Nothing Special   »   [go: up one dir, main page]

JP2010047266A - Synthetic resin pallet - Google Patents

Synthetic resin pallet Download PDF

Info

Publication number
JP2010047266A
JP2010047266A JP2008211762A JP2008211762A JP2010047266A JP 2010047266 A JP2010047266 A JP 2010047266A JP 2008211762 A JP2008211762 A JP 2008211762A JP 2008211762 A JP2008211762 A JP 2008211762A JP 2010047266 A JP2010047266 A JP 2010047266A
Authority
JP
Japan
Prior art keywords
reinforcing rib
gas
resin
top plate
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211762A
Other languages
Japanese (ja)
Inventor
Takashi Fujitani
崇 藤谷
Kanenobu Maruyama
金信 丸山
Naoki Yoshiie
尚希 吉家
Mitsuru Shintani
充 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Nippon Plapallet Co
Original Assignee
DIC Corp
Nippon Plapallet Co
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Nippon Plapallet Co, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2008211762A priority Critical patent/JP2010047266A/en
Publication of JP2010047266A publication Critical patent/JP2010047266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pallets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic resin pallet capable of achieve strength, weight reduction and a core layer filling ratio of the pallet made of the synthetic resin with a good balance. <P>SOLUTION: The pallet made of the synthetic resin is formed by welding mutually a girder part of an upper deck board and a girder part of a lower deck board. For the upper deck board, a plurality of the girder parts are connected with a top board 5 forming a loading surface, and a reinforcing rib 6 is provided between the girder parts. For the reinforcing rib 6a connected orthogonally to the central girder part, a skin layer 14 of a virgin resin is provided on the surface, a core layer 15 of a regenerated resin is provided in its inside, and a hollow part 16 made by gas injection is provided in the innermost layer. The hollow part 16 projects so as not to project into the top board 5 beyond necessity. The top board 5 consists of a skin layer and a core layer. The thickness W of the top board 5 at a part where the reinforcing rib 6 is provided is 2-5 mm, and the maximum thickness T at the root on the top board 5 of the reinforcing rib 6 is 5-30 mm, and the height H of the reinforcing rib 6 including the top board 5 is set in a range of 10-50 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、種々の物品を載荷面に載置して運搬や保管等するために使用される合成樹脂製パレットに関するものである。   The present invention relates to a synthetic resin pallet that is used to place various articles on a loading surface for transportation or storage.

従来、物品を運搬したり保管したりする際に使用される合成樹脂製パレットとして、二方差しのパレットや四方差しのパレットが使用されている。
このような合成樹脂製パレットとして、互いに平行に配置された上部デッキボード及び下部デッキボードと、上部デッキボード及び下部デッキボードを連結する複数の桁部とから概略構成されているものがある。さらに、一体成形のものや、桁部上下の略中央部分で二分割して形成したものを桁部同士を突き合わせて溶着して形成したものもある。
また、デッキボードと脚部(桁部)のみで構成される、いわゆるスキッドパレットと称されるものもある。
そして、例えば特許文献1に記載された合成樹脂製パレットでは、デッキボードとリブの交点部分で成形時に熱が滞留して固化後にヒケができるのを防止するために、デッキボードとリブの交点部分近傍の最も肉厚の太い部分にガスインジェクション法によってガスを注入して中空部を形成し、軽量化を図っているものもある。
Conventionally, a two-way pallet or a four-way pallet has been used as a synthetic resin pallet used when carrying or storing articles.
As such a synthetic resin pallet, there is a pallet generally constituted by an upper deck board and a lower deck board arranged in parallel to each other and a plurality of girders connecting the upper deck board and the lower deck board. Further, there are also an integrally formed type and a type formed by dividing the girder part into two at the substantially central part above and below the girder part and butting them together.
In addition, there is a so-called skid pallet composed only of a deck board and legs (girder).
And, for example, in the synthetic resin pallet described in Patent Document 1, in order to prevent heat from staying at the intersection of the deck board and the rib during molding and sinking after solidification, the intersection of the deck board and the rib In some cases, a hollow portion is formed by injecting gas into the thickest portion in the vicinity by a gas injection method to reduce the weight.

また、近年、使用済みのプラスチックをリサイクルすることで環境保全と合成樹脂製パレットのコスト低減を図る手段としてサンドイッチ成形法による多層構成の合成樹脂製パレットが提案されている。例えば特許文献2及び3に記載された合成樹脂製パレットは、桁の角部と桁の角部を連結する桁間の補強リブを肉厚に形成すると共に、補強リブと天板と桁の周壁とをスキン層とコア層の2層に成形している。
そして、表層であるスキン層としてバージン樹脂を使用し、内層であるコア層として再生樹脂を使用し、一点の樹脂用ゲート部から初めにスキン層を形成する樹脂を金型内に射出し、わずかに遅れてコア層を形成する樹脂を金型内に射出して成形することで二層構造のパレットが得られるとしている。
特開平11−100035号公報 特許第4079376号公報 特許第4079377号公報
Recently, a synthetic resin pallet having a multilayer structure by a sandwich molding method has been proposed as a means for recycling the used plastic to save the environment and reduce the cost of the synthetic resin pallet. For example, the synthetic resin pallets described in Patent Documents 2 and 3 have thick reinforcing ribs between the spar corners connecting the spar corners and the spar corners, and the reinforcing ribs, the top plate, and the peripheral walls of the spar Are formed into two layers of a skin layer and a core layer.
Then, virgin resin is used as the skin layer, which is the surface layer, recycled resin is used as the core layer, which is the inner layer, and the resin that first forms the skin layer is injected into the mold from a single resin gate. It is said that a pallet having a two-layer structure can be obtained by injecting and molding a resin for forming the core layer into the mold after a delay.
Japanese Patent Laid-Open No. 11-100035 Japanese Patent No. 4079376 Japanese Patent No. 4079377

しかしながら、このようなサンドイッチ成形法を用いた合成樹脂製パレットでは、例えば、製造コストを抑えるために再生樹脂などのコア材の充填比率を上げると、金型への充填時に内層を形成するコア材の溶融樹脂を金型内に充填して流動させる際に、先に充填したスキン層を突き破って表面に露出するブレークという現象が発生する不具合がある。一方で、合成樹脂製パレットは全体としての強度を確保しつつ軽量化を図ることが要求されており、合成樹脂製パレットの材料として複数の合成樹脂材料を用いて二層構造に形成するだけでは、合成樹脂製パレットの強度は確保できるものの、軽量化とコア層充填率とをバランスよく達成することができなかった。   However, in the synthetic resin pallet using such a sandwich molding method, for example, if the filling ratio of the core material such as recycled resin is increased in order to reduce the manufacturing cost, the core material that forms the inner layer when filling the mold When the molten resin is filled in a mold and allowed to flow, there is a problem that a phenomenon called a break that breaks through the previously filled skin layer and is exposed to the surface occurs. On the other hand, synthetic resin pallets are required to be lightweight while securing the overall strength, and simply by forming a two-layer structure using a plurality of synthetic resin materials as the material of the synthetic resin pallets. Although the strength of the synthetic resin pallet could be ensured, the weight reduction and the core layer filling rate could not be achieved in a well-balanced manner.

本発明は、このような実情に鑑みて、合成樹脂製パレットの強度と軽量化とコア層充填率とをバランスよく達成できるようにした合成樹脂製パレットを提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a synthetic resin pallet that can achieve a good balance between strength, weight reduction, and core layer filling rate of the synthetic resin pallet.

本発明による合成樹脂製パレットは、デッキボードと複数の桁部を有する合成樹脂製パレットであって、デッキボードは、天板と、天板の桁部側に設けられた複数の補強リブとを備えており、天板の中央部には1つの樹脂用ゲート部が設けられており、複数の桁部のうち少なくとも1つの桁部内にガス用ゲート部とガス用ゲート部に連続するガス流路とが設けられており、補強リブのうちガス流路に最短距離で連続する桁部外の補強リブは、最も表側に設けられたスキン層と、スキン層の内側に設けられたコア層と、コア層の内側に設けられたガス注入による中空部とを有する三層構造を備えていると共に、補強リブを設けた部分の天板の厚さは2〜5mm、補強リブの天板への付け根の最大肉厚は5〜30mm、天板を含む補強リブの高さは10〜50mmの範囲に設定されていることを特徴とする。   A synthetic resin pallet according to the present invention is a synthetic resin pallet having a deck board and a plurality of girders, and the deck board includes a top plate and a plurality of reinforcing ribs provided on the side of the top plate. A gas flow passage that is continuous with the gas gate portion and the gas gate portion in at least one of the plurality of girders. Among the reinforcing ribs, the reinforcing ribs outside the girders that are continuous to the gas flow path at the shortest distance are the skin layer provided on the most front side, the core layer provided on the inner side of the skin layer, It has a three-layer structure having a hollow portion by gas injection provided inside the core layer, and the thickness of the top plate of the portion where the reinforcing rib is provided is 2 to 5 mm, and the root of the reinforcing rib to the top plate The maximum thickness is 5-30mm, the height of the reinforcing rib including the top plate Characterized in that it is set in a range of 10 to 50 mm.

本発明による合成樹脂製パレットは、ガス流路に最短距離で連続する桁部外の補強リブの周囲の天板の厚さWをW=2〜5mm、補強リブの天板への付け根の最大肉厚TをT=5〜30mm、天板を含む補強リブの高さHをH=10〜50mmの範囲に設定することにより、桁部外であってこの補強リブと連続する他の補強リブと合成樹脂製パレット全体の天板とに、スキン層とコア層と中空部とをバランスよく形成することができる。そのため、中空部の形成によって合成樹脂製パレット全体を軽量化できると共に、合成樹脂製パレットの強度を確保でき、更にコア層を天板と補強リブ内に十分充填することでコア層の充填率を向上できる。しかも、天板の厚さW、補強リブの付け根の最大肉厚T、天板を含む補強リブの高さHの範囲を設定することで、合成樹脂製パレットの金型への射出成形時における樹脂流動のバランスを確保して補強リブ部分での樹脂流動が部分的に速くなるのを抑制してコア層のブレークを抑制できる。   The synthetic resin pallet according to the present invention has a thickness W of the top plate around the reinforcing rib outside the girder that is continuous to the gas flow path at the shortest distance, W = 2 to 5 mm, and the maximum root of the reinforcing rib to the top plate By setting the wall thickness T to T = 5 to 30 mm and the height H of the reinforcing rib including the top plate to the range of H = 10 to 50 mm, other reinforcing ribs that are outside the girder and are continuous with this reinforcing rib In addition, the skin layer, the core layer, and the hollow portion can be formed in a well-balanced manner on the top plate of the entire synthetic resin pallet. Therefore, the overall weight of the synthetic resin pallet can be reduced by forming the hollow portion, the strength of the synthetic resin pallet can be secured, and the core layer can be sufficiently filled in the top plate and the reinforcing ribs to increase the filling rate of the core layer. Can be improved. Moreover, by setting the range of the thickness W of the top plate, the maximum thickness T of the base of the reinforcing rib, and the height H of the reinforcing rib including the top plate, at the time of injection molding to the mold of the synthetic resin pallet It is possible to secure the balance of resin flow and suppress the resin flow at the reinforcing rib portion from partially increasing, thereby suppressing the break of the core layer.

本発明に係る合成樹脂製パレットによれば、ガス流路に最短距離で連続する桁部外の補強リブが三層構造であるために、最内層の中空部によって軽量化を達成できると共に、中空部とコア層によって製造コストを低廉にでき、更にガス注入による中空部が合成樹脂製パレット全体にバランスよく形成される。しかも、天板と補強リブへのコア層の充填率を向上できる。   According to the synthetic resin pallet according to the present invention, since the reinforcing rib outside the girder portion that is continuous to the gas flow path at the shortest distance has a three-layer structure, weight reduction can be achieved by the hollow portion of the innermost layer, and the hollow The manufacturing cost can be reduced by the portion and the core layer, and the hollow portion by gas injection is formed in a balanced manner on the entire synthetic resin pallet. And the filling rate of the core layer to a top plate and a reinforcement rib can be improved.

本発明の実施形態による合成樹脂製パレットでは、桁部内にガス用ゲート部とガス用ゲート部に連続するガス流路とが設けられており、補強リブのうちガス流路に最短距離で連続する桁部外の補強リブは、桁部の延在方向に直交する方向に延びて桁部に接続されていることが好ましい。
合成樹脂製パレットにおいて最も強度のある部分は桁部であることから、複数の桁部のうち少なくとも1つの桁部内にガス用ゲート部とガス用ゲート部に連続するガス流路を設けている。このガス流路はガスが最も流れやすい構造とされているが、ガスが桁部外に流れる際には、桁部外に設けられている複数の補強リブと天板の間を通って合成樹脂製パレット全体に行き渡る。この場合、桁部外のガスの流れは、複数の補強リブのうち流れやすい補強リブと天板の間を通っていくことになる。
したがって、桁部内から桁部外にガスが流出する流路として、複数の補強リブのうちガス流路に最短距離で連続する桁部外の補強リブを桁部に直交する方向に延びて桁部に接続することにより、ガスの流れ抵抗を最も小さく抑えられ、中空部を最内層に形成した理想的な三層構造の補強リブを形成することができ、最も樹脂やガスが流れ易いリブ構造を形成できる。これによって、この補強リブにつながる樹脂やガスの流動方向前方側の他の補強リブや桁部のリブへの樹脂やガスの流動性を良好にでき、より均一な構造の合成樹脂パレットを形成できる。
In the synthetic resin pallet according to the embodiment of the present invention, the gas gate portion and the gas flow passage continuing to the gas gate portion are provided in the girder portion, and the reinforcement rib continues to the gas flow passage at the shortest distance. It is preferable that the reinforcing rib outside the girder part extends in a direction orthogonal to the extending direction of the girder part and is connected to the girder part.
Since the strongest part in the synthetic resin pallet is the girder part, a gas flow channel and a gas flow path continuous to the gas gate part are provided in at least one girder part of the plurality of girder parts. This gas flow path has a structure in which gas flows most easily, but when the gas flows outside the girder part, it passes between a plurality of reinforcing ribs and the top plate provided outside the girder part and is made of a synthetic resin pallet. Go around the whole. In this case, the gas flow outside the girder passes between the reinforcing ribs that easily flow out of the plurality of reinforcing ribs and the top plate.
Therefore, as a flow path for the gas to flow out from the inside of the spar to the outside of the spar, the reinforcing rib outside the spar that is continuous to the gas flow path at the shortest distance among the plurality of reinforcing ribs extends in the direction perpendicular to the spar. By connecting to, it is possible to form the ideal three-layered reinforcing rib with the gas flow resistance being minimized and forming the hollow part as the innermost layer, and the rib structure that allows the most resin and gas to flow. Can be formed. This makes it possible to improve the fluidity of the resin and gas to the other reinforcing ribs and the ribs on the front side in the flow direction of the resin and gas connected to the reinforcing ribs, and to form a synthetic resin pallet having a more uniform structure. .

スキン層とコア層に使用する樹脂は、その性状が異なる樹脂とすることができる。例えば、スキン層には、新品の樹脂(バージン樹脂)と帯電防止機能を付与した樹脂とを併用した樹脂を使用し、コア層に新品の樹脂を使用したり、スキン層はバージン樹脂を使用し、コア層は再生樹脂を使用することができる。合成樹脂製パレットの表面を綺麗なバージン樹脂からなるスキン層で形成し、その内層に再生樹脂からなるコア層を形成することで、表面の美観を維持しながら製造コストを低減して再生樹脂材のリサイクルによる環境保護を促進できる。
また、桁部を設けた上部デッキボード及び/または下部デッキボードの金型内への合成樹脂注入時における、スキン層の溶融樹脂は樹脂流動性の指標であるMI(メルトフローインデックス)がコア層の樹脂流動性の指標であるMIより大きく設定されていることが好ましい。これによって充填時にコア層がスキン層を突き破ってブレークすることを抑制できる。
The resin used for the skin layer and the core layer can be a resin having different properties. For example, a new resin (virgin resin) and a resin with an antistatic function are used for the skin layer, a new resin is used for the core layer, and a virgin resin is used for the skin layer. The core layer can be made of recycled resin. The surface of the synthetic resin pallet is formed with a clean skin layer made of virgin resin, and the core layer made of recycled resin is formed on the inner layer to reduce the manufacturing cost while maintaining the appearance of the surface. Can promote environmental protection through recycling.
In addition, when the synthetic resin is injected into the upper deck board and / or lower deck board mold provided with girders, the melt resin of the skin layer is MI (melt flow index), which is an index of resin fluidity, as the core layer. It is preferable that it is set to be larger than MI which is an index of resin fluidity. This can prevent the core layer from breaking through the skin layer during filling.

以下、本発明の実施例による合成樹脂製パレットを図1乃至図4により説明する。図1(a)、(b)は実施例による合成樹脂製パレットの上部パレット形成部材の上面図と裏面図、図2は図1(b)に示す上部パレット形成部材における補強リブと樹脂用ゲート部とガス用ゲート部の要部拡大図、図3は図2における複数の補強リブのうちガス流路に最短距離で連続する中央桁部外の補強リブのA−A線拡大断面図、図4は中央桁部に隣接する位置に設けたガス流路に最短距離で連続する中央桁部外の補強リブのA−A線、ガス流路に最短距離で連続する中央桁部外の補強リブに隣接する補強リブのB−B線、ガス流路に最短距離で連続する中央桁部外の補強リブに隣接する補強リブに更に隣接する補強リブのC−C線断面図である。   A synthetic resin pallet according to an embodiment of the present invention will be described below with reference to FIGS. 1A and 1B are a top view and a back view of an upper pallet forming member of a synthetic resin pallet according to the embodiment, and FIG. 2 is a reinforcing rib and a resin gate in the upper pallet forming member shown in FIG. FIG. 3 is an enlarged cross-sectional view taken along line AA of the reinforcing rib outside the central girder that is continuous to the gas flow path at the shortest distance among the plurality of reinforcing ribs in FIG. 4 is a line AA of a reinforcing rib outside the central girder part that is continuous at the shortest distance to the gas flow path provided at a position adjacent to the central girder part, and a reinforcing rib outside the central girder part that is continuous to the gas flow path at the shortest distance FIG. 6 is a cross-sectional view of the reinforcing rib adjacent to the reinforcing rib adjacent to the reinforcing rib adjacent to the BB line and the reinforcing rib adjacent to the reinforcing rib outside the central beam portion that is continuous with the gas flow path at the shortest distance.

図1及び図2に示す実施例による合成樹脂製パレット(以下、単にパレットということがある)1は全体として略四角形、例えば略正方形または長方形の箱形を呈した二方差し片面使用のパレットである。合成樹脂製パレット1は、上部デッキボード2及び上部デッキボード2の裏面に連結する複数の桁部3を設けた上部パレット形成部材4Aと、図示しない下部デッキボード及び複数の桁部を設けた下部デッキボードとで構成されている。
合成樹脂製パレット1の上部デッキボード2は、載荷面をなす板状の天板5の裏面の中央部に中央桁部3aが形成され、その両端に端桁部3b、3bが形成されている。中央桁部3aと端桁部3b、3bは天板5の対向する一対の辺の一端から他端まで線状に延び互いに平行とされている。下部デッキボードにも同様な構成の桁部が形成されている。そして、上部デッキボード2と下部デッキボードを対向させて各桁部3a、3b、…の端面同士を突き合わせて溶着することで一体化させて合成樹脂製パレット1を形成することになる。
A synthetic resin pallet (hereinafter sometimes simply referred to as a pallet) 1 according to the embodiment shown in FIGS. 1 and 2 is a two-sided single-sided pallet having a substantially square shape, for example, a substantially square or rectangular box shape as a whole. is there. The plastic pallet 1 includes an upper pallet forming member 4A provided with an upper deck board 2 and a plurality of girders 3 connected to the back surface of the upper deck board 2, and a lower deck board (not shown) and a lower part provided with a plurality of girders. It consists of a deck board.
The upper deck board 2 of the synthetic resin pallet 1 has a central girder portion 3a formed at the center of the back surface of the plate-like top plate 5 forming a loading surface, and end girder portions 3b and 3b formed at both ends thereof. . The central girder part 3a and the end girder parts 3b, 3b extend linearly from one end to the other end of a pair of opposite sides of the top plate 5 and are parallel to each other. The lower deck board is also formed with a girder having the same structure. Then, the upper deck board 2 and the lower deck board are made to face each other and the end surfaces of the beam portions 3a, 3b,...

図1(b)において、中央桁部3aと端桁部3bとは補強リブ6によって連結されている。補強リブ6は格子状に形成されており、その高さは中央桁部3aと端桁部3bより短く形成されている。上部パレット形成部材4Aと下部パレット形成部材を桁部3a、3b、…同士で溶着した合成樹脂製パレット1において、中央桁部3aと端桁部3bで囲まれた補強リブ6の領域がフォーク差し込み口を有する一対の連通孔7を構成する。
中央桁部3aと端桁部3bには格子状のリブ9がそれぞれ形成されており、中央桁部3aの長手方向中央部分にはリブ9に連通する樹脂用ゲート部10が設けられている。樹脂用ゲート部10は射出成形時における上部パレット形成部材4Aの金型(図示せず)に設けた樹脂バルブの開口部であり、樹脂用ゲート部10から天板5と補強リブ6、リブ9を形成する合成樹脂が充填されるようになっており、中央桁部3aの長手方向に直交するリブ9aが樹脂用ゲート部10に接続された樹脂流路を形成する。
この上部(下部)パレット形成部材4Aの金型は、樹脂がパレット全体に一様に流れるように、金型の中央部に樹脂用ゲート部10が一点設けられた一点ゲートの金型とされている。
In FIG. 1 (b), the central beam portion 3 a and the end beam portion 3 b are connected by a reinforcing rib 6. The reinforcing rib 6 is formed in a lattice shape, and the height thereof is shorter than that of the central beam portion 3a and the end beam portion 3b. In the synthetic resin pallet 1 in which the upper pallet forming member 4A and the lower pallet forming member are welded together with the girders 3a, 3b,..., The region of the reinforcing rib 6 surrounded by the central girders 3a and the end girders 3b is fork inserted. A pair of communication holes 7 having a mouth are formed.
A grid-like rib 9 is formed on each of the central girder portion 3a and the end girder portion 3b, and a resin gate portion 10 communicating with the rib 9 is provided in the longitudinal central portion of the central girder portion 3a. The resin gate portion 10 is an opening portion of a resin valve provided in a mold (not shown) of the upper pallet forming member 4A at the time of injection molding. The resin gate portion 10 is connected to the top plate 5, the reinforcing rib 6 and the rib 9. The rib 9a orthogonal to the longitudinal direction of the central girder portion 3a forms a resin flow path connected to the resin gate portion 10.
The mold of the upper (lower) pallet forming member 4A is a one-point gate mold in which a resin gate portion 10 is provided at a central portion of the mold so that the resin flows uniformly throughout the pallet. Yes.

中空部を形成するためのガスをパレット全体に一様に流れるようにすることから、中央桁部3a内にガス用ゲート部12aとガス用ゲート部に連続するガス流路9bを設けており、このガス流路9bはガスが最も流れやすい構造とされている。本実施例においては、天板5の中央部に1つの樹脂用ゲート部10が設けられており、これに隣接する位置であって略中央部にガス用ゲート部12aが設けられている。そして、樹脂流路9aは中央桁部3aの壁部に連続して形成されている。また、ガス流路9bは、ガス用ゲート部12aから中央桁部3aの壁部と天板5の付け根部分に設けられているガス流路に接続している。ガス用ゲート部12aは実施例では1点のみ金型の略中央部に配設している。ガス用ゲート部12aから注入するガスは例えば不活性ガスの一種である窒素ガスを用いる。
なお、ガス用ゲート部12は2点〜4点等適宜の数を金型に配設するようにしてもよいが、ガスがパレット全体にバランスよく流れるようにするために、中央桁部3a内に、平面視略点対称となるように配設することが好ましい。
Since the gas for forming the hollow portion flows uniformly over the entire pallet, the gas gate portion 12a and the gas flow path 9b continuous to the gas gate portion are provided in the central girder portion 3a. The gas flow path 9b has a structure in which gas flows most easily. In the present embodiment, one resin gate portion 10 is provided in the central portion of the top plate 5, and a gas gate portion 12 a is provided in a substantially central portion at a position adjacent to the resin gate portion 10. And the resin flow path 9a is continuously formed in the wall part of the center girder part 3a. The gas flow path 9 b is connected from the gas gate part 12 a to the gas flow path provided in the wall part of the central beam part 3 a and the base part of the top plate 5. In the embodiment, only one gas gate portion 12a is disposed at the substantially central portion of the mold. For example, nitrogen gas, which is a kind of inert gas, is used as the gas injected from the gas gate portion 12a.
An appropriate number of gas gates 12 such as 2 to 4 may be arranged in the mold, but in order to allow the gas to flow in a balanced manner throughout the pallet, In addition, it is preferable that they are arranged so as to be substantially point-symmetric in plan view.

例えば、2点の場合は、中央部の樹脂用ゲート部10に対して、平面視略点対称となる位置に、中央桁部3a内にガス用ゲート部12a、12bを配設する(図2参照)。また、4点の場合は、中央部の樹脂用ゲート部10に対して、例えば、平面視略点対称となる位置に、中央桁部3a内にガス用ゲート部12a、12bを配設し、端桁部3b、3b内にガス用ゲート部12c、12dを配設することも可能である。この場合、端桁部3b、3b内の各ガス用ゲート部に連続するガス流路を設け、このガス流路に最短距離で連続する端桁部3b、3b外の補強リブ6を上記した補強リブ6aと同様の寸法とすることが、ガスの流れのバランスの点から好ましい。   For example, in the case of two points, gas gate portions 12a and 12b are disposed in the central girder portion 3a at positions that are substantially point-symmetric with respect to the resin gate portion 10 in the central portion (FIG. 2). reference). Further, in the case of four points, for example, gas gate portions 12a and 12b are disposed in the central girder portion 3a at a position that is substantially point-symmetric with respect to the resin gate portion 10 in the central portion, It is also possible to dispose gas gate portions 12c and 12d in the end beam portions 3b and 3b. In this case, gas passages that are continuous to the gas gate portions in the end beam portions 3b and 3b are provided, and the reinforcing ribs 6 outside the end beam portions 3b and 3b that are continuous to the gas flow channel at the shortest distance are reinforced as described above. The same dimensions as the ribs 6a are preferable from the viewpoint of the balance of gas flow.

また、四方差し合成樹脂製パレットでは、1つの中央桁、4つの中間桁、4つの隅桁の構成であるが、この場合には、上記実施形態と同様に、中央桁の中央部に樹脂用ゲート部を設け、この樹脂用ゲート部に隣接し且つ略中央部にガス用ゲート部を1つ設けた1点ガスゲートであってもよく、各中間桁にそれぞれ1つずつガス用ゲート部を設けた4点ガスゲートであってもよい。   In addition, the four-way synthetic resin pallet has a configuration of one central girder, four intermediate girders, and four corner girders. In this case, as in the above-described embodiment, the central portion of the central girder is used for resin. A single-point gas gate may be provided in which a gate portion is provided, and a gas gate portion is provided adjacent to the resin gate portion and substantially at the center. One gas gate portion is provided for each intermediate beam. Alternatively, a 4-point gas gate may be used.

樹脂用ゲート部10は図示しない金型のキャビティに開口したバルブゲートを構成し、樹脂原料が図示しない二つの射出ユニットによって供給されて金型内に充填されることになる。樹脂用ゲート部10から充填される樹脂はスキン材とコア材からなる2種類の原料樹脂を供給して2層を形成するサンドイッチ成形法が採用されている。また、ガス用ゲート部12aからのガス供給に際しては、ガスを上部(下部)パレット形成部材4Aの内部に注入して中空構造を成形するガスアシスト法が採用されている。サンドイッチ成形法とガスアシスト法については特開2007−8003号公報等に開示されているので詳しい説明を省略する。
合成樹脂製パレット1の金型内に2種類の樹脂とガスとを充填することで三層構造の補強リブ6、リブ9が得られ、天板5は二層構造を有する。
The resin gate portion 10 constitutes a valve gate opened in a cavity of a mold (not shown), and the resin raw material is supplied by two injection units (not shown) and filled in the mold. As the resin filled from the resin gate portion 10, a sandwich molding method is adopted in which two types of raw material resin consisting of a skin material and a core material are supplied to form two layers. Further, when the gas is supplied from the gas gate portion 12a, a gas assist method is employed in which a gas is injected into the upper (lower) pallet forming member 4A to form a hollow structure. Since the sandwich molding method and the gas assist method are disclosed in Japanese Patent Application Laid-Open No. 2007-8003 and the like, detailed description thereof is omitted.
By filling the mold of the synthetic resin pallet 1 with two types of resin and gas, the three-layered reinforcing ribs 6 and 9 are obtained, and the top plate 5 has a two-layer structure.

次にサンドイッチ成形法とガスアシスト法に基づいて合成樹脂製パレット1の金型内に充填して成形された三層構造の補強リブ6aについて、図2〜図4に基づいて説明する。ガス用ゲート部12aから注入されたガスは最も注入圧が高い状態にあり、ガス流路9bはガスが最も流れやすい構造とされていることから、中空部16が過大に形成され易く強度が低下するおそれがあるものの、合成樹脂製パレットにおいて最も強度のある部分は桁部であることから、中央桁部3aにおける強度低下は問題とならない。このガス流路9bはガスが最も流れやすい構造とされているが、ガスが中央桁部3a外に流れる際には、中央桁部3a外に設けられている複数の補強リブ6と天板5の間を通って合成樹脂製パレット全体に行き渡る。この場合、中央桁部3a外のガスの流れは、複数の補強リブ6のうち流れやすい補強リブと天板5の間を通っていくことになる。
したがって、中央桁部3a内から中央桁部3a外にガスが流出する流路として、複数の補強リブ6のうちガス流路9bに最短距離で連続する中央桁部3a外の補強リブ6aを後述する所定の寸法とし、中央桁部3aに直交する方向に延びて中央桁部3aに接続することにより、ガスの流れ抵抗を最も小さく抑えられ、且つ、理想的な三層構造を形成することができる。
この補強リブ6aに隣接する他の補強リブ6(6b、6c、…)は、補強リブ6aと分岐していることによりガスが流れ難くなることから、これら補強リブ6(6b、6c、…)に形成される中空部もガスの流れ難くさに応じて小さくなる。
Next, the three-layered reinforcing rib 6a formed by filling the mold of the synthetic resin pallet 1 based on the sandwich molding method and the gas assist method will be described with reference to FIGS. Since the gas injected from the gas gate portion 12a has the highest injection pressure, and the gas flow path 9b has a structure in which the gas flows most easily, the hollow portion 16 is easily formed excessively and the strength is lowered. However, since the strongest part of the synthetic resin pallet is the girder part, there is no problem in reducing the strength of the central girder part 3a. The gas flow path 9b has a structure in which gas flows most easily. However, when the gas flows out of the central beam portion 3a, the plurality of reinforcing ribs 6 and the top plate 5 provided outside the central beam portion 3a. Spread through the entire plastic pallet. In this case, the gas flow outside the central beam portion 3 a passes between the reinforcing ribs 6 that easily flow and the top plate 5.
Therefore, the reinforcing rib 6a outside the central girder part 3a that is continuous to the gas flow path 9b among the plurality of reinforcing ribs 6 at the shortest distance as a flow path for gas to flow out from the central girder part 3a to the outside of the central girder part 3a will be described later. The gas flow resistance can be minimized and an ideal three-layer structure can be formed by connecting to the central beam portion 3a by extending in a direction orthogonal to the central beam portion 3a. it can.
Since the other reinforcing ribs 6 (6b, 6c,...) Adjacent to the reinforcing rib 6a branch off from the reinforcing rib 6a, it becomes difficult for gas to flow. Therefore, these reinforcing ribs 6 (6b, 6c,...) The hollow portion formed in the above also becomes smaller according to the difficulty of gas flow.

図3に示す補強リブ6aにおいて、その最も外側の表層はスキン材からなるスキン層14で形成され、スキン層14の内側にコア材からなるコア層15が形成され、コア層15の内側にはガス充填によって形成される中空部16が形成されて、理想的な三層構造を有している。
図4には、複数の補強リブ6のうちガス流路9bに最短距離で連続する中央桁部3a外の補強リブ6aの拡大断面図(a)と、この補強リブ6aに隣接する補強リブ6bの拡大断面図(b)と、更にこの補強リブ6bに隣接する補強リブ6cの拡大断面図(c)を示す。補強リブ6a、6b、6c、…などは、本実施例においては全て同一形状(寸法)となっているが、補強リブ6aに連続し且つ隣接している補強リブ6bには、補強リブ6aよりもガスが流れ難くなるから、中空部16は補強リブ6a内に形成される中空部よりも若干小さく形成される。更に、補強リブ6c内に形成される中空部についても同様である。
また、合成樹脂製パレットの外周部や末端部に行くに従ってガスが流れ難くなっていくから、中空部の大きさもそれに応じて小さくなっていく。したがって、少なくともガス流路9bに最短距離で連続する中央桁部3a外の補強リブ6aを後述するように所定の寸法に設定することにより、パレット全体としてスキン層、コア層、中空部がバランスよく形成されることになる。
なお、補強リブ6bと補強リブ6cに形成される中空部16の大きさは、ガスの流れ易さによって必ずしも隣接する位置の順番通りとはならない場合もある。
In the reinforcing rib 6 a shown in FIG. 3, the outermost surface layer is formed of a skin layer 14 made of a skin material, and a core layer 15 made of a core material is formed inside the skin layer 14. A hollow portion 16 formed by gas filling is formed and has an ideal three-layer structure.
FIG. 4 shows an enlarged cross-sectional view (a) of the reinforcing rib 6a outside the central beam portion 3a that is continuous to the gas flow path 9b among the plurality of reinforcing ribs 6a, and the reinforcing rib 6b adjacent to the reinforcing rib 6a. An enlarged sectional view (b) of FIG. 5 and an enlarged sectional view (c) of a reinforcing rib 6c adjacent to the reinforcing rib 6b are shown. The reinforcing ribs 6a, 6b, 6c,... Have the same shape (dimensions) in the present embodiment. However, the reinforcing rib 6b that is continuous with and adjacent to the reinforcing rib 6a has more than the reinforcing rib 6a. Since the gas hardly flows, the hollow portion 16 is formed slightly smaller than the hollow portion formed in the reinforcing rib 6a. The same applies to the hollow portion formed in the reinforcing rib 6c.
Moreover, since it becomes difficult for gas to flow as it goes to the outer peripheral part or the terminal part of the synthetic resin pallet, the size of the hollow part is also reduced accordingly. Therefore, by setting the reinforcing rib 6a outside the central girder portion 3a that is continuous to the gas flow path 9b at the shortest distance to a predetermined size as described later, the skin layer, the core layer, and the hollow portion as a whole pallet have a good balance. Will be formed.
In addition, the magnitude | size of the hollow part 16 formed in the reinforcing rib 6b and the reinforcing rib 6c may not necessarily follow the order of the adjacent position by the ease of gas flow.

スキン層14はバージン樹脂で構成され、バージン樹脂として例えばポリプロピレンやポリエチレン等のポリオレフィン系樹脂が用いられる。スキン層14が新品の樹脂である場合には均一品質で綺麗な表層を形成できるが高価であり、コスト低減のために使用量を抑える必要がある。そのため、スキン層14は補強リブ6、リブ9と天板5の表層に薄く形成する。   The skin layer 14 is composed of a virgin resin, and a polyolefin resin such as polypropylene or polyethylene is used as the virgin resin. When the skin layer 14 is a new resin, it is possible to form a clean surface layer with uniform quality, but it is expensive, and it is necessary to reduce the amount of use for cost reduction. Therefore, the skin layer 14 is thinly formed on the surface layers of the reinforcing rib 6, the rib 9 and the top plate 5.

コア層15は再生プラスチック材等の再生樹脂で構成され、材質は例えば使用済みのポリプロピレンやポリエチレン等のポリオレフィン系樹脂が用いられる。コア層15の再生樹脂は低廉であるが、ポリオレフィン系樹脂以外のPS(ポリスチレン)等が混入していることがあり、多種の色の樹脂材料を混合していることもあり、表層には適さない。
なお、射出成形時におけるスキン材とコア材の流れの指標であるMIは、スキン材のMIの方がコア材のMIより大きいものとすることが好ましい。そして、スキン材のMIは例えば5〜15g/10minとし、コア材のMIは例えば2〜10g/10minとする。
ガス注入による中空部16は例えば窒素ガス等を硬化する前のコア層15の内側に加圧注入して形成するもので、中空部16は補強リブ6、リブ9内に形成され、天板5内に中空部16が必要以上に進出して天板5の実厚みwが小さくなって強度低下を来さないように構成することが重要となる。なお、実厚みwとは、中空部16の頂部から天板5の上面までの厚さ寸法とする。
The core layer 15 is made of a recycled resin such as a recycled plastic material, and the material is, for example, a polyolefin resin such as used polypropylene or polyethylene. Although the recycled resin of the core layer 15 is inexpensive, it may be mixed with PS (polystyrene) other than polyolefin resin, and may be mixed with resin materials of various colors, and is suitable for the surface layer. Absent.
Note that the MI, which is an index of the flow of the skin material and the core material during injection molding, is preferably set so that the MI of the skin material is larger than the MI of the core material. The MI of the skin material is, for example, 5 to 15 g / 10 min, and the MI of the core material is, for example, 2 to 10 g / 10 min.
The hollow portion 16 by gas injection is formed by, for example, pressure-injecting the inside of the core layer 15 before curing nitrogen gas or the like, and the hollow portion 16 is formed in the reinforcing rib 6 and the rib 9, and the top plate 5. It is important that the hollow portion 16 is advanced more than necessary so that the actual thickness w of the top plate 5 is reduced and the strength is not lowered. The actual thickness w is a thickness dimension from the top of the hollow portion 16 to the upper surface of the top plate 5.

このため、天板5と複数の補強リブ6のうちガス流路9bに最短距離で連続する中央桁部3a外の補強リブ6aとの寸法について次のように規定した。補強リブ6aは図3に示すように先端から天板5への付け根まで両側面61が若干の傾斜角を有するテーパ面とされて成形性を向上させているが、傾斜角は0°であってもよい。
天板5の厚みWは、少なくとも補強リブ6aを設けた周囲の領域、好ましくは天板5全面に亘って2〜5mmに設定する。厚みWがこの範囲内であれば補強リブ6aと天板5内にコア材がスキン層14の内側に確実に充填され且つガス充填による中空部16が補強リブ6aから天板5内に必要以上に広がって形成されることを防止できる。しかも、補強リブ6aに連続して隣接する補強リブ6b、6cなどにおける中空部16の大きさは、上記したように補強リブ6a内に形成される中空部の大きさよりは小さくなるため、パレット全体の強度は確保される。
他方、天板5の厚さが2mm未満であると天板5内でコア材がスキン層14の内側に充填されにくくなる不具合が発生する。また、天板5の厚さが5mmを越えると、天板5内でコア材が確実に充填されるが、合成樹脂製パレット1の重量が過大になると共に中空部16が天板5内に必要以上に大きく形成されるために天板5の実厚みwが薄くなり過ぎ、局所的な強度低下も発生する。
Therefore, the dimensions of the top plate 5 and the plurality of reinforcing ribs 6 with respect to the reinforcing ribs 6a outside the central girder portion 3a that continues to the gas flow path 9b at the shortest distance are defined as follows. As shown in FIG. 3, the reinforcing rib 6a has a taper surface in which both side surfaces 61 have a slight inclination angle from the tip to the base of the top plate 5 to improve the formability, but the inclination angle is 0 °. May be.
The thickness W of the top plate 5 is set to 2 to 5 mm over at least the surrounding area where the reinforcing ribs 6 a are provided, preferably over the entire top plate 5 surface. If the thickness W is within this range, the reinforcing rib 6a and the top plate 5 are surely filled with the core material inside the skin layer 14, and the gas-filled hollow portion 16 is more than necessary from the reinforcing rib 6a to the top plate 5. It can be prevented from being spread out. Moreover, since the size of the hollow portion 16 in the reinforcing ribs 6b, 6c etc. that are continuously adjacent to the reinforcing rib 6a is smaller than the size of the hollow portion formed in the reinforcing rib 6a as described above, the entire pallet The strength of is secured.
On the other hand, if the thickness of the top plate 5 is less than 2 mm, a problem that the core material is difficult to be filled inside the skin layer 14 in the top plate 5 occurs. If the thickness of the top plate 5 exceeds 5 mm, the core material is reliably filled in the top plate 5, but the weight of the synthetic resin pallet 1 becomes excessive and the hollow portion 16 is in the top plate 5. Since it is formed larger than necessary, the actual thickness w of the top plate 5 becomes too thin, and a local strength reduction also occurs.

また、補強リブ6aの天板5との付け根における最大肉厚Tを、補強リブ6aの半径R(2〜10mm)によって広がる凹曲部を含めた付け根が天板5の面に交差する交差部間の長さとして、この最大肉厚Tを5〜30mmに設定する。なお、このR部は、応力集中を緩和する目的と、成形後に合成樹脂製パレットが金型から離れやすいようにするために設けられる。そして、天板5の厚みWを含む補強リブ6aの高さHを10〜50mmに設定する。補強リブ6aの最大肉厚Tと高さHがこの範囲内であれば、スキン層14の内側にコア材とガスが充填され易く、そして上部(下部)デッキボード4A四隅のコーナー部4b(流動末端)でコア材やガスのブレークが起こり難いという利点がある。これに対し、補強リブ6aの最大肉厚Tと高さHがこの範囲未満であるとコア材とガスがスキン層14の内側に充填されにくく、この範囲を超えると合成樹脂とガスの流動性がより大きくなるためコーナー部4bでコア材やガスがスキン層を突き破って表面に露出するブレークを生じ易くなる不具合がある。   Further, the crossing portion where the base including the concave curved portion that spreads the maximum thickness T at the base of the reinforcing rib 6a with the top plate 5 by the radius R (2 to 10 mm) of the reinforcing rib 6a intersects the surface of the top plate 5. The maximum wall thickness T is set to 5 to 30 mm as the length between them. This R portion is provided for the purpose of relaxing stress concentration and for making it easier for the synthetic resin pallet to be separated from the mold after molding. And the height H of the reinforcement rib 6a including the thickness W of the top plate 5 is set to 10-50 mm. If the maximum thickness T and height H of the reinforcing rib 6a are within this range, the core material and the gas can be easily filled inside the skin layer 14, and the corner portions 4b of the upper (lower) deck board 4A at the four corners (flow) There is an advantage that breakage of the core material and gas hardly occurs at the end). On the other hand, if the maximum thickness T and height H of the reinforcing rib 6a are less than this range, the core material and the gas are difficult to fill the inside of the skin layer 14, and if it exceeds this range, the fluidity of the synthetic resin and the gas Therefore, there is a problem that the core material or gas easily breaks through the skin layer and causes a break that is exposed to the surface at the corner portion 4b.

より具体的には、補強リブ6aにおける天板5の厚みWが2mm、最大肉厚Tが5mmの場合には、スキン層14の内側にコア層15が確実に充填され且つガス充填による中空部16は補強リブ6aの付け根部分近傍に略三角形状でわずかにしか形成されないから、天板5の実厚みwは0.7W〜0.9W程度、すなわち1.4〜1.8mm程度となるのでその部分の強度低下はほとんどなく、しかも、補強リブ6aに連続し且つ隣接する補強リブ6b、6cなどは、これよりも中空部16は小さく形成されるから、合成樹脂製パレット全体の強度低下はなく、スキン層14、コア層15、中空部16がバランスよく形成される。
これに対し、補強リブ6aにおける天板5の厚みWが2mmより小さく、最大肉厚Tが5mmよりも小さい場合には、補強リブ6aに連続し且つ隣接する補強リブ6b、6cなどにコア層15が充填されなかったり、中空部16が形成されなかったりするので、強度は確保できるものの満足できる軽量化とはならず、合成樹脂製パレット全体でのスキン層14、コア層15、中空部16のバランスは悪化する。
More specifically, when the thickness W of the top plate 5 in the reinforcing rib 6a is 2 mm and the maximum thickness T is 5 mm, the core layer 15 is reliably filled inside the skin layer 14 and the hollow portion is formed by gas filling. Since 16 is formed substantially in a triangular shape near the base portion of the reinforcing rib 6a, the actual thickness w of the top plate 5 is about 0.7 W to 0.9 W, that is, about 1.4 to 1.8 mm. There is almost no decrease in the strength of the portion, and the reinforcing ribs 6b, 6c, etc., which are continuous with the reinforcing rib 6a and adjacent to each other, are formed with a hollow portion 16 smaller than this. The skin layer 14, the core layer 15, and the hollow portion 16 are formed with good balance.
On the other hand, when the thickness W of the top plate 5 in the reinforcing rib 6a is smaller than 2 mm and the maximum thickness T is smaller than 5 mm, the core layer is formed on the reinforcing ribs 6b and 6c that are continuous with and adjacent to the reinforcing rib 6a. 15 is not filled or the hollow portion 16 is not formed, the strength can be ensured but the weight is not reduced satisfactorily. The skin layer 14, the core layer 15 and the hollow portion 16 in the entire synthetic resin pallet are not obtained. The balance becomes worse.

また、補強リブ6aにおける天板5の厚みWが5mm、最大肉厚Tが30mmの場合には、スキン層14の内側にコア層15が確実に充填され且つガス充填による中空部16は補強リブ6a内に形成されるとともに天板5内にも形成され、天板5の実厚みwは0.4W〜0.8W程度、すなわち2.0〜4.0mm程度となるが、補強リブ6aに連続し且つ隣接する補強リブ6b、6cなどでは、これよりも中空部16が小さく形成されるから、合成樹脂製パレット全体としては大幅な強度低下は来さない。
これに対し、補強リブ6aにおける天板5の厚みWが5mmより大きく、最大肉厚Tが30mmよりも大きい場合には、スキン層14の内側にコア層15が確実に充填されるものの、中空部16が必要以上に大きく形成され、局部的な強度低下が著しくなる。
なお、より強度を確保する点からは、天板5の厚みWが2〜5mm、Rを2〜8mmとして最大肉厚Tが6〜26mmが好ましく、天板5の厚みWが2〜5mm、Rを2〜4mmとして最大肉厚Tが6〜16mmとすることが特に好ましい。
Further, when the thickness W of the top plate 5 in the reinforcing rib 6a is 5 mm and the maximum wall thickness T is 30 mm, the core layer 15 is reliably filled inside the skin layer 14, and the hollow portion 16 formed by gas filling has the reinforcing rib. In addition to being formed in the top plate 5, the actual thickness w of the top plate 5 is about 0.4 W to 0.8 W, that is, about 2.0 to 4.0 mm. In the continuous and adjacent reinforcing ribs 6b, 6c, etc., the hollow portion 16 is formed smaller than this, so that the strength of the synthetic resin pallet as a whole does not significantly decrease.
On the other hand, when the thickness W of the top plate 5 in the reinforcing rib 6a is larger than 5 mm and the maximum thickness T is larger than 30 mm, the core layer 15 is surely filled inside the skin layer 14, but the hollow is hollow. The portion 16 is formed to be larger than necessary, and the local strength is significantly reduced.
In addition, from the point of securing the strength, the thickness W of the top plate 5 is 2 to 5 mm, R is 2 to 8 mm, the maximum thickness T is preferably 6 to 26 mm, and the thickness W of the top plate 5 is 2 to 5 mm. It is particularly preferable that R is 2 to 4 mm and the maximum thickness T is 6 to 16 mm.

上述の構成は中央桁部3aと端桁部3bとの間に設けられた補強リブ6(6a、6b、6c、…)について説明したが、中央桁部3aと端桁部3bに形成したリブ9についても同様な構成を備えていてもよい。リブ9の一部が肉厚Tの下限値より小さい幅狭に形成されている場合には、ガスは充填されないため二層構造となる。   In the above-described configuration, the reinforcing rib 6 (6a, 6b, 6c,...) Provided between the central beam portion 3a and the end beam portion 3b has been described. However, the ribs formed on the central beam portion 3a and the end beam portion 3b. 9 may have a similar configuration. When a part of the rib 9 is formed to be narrower than the lower limit value of the wall thickness T, a gas is not filled and a two-layer structure is formed.

本実施形態による合成樹脂製パレット1は上述の構成を備えており、次に合成樹脂製パレット1の製造方法について説明する。
合成樹脂製パレット1の上部パレット形成部材4Aと下部パレット形成部材の製造方法について説明するが、上部パレット形成部材4Aと下部パレット形成部材の製法は同一であるので上部パレット形成部材4Aの製法を代表して説明する。
図1及び図2に示すように上部パレット形成部材4Aを射出成形するための金型における上部パレット形成部材4A裏面の中央桁部3aにおける中央位置に樹脂用ゲート部10とガス用ゲート部12aが配設されている。上部パレット形成部材4Aを射出成形するために、樹脂用ゲート部10からサンドイッチ成形法によって2種類の樹脂原料であるスキン材とコア材を順次射出する。
The synthetic resin pallet 1 according to the present embodiment has the above-described configuration. Next, a method for manufacturing the synthetic resin pallet 1 will be described.
Although the manufacturing method of the upper pallet forming member 4A and the lower pallet forming member of the synthetic resin pallet 1 will be described, since the manufacturing method of the upper pallet forming member 4A and the lower pallet forming member is the same, the manufacturing method of the upper pallet forming member 4A is representative. To explain.
As shown in FIGS. 1 and 2, the resin gate portion 10 and the gas gate portion 12a are provided at the center position of the central girder portion 3a on the back surface of the upper pallet forming member 4A in the mold for injection molding the upper pallet forming member 4A. It is arranged. In order to injection-mold the upper pallet forming member 4A, a skin material and a core material, which are two kinds of resin raw materials, are sequentially injected from the resin gate portion 10 by a sandwich molding method.

溶融状態のスキン材としてバージン樹脂を樹脂バルブによって樹脂用ゲート部10から一気に射出すると、溶融樹脂は天板5内を流れ、補強リブ6及びリブ9に回り込む。スキン材の溶融樹脂は樹脂バルブによって天板5、各補強リブ6、リブ9の金型内面に接触しながら上部パレット形成部材4Aの各コーナー部4bに向けて流れる。
スキン材を一定量射出させた後、溶融状態のコア材として再生樹脂を樹脂用ゲート部10から一気に射出する。コア材は先行するスキン材の内側を流れ、天板5、補強リブ6及びリブ9を樹脂流路として流れて、各コーナー部4bに向かう。その際、コア材はスキン材より樹脂流動性が小さいのでスキン材を追い越してブレークすることなく、スキン材を表層にコア材を内層に位置させた2層構成を形成するように流れる。
スキン材とコア材の射出タイミングと射出量の関係について、コア材の射出タイミングが早すぎると初期のスキン材射出量が相対的に少なくなり、流動末端である上部パレット形成部材4Aのコーナー部4bでコア材がブレークし易い。他方、コア材の射出タイミングが遅いと樹脂用ゲート部10の周辺のコア材がスキン材で置換されないため、この部分でブレークし易い不具合が生じる。
コア材の射出完了後、更にスキン材が射出充填されることで、樹脂用ゲート部10近くのコア材をスキン材で覆うことになる。
When virgin resin is injected as a molten skin material from the resin gate portion 10 at once by the resin valve, the molten resin flows through the top plate 5 and wraps around the reinforcing rib 6 and rib 9. The molten resin of the skin material flows toward the respective corner portions 4b of the upper pallet forming member 4A while being in contact with the mold inner surfaces of the top plate 5, the reinforcing ribs 6 and the ribs 9 by the resin valve.
After a certain amount of skin material is injected, recycled resin is injected at once from the resin gate 10 as a molten core material. The core material flows inside the preceding skin material, flows through the top plate 5, the reinforcing ribs 6 and the ribs 9 as resin flow paths, and goes to each corner portion 4b. At this time, since the core material has a resin fluidity smaller than that of the skin material, the core material flows so as to form a two-layer structure in which the skin material is positioned on the surface layer and the core material is positioned on the inner layer without breaking.
Regarding the relationship between the injection timing and the injection amount of the skin material and the core material, if the injection timing of the core material is too early, the initial skin material injection amount becomes relatively small, and the corner portion 4b of the upper pallet forming member 4A that is the fluid end. The core material is easy to break. On the other hand, if the injection timing of the core material is late, the core material around the resin gate portion 10 is not replaced with the skin material, so that a problem that breaks easily occurs in this portion.
After the completion of the core material injection, the skin material is further injected and filled, so that the core material near the resin gate portion 10 is covered with the skin material.

上部パレット形成部材4Aの金型内をスキン材とコア材の溶融樹脂が万遍なく行き渡った後、数秒してガス用ゲート部12aからガス注入する。ガス用ゲート12部aから注入されたガスはガス流路9bを介して、最初に、中央桁部3aに隣接する中央桁部3a外の補強リブ6aに流入し、次いで補強リブ6aに連続し且つ隣接する格子状の補強リブ6(6b、6c、…)及びリブ9内に充填される。金型内に注入されるガスはスキン層14とコア層15で二層に形成された補強リブ6の最も肉厚の大きい付け根部分に中空部16として形成される。
天板5内にスキン材と共にコア材が充填されて二層とされ、しかもガス充填による中空部16が天板5内に必要以上に突出して形成されないように、補強リブ6aにおける天板5の厚さWは2〜5mmの範囲に設定されている。補強リブ6aにおける天板5の厚さWが2mm未満であるとコア材が充填されにくくなり、5mmを越えると天板5に充填されるコア材は増大するが、その一方で重量が増大すると共にガスによる中空部16が補強リブ6やリブ9から天板5内に突出して形成されるためにこの部分の天板5の実厚みwがWより小さくなり、強度が低下する欠点がある。
また、補強リブ6aの付け根の最大肉厚Tは5〜30mmの範囲とし、補強リブ6aの高さHを10〜50mmの範囲としたことで、補強リブ6a内にコア材とガスが充填され且つ各コーナー部4bまでの樹脂流動性を確保できる。最大厚さTと高さHが上記下限値に満たないとコア材とガスが補強リブ6内に充填されにくく、上限値を超えると補強リブ6の内側での樹脂流動が部分的に早くなる等、樹脂流動バランスが悪くなり、コーナー部4bでコア材がスキン層をブレークする不具合が発生する。
After the molten resin of the skin material and the core material spreads uniformly in the mold of the upper pallet forming member 4A, gas is injected from the gas gate portion 12a in a few seconds. The gas injected from the gas gate 12 part a first flows into the reinforcing rib 6a outside the central girder part 3a adjacent to the central girder part 3a via the gas flow path 9b, and then continues to the reinforcing rib 6a. And it fills in the adjacent grid-like reinforcing ribs 6 (6b, 6c,...) And ribs 9. The gas injected into the mold is formed as a hollow portion 16 at the base portion having the largest thickness of the reinforcing rib 6 formed in two layers by the skin layer 14 and the core layer 15.
The top plate 5 is filled with the core material together with the skin material to form two layers, and the top plate 5 of the reinforcing rib 6a is formed so that the hollow portion 16 by gas filling does not protrude beyond the top plate 5 more than necessary. The thickness W is set in a range of 2 to 5 mm. When the thickness W of the top plate 5 in the reinforcing rib 6a is less than 2 mm, the core material is difficult to be filled. When the thickness W exceeds 5 mm, the core material filled in the top plate 5 increases, but the weight increases. At the same time, since the hollow portion 16 made of gas protrudes from the reinforcing rib 6 or rib 9 into the top plate 5, the actual thickness w of the top plate 5 at this portion becomes smaller than W, and the strength is lowered.
Further, the maximum thickness T of the base of the reinforcing rib 6a is in the range of 5 to 30 mm, and the height H of the reinforcing rib 6a is in the range of 10 to 50 mm, so that the core material and gas are filled in the reinforcing rib 6a. And the resin fluidity to each corner part 4b is securable. If the maximum thickness T and the height H do not satisfy the above lower limit values, the core material and the gas are not easily filled in the reinforcing ribs 6, and if the upper limit value is exceeded, the resin flow inside the reinforcing ribs 6 is partially accelerated. For example, the resin flow balance is deteriorated, and the core material breaks the skin layer at the corner 4b.

上述した補強リブ6aにおける天板5の厚さW、補強リブ6aの肉厚T、高さHは、補強リブ6aだけでなく、補強リブ6aに連続し且つ隣接する格子状の補強リブ6(6b、6c、…)や桁部3a、3bに設けた格子状のリブ9においても適用されていることが好ましい。
特に、少なくとも充填されたガスが最初にぶつかる、中央桁部3aに直交する方向で中央桁部3aのリブ9a及びガス流路9bに直接接続される補強リブ6aは、上述した天板5の厚さW、補強リブ6の肉厚T、高さHの数値範囲を満たす構成を備えている。この補強リブ6aが、充填される樹脂とガスによって中空部16を最内層に形成した理想的な三層構造を形成することができ、この部分で最も樹脂やガスが流れ易いリブ構造を形成できる。これによって、この補強リブ6aにつながる樹脂やガスの流動方向前方側の他の補強リブ6や桁部3a、3bのリブ9への樹脂やガスの流動性を良好にでき、より均一な構造の合成樹脂パレット1を形成できる。
The thickness W of the top plate 5, the thickness T, and the height H of the reinforcing rib 6a in the reinforcing rib 6a described above are not only the reinforcing rib 6a but also the lattice-shaped reinforcing rib 6 (continuous to and adjacent to the reinforcing rib 6a). 6b, 6c,...) And the grid-like ribs 9 provided on the girders 3a and 3b are preferably applied.
In particular, the reinforcing rib 6a directly connected to the rib 9a of the central girder part 3a and the gas flow path 9b in the direction orthogonal to the central girder part 3a where the filled gas first strikes is the thickness of the top plate 5 described above. The thickness W, the thickness T of the reinforcing rib 6 and the configuration satisfying the numerical ranges of the height H are provided. The reinforcing rib 6a can form an ideal three-layer structure in which the hollow portion 16 is formed in the innermost layer by the resin and gas to be filled, and a rib structure in which the resin and gas can flow most easily can be formed in this portion. . This makes it possible to improve the fluidity of the resin and gas to the other reinforcing rib 6 and the ribs 9 of the girders 3a and 3b on the front side in the flow direction of the resin and gas connected to the reinforcing rib 6a. The synthetic resin pallet 1 can be formed.

このようにして上部パレット形成部材4Aを射出成形によって製造し、同様に下部パレット成形部材も製造する。そして、上部パレット形成部材4A及び下部パレット成形部材を対向させて各桁部3a、3b同士を突き合わせて溶着することで、合成樹脂製パレット1を製造できる。
なお、桁部3a、3b内の一部のリブ9は、その肉厚Tまたは高さHがその下限値より小さい場合には、ガスが充填され難いために中空部16が形成されず、スキン層14とコア層15とからなる二層構造となる。
In this way, the upper pallet forming member 4A is manufactured by injection molding, and similarly, the lower pallet forming member is also manufactured. And the synthetic resin pallet 1 can be manufactured by making the upper pallet forming member 4 </ b> A and the lower pallet forming member face each other and welding the beam portions 3 a and 3 b together.
When the thickness T or height H of the ribs 9 in the girders 3a and 3b is smaller than the lower limit value, the hollow portion 16 is not formed because the gas is difficult to fill, and the skin 9 A two-layer structure consisting of the layer 14 and the core layer 15 is formed.

上述のように本実施形態による合成樹脂製パレット1によれば、補強リブ6がバージン樹脂からなるスキン層14と再生樹脂からなるコア層15とガスで形成した中空部16とからなる三層構造で構成されたから、天板5内に中空部16が突出せず天板5の強度を確保できると共に、合成樹脂製パレット1の軽量化とコア材の充填率を向上できるという作用効果を奏することができる。   As described above, according to the synthetic resin pallet 1 according to the present embodiment, the reinforcing rib 6 has a three-layer structure including the skin layer 14 made of virgin resin, the core layer 15 made of recycled resin, and the hollow portion 16 made of gas. Since the hollow portion 16 does not protrude into the top plate 5 and the strength of the top plate 5 can be ensured, there is an effect that the weight of the synthetic resin pallet 1 and the filling rate of the core material can be improved. Can do.

次に本発明の変形例について図5及び図6に基づいて説明する。
図5は第一変形例による合成樹脂製パレット1の要部を示すものである。この合成樹脂製パレット1を構成する上部(下部)パレット形成部材4Aでは、中央桁部3aで樹脂用ゲート部10のリブ9aとガス用ゲート部12aのガス流路9bとの合流部に直接連結される補強リブ6が設けられていない。この場合、金型におけるガス用ゲート部12aからガス流路9bを通して供給されるガスは合流部の両側に等間隔で設けられた中央桁部3aに直交する補強リブ6a、6a(6)に供給される。すなわち、これらの2つの補強リブ6a、6aが、複数の補強リブ6のうちガス流路9bに最短距離で連続する中央桁部3a外の補強リブ6aということになり、そのA−A断面の構造が図4(a)に示す理想的な三層構造を構成することになる。
そのため、樹脂用ゲート部10に接続されるリブ9aの樹脂流路とガス用ゲート部12aに接続されるガス流路9bとの合流部に補強リブ6aが直接接続される構成でなくてもよい。
Next, a modification of the present invention will be described with reference to FIGS.
FIG. 5 shows the main part of the synthetic resin pallet 1 according to the first modification. In the upper (lower) pallet forming member 4A constituting the synthetic resin pallet 1, the central girder portion 3a is directly connected to the joining portion of the rib 9a of the resin gate portion 10 and the gas flow path 9b of the gas gate portion 12a. The reinforcing rib 6 is not provided. In this case, the gas supplied from the gas gate portion 12a through the gas flow path 9b in the mold is supplied to the reinforcing ribs 6a and 6a (6) orthogonal to the central girder portion 3a provided at equal intervals on both sides of the merge portion. Is done. That is, these two reinforcing ribs 6a and 6a are the reinforcing ribs 6a outside the central beam portion 3a that are continuous to the gas flow path 9b at the shortest distance among the plurality of reinforcing ribs 6, and the AA cross section thereof. The structure constitutes an ideal three-layer structure shown in FIG.
Therefore, the reinforcing rib 6a may not be directly connected to the joining portion between the resin flow path of the rib 9a connected to the resin gate portion 10 and the gas flow path 9b connected to the gas gate portion 12a. .

図6は第二変形例による合成樹脂製パレット1の要部を示すものである。この合成樹脂製パレット1を構成する上部(下部)パレット形成部材4Aでは、中央桁部3aに設けたガス用ゲート部12aに傾斜したガス流路9bは設けられておらず、リブ9aに略平行なリブ9cがガス流路を構成している。このリブ9cの延長線上で中央桁部3aに直交する桁外の補強リブ6a(6)が設けられており、この場合、ガス流路となるリブ9cから射出されるガスはその両側で中央桁部3aに直交する補強リブ6a、6aに供給される。すなわち、これらの2つの補強リブ6a、6aが、複数の補強リブ6のうちガス流路9cに最短距離で連続する中央桁部3a外の補強リブ6aということになり、そのA−A断面の構造が図4(a)に示す理想的な三層構造を構成することになる。
そのため、樹脂用ゲート部10に接続されるリブ9aの樹脂流路の端部にガス流路9cが合流する合流部が設けられていなくてもよい。
このように、ガス用ゲート部12aに接続されるガス流路はガス用ゲート部12a上にリブ9cとして設けられていてもよいが、リブ9cを設けず又はリブ9cを設けると共に真下即ち天板5方向にガスが流れるようにガス流路を構成してもよい。
FIG. 6 shows a main part of the synthetic resin pallet 1 according to the second modification. In the upper (lower) pallet forming member 4A constituting the synthetic resin pallet 1, the inclined gas flow path 9b is not provided in the gas gate portion 12a provided in the central girder portion 3a, and is substantially parallel to the rib 9a. The rib 9c constitutes a gas flow path. Outer rib reinforcing ribs 6a (6) orthogonal to the central beam portion 3a are provided on the extension line of the ribs 9c. In this case, the gas injected from the rib 9c serving as a gas flow path is centered on both sides. It is supplied to the reinforcing ribs 6a and 6a orthogonal to the portion 3a. That is, these two reinforcing ribs 6a, 6a are the reinforcing ribs 6a outside the central beam portion 3a that are continuous to the gas flow path 9c at the shortest distance among the plurality of reinforcing ribs 6, and the AA cross section thereof. The structure constitutes an ideal three-layer structure shown in FIG.
For this reason, the joining portion where the gas passage 9c joins may not be provided at the end of the resin passage of the rib 9a connected to the resin gate portion 10.
As described above, the gas flow path connected to the gas gate portion 12a may be provided as the rib 9c on the gas gate portion 12a. However, the rib 9c is not provided or the rib 9c is provided and the top plate is directly below. The gas flow path may be configured so that gas flows in five directions.

上述した実施例や変形例に示すように、上部(下部)パレット形成部材4Aの中央桁部3aに設けたガス用ゲート部12aから射出されたガスが中央桁部3aから中央桁部3a外に流動して最初に充填される補強リブ6aが、上述した天板5の幅W、補強リブ6の最大肉厚T、高さHを備えた理想的な三層構造を有する構成である。この場合、最初にガスが充填される補強リブ6の配設位置は任意であり、上述の実施例や変形例に限定されないが、中央桁部3aに隣接して中央桁部3aに直交して配設されていることが好ましい。
また、中央桁部3aから離間した位置に配設された補強リブ6が上述した天板5の幅W、補強リブ6の最大肉厚T、高さHを備えた三層構造を有していてもよいことはもちろんである。
なお、上述の実施例や変形例では、片面二方差しによる合成樹脂製パレット1について説明したが、四方差しであってもよく、或いは両面二方差しまたは四方差しでもよい。
また、スキン材とコア材として用いる合成樹脂には有機質または無機質のものを含む発泡剤を混入して発泡体として用いてもよい。
また、スキン層14を構成するスキン材としてバージン樹脂を用いたが、これに代えて再生樹脂を用いても良い。この場合でもスキン材に着色剤等の添加剤を加える等すればよい。
As shown in the above-described embodiments and modifications, the gas injected from the gas gate portion 12a provided in the central girder portion 3a of the upper (lower) pallet forming member 4A is moved from the central girder portion 3a to the outside of the central girder portion 3a. The reinforcing rib 6a that is initially filled after flowing has an ideal three-layer structure having the above-described width W of the top plate 5, the maximum thickness T of the reinforcing rib 6, and the height H. In this case, the arrangement position of the reinforcing rib 6 that is initially filled with gas is arbitrary, and is not limited to the above-described embodiment or modification, but is adjacent to the central beam portion 3a and orthogonal to the central beam portion 3a. It is preferable that it is disposed.
Further, the reinforcing rib 6 disposed at a position separated from the central beam portion 3a has a three-layer structure having the above-described width W of the top plate 5, the maximum thickness T of the reinforcing rib 6, and the height H. Of course, you may.
In addition, in the above-mentioned Example and modification, although the synthetic resin pallet 1 by a single-sided two-way insertion was demonstrated, a four-sided insertion may be sufficient, or a double-sided two-way insertion or a four-way insertion may be sufficient.
Further, the synthetic resin used as the skin material and the core material may be mixed with a foaming agent containing an organic or inorganic material and used as a foam.
Moreover, although virgin resin was used as the skin material constituting the skin layer 14, a recycled resin may be used instead. Even in this case, an additive such as a colorant may be added to the skin material.

本発明の実施例による合成樹脂製パレットにおける上部パレット形成部材を示すもので、(a)は上面図、(b)は裏面図である。The upper pallet formation member in the synthetic resin pallets by the Example of this invention is shown, (a) is a top view, (b) is a back view. 図1(b)における上部パレット形成部材のリブと樹脂用ゲート部とガス用ゲート部を示す要部拡大図である。It is a principal part enlarged view which shows the rib of the upper pallet formation member in FIG.1 (b), the gate part for resin, and the gate part for gas. 図2におけるガス流路に最短距離で連続する中央桁部外の補強リブのA−A線拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along line AA of a reinforcing rib outside a central girder that is continuous with the gas flow path in FIG. 2 at the shortest distance. 図1(b)における補強リブの断面図であり、(a)はA−A線断面図、(b)はB−B線断面図、(c)はC−C線断面図である。It is sectional drawing of the reinforcement rib in FIG.1 (b), (a) is an AA sectional view, (b) is a BB sectional drawing, (c) is a CC sectional drawing. 実施例の第一変形例を示す図2と同様な上部パレット形成部材の部分拡大図である。It is the elements on larger scale of the upper pallet formation member similar to FIG. 2 which shows the 1st modification of an Example. 第二変形例を示す図2と同様な上部パレット形成部材の部分拡大図である。It is the elements on larger scale of the upper pallet formation member similar to FIG. 2 which shows a 2nd modification.

符号の説明Explanation of symbols

1 合成樹脂製パレット
2 上部デッキボード
3 桁部
3a 中央桁部
3b 端桁部
5 天板
6、6a、6b、6c 補強リブ
9 リブ
9b ガス流路
10 樹脂用ゲート部
12a、12b、12c、12d ガス用ゲート部
14 スキン層
15 コア層
16 中空部
DESCRIPTION OF SYMBOLS 1 Synthetic resin pallet 2 Upper deck board 3 Girder part 3a Center girder part 3b End girder part 5 Top plate 6, 6a, 6b, 6c Reinforcement rib 9 Rib 9b Gas flow path 10 Resin gate part 12a, 12b, 12c, 12d Gas gate part 14 Skin layer 15 Core layer 16 Hollow part

Claims (2)

デッキボードと複数の桁部を有する合成樹脂製パレットであって、
該デッキボードは、天板と、該天板の桁部側に設けられた複数の補強リブとを備えており、
該天板の中央部には1つの樹脂用ゲート部が設けられており、
前記複数の桁部のうち少なくとも1つの桁部内にガス用ゲート部と該ガス用ゲート部に連続するガス流路とが設けられており、
前記補強リブのうち前記ガス流路に最短距離で連続する前記桁部外の補強リブは、最も表側に設けられたスキン層と、該スキン層の内側に設けられたコア層と、該コア層の内側に設けられたガス注入による中空部とを有する三層構造を備えていると共に、前記補強リブを設けた部分の天板の厚さは2〜5mm、前記補強リブの天板への付け根の最大肉厚は5〜30mm、前記天板を含む補強リブの高さは10〜50mmの範囲に設定されていることを特徴とする合成樹脂製パレット。
A plastic pallet having a deck board and a plurality of girders,
The deck board includes a top plate and a plurality of reinforcing ribs provided on the side of the top plate.
One resin gate is provided in the center of the top plate,
A gas gate portion and a gas flow path continuing to the gas gate portion are provided in at least one of the plurality of beam portions,
Among the reinforcing ribs, the reinforcing rib outside the girder that is continuous to the gas flow path at the shortest distance is a skin layer provided on the outermost side, a core layer provided on the inner side of the skin layer, and the core layer The top plate of the portion where the reinforcing rib is provided has a thickness of 2 to 5 mm, and the root of the reinforcing rib to the top plate is provided. The synthetic resin pallet is characterized in that the maximum thickness is 5 to 30 mm, and the height of the reinforcing rib including the top plate is 10 to 50 mm.
前記最短距離で連続する前記桁部外の補強リブは、前記桁部の延在方向に直交する方向に延びて前記桁部に接続されている請求項1に記載された合成樹脂製パレット。   2. The synthetic resin pallet according to claim 1, wherein the reinforcing ribs outside the spar that are continuous at the shortest distance extend in a direction orthogonal to the extending direction of the spar and are connected to the spar.
JP2008211762A 2008-08-20 2008-08-20 Synthetic resin pallet Pending JP2010047266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211762A JP2010047266A (en) 2008-08-20 2008-08-20 Synthetic resin pallet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211762A JP2010047266A (en) 2008-08-20 2008-08-20 Synthetic resin pallet

Publications (1)

Publication Number Publication Date
JP2010047266A true JP2010047266A (en) 2010-03-04

Family

ID=42064720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211762A Pending JP2010047266A (en) 2008-08-20 2008-08-20 Synthetic resin pallet

Country Status (1)

Country Link
JP (1) JP2010047266A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218179A (en) * 1997-01-31 1998-08-18 Nippon Puraparetsuto Kk Pallet made of synthetic resin
JP2003011969A (en) * 2001-06-27 2003-01-15 Meiji Rubber & Chem Co Ltd Synthetic resin pallet
JP2007008003A (en) * 2005-06-30 2007-01-18 Dainippon Ink & Chem Inc Method and apparatus for manufacturing pallet made of synthetic resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218179A (en) * 1997-01-31 1998-08-18 Nippon Puraparetsuto Kk Pallet made of synthetic resin
JP2003011969A (en) * 2001-06-27 2003-01-15 Meiji Rubber & Chem Co Ltd Synthetic resin pallet
JP2007008003A (en) * 2005-06-30 2007-01-18 Dainippon Ink & Chem Inc Method and apparatus for manufacturing pallet made of synthetic resin

Similar Documents

Publication Publication Date Title
JP3961167B2 (en) Plastic pallet
JP4079344B2 (en) Plastic pallet
JP4079377B2 (en) Plastic pallet
JP2010047266A (en) Synthetic resin pallet
JP3889102B2 (en) Plastic pallet
JP5308850B2 (en) Plastic pallet
JPH11310236A (en) Synthetic resin pallet
JP4908850B2 (en) Plastic pallet
JPH11124136A (en) Synthetic resin pallet
JP2004090988A (en) Synthetic resin pallet
JP5308849B2 (en) Plastic pallet
JPH11310235A (en) Synthetic resin pallet
JP5118510B2 (en) Plastic pallet
JP4079376B2 (en) Manufacturing method of plastic pallets
JP4059436B2 (en) Plastic pallet
JPH10129668A (en) Synthetic resin pallet
JP3879965B2 (en) Manufacturing method of plastic pallets
JP4177211B2 (en) Sandwich injection molded products
JP4592019B2 (en) Plastic pallet
JP5662501B2 (en) Pallet forming member, synthetic resin pallet, and method for manufacturing synthetic resin pallet
JP3275254B2 (en) Plastic pallets
KR100738860B1 (en) Pallet made of synthetic resin
JPH10167270A (en) Synthetic resin pallet
JP5492619B2 (en) palette
JP4152004B2 (en) Plastic pallet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110728

A711 Notification of change in applicant

Effective date: 20110713

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD04 Notification of resignation of power of attorney

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A977 Report on retrieval

Effective date: 20120824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Effective date: 20121031

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20121128

Free format text: JAPANESE INTERMEDIATE CODE: A02