラ火炉内の還元雰囲気の領域に投入する。   FIG. 10 shows an embodiment in which the combustion exhaust gas generated in the combustion facility 21 provided outside the system in the oxyfuel boiler of the first embodiment is charged into the boiler furnace 2. For example, the combustion exhaust gas generated from the other combustion equipment 21 that burns the waste generated from the boiler site or the local waste is put into the boiler furnace 2. As in the present embodiment, the composition of the exhaust gas generated from the combustion equipment 21 provided outside the system is mostly composed of carbon dioxide and moisture. Therefore, when the moisture is removed, the dry recirculation gas as shown in Embodiment 1 is used. It is possible to supply the same exhaust gas. Since the exhaust gas generated from the combustion equipment 21 provided outside the system is high temperature, after removing heat with a heat exchanger, moisture is removed, and the reducing atmosphere in the boiler furnace is removed from the dry recirculation exhaust gas supply port 14 of the boiler furnace 2. In the area of.

このように、別系統の燃焼器と、別系統の燃焼器で生じた燃焼排ガスを輸送する排ガス輸送設備と、燃焼排ガスの水分を除去する水分除去設備とを有し、排ガス輸送設備は、乾燥再循環排ガス供給口に、別系統の燃焼器で生じ、水分を除去した燃焼排ガスを供給することで、自設備の乾燥再循環排ガス以外の他設備からの乾燥排ガスもあわせて、バーナーで生じた局所的な酸化領域も還元雰囲気にすることも可能である。   Thus, it has a combustor of another system, an exhaust gas transport facility for transporting combustion exhaust gas generated in the combustor of another system, and a moisture removal facility for removing moisture from the combustion exhaust gas. By supplying the flue gas from which the moisture was removed to the recirculated exhaust gas supply port, the exhaust gas from other facilities other than the dry recirculated exhaust gas of the own equipment was also generated by the burner. The local oxidation region can also be a reducing atmosphere.

本発明の酸素燃焼ボイラシステムの構成図。The block diagram of the oxyfuel boiler system of this invention. 乾燥再循環ガスの別の投入構成図。Another charging configuration diagram of dry recirculation gas. 石炭粒子存在下における一酸化炭素濃度と窒素酸化物濃度の関係。Relationship between carbon monoxide concentration and nitrogen oxide concentration in the presence of coal particles. 還元雰囲気における石炭粒子表面での二酸化炭素の還元のイメージ。Image of carbon dioxide reduction on the surface of coal particles in a reducing atmosphere. 還元雰囲気における窒素酸化物の反応経路。Reaction pathway of nitrogen oxides in a reducing atmosphere. 乾燥再循環ガスに酸素を投入する構成図。The block diagram which introduce | transduces oxygen into dry recirculation gas. 再循環ガスの取出し口を脱硫後に設置した構成図。The block diagram which installed the extraction port of the recirculation gas after desulfurization. 再循環排ガスラインを途中で分岐し、一方のラインに水分除去装置を取り付けた構成図。The block diagram which branched the recirculation exhaust gas line in the middle, and attached the moisture removal apparatus to one line. 石炭供給設備において乾燥再循環ガスを一部バイパスし、そのバイパスラインに酸素を供給した構成図。The block diagram which bypassed dry recirculation gas partially in the coal supply equipment, and supplied oxygen to the bypass line. 別系統の燃焼器の排ガスを酸素燃焼ボイラに供給する構成図。The block diagram which supplies the exhaust gas of the combustor of another system to an oxyfuel boiler. 乾燥再循環排ガス供給口の位置を示す図。The figure which shows the position of a dry recirculation waste gas supply port.

符号の説明Explanation of symbols

1 バーナー
2 ボイラ火炉
3 酸化用ガス供給口
4 酸素製造設備
5 煙突
6 熱交換器
7 除塵装置
8 脱硫装置
9,17 水分除去装置
10 二酸化炭素回収設備
11 再循環排ガスライン
12 乾燥再循環排ガスライン
13 石炭供給設備
14 乾燥再循環排ガス供給口
15 還元雰囲気の領域
16 流量調節弁
22 燃料超過の還元雰囲気
23 局所的に酸化する領域
24 再循環ガス
DESCRIPTION OF SYMBOLS 1 Burner 2 Boiler furnace 3 Oxidation gas supply port 4 Oxygen production facility 5 Chimney 6 Heat exchanger 7 Dust removal device 8 Desulfurization device 9, 17 Moisture removal device 10 Carbon dioxide recovery facility 11 Recirculation exhaust gas line 12 Dry recirculation exhaust gas line 13 Coal supply facility 14 Dry recirculation exhaust gas supply port 15 Reducing atmosphere region 16 Flow rate control valve 22 Reducing atmosphere 23 exceeding fuel Locally oxidizing region 24 Recirculating gas

Claims (11)

空気から酸素を分離する酸素製造設備と、
石炭を乾燥粉砕する石炭供給設備と、
前記酸素製造設備で製造された酸素と前記石炭供給設備より供給された石炭を燃焼するバーナーと、
前記バーナーを壁面に備えたボイラと、
前記ボイラの燃焼排ガスを排出するボイラから煙突までの煙道と、
前記煙道の下流に設置され、排ガスから二酸化炭素を分離する二酸化炭素回収設備と、
前記煙道の中途から排ガスの一部を抜き出して前記ボイラに再循環する再循環排ガス設備と、
前記煙道の排ガスと再循環排ガス設備の排ガスの熱交換をする熱交換設備と、
前記再循環排ガス設備の任意の系統に前記酸素製造設備で製造された酸素を供給できる複数の系統を有する酸素供給設備と、
前記二酸化炭素回収設備の煙道上流に設置された再循環ガス取出し口と、
前記排ガスを減湿する水分除去設備とを有し、
前記再循環排ガス設備は前記水分除去設備で減湿した乾燥排ガスを再循環する再循環排ガス設備であり、
前記乾燥排ガスを前記ボイラ内の還元雰囲気領域に流入させる乾燥再循環排ガス供給口
を有することを特徴とする酸素燃焼ボイラシステム。
An oxygen production facility that separates oxygen from the air;
Coal supply equipment for drying and crushing coal;
A burner for burning the oxygen produced in the oxygen production facility and the coal supplied from the coal supply facility;
A boiler with the burner on the wall;
A flue from the boiler to the chimney that discharges the combustion exhaust gas of the boiler;
A carbon dioxide recovery facility installed downstream of the flue and separating carbon dioxide from the exhaust gas;
A recirculation exhaust gas facility for extracting a part of exhaust gas from the middle of the flue and recirculating it to the boiler;
A heat exchange facility for exchanging heat between the flue exhaust gas and the recirculation exhaust gas facility;
An oxygen supply facility having a plurality of systems capable of supplying oxygen produced by the oxygen production facility to an arbitrary system of the recirculation exhaust gas facility;
A recirculation gas outlet installed upstream of the flue of the carbon dioxide recovery facility;
A water removal facility for dehumidifying the exhaust gas,
The recirculation exhaust gas facility is a recirculation exhaust gas facility that recirculates dry exhaust gas dehumidified by the moisture removal facility,
An oxyfuel boiler system having a dry recirculation exhaust gas supply port for allowing the dry exhaust gas to flow into a reducing atmosphere region in the boiler.
請求項1の酸素燃焼ボイラシステムにおいて、
前記酸素製造設備で製造された酸素と前記ボイラで発生した燃焼排ガスの混合ガスを前記バーナーの下流で供給するための酸化用ガス供給口と、
酸化用ガス供給口より上流で、かつ、バーナーより下流に前記乾燥排ガスを供給する乾燥再循環排ガス供給口を有することを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system of claim 1,
An oxidizing gas supply port for supplying a mixed gas of oxygen produced in the oxygen production facility and combustion exhaust gas generated in the boiler downstream of the burner;
An oxyfuel boiler system comprising a dry recirculation exhaust gas supply port for supplying the dry exhaust gas upstream from an oxidizing gas supply port and downstream from a burner.
請求項1の酸素燃焼ボイラシステムにおいて、
ボイラ最下部に乾燥再循環排ガス供給口を有することを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system of claim 1,
An oxyfuel boiler system having a dry recirculation exhaust gas supply port at the bottom of the boiler.
請求項1の酸素燃焼ボイラシステムにおいて、
水分除去設備で減湿した乾燥排ガスを乾燥再循環排ガス供給口からボイラに戻す系統と、石炭供給設備に戻す系統とを有することを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system of claim 1,
An oxyfuel boiler system comprising: a system for returning dry exhaust gas dehumidified by a moisture removal facility to a boiler from a dry recirculation exhaust gas supply port; and a system for returning to a coal supply facility.
請求項1の酸素燃焼ボイラシステムにおいて、水分除去設備で減湿した乾燥排ガスに供給する酸素量を調整可能な酸素流量調整弁を有することを特徴とする酸素燃焼ボイラシステム。   2. The oxyfuel boiler system according to claim 1, further comprising an oxygen flow rate adjustment valve capable of adjusting an amount of oxygen supplied to the dry exhaust gas dehumidified by the water removal equipment. 請求項1の酸素燃焼ボイラシステムにおいて、再循環ガス取出し口から取り出された排ガスを再循環する複数の再循環排ガス設備のうち、少なくとも一つは脱硫装置の下流に配置されたことを特徴とする酸素燃焼ボイラシステム。   2. The oxyfuel boiler system according to claim 1, wherein at least one of the plurality of recirculation exhaust gas facilities for recirculating the exhaust gas extracted from the recirculation gas outlet is disposed downstream of the desulfurization apparatus. Oxy-combustion boiler system. 請求項1の酸素燃焼ボイラシステムにおいて、
前記水除去設備を複数有し、
一方の水除去設備は、前記再循環排ガス取出し口から排ガスをボイラ火炉に戻す前記再循環排ガス設備内に配置し、
他方の水除去設備は、前記再循環ガス取出し口よりも下流の前記煙道に配置したことを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system of claim 1,
Having a plurality of water removal facilities,
One water removal facility is disposed in the recirculation exhaust gas facility for returning exhaust gas from the recirculation exhaust gas outlet to the boiler furnace,
The other water removal facility is disposed in the flue downstream of the recirculation gas outlet, and is an oxyfuel boiler system.
請求項4の酸素燃焼ボイラシステムにおいて、
乾燥再循環排ガスが石炭供給設備をバイパスする設備と、
バイパスに酸素を供給する設備と、
を有することを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system according to claim 4,
A facility for dry recirculated exhaust gas to bypass the coal supply facility;
A facility for supplying oxygen to the bypass;
An oxyfuel boiler system comprising:
請求項1の酸素燃焼ボイラシステムにおいて、
別系統の燃焼器と、
前記別系統の燃焼器で生じた燃焼排ガスを輸送する排ガス輸送設備と、
前記燃焼排ガスの水分を除去する水分除去設備とを有し、
前記排ガス輸送設備は、前記乾燥再循環排ガス供給口に、前記別系統の燃焼器で生じ、水分を除去した燃焼排ガスを供給することを特徴とする酸素燃焼ボイラシステム。
The oxyfuel boiler system of claim 1,
A separate combustor,
An exhaust gas transport facility for transporting the flue gas generated in the combustor of the different system;
A moisture removal facility for removing moisture from the combustion exhaust gas,
The oxyfuel boiler system, wherein the exhaust gas transportation facility supplies combustion exhaust gas generated in the separate combustor and having moisture removed to the dry recirculation exhaust gas supply port.
空気から酸素を分離する酸素製造設備と、
石炭を乾燥粉砕する石炭供給設備と、
前記酸素製造設備で製造された酸素と前記石炭供給設備より供給された石炭を燃焼するバーナーと、
前記バーナーを壁面に備えたボイラと、
前記酸素製造設備で製造された酸素と前記ボイラで発生した燃焼排ガスの混合ガスを前記バーナーの下流で供給するための酸化用ガス供給口と、
前記ボイラの燃焼排ガスを排出するボイラから煙突までの煙道と、
前記煙道の下流に設置され、排ガスから二酸化炭素を分離する二酸化炭素回収設備と、
前記煙道の中途から排ガスの一部を抜き出して前記ボイラに再循環する再循環排ガス設備と、
前記煙道の排ガスと再循環排ガス設備の排ガスの熱交換をする熱交換設備と、
前記再循環排ガス設備の任意の系統に前記酸素製造設備で製造された酸素を供給できる複数の系統を有する酸素供給設備と、
前記二酸化炭素回収設備の煙道上流に設置された再循環ガス取出し口と、
前記再循環排ガスを減湿する水分除去設備とを有し、
前記再循環排ガス設備は前記水分除去設備で減湿した乾燥排ガスを再循環する再循環排ガス設備であり、
前記酸化用ガス供給口より上流で、かつ、前記バーナーより下流に前記乾燥排ガスをボイラ内に流入させる乾燥再循環排ガス供給口を有することを特徴とする酸素燃焼ボイラシステム。
An oxygen production facility that separates oxygen from the air;
Coal supply equipment for drying and crushing coal;
A burner for burning the oxygen produced in the oxygen production facility and the coal supplied from the coal supply facility;
A boiler with the burner on the wall;
An oxidizing gas supply port for supplying a mixed gas of oxygen produced in the oxygen production facility and combustion exhaust gas generated in the boiler downstream of the burner;
A flue from the boiler to the chimney that discharges the combustion exhaust gas of the boiler;
A carbon dioxide recovery facility installed downstream of the flue and separating carbon dioxide from the exhaust gas;
A recirculation exhaust gas facility for extracting a part of exhaust gas from the middle of the flue and recirculating it to the boiler;
A heat exchange facility for exchanging heat between the flue exhaust gas and the recirculation exhaust gas facility;
An oxygen supply facility having a plurality of systems capable of supplying oxygen produced by the oxygen production facility to an arbitrary system of the recirculation exhaust gas facility;
A recirculation gas outlet installed upstream of the flue of the carbon dioxide recovery facility;
A water removal facility for dehumidifying the recirculated exhaust gas,
The recirculation exhaust gas facility is a recirculation exhaust gas facility that recirculates dry exhaust gas dehumidified by the moisture removal facility,
An oxyfuel boiler system comprising a dry recirculation exhaust gas supply port for allowing the dry exhaust gas to flow into the boiler upstream from the oxidizing gas supply port and downstream from the burner.
空気から酸素を分離する酸素製造設備で製造された酸素と石炭を乾燥粉砕する石炭供給設備より供給された石炭をボイラで燃焼し、
前記ボイラの燃焼排ガスを減湿して乾燥排ガスを生成し、
前記乾燥排ガスを前記ボイラ内の還元雰囲気領域に流入させることを特徴とする酸素燃焼ボイラシステムの燃焼方法。
Combusting the oxygen produced in the oxygen production facility that separates oxygen from the air and the coal supplied from the coal supply facility that dry-pulverizes the coal in a boiler,
Dehumidifying the combustion exhaust gas of the boiler to produce dry exhaust gas,
A combustion method for an oxyfuel boiler system, wherein the dry exhaust gas is caused to flow into a reducing atmosphere region in the boiler.
JP2008220684A 2008-08-29 2008-08-29 Oxyfuel combustion boiler system and combustion method Active JP5183372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220684A JP5183372B2 (en) 2008-08-29 2008-08-29 Oxyfuel combustion boiler system and combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220684A JP5183372B2 (en) 2008-08-29 2008-08-29 Oxyfuel combustion boiler system and combustion method

Publications (2)

Publication Number Publication Date
JP2010054144A true JP2010054144A (en) 2010-03-11
JP5183372B2 JP5183372B2 (en) 2013-04-17

Family

ID=42070266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220684A Active JP5183372B2 (en) 2008-08-29 2008-08-29 Oxyfuel combustion boiler system and combustion method

Country Status (1)

Country Link
JP (1) JP5183372B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190940A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Oxygen combustion type coal fired power generation system
JP2012002421A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Combustion system
JP2013522864A (en) * 2010-03-06 2013-06-13 メルク パテント ゲーエムベーハー Organic electroluminescent device
JP2014500471A (en) * 2010-11-16 2014-01-09 アルストム テクノロジー リミテッド Apparatus and method for controlling thermal performance of an oxyfuel boiler
JP2015232438A (en) * 2010-04-12 2015-12-24 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Oxy-fuel combustion regenerative oxidant heater internal arrangement
CN108592015A (en) * 2018-06-15 2018-09-28 清华大学 A kind of boiler smoke recirculating system and its method
KR20180120824A (en) * 2017-04-27 2018-11-07 한국기계연구원 System and method for the processing of exhaust gas by using multi-step exhaust gas circulation
KR102068334B1 (en) * 2018-11-01 2020-01-20 한국기계연구원 System for processing NOx by using pyrolysis of reducing agent
WO2020122619A1 (en) * 2018-12-12 2020-06-18 (주)금강씨엔티 Porous structure-embedded diluted urea solution spray apparatus capable of precise concentration control

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340010A (en) * 1991-05-16 1992-11-26 Nippon Sanso Kk Method of burning pulverized coal using pulverized coal and oxygen burner
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH05231609A (en) * 1991-05-28 1993-09-07 Hitachi Ltd Combustion device and operating method thereof
JPH0694212A (en) * 1992-09-10 1994-04-05 Mitsubishi Heavy Ind Ltd Fossil fuel combustion boiler
JPH06313509A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Pulverized coal firing equipment
JP2001116211A (en) * 1999-10-20 2001-04-27 Toho Gas Co Ltd Exhaust gas recirculation type combustion method, and combustor
JP2006504927A (en) * 2002-10-30 2006-02-09 クレブス アンド シスラー エルピー Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
JP2007147161A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus
JP2007147162A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler
WO2009110033A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
JP2009270753A (en) * 2008-05-07 2009-11-19 Hitachi Ltd Oxygen burning boiler system, remodeling method for pulverized coal burning boiler and device and method for controlling oxygen burning boiler system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340010A (en) * 1991-05-16 1992-11-26 Nippon Sanso Kk Method of burning pulverized coal using pulverized coal and oxygen burner
JPH05231609A (en) * 1991-05-28 1993-09-07 Hitachi Ltd Combustion device and operating method thereof
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH0694212A (en) * 1992-09-10 1994-04-05 Mitsubishi Heavy Ind Ltd Fossil fuel combustion boiler
JPH06313509A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Pulverized coal firing equipment
JP2001116211A (en) * 1999-10-20 2001-04-27 Toho Gas Co Ltd Exhaust gas recirculation type combustion method, and combustor
JP2006504927A (en) * 2002-10-30 2006-02-09 クレブス アンド シスラー エルピー Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
JP2007147161A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Exhaust gas disposal method and device for combustion apparatus
JP2007147162A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler
WO2009110033A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
JP2009270753A (en) * 2008-05-07 2009-11-19 Hitachi Ltd Oxygen burning boiler system, remodeling method for pulverized coal burning boiler and device and method for controlling oxygen burning boiler system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522864A (en) * 2010-03-06 2013-06-13 メルク パテント ゲーエムベーハー Organic electroluminescent device
JP2011190940A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Oxygen combustion type coal fired power generation system
JP2015232438A (en) * 2010-04-12 2015-12-24 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Oxy-fuel combustion regenerative oxidant heater internal arrangement
JP2012002421A (en) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd Combustion system
TWI471509B (en) * 2010-06-16 2015-02-01 Mitsubishi Heavy Ind Ltd Combustion System
KR101495087B1 (en) * 2010-06-16 2015-03-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Combustion system
EP2584257A4 (en) * 2010-06-16 2015-10-21 Mitsubishi Hitachi Power Sys Combustion system
JP2014500471A (en) * 2010-11-16 2014-01-09 アルストム テクノロジー リミテッド Apparatus and method for controlling thermal performance of an oxyfuel boiler
US9752773B2 (en) 2010-11-16 2017-09-05 General Electric Technology Gmbh Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
KR20180120824A (en) * 2017-04-27 2018-11-07 한국기계연구원 System and method for the processing of exhaust gas by using multi-step exhaust gas circulation
KR101957450B1 (en) * 2017-04-27 2019-03-13 한국기계연구원 System and method for the processing of exhaust gas by using multi-step exhaust gas circulation
CN108592015A (en) * 2018-06-15 2018-09-28 清华大学 A kind of boiler smoke recirculating system and its method
KR102068334B1 (en) * 2018-11-01 2020-01-20 한국기계연구원 System for processing NOx by using pyrolysis of reducing agent
WO2020122619A1 (en) * 2018-12-12 2020-06-18 (주)금강씨엔티 Porous structure-embedded diluted urea solution spray apparatus capable of precise concentration control

Also Published As

Publication number Publication date
JP5183372B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5183372B2 (en) Oxyfuel combustion boiler system and combustion method
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP5138028B2 (en) Oxygen supply control method and apparatus for oxyfuel boiler
JP3068888B2 (en) Combustion apparatus and operation method thereof
AU2009219351B2 (en) Air-fired CO2 capture ready circulating fluidized bed heat generation with a reactor subsystem
JP5174618B2 (en) Oxyfuel combustion boiler system and control method for oxygen combustion boiler system
KR20080075848A (en) Disposal method and equipment for exhaust gas from combustion system
PL212933B1 (en) Steam-generating combustion system and method for emission control using oxygen enhancement
JP2007147162A (en) Combustion control method and device for oxygen burning boiler
JP5107419B2 (en) Combustion control device for oxyfuel boiler
EP1969286A2 (en) Oxy-fuel combustion with integrated pollution control
JP5107418B2 (en) Primary recirculation exhaust gas flow controller for oxyfuel boiler
WO2012035777A1 (en) Combustion plant
KR101495087B1 (en) Combustion system
JP5284251B2 (en) Oxy-combustion exhaust gas treatment device and method of operating the exhaust gas treatment device
JP4282069B2 (en) Biomass fuel combustion apparatus and method
JP4396929B2 (en) Biomass fuel drying apparatus and method
JP5812740B2 (en) Oxyfuel combustion system and operating method thereof
JP3949386B2 (en) Oxygen-enriched combustion method for stoker waste incinerator
KR101175768B1 (en) A pulverized coal pure oxygen burning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R151 Written notification of patent or utility model registration

Ref document number: 5183372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250