Nothing Special   »   [go: up one dir, main page]

JP2009236461A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009236461A
JP2009236461A JP2008086355A JP2008086355A JP2009236461A JP 2009236461 A JP2009236461 A JP 2009236461A JP 2008086355 A JP2008086355 A JP 2008086355A JP 2008086355 A JP2008086355 A JP 2008086355A JP 2009236461 A JP2009236461 A JP 2009236461A
Authority
JP
Japan
Prior art keywords
pressure pipe
controller
outdoor unit
indoor units
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008086355A
Other languages
Japanese (ja)
Inventor
Keisuke Sotozono
圭介 外囿
Suguru Hatomura
傑 鳩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008086355A priority Critical patent/JP2009236461A/en
Publication of JP2009236461A publication Critical patent/JP2009236461A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner can improve COP in cooling and heating simultaneous operation. <P>SOLUTION: In an air conditioning system connecting an outdoor unit 100 to a plurality of indoor units 301-303 by a flow dividing controller 200 and constituting one refrigerating cycle using supercritical fluid, the outdoor unit 100 and the flow dividing controller 200 are connected by three pipes of a high pressure pipe, a low pressure pipe, and a high temperature gas pipe. The flow dividing controller 200 and the plurality of indoor units 301-303 are connected by two pipes of a high pressure pipe 700 and a low pressure pipe 800. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、室外機と複数の室内機を分流コントローラにより接続し、超臨界流体を用いて1つの冷凍サイクルを構成した空気調和装置に関するものである。   The present invention relates to an air conditioner in which an outdoor unit and a plurality of indoor units are connected by a shunt controller and a single refrigeration cycle is configured using a supercritical fluid.

従来、COなどの超臨界流体を用いた冷暖同時の熱回収タイプの空気調和装置においては、室外機と分岐キットを高圧配管と低圧配管及び高温ガス管の3管で接続されるのが主であった。なお、分岐キットから室内機までは2管式である。 Conventionally, in a heat recovery type air conditioner that uses a supercritical fluid such as CO 2 to cool and heat at the same time, the outdoor unit and the branch kit are mainly connected by three pipes: a high pressure pipe, a low pressure pipe, and a high temperature gas pipe. Met. In addition, from the branch kit to the indoor unit is a two-pipe type.

しかし、超臨界流体の臨界域における圧力は非常に高い圧力で、各ユニット間の接続配管の肉厚が従来のフロンに代表される冷媒の場合よりも大幅にアップし、材料費コストの増大、または曲げなどの現地加工費が膨大に膨れ上がることが容易に予想される。   However, the pressure in the critical region of the supercritical fluid is very high, and the wall thickness of the connecting pipe between each unit is significantly higher than in the case of refrigerants typified by conventional chlorofluorocarbons. Or it is easily predicted that the local processing costs such as bending will increase enormously.

そこで、接続配管低減のために各室内機毎の分岐キットを1つの分流コントローラ内に内蔵し、接続配管本数を低減することが考えられる。   Therefore, it is conceivable to reduce the number of connection pipes by incorporating a branch kit for each indoor unit in one shunt controller in order to reduce connection pipes.

一方で、超臨界流体を用いた空気調和装置の特徴として、冷房運転室内機へ送り込む流体の温度を低く、暖房運転室内機へ送り込む流体の温度を高くすることが、最も能力が発揮され、より少ない流体の流量で実現される。このため、効率(ここでは、分子を空調機の能力(単位kW)、分母を消費電力(単位kW)としたCOP:Coefficient of Performance)もよくなる。従って、室内機の入口温度、すなわち、熱源側熱交換器の出口温度は、冷房時は低く、暖房時は高くするのが基本である。   On the other hand, as a feature of the air conditioner using a supercritical fluid, it is most effective to lower the temperature of the fluid sent to the cooling operation indoor unit and raise the temperature of the fluid sent to the heating operation indoor unit. Realized with low fluid flow rate. For this reason, efficiency (here, COP: Coefficient of Performance) in which the numerator is the capacity of the air conditioner (unit: kW) and the denominator is power consumption (unit: kW) is improved. Therefore, the inlet temperature of the indoor unit, that is, the outlet temperature of the heat source side heat exchanger is basically low during cooling and high during heating.

しかし、2管式により冷暖同時を可能とする空気調和装置においては、冷房運転室内機と暖房運転室内機が同時に存在(混在)する場合において、以下のトレードオフが発生する。   However, in the air conditioner that enables simultaneous cooling and heating by the two-pipe type, the following trade-off occurs when the cooling operation indoor unit and the heating operation indoor unit exist (mixed) at the same time.

・冷房運転室内機に対しては、低い温度の流体を供給し、熱源側熱交換器の出口温度を低くする必要がある。
・暖房運転室内機に対しては、高い温度の流体を供給し、熱源側熱交換器の出口温度を高くする必要がある。
-It is necessary to supply a low temperature fluid to the cooling operation indoor unit and lower the outlet temperature of the heat source side heat exchanger.
-It is necessary to supply a high-temperature fluid to the heating operation indoor unit and raise the outlet temperature of the heat source side heat exchanger.

例えば、従来での冷房主体運転(冷凍サイクルは冷房サイクルにおける冷暖同時運転)は、冷暖ともにある程度(例えば、モリエ線図で超臨界領域における圧力10MPa、40〜50℃近辺)の熱源側熱交換器出口温度で制御せざるを得なく、結果的に能力を発揮するためには、エンタルピ差が不足し、その分流体流量を増やす(圧縮機消費電力アップ)ことで補い、その結果COPが低下する。   For example, in the conventional cooling main operation (refrigeration cycle is simultaneous cooling and heating operation in the cooling cycle), the heat source side heat exchanger has a certain degree of cooling and heating (for example, pressure of 10 MPa in the supercritical region, around 40 to 50 ° C. in the Mollier diagram). In order to exert its ability as a result, it must be controlled by the outlet temperature, and the difference in enthalpy is insufficient, which is compensated by increasing the fluid flow rate (increasing the power consumption of the compressor), resulting in a decrease in COP. .

さらに、空気調和装置の効率については、これまで前述のCOPと呼ばれる係数を用いて、100%負荷に対しての効率のみで評価を行っている。しかし、近年、例えば一般的な事務所における負荷は、OA機器の発達、および建築物の断熱性能の向上とともに、暖房シーズンにおいても冷房負荷が発生しており、年間を通じて冷暖同時運転の頻度が高まってきている。従って、100%負荷のCOPのみで評価するのではなく、冷暖同時運転でのCOPまで含めて効率改善する動向が強まってきている。   Furthermore, the efficiency of the air conditioner has been evaluated only by the efficiency with respect to 100% load, using the coefficient called COP described above. However, in recent years, for example, loads in general offices have been accompanied by the development of OA equipment and the improvement of the insulation performance of buildings, and cooling loads have also occurred in the heating season, and the frequency of simultaneous cooling and heating increases throughout the year. It is coming. Therefore, the trend of improving the efficiency including the COP in the simultaneous cooling and heating operation is increasing rather than evaluating only with the COP of 100% load.

上述したように、従来の空気調和装置においては、冷暖房の両者を満たすように運転すると、COPが低下するという問題点があった。   As described above, the conventional air-conditioning apparatus has a problem that COP is lowered when it is operated so as to satisfy both the cooling and heating.

この発明は上述した点に鑑みてなされたもので、冷暖同時運転でのCOPを改善できる空気調和装置を得ることを目的とする。   The present invention has been made in view of the above-described points, and an object thereof is to obtain an air conditioner that can improve COP in simultaneous cooling and heating operations.

この発明に係る空気調和装置は、室外機と複数の室内機を分流コントローラにより接続し、超臨界流体を用いて1つの冷凍サイクルを構成した空気調和装置において、前記室外機と前記分流コントローラとの間を、高圧配管と低圧配管及び高温ガス配管の3管で接続し、前記分流コントローラと前記複数の室内機との間を、高圧配管と低圧配管の2管で接続したことを特徴とする。   An air conditioner according to the present invention is an air conditioner in which an outdoor unit and a plurality of indoor units are connected by a shunt controller and a single refrigeration cycle is configured using a supercritical fluid. It is characterized in that the space is connected by three pipes of a high pressure pipe, a low pressure pipe and a high temperature gas pipe, and the branch flow controller and the plurality of indoor units are connected by two pipes of a high pressure pipe and a low pressure pipe.

この発明によれば、室外機と分流コントローラとの間を、高圧配管と低圧配管及び高温ガス配管の3管で接続し、分流コントローラと複数の室内機との間を、高圧配管と低圧配管の2管で接続することで、分流コントローラから各室内機までの接続配管本数を低減でき、かつ冷暖同時運転でのCOPも向上できる。また、冷房主体で一部暖房運転となる冷房主体運転においても省エネ運転を実現することができる。   According to the present invention, the outdoor unit and the branch flow controller are connected by three pipes, a high pressure pipe, a low pressure pipe and a high temperature gas pipe, and the high pressure pipe and the low pressure pipe are connected between the branch flow controller and the plurality of indoor units. By connecting with two pipes, the number of pipes connected from the flow dividing controller to each indoor unit can be reduced, and COP in simultaneous cooling and heating operations can be improved. In addition, an energy saving operation can be realized in a cooling main operation in which the cooling main operation is partly heating operation.

実施の形態1.
図1は、この発明の実施の形態1に係る空気調和装置の冷房主体運転時の冷媒回路図である。図1に示す空気調和装置は、室外機100と複数の室内機301〜303とが分流コントローラ200により接続され、超臨界流体を用いて1つの冷凍サイクルを構成しているもので、室外機100は、主に、圧縮機110と熱源側熱交換器130を具備し、室内機301〜303は、負荷側熱交換器311〜313と絞り装置としての膨張弁321〜323を具備し、分流コントローラ200は、主に、流路切替弁221〜223と第1膨張弁211及び第2膨張弁212を具備している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram at the time of cooling main operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. In the air conditioner shown in FIG. 1, an outdoor unit 100 and a plurality of indoor units 301 to 303 are connected by a shunt controller 200 to form one refrigeration cycle using a supercritical fluid. Mainly includes a compressor 110 and a heat source side heat exchanger 130, and the indoor units 301 to 303 include load side heat exchangers 311 to 313 and expansion valves 321 to 323 as expansion devices, and a shunt controller. 200 mainly includes flow path switching valves 221 to 223, a first expansion valve 211, and a second expansion valve 212.

ここで、室外機100と分流コントローラ200との間は、高圧配管400と低圧配管500及び高温ガス配管600の3管で接続され、分流コントローラ200と各室内機301〜303との間は、高圧配管700と低圧配管800の2管でそれぞれ接続されている。ここでは、主に冷房運転が主体で、一部暖房運転の冷房主体運転(以下、冷主運転と略す)について記載するものであるが、暖房主体運転(以下、暖主運転と略す)については、室外機100に、さらに流路切替のための四方弁120、逆止弁141〜147が具備されている。   Here, the outdoor unit 100 and the shunt controller 200 are connected by three pipes of a high pressure pipe 400, a low pressure pipe 500, and a high temperature gas pipe 600, and the shunt controller 200 and each of the indoor units 301 to 303 are connected with high pressure. Two pipes of a pipe 700 and a low-pressure pipe 800 are connected to each other. Here, it mainly describes cooling operation, and describes the cooling-main operation (hereinafter abbreviated as cooling main operation) of partial heating operation, but about heating-main operation (hereinafter abbreviated as warm main operation) The outdoor unit 100 further includes a four-way valve 120 and check valves 141 to 147 for switching the flow path.

まず、図1により、冷主運転時の冷媒回路内の流れを説明する。ここでは、超臨界流体としてCOを用いた場合について述べる。圧縮機110で圧縮された高圧高温の流体は、四方弁120を介して熱源側熱交換器130にて周囲の空気と熱交換され、周囲の空気温度まで冷却され、熱源側熱交換器130出口が高圧中温の状態となる。 First, the flow in the refrigerant circuit during the cold main operation will be described with reference to FIG. Here, a case where CO 2 is used as a supercritical fluid will be described. The high-pressure and high-temperature fluid compressed by the compressor 110 is heat-exchanged with the ambient air in the heat source side heat exchanger 130 via the four-way valve 120, cooled to the ambient air temperature, and the heat source side heat exchanger 130 outlet. Becomes a state of high pressure and intermediate temperature.

熱源側熱交換器130を出た流体は、高圧配管400を介して分流コントローラ200内の第1膨張弁211へ流入し、高圧よりも少し低い超臨界域での中間圧まで減圧され、中圧中温の状態で逆止弁232,233および高圧配管700を介して冷房運転する室内機302,303の膨張弁322,323へ流入し、さらに低圧域まで減圧され低圧低温となる。そして、負荷側の熱交換器312,313内へ流入することで、室温と熱交換され、低圧中温の乾き度の大きい状態となり、低圧配管800、分流コントローラ200および低圧配管500を介して室外機100側へ戻る。この時、第2膨張弁212は、閉状態となっている。   The fluid exiting the heat source side heat exchanger 130 flows into the first expansion valve 211 in the shunt controller 200 via the high-pressure pipe 400 and is reduced to an intermediate pressure in the supercritical region slightly lower than the high pressure. It flows into the expansion valves 322 and 323 of the indoor units 302 and 303 that are in the cooling operation through the check valves 232 and 233 and the high-pressure pipe 700 in the middle temperature state, and is further reduced to a low-pressure region and becomes low-pressure and low-temperature. Then, by flowing into the heat exchangers 312 and 313 on the load side, heat is exchanged with room temperature, and the dryness at low pressure and intermediate temperature is high, and the outdoor unit is connected via the low pressure pipe 800, the shunt controller 200 and the low pressure pipe 500. Return to the 100 side. At this time, the second expansion valve 212 is in a closed state.

一方、暖房運転する室内機301側へは、圧縮機110と熱源側熱交換器130の間から分岐した高圧高温のガス冷媒が、開閉弁150および高温ガス配管600を介して、分流コントローラ200内へ流入し、流路切替弁223を介して暖房運転する室内機301の負荷側熱交換器311内へ流入する。負荷側熱交換器311内へ流入した高圧高温のガス冷媒は室温と熱交換され、室温とほぼ同等の高圧中温となり、膨張弁321にて減圧される。減圧された中圧中温の流体は、逆止弁231を介して、分流コントローラ200内の第1膨張弁211の低圧側へ合流する。   On the other hand, the high-pressure and high-temperature gas refrigerant branched from between the compressor 110 and the heat source side heat exchanger 130 enters the shunt controller 200 through the on-off valve 150 and the high-temperature gas pipe 600 to the indoor unit 301 side that performs the heating operation. And flows into the load side heat exchanger 311 of the indoor unit 301 that performs the heating operation via the flow path switching valve 223. The high-pressure and high-temperature gas refrigerant that has flowed into the load-side heat exchanger 311 exchanges heat with room temperature, reaches a high-pressure intermediate temperature that is substantially equal to room temperature, and is decompressed by the expansion valve 321. The medium pressure / medium temperature fluid reduced in pressure joins to the low pressure side of the first expansion valve 211 in the flow dividing controller 200 via the check valve 231.

これにより、分流コントローラ200から各室内機301−303間までの接続配管本数を低減でき、冷暖同時運転でのCOPも向上できる。   Thereby, the number of connecting pipes from the diversion controller 200 to each of the indoor units 301-303 can be reduced, and the COP in the simultaneous cooling and heating operation can be improved.

次に、図2は、この発明の実施の形態1に係る空気調和装置の暖房主体運転時の冷媒回路図である。図2に示す空気調和装置は、図1に示す構成と同様な構成を備える。   Next, FIG. 2 is a refrigerant circuit diagram at the time of heating main operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. The air conditioning apparatus shown in FIG. 2 has a configuration similar to that shown in FIG.

図2により、暖主運転時の冷媒回路内の流れを説明する。圧縮機110で圧縮された高圧高温の流体は、冷主運転時の冷媒回路内の流れの説明と同様に、四方弁120、熱源側熱交換器130および高圧配管400を介して、分流コントローラ200内に流入し、流路切替弁222、223を介して暖房運転する室内機301,302の負荷側熱交換器311,312内へ流入する。負荷側熱交換器311,312内へ流入した高圧高温のガス冷媒は、室温と熱交換され、室温とほぼ同等の高圧中温となり、膨張弁321,322にて減圧される。減圧された中圧中温の流体は、逆止弁231,232を介して、分流コントローラ200内の第1膨張弁211の低圧側へ合流する。   The flow in the refrigerant circuit during the warm main operation will be described with reference to FIG. The high-pressure and high-temperature fluid compressed by the compressor 110 passes through the four-way valve 120, the heat source side heat exchanger 130, and the high-pressure pipe 400 as in the description of the flow in the refrigerant circuit during the cold main operation. And flows into the load-side heat exchangers 311 and 312 of the indoor units 301 and 302 that perform heating operation via the flow path switching valves 222 and 223. The high-pressure and high-temperature gas refrigerant that has flowed into the load-side heat exchangers 311 and 312 is exchanged with room temperature, becomes a high-pressure medium temperature substantially equal to room temperature, and is decompressed by the expansion valves 321 and 322. The medium pressure / medium temperature fluid reduced in pressure joins to the low pressure side of the first expansion valve 211 in the flow dividing controller 200 via the check valves 231 and 232.

一方、冷房運転する室内機303側へは、暖房運転する室内機301,302側から供給された中圧中温の流体が第2膨張弁212の手前で分岐することで、冷房運転する室内機303に必要な流量だけが逆止弁233を介して、冷房運転する室内機303側へ供給され、残った一部の流量は第2膨張弁212で減圧して、低圧配管500へ流入させる。冷房運転する室内機303へ流入した冷媒は、膨張弁323にてさらに低圧域まで減圧され低圧低温となり、負荷側の熱交換器313内へ流入することで、室温と熱交換され、低圧中温の乾き度の大きい状態となり、低圧配管800から分流コントローラ200および低圧配管500を介して室外機100側へ戻る。また、第2膨張弁212を介して低圧配管500へ流入した冷媒は、室外機100へと流入し、熱源側熱交換器130にて周囲の空気と熱交換され、周囲の空気温度まで加熱され、低圧中温の乾き度の大きい状態となり、分流コントローラ200を介して室内機303へ戻る。   On the other hand, the medium-pressure medium-temperature fluid supplied from the indoor units 301 and 302 that perform the heating operation branches to the indoor unit 303 that performs the cooling operation and branches in front of the second expansion valve 212. Only the necessary flow rate is supplied via the check valve 233 to the indoor unit 303 that performs the cooling operation, and the remaining partial flow rate is reduced by the second expansion valve 212 and flows into the low-pressure pipe 500. The refrigerant that has flowed into the indoor unit 303 that is performing the cooling operation is further reduced in pressure to a low pressure region by the expansion valve 323, becomes low pressure and low temperature, and flows into the heat exchanger 313 on the load side, thereby exchanging heat with room temperature. The dryness becomes large, and the low pressure pipe 800 returns to the outdoor unit 100 side through the branch controller 200 and the low pressure pipe 500. The refrigerant that has flowed into the low-pressure pipe 500 via the second expansion valve 212 flows into the outdoor unit 100, is heat-exchanged with the surrounding air in the heat source side heat exchanger 130, and is heated to the surrounding air temperature. Then, the low-pressure medium-temperature dryness state becomes large, and the flow returns to the indoor unit 303 via the shunt controller 200.

したがって、上記実施の形態1によれば、1台の室外機100と1台の分流コントローラ200とを高圧配管400と低圧配管500及び高温ガス配管600の3管で接続し、分流コントローラ200と複数の室内機301〜303とを高圧配管700と低圧配管800の2管で接続することで、分流コントローラ200から各室内機301〜303までの接続配管本数を低減でき、かつ冷暖同時運転でのCOPも向上できる。さらに、冷房主体で一部暖房運転となる冷房主体運転においても省エネ運転を実現することができる。   Therefore, according to the first embodiment, one outdoor unit 100 and one shunt controller 200 are connected by three pipes of the high-pressure pipe 400, the low-pressure pipe 500, and the high-temperature gas pipe 600. By connecting the indoor units 301 to 303 with the two pipes of the high pressure pipe 700 and the low pressure pipe 800, the number of connection pipes from the shunt controller 200 to each of the indoor units 301 to 303 can be reduced, and the COP can be operated simultaneously with cooling and heating. Can also be improved. Furthermore, energy-saving operation can also be realized in the cooling-main operation in which the cooling operation is a part of the heating operation.

この発明の実施の形態1に係る空気調和装置の冷房主体運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the cooling main operation | movement of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の暖房主体運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of heating main operation | movement of the air conditioning apparatus which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

100 室外機、110 圧縮機、120 四方弁、130 熱源側熱交換器、141〜147 逆止弁、150 開閉弁、200 分流コントローラ、211 第1膨張弁、212 第2膨張弁、221〜223 流路切替弁、231〜233 逆止弁、301〜303 室内機、311〜313 負荷側熱交換器、321〜323 膨張弁、400 高圧配管、500 低圧配管、600 高温ガス配管、700 高圧配管、800 低圧配管。   100 outdoor unit, 110 compressor, 120 four-way valve, 130 heat source side heat exchanger, 141-147 check valve, 150 on-off valve, 200 shunt controller, 211 first expansion valve, 212 second expansion valve, 221-223 flow Road switching valve, 231 to 233 check valve, 301 to 303 indoor unit, 311 to 313 load side heat exchanger, 321 to 323 expansion valve, 400 high pressure piping, 500 low pressure piping, 600 high temperature gas piping, 700 high pressure piping, 800 Low pressure piping.

Claims (2)

室外機と複数の室内機を分流コントローラにより接続し、超臨界流体を用いて1つの冷凍サイクルを構成した空気調和装置において、
前記室外機と前記分流コントローラとの間を、高圧配管と低圧配管及び高温ガス配管の3管で接続し、
前記分流コントローラと前記複数の室内機との間を、高圧配管と低圧配管の2管で接続した
ことを特徴とする空気調和装置。
In an air conditioner in which an outdoor unit and a plurality of indoor units are connected by a shunt controller and one refrigeration cycle is configured using a supercritical fluid,
Between the outdoor unit and the shunt controller, three pipes, a high pressure pipe, a low pressure pipe and a high temperature gas pipe,
The air conditioner characterized in that the branch controller and the plurality of indoor units are connected by two pipes, a high pressure pipe and a low pressure pipe.
請求項1に記載の空気調和装置において、
前記室外機は、圧縮機と、当該圧縮機により圧縮された冷媒を周囲の空気と熱交換する熱源側熱交換器とを備えるとともに、
前記分流コントローラは、前記室外機と前記分流コントローラとの間の前記高圧配管を介して前記室外機の前記熱源側熱交換器から流入される冷媒を減圧する第1膨張弁と、当該第1膨張弁により減圧した冷媒と前記分流コントローラと前記複数の室内機との間の前記低圧配管を介して前記室内機から流入される冷媒とを合流させて前記分流コントローラと前記複数の室内機との間の前記高圧配管を介して前記室内機へ流出される冷媒を分岐して減圧し、前記分流コントローラと前記複数の室内機との間の前記低圧配管を介して流入される冷媒と共に、前記室外機と前記分流コントローラとの間の前記低圧配管を介して前記室外機へ流出させる第2膨張弁とを備え、
前記圧縮機から分岐した冷媒は、前記高温ガス配管を介して前記分流コントローラ内へ流出され、前記分流コントローラと前記複数の室内機との間の前記高圧配管を介して前記室内機へ流入する
ことを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1,
The outdoor unit includes a compressor and a heat source side heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the surrounding air.
The branch flow controller includes a first expansion valve that depressurizes refrigerant flowing from the heat source side heat exchanger of the outdoor unit via the high-pressure pipe between the outdoor unit and the branch flow controller, and the first expansion valve The refrigerant decompressed by the valve and the refrigerant flowing from the indoor unit through the low pressure pipe between the diversion controller and the plurality of indoor units are merged to be between the diversion controller and the plurality of indoor units. The refrigerant flowing into the indoor unit via the high-pressure pipe is branched and decompressed, and together with the refrigerant flowing through the low-pressure pipe between the branch controller and the plurality of indoor units, the outdoor unit And a second expansion valve for flowing out to the outdoor unit via the low-pressure pipe between the flow controller and the branch flow controller,
The refrigerant branched from the compressor flows out into the branch controller through the high-temperature gas pipe, and flows into the indoor unit through the high-pressure pipe between the branch controller and the plurality of indoor units. An air conditioner characterized by.
JP2008086355A 2008-03-28 2008-03-28 Air conditioner Pending JP2009236461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086355A JP2009236461A (en) 2008-03-28 2008-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086355A JP2009236461A (en) 2008-03-28 2008-03-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009236461A true JP2009236461A (en) 2009-10-15

Family

ID=41250626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086355A Pending JP2009236461A (en) 2008-03-28 2008-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009236461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116045380A (en) * 2022-12-28 2023-05-02 安徽美博智能科技有限公司 Detachable combined wearable air conditioner special for outdoor activities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116045380A (en) * 2022-12-28 2023-05-02 安徽美博智能科技有限公司 Detachable combined wearable air conditioner special for outdoor activities

Similar Documents

Publication Publication Date Title
US9593872B2 (en) Heat pump
US9719691B2 (en) Air-conditioning apparatus
JP4771721B2 (en) Air conditioner
WO2009122512A1 (en) Air conditioning apparatus
US10605498B2 (en) Heat pump apparatus
WO2011048695A1 (en) Air conditioning device
JPWO2008117408A1 (en) Heat pump equipment
JP5774216B2 (en) Multi-room air conditioner
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
CN105020924A (en) Air source enhanced vapor injection heat pump system
CN109945374B (en) Air conditioner and integrated circulation pipeline system thereof
CN103673138A (en) Air conditioner and control method thereof
TW201420975A (en) Heat pump air condition system and control method thereof
JP2019060545A (en) Air conditioner
JP4918450B2 (en) Air conditioning / hot water heat pump system
JP2019060544A (en) Air conditioner
WO2020174618A1 (en) Air-conditioning device
KR20040080863A (en) Cooling and heating system
JP2004324947A (en) Air conditioning system
CN215638113U (en) Refrigerating system
CN215930175U (en) Refrigerating system
JP2009236461A (en) Air conditioner
JP2006023073A (en) Air conditioner
CN108007010B (en) Heat pump system
KR100860047B1 (en) Apparatus and method for cooling and heating water using heat pump