JP2009233605A - Treatment method of boron fluoride-containing water - Google Patents
Treatment method of boron fluoride-containing water Download PDFInfo
- Publication number
- JP2009233605A JP2009233605A JP2008084584A JP2008084584A JP2009233605A JP 2009233605 A JP2009233605 A JP 2009233605A JP 2008084584 A JP2008084584 A JP 2008084584A JP 2008084584 A JP2008084584 A JP 2008084584A JP 2009233605 A JP2009233605 A JP 2009233605A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- borofluoride
- containing water
- compound
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910015900 BF3 Inorganic materials 0.000 title abstract description 10
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 title abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 63
- -1 aluminum compound Chemical class 0.000 claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000011737 fluorine Substances 0.000 claims abstract description 33
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 33
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 19
- 238000000926 separation method Methods 0.000 claims abstract description 18
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052796 boron Inorganic materials 0.000 claims abstract description 12
- 229940043430 calcium compound Drugs 0.000 claims abstract description 11
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 239000002562 thickening agent Substances 0.000 claims description 11
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 235000021395 porridge Nutrition 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 5
- 239000000920 calcium hydroxide Substances 0.000 claims description 5
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000002244 precipitate Substances 0.000 abstract 2
- 239000013043 chemical agent Substances 0.000 abstract 1
- 239000002351 wastewater Substances 0.000 description 29
- 239000000126 substance Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 238000004056 waste incineration Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010061296 Motor dysfunction Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 150000001399 aluminium compounds Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000007665 chronic toxicity Effects 0.000 description 1
- 231100000160 chronic toxicity Toxicity 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 208000005368 osteomalacia Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、ホウフッ化物含有水の処理方法に関し、より詳しくはアルミニウム化合物を添加し、酸性に調整してフッ素とホウ素に分解する処理方法、並びに該方法に用いるホウフッ化物の分解剤の製造方法に関する。 The present invention relates to a method for treating borofluoride-containing water, and more particularly, to a treatment method in which an aluminum compound is added and adjusted to be acidic and decomposed into fluorine and boron, and a method for producing a borofluoride decomposing agent used in the method. .
フッ素(F)は、現在、排水基準が設けられており、例えばガラス製品、医薬品、化粧品、樹脂製品、めっき製品の製造などに使われ、その製造排水中に含まれる。また、石炭火力発電所の排煙脱硫排水やごみ焼却場洗煙排水、ニッケルめっき工場排水などにも含まれている。フッ素はヒトが大量に摂取すると、嘔吐、胃炎、腎臓障害などの急性毒性や骨軟化症、運動機能障害などの慢性毒性が起こることが知られている。そのため、日本国内においては排水基準値が近年15ppmから8ppmへと強化され、フッ素排水の処理が重要視されている。 Fluorine (F) is currently provided with wastewater standards, and is used, for example, in the manufacture of glass products, pharmaceuticals, cosmetics, resin products, plating products, etc., and is contained in the manufacturing wastewater. It is also included in flue gas desulfurization effluent from coal-fired power plants, waste incineration scouring effluent, and nickel plating factory effluent. Fluorine is known to cause acute toxicities such as vomiting, gastritis, and kidney damage, and chronic toxicities such as osteomalacia and motor dysfunction when taken in large quantities by humans. Therefore, in Japan, the wastewater standard value has recently been strengthened from 15 ppm to 8 ppm, and the treatment of fluorine wastewater is regarded as important.
このようなフッ素排水の処理方法としては、一般的にカルシウムと反応させてフッ化カルシウムに固定化する方法、高度処理としてアルミニウム塩を加えて処理する方法が普及している。しかし、フッ素排水中にホウ素が含まれていると、ホウフッ化物の化合形態として存在する物質が生成してしまい、上述した簡易的なカルシウム法やアルミニウム法では除去することが困難である。 As a method for treating such fluorine wastewater, a method of reacting with calcium and fixing to calcium fluoride is generally used, and a method of treating by adding an aluminum salt as an advanced treatment is widespread. However, if boron is contained in the fluorine waste water, a substance present as a compound form of borofluoride is generated, and it is difficult to remove by the simple calcium method or aluminum method described above.
そこで、排水中のホウフッ化物を分解、除去する方法として、例えば、液を加温して、3価のアルミニウムイオンを加え、ホウフッ化物を熱分解し、カルシウムによりアルカリとして、シリコン塩にフッ素を取り込み、沈殿させ除去する方法が提案されている(特許文献1参照)。 Therefore, as a method of decomposing and removing borofluoride in the waste water, for example, heating the liquid, adding trivalent aluminum ions, pyrolyzing the borofluoride, making calcium into an alkali, and incorporating fluorine into the silicon salt A method for precipitation and removal has been proposed (see Patent Document 1).
また、排ガス中に含まれる煤塵やガス状化合物を水性吸収液を用いて除去する除塵塔と、除塵塔の後流側に、ナトリウム、カリウム、アンモニウム、カルシウム等の酸化物、炭酸塩等の化合物を含むスラリ吸収液による吸収塔を備えた湿式排煙脱硫方法において、除塵塔の吸収液循環タンクから抜き出した脱硫排水中に、水溶性の鉄化合物を添加して脱硫排水中に含まれるフッ素化合物を分解処理する工程を含む脱硫排水の処理方法及びそれを実施する装置が提案されている(特許文献2参照)。 Also, a dust removal tower that removes dust and gaseous compounds contained in exhaust gas using an aqueous absorbing liquid, and an oxide such as sodium, potassium, ammonium, and calcium, and a compound such as carbonate on the downstream side of the dust removal tower Fluorine compounds contained in desulfurization effluent by adding a water-soluble iron compound to the desulfurization effluent extracted from the absorption liquid circulation tank of the dust removal tower A method for treating desulfurized wastewater including a step of decomposing and a device for carrying out the method has been proposed (see Patent Document 2).
また、ホウフッ化物を含有する廃水に、このホウフッ化物に含まれる1モルのフッ素元素に対してアルミニウム元素が0.1〜5モルとなるようにアルミニウム化合物を添加し、pH6以下に保持し、曝気する工程を含む処理方法が提案されている(特許文献3参照)。このアルミニウム化合物は水酸化アルミニウム含有脱水汚泥により添加することができ、曝気することにより短時間でフッ素成分を固定化することができる。更に、ホウ素成分はマグネシウム成分の添加により固定化することができ、鉛等の他の成分は鉄及び/又はアルミニウム成分等の添加により固定化できることが開示されている。 Further, an aluminum compound is added to waste water containing borofluoride so that the aluminum element is 0.1 to 5 mol with respect to 1 mol of fluorine element contained in the borofluoride, and the pH is kept at 6 or less, and aeration The processing method including the process to perform is proposed (refer patent document 3). This aluminum compound can be added by dehydrating sludge containing aluminum hydroxide, and the fluorine component can be fixed in a short time by aeration. Further, it is disclosed that the boron component can be fixed by adding a magnesium component, and other components such as lead can be fixed by adding an iron and / or aluminum component.
しかし、従来からのアルミニウム化合物や鉄化合物を使用してホウフッ化物を分解する方法は、多量の薬剤もしくは副資材を投入しなければならないため、コストが増大してしまうという問題がある。 However, the conventional method of decomposing borofluoride using an aluminum compound or an iron compound has a problem in that the cost increases because a large amount of chemicals or auxiliary materials must be input.
したがって薬剤の投入量を抑えたホウフッ化物の効率的な分解及び除去方法の提供が望まれており、またホウフッ化物を効率的に分解し、除去を可能とするホウフッ化物の分解剤の速やかな提供が望まれているのが現状である。 Therefore, it is desired to provide a method for efficiently decomposing and removing borofluoride with a reduced amount of chemicals, and promptly providing a borofluoride decomposing agent that can efficiently decompose and remove borofluoride. This is the current situation.
本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、薬剤の投入量を抑えたホウフッ化物の効率的な分解及び除去が可能となるホウフッ化物含有水の処理方法、及び該方法に用いるホウフッ化物の分解剤の製造方法を提供することを目的とする。 An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, the present invention provides a method for treating borofluoride-containing water, which enables efficient decomposition and removal of borofluoride with a reduced amount of drug, and a method for producing a borofluoride decomposing agent used in the method. For the purpose.
前記課題を解決するため本発明者らが鋭意検討を重ねた結果、これまでホウフッ化物を分解するために塩化アルミニウム等の新たな資材を追加していたが、処理プロセスの一連の流れの中で沈降分離されたスラッジを利用することで脱水澱物として埋立処理されていたアルミニウム(Al)を有効活用し、新たな資材を追加せず、低コストかつ省エネルギーでホウフッ化物の分解処理が可能となることを知見した。 As a result of intensive studies by the present inventors in order to solve the above problems, new materials such as aluminum chloride have been added so far to decompose borofluoride. By using sludge separated and separated, aluminum (Al), which has been landfilled as dehydrated starch, can be used effectively, and borofluoride can be decomposed at low cost and energy saving without adding new materials. I found out.
本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
<1> フッ素及びホウ素の化合物であるホウフッ化物含有水にアルミニウム化合物を添加し、ホウフッ化物を分解する第一工程と、
分解により生じたフッ素を処理するためにカルシウム化合物を添加し、固液分離する第二工程と、
前記固液分離により得た液にアルミニウム塩を添加し、固液分離によりアルミニウムを含む殿物を得る第三工程と、を含み、
前記第三工程で得たアルミニウムを含む殿物を、前記第一工程におけるホウフッ化物含有水の分解に用いることを特徴とするホウフッ化物含有水の処理方法である。
<2> フッ素及びホウ素の化合物であるホウフッ化物含有水にアルミニウム化合物を添加し、分解するホウフッ化物含有水の処理方法において、前記アルミニウム化合物としてアルミニウムを含む殿物を用いる前記<1>に記載のホウフッ化物含有水の処理方法である。
<3> 第三工程におけるアルミニウムを含む殿物がシックナーにより沈降され、該シックナーのアンダーフロー口から採取されるものである前記<1>から<2>のいずれかに記載のホウフッ化物含有水の処理方法である。
<4> アルミニウム化合物が、酸性領域又はアルカリ性領域においてアルミニウムイオンとして溶解することのできる水酸化アルミニウムであり、
カルシウム化合物が、消石灰又は炭酸カルシウムの少なくとも1種であり、かつ
アルミニウム塩が、塩化アルミニウム及び硫酸アルミニウムの少なくとも1種である前記<1>から<3>のいずれかに記載のホウフッ化物含有水の処理方法である。
<5> ホウフッ化物含有水にアルミニウム化合物を加えpH2〜4とし、次いで、カルシウム化合物を加えpH9〜10とし、その上澄み液にアルミニウム塩を加えpH6〜7として殿物を発生させ、該殿物を固液分離により得ることを特徴とするホウフッ化物の分解剤の製造方法である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> a first step of decomposing borofluoride by adding an aluminum compound to borofluoride-containing water that is a compound of fluorine and boron;
A second step of adding a calcium compound to treat fluorine generated by decomposition, and solid-liquid separation;
Adding an aluminum salt to the liquid obtained by the solid-liquid separation, and obtaining a porridge containing aluminum by solid-liquid separation, and
The method for treating borofluoride-containing water is characterized in that the porcelain containing aluminum obtained in the third step is used for decomposition of the borofluoride-containing water in the first step.
<2> In the method for treating borofluoride-containing water by adding an aluminum compound to borofluoride-containing water, which is a compound of fluorine and boron, and decomposing the borofluoride-containing water, the aluminum compound is used as the aluminum compound. This is a method for treating borofluoride-containing water.
<3> The borofluoride-containing water according to any one of <1> to <2>, wherein the porcelain containing aluminum in the third step is precipitated by a thickener and collected from an underflow port of the thickener. It is a processing method.
<4> The aluminum compound is aluminum hydroxide that can be dissolved as an aluminum ion in an acidic region or an alkaline region,
The borofluoride-containing water according to any one of <1> to <3>, wherein the calcium compound is at least one of slaked lime or calcium carbonate, and the aluminum salt is at least one of aluminum chloride and aluminum sulfate. It is a processing method.
<5> An aluminum compound is added to borofluoride-containing water to adjust the pH to 2 to 4, then a calcium compound is added to adjust the pH to 9 to 10, an aluminum salt is added to the supernatant to adjust the pH to 6 to 7, and the residue is generated. A method for producing a borofluoride decomposing agent obtained by solid-liquid separation.
本発明のホウフッ化物含有水の処理方法においては、ホウフッ化物含有水の処理の際の新規の薬剤の使用量を抑制した。またホウフッ化物を効率よく分解可能とする殿物を製造できた。ホウフッ化物は高温、低pH下でアルミニウム化合物を添加することで分解されるが、その添加比率はAl/F(mol)=1.1以下で十分であり、また上記の高度処理によって発生した澱物を添加剤として用いてもアルミニウムの持つ分解性能は発揮され、更に類似の組成である水酸化アルミニウムの試薬を用いるより分解率が高いことがわかった。 In the method for treating borofluoride-containing water of the present invention, the amount of novel chemicals used during treatment of borofluoride-containing water was suppressed. Moreover, the porcelain which can decompose borofluoride efficiently was able to be manufactured. Boron fluoride is decomposed by adding an aluminum compound at high temperature and low pH, but the addition ratio of Al / F (mol) = 1.1 or less is sufficient, and the starch generated by the above-mentioned advanced treatment is sufficient. It was found that the decomposition performance of aluminum was exhibited even when the product was used as an additive, and the decomposition rate was higher than that of a reagent of aluminum hydroxide having a similar composition.
本発明によると、従来における諸問題を解決することができ、薬剤の投入量を抑えたホウフッ化物の効率的な分解及び除去が可能となるホウフッ化物含有水の処理方法、及び該方法に用いるホウフッ化物の分解剤の製造方法を提供することができる。 According to the present invention, various problems in the prior art can be solved, and a borofluoride-containing water treatment method capable of efficiently decomposing and removing borofluoride with a reduced amount of chemicals, and a borofluoride used in the method. A method for producing a chemical decomposition agent can be provided.
本発明のホウフッ化物含有水の処理方法は、第一工程と、第二工程と、第三工程とを含み、更に必要に応じてその他の工程を含んでなる。 The method for treating borofluoride-containing water of the present invention includes a first step, a second step, and a third step, and further includes other steps as necessary.
<第一工程>
前記第一工程は、フッ素及びホウ素の化合物であるホウフッ化物含有水にアルミニウム化合物を添加し、ホウフッ化物を分解する工程である。
<First step>
The first step is a step of adding an aluminum compound to borofluoride-containing water that is a compound of fluorine and boron to decompose the borofluoride.
前記ホウフッ化物は、ホウ素(B)とフッ素(F)の化合物であるが、ナトリウム等の他の塩類と化合して様々なホウフッ化物を形成する。水溶液中ではホウフッ化物イオン(BF4 −)として存在しており、本発明においては、産業上発生する排水に含まれるホウフッ化物イオンについて適応可能である。 The borofluoride is a compound of boron (B) and fluorine (F), but combines with other salts such as sodium to form various borofluorides. In aqueous solution, it exists as borofluoride ion (BF 4 − ). In the present invention, borofluoride ion contained in industrially generated waste water can be applied.
前記アルミニウム化合物は、ホウフッ化物含有水に溶解し、アルミニウムイオンが生成するものであればよい。アルミニウムは酸、アルカリいずれにも溶解する両性金属であるが、好ましくはホウフッ化物の分解条件である酸性領域にて溶解するアルミニウム化合物が経済的によい。
前記ホウフッ化物含有水の処理方法においては、前記第三工程で得たアルミニウムを含む殿物を前記第一工程におけるホウフッ化物含有水の分解に用いる。
The said aluminum compound should just melt | dissolve in borofluoride containing water and an aluminum ion produces | generates. Aluminum is an amphoteric metal that dissolves in both acid and alkali, but preferably an aluminum compound that dissolves in an acidic region, which is a decomposition condition of borofluoride, is economical.
In the method for treating borofluoride-containing water, the residue containing aluminum obtained in the third step is used for the decomposition of the borofluoride-containing water in the first step.
第一工程では、アルミニウム化合物の添加量は、対象となる処理水のホウフッ化物の濃度等により適宜設定すればよく、アルミニウムとフッ素のモル比がAl/Fで0.3以上が好ましく、1.0以上がより好ましい。なお、モル比(Al/F)の上限値は1.1以下であることが好ましい。前記モル比(Al/F)が0.3未満であると、ホウフッ化物の分解が十分でなく、処理を繰り返す必要がある。
また、pHは2〜4の酸性領域とし、アルミニウム化合物をアルミニウムイオンへと溶解させると同時に、ホウフッ化物イオンを3BF4 −+2Al3++6H2O→2AlF6 3−+3H3BO3+3H+の化学式のように、フッ素とホウ素のそれぞれの物質に分解させる。
In the first step, the addition amount of the aluminum compound may be appropriately set depending on the concentration of the borofluoride in the target treated water, and the molar ratio of aluminum to fluorine is preferably 0.3 or more in terms of Al / F. 0 or more is more preferable. In addition, it is preferable that the upper limit of molar ratio (Al / F) is 1.1 or less. When the molar ratio (Al / F) is less than 0.3, the borofluoride is not sufficiently decomposed and the treatment needs to be repeated.
Further, the pH is set to an acidic region of 2 to 4, and the aluminum compound is dissolved in aluminum ions, and at the same time, the borofluoride ions are converted into 3BF 4 − + 2Al 3+ + 6H 2 O → 2AlF 6 3 − + 3H 3 BO 3 + 3H + Thus, it is decomposed into fluorine and boron substances.
<第二工程>
前記第二工程は、分解により生じたフッ素を処理するためにカルシウム化合物を添加し、固液分離する工程である。
<Second step>
The second step is a step in which a calcium compound is added and solid-liquid separation is performed in order to treat fluorine generated by decomposition.
前記カルシウム化合物としては、例えば消石灰、炭酸カルシウムなどが挙げられる。
前記第二工程では、反応前の液は、酸性であるが、カルシウム化合物、好ましくは消石灰を入れ、pHがpH9〜10程度に中和するが好ましく、この範囲に調整するようにカルシウム化合物の種類、添加量を調整する。この条件により第一工程で分解されたフッ素がフッ化カルシウム等のカルシウム塩として固定化、除去されると同時に、排水中に含まれる鉛、カドミウム、クロム等の有害物質も固定化、除去することができる。本工程で発生した殿物等は、固液分離をして上澄み液側を次ぎの第三工程に用いる。
Examples of the calcium compound include slaked lime and calcium carbonate.
In the second step, the solution before the reaction is acidic, but a calcium compound, preferably slaked lime is added, and the pH is preferably neutralized to about pH 9 to 10, and the type of calcium compound is adjusted to this range. Adjust the addition amount. Under these conditions, fluorine decomposed in the first step is fixed and removed as calcium salts such as calcium fluoride, and at the same time, harmful substances such as lead, cadmium and chromium contained in the wastewater are fixed and removed. Can do. The residue produced in this step is subjected to solid-liquid separation and the supernatant liquid side is used in the next third step.
<第三工程>
前記第三工程は、固液分離により得た液にアルミニウム塩を添加し、固液分離によりアルミニウムを含む殿物を得る工程である。
前記固液分離により得た液に含まれる微量フッ素含有物にアルミニウム塩を添加し、アルミニウムを含む殿物を発生させ、固液分離によりアルミニウムを含む殿物を得ることができる。
<Third step>
The third step is a step in which an aluminum salt is added to the liquid obtained by solid-liquid separation, and an article containing aluminum is obtained by solid-liquid separation.
An aluminum salt is added to the trace fluorine-containing material contained in the liquid obtained by the solid-liquid separation to generate an aluminum-containing product, and the aluminum-containing product can be obtained by solid-liquid separation.
前記第二工程ではフッ化カルシウムとしてフッ素が固定されるが、フッ化カルシウムの溶解度の関係上、20ppm程度のフッ素イオンを更に高度処理するための工程が第三工程である。
前記第三工程では、前記第二工程より得た液にアルミニウム塩を添加する。
前記アルミニウム塩としては、例えば塩化アルミニウム、硫酸アルミニウムなどが挙げられる。
前記アルミニウム塩の添加量は、アルミニウムとフッ素のモル比がAl/F=5以上となるように調整する。
なお、アルミニウム塩を入れたことにより排水のpHが低下するため、アルカリ薬剤を用いてpH6〜7に調整する。具体的にはpH6.7に調整することが好ましい。前記アルカリ薬剤としては、例えば苛性ソーダ、消石灰などが挙げられる。
フッ素の高度処理により薬剤として使用したアルミニウム由来のアルミニウム化合物が殿物として発生するので、固液分離により該殿物を回収する。回収した該殿物等は、第一工程におけるアルミニウム化合物として用いる。これにより、ホウフッ化物を効率よく分解できる。
In the second step, fluorine is fixed as calcium fluoride, but the third step is a step for further treating fluorine ions of about 20 ppm due to the solubility of calcium fluoride.
In the third step, an aluminum salt is added to the liquid obtained from the second step.
Examples of the aluminum salt include aluminum chloride and aluminum sulfate.
The addition amount of the aluminum salt is adjusted so that the molar ratio of aluminum to fluorine is Al / F = 5 or more.
In addition, since the pH of waste water falls by adding aluminum salt, it adjusts to pH 6-7 using an alkali chemicals. Specifically, it is preferable to adjust to pH 6.7. Examples of the alkaline agent include caustic soda and slaked lime.
Since the aluminum-derived aluminum compound used as a chemical is generated as a residue by the advanced treatment of fluorine, the residue is recovered by solid-liquid separation. The collected residue is used as an aluminum compound in the first step. Thereby, borofluoride can be decomposed | disassembled efficiently.
前記第三工程で得たアルミニウムを含む殿物は、ホウフッ化物分解能力に優れ、アルミニウムと処理しようとする排水中の全フッ素のモル比が、Al/Fにおいて0.3以上でホウフッ化物の分解が可能となる。即ち、第一工程で新たに入れるべきアルミニウム薬剤の代替として該殿物の利用が可能であり、使用量を削減できる。 The porcelain containing aluminum obtained in the third step has an excellent ability to decompose borofluoride, and the molar ratio of aluminum to total fluorine in the wastewater to be treated is 0.3 or more in Al / F and decomposes borofluoride. Is possible. That is, the porridge can be used as an alternative to the aluminum agent to be newly added in the first step, and the amount used can be reduced.
また、前記第三工程で得たアルミニウム化合物を含む殿物中には、排水中から除去された微量フッ素が含まれており、この殿物を繰り返すことによってプロセス系内でフッ素が濃縮する懸念があるが、基本的にはホウ素を含まないフッ素化合物であるため仮に第一工程にて殿物中に含まれるフッ素が再び溶解してしまったとしても、第二工程にて確実にフッ化カルシウムとして除去されるため、濃縮の恐れはない。 In addition, the sediment containing the aluminum compound obtained in the third step contains a trace amount of fluorine removed from the waste water, and there is a concern that fluorine may be concentrated in the process system by repeating this sediment. Although it is basically a fluorine compound that does not contain boron, even if the fluorine contained in the porridge is dissolved again in the first step, it is surely converted into calcium fluoride in the second step. Since it is removed, there is no risk of concentration.
このようにして得た殿物は、アルミニウムが含まれている。この殿物を前記アルミウム化合物として用いることにより、ホウフッ化物の分解に対して新たな薬剤の投入量を削減した高効率の除去が可能となる。アルミニウム薬剤の全部又は1部の代替えとして用いることができ、好ましくは全量代替として用いる。もし全量殿物を使用した結果、Al/F(mol)=0.3以下にしかならない場合にのみ新たなアルミニウム薬剤を用いればよい。ホウフッ化物の排水含有量にもよるが、基本的には流入する排水量に対して1質量%〜20質量%程度用いると操業上の管理が簡易となる。 The temple obtained in this way contains aluminum. By using this deposit as the aluminium compound, it is possible to perform highly efficient removal by reducing the input amount of a new chemical against the decomposition of borofluoride. It can be used as a substitute for all or part of the aluminum drug, and preferably is used as a substitute for the whole amount. A new aluminum agent may be used only when Al / F (mol) = 0.3 or less as a result of using the entire amount. Although it depends on the wastewater content of the borofluoride, the use of about 1% by mass to 20% by mass with respect to the inflowing wastewater basically simplifies operational management.
前記第一工程から第三工程のいずれの段階でも添加又は反応時において、液温は40℃〜80℃程度に加温されている、もしくはごみ焼却排水など発生時の温度が高温の場合は40℃以下にならないよう保温しておくのがよい。反応性と沈殿性を向上させるためである。前記液温は好ましくは50℃〜80℃である。 In any stage of the first process to the third process, the liquid temperature is about 40 ° C. to 80 ° C. at the time of addition or reaction, or 40 when the temperature at the time of generation such as waste incineration wastewater is high. It is better to keep the temperature below ℃. This is to improve the reactivity and precipitation. The liquid temperature is preferably 50 ° C to 80 ° C.
なお、殿物の発生後において、更にろ過性や沈殿性を向上させるため凝集剤を添加してもよい。該凝集剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば市販の高分子添加剤を用いることができる。 Note that a flocculant may be added after the generation of the porridge to further improve the filterability and precipitation. There is no restriction | limiting in particular as this flocculant, According to the objective, it can select suitably, For example, a commercially available polymer additive can be used.
産業上において発生する排水は多量であるため、殿物の発生量も多い。このため用いる設備として必要十分な断面積をもったシックナーを殿物発生からの固液分離に用いる。該シックナーを用いれば底部において殿物が沈降され殿物沈降層ができ、この層から殿物を抜き出せば殿物を採取できる。シックナーにおいてはアンダーフロー口から容易に採取できる。第三工程より採取された殿物は、ポンプ等により第一工程に移送し、添加すればよい。
第二工程におけるシックナーによる殿物や、第三工程における上澄み液は、適切に後処理し、廃棄、放流することができる。
Due to the large amount of wastewater generated in the industry, the amount of shrine generated is also large. For this reason, a thickener having a necessary and sufficient cross-sectional area as equipment to be used is used for solid-liquid separation from the generation of temples. If the thickener is used, the temple is settled at the bottom to form a sediment sedimentation layer, and the temple can be collected by extracting the temple from this layer. Thickeners can be easily collected from the underflow port. The porridge collected from the third step may be transferred to the first step by a pump or the like and added.
The thickener by the thickener in the second step and the supernatant liquid in the third step can be appropriately post-processed, discarded and discharged.
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
本発明によるホウフッ化物含有排水の分解処理方法の実施例について詳細に説明する。 まず、廃棄物の焼却工場における煙灰を工業用水で洗浄し、洗浄使用後の洗煙排水を第一の反応槽に導き、炭酸カルシウムミルクでpH2〜3に制御した後(第一工程)、第二の反応槽において石灰乳でpH9.3に中和し、第一のシックナーにより沈降分離した(第二工程)。
次に、上澄み液を第三の反応槽に導き、上澄み液に対し、187ppmの割合で塩化アルミニウムを添加し、15分間、攪拌混合をした後、苛性ソーダを加えて、pH6.7に調整した。次いで、発生した凝集物を第二のシックナーによって沈降分離し、底部に沈降された澱物をアンダーフローより採取した(第三工程)。
なお、第一の反応槽の洗煙排水のホウフッ化物濃度は低いので、澱物添加の効果をより明確にし、評価しやすくするため、洗煙排水を採取し、ホウフッ化物濃度として22ppmとなるよう、ホウフッ化ナトリウム溶液を添加した模擬液を準備した。
The Example of the decomposition processing method of the borofluoride containing waste_water | drain by this invention is described in detail. First, the smoke ash in the waste incineration plant is washed with industrial water, the smoke-washed waste water after washing is guided to the first reaction tank, and controlled to pH 2-3 with calcium carbonate milk (first step), In the second reaction tank, the mixture was neutralized with lime milk to pH 9.3 and settled and separated by the first thickener (second step).
Next, the supernatant was introduced into a third reaction vessel, and aluminum chloride was added at a ratio of 187 ppm to the supernatant, and after stirring and mixing for 15 minutes, caustic soda was added to adjust the pH to 6.7. Next, the generated agglomerates were settled and separated by the second thickener, and the starch precipitated at the bottom was collected from the underflow (third step).
In addition, since the borofluoride concentration of the smoke washing wastewater in the first reaction tank is low, in order to clarify the effect of adding starch and make it easy to evaluate, the smoke washing wastewater is collected so that the concentration of borofluoride is 22 ppm. A simulated solution to which a sodium borofluoride solution was added was prepared.
次に、Al/F比率を変えるため、洗煙排水は全F濃度が異なる3種類A、B、Cを準備した。表1は、各排水の分析結果を示した。全F濃度をJIS K0102に従い測定した。また、Al量はJIS K0102(1998)58,4に従い測定した。 Next, in order to change the Al / F ratio, three types A, B, and C having different total F concentrations were prepared as the smoke-washing waste water. Table 1 shows the analysis result of each waste water. The total F concentration was measured according to JIS K0102. The amount of Al was measured according to JIS K0102 (1998) 58,4.
<No.1、及びNo.3〜8>
ホウフッ化ナトリウム溶液をBF4濃度として22ppmになるよう添加し、そこに各排水を注ぎ全量500mlになるようにした。表3に示すように、反応温度は50℃〜75℃になるようにし、所定の時間保持した。
次いで、表3に示すようにアルミニウム含有殿物A又はBを25〜75ml加え、更に石灰乳を排水のpHが2〜4になるように添加し調整した。表2にアルミニウム含有殿物A及びBの成分を示す。
<No. 1 and no. 3-8>
A sodium borofluoride solution was added to a BF 4 concentration of 22 ppm, and each effluent was poured therein to a total volume of 500 ml. As shown in Table 3, the reaction temperature was set to 50 ° C to 75 ° C and held for a predetermined time.
Next, as shown in Table 3, 25 to 75 ml of aluminum-containing residue A or B was added, and lime milk was further added and adjusted so that the pH of the waste water was 2 to 4. Table 2 shows the components of the aluminum-containing articles A and B.
次に、攪拌機で5〜10分間攪拌した後、再び石灰乳を添加してpHが9〜10になるよう調整しながら、20分間攪拌した。
その後、保留粒子径が1μmのろ紙を用いて減圧濾過を行い、ろ液中の全F濃度をJIS K0102に従い測定した。また、ろ液中のBF4濃度をBF4イオン選択性電極を用いて、絶対検量線法によって測定した。
BF4分解率を、次式により算出した。結果を表3に示す。
BF4分解率={1−(処理後のBF4濃度/処理前のBF4濃度)}×100
Next, after stirring for 5 to 10 minutes with a stirrer, the mixture was stirred for 20 minutes while adding lime milk again to adjust the pH to 9 to 10.
Thereafter, filtration under reduced pressure was performed using a filter paper having a retained particle diameter of 1 μm, and the total F concentration in the filtrate was measured according to JIS K0102. Further, the BF 4 concentration in the filtrate was measured by an absolute calibration curve method using a BF 4 ion selective electrode.
The BF 4 decomposition rate was calculated by the following formula. The results are shown in Table 3.
BF 4 {(BF 4 concentration of BF 4 concentration / pretreatment after treatment) 1} decomposition rate = × 100
<No.2>
アルミニウム含有殿物中のアルミニウムはゲル状の水酸化アルミニウムであるため、同じ形態である市販の水酸化アルミニウム試薬を用いて実験を行った。
水酸化アルミニウム試薬を、排水Aに37mlのアルミニウム含有殿物を添加した時のAl/F比率と同じAl/F(mol)=0.3となるよう排水Aに添加(218mg)した。その後の実験手順は上記と同じである。BF4の分解率を同様に測定した。結果を表3に示す。
<No. 2>
Since aluminum in the aluminum-containing deposit is gel aluminum hydroxide, an experiment was conducted using a commercially available aluminum hydroxide reagent having the same form.
The aluminum hydroxide reagent was added to the wastewater A (218 mg) so that Al / F (mol) = 0.3, which is the same as the Al / F ratio when 37 ml of aluminum-containing residue was added to the wastewater A. The subsequent experimental procedure is the same as above. The decomposition rate of BF 4 was measured in the same manner. The results are shown in Table 3.
表3の結果から、アルミニウムと排水中の全フッ素のモル比が、Al/Fにおいて0.3以上でホウフッ化物の分解が可能となることが分かった。 From the results in Table 3, it was found that borofluoride can be decomposed when the molar ratio of aluminum to total fluorine in the wastewater is 0.3 or more in Al / F.
本発明のホウフッ化物含有水の処理方法は、従来に比べて薬剤の投入量を抑えたホウフッ化物の効率的な分解、除去が可能となるので、排水中のホウフッ化物を効率よく分解し、除去することができる。 The method for treating borofluoride-containing water of the present invention enables efficient decomposition and removal of borofluoride with a reduced amount of chemical compared to conventional methods, so that borofluoride in wastewater is efficiently decomposed and removed. can do.
Claims (5)
分解により生じたフッ素を処理するためにカルシウム化合物を添加し、固液分離する第二工程と、
前記固液分離により得た液にアルミニウム塩を添加し、固液分離によりアルミニウムを含む殿物を得る第三工程と、を含み、
前記第三工程で得たアルミニウムを含む殿物を、前記第一工程におけるホウフッ化物含有水の分解に用いることを特徴とするホウフッ化物含有水の処理方法。 Adding an aluminum compound to borofluoride-containing water, which is a compound of fluorine and boron, and decomposing the borofluoride;
A second step of adding a calcium compound to treat fluorine generated by decomposition, and solid-liquid separation;
Adding an aluminum salt to the liquid obtained by the solid-liquid separation, and obtaining a porridge containing aluminum by solid-liquid separation, and
A method for treating borofluoride-containing water, wherein the residue containing aluminum obtained in the third step is used for decomposition of the borofluoride-containing water in the first step.
カルシウム化合物が、消石灰又は炭酸カルシウムの少なくとも1種であり、かつ
アルミニウム塩が、塩化アルミニウム及び硫酸アルミニウムの少なくとも1種である請求項1から3のいずれかに記載のホウフッ化物含有水の処理方法。 The aluminum compound is aluminum hydroxide that can be dissolved as aluminum ions in the acidic region or alkaline region,
The method for treating borofluoride-containing water according to any one of claims 1 to 3, wherein the calcium compound is at least one of slaked lime or calcium carbonate, and the aluminum salt is at least one of aluminum chloride and aluminum sulfate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084584A JP4954131B2 (en) | 2008-03-27 | 2008-03-27 | Treatment method of water containing borofluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084584A JP4954131B2 (en) | 2008-03-27 | 2008-03-27 | Treatment method of water containing borofluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009233605A true JP2009233605A (en) | 2009-10-15 |
JP4954131B2 JP4954131B2 (en) | 2012-06-13 |
Family
ID=41248252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008084584A Active JP4954131B2 (en) | 2008-03-27 | 2008-03-27 | Treatment method of water containing borofluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4954131B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011218338A (en) * | 2010-04-14 | 2011-11-04 | Nec Facilities Ltd | Method of processing boron-containing drainage |
KR101273168B1 (en) * | 2011-06-21 | 2013-06-17 | 주식회사 이코니 | Treatment process for fluorine compounds containing water |
WO2014132887A1 (en) * | 2013-02-28 | 2014-09-04 | 栗田工業株式会社 | Method and apparatus for treating borofluoride-containing water |
WO2016157452A1 (en) * | 2015-03-31 | 2016-10-06 | 住友金属鉱山エンジニアリング株式会社 | Method for treating wastewater, and system for treating wastewater |
JP2018199097A (en) * | 2017-05-25 | 2018-12-20 | 株式会社 イージーエス | Water treatment method and water treatment apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6045964B2 (en) * | 2013-04-05 | 2016-12-14 | オルガノ株式会社 | Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226759A (en) * | 1975-08-27 | 1977-02-28 | Showa Koji Kk | Method of treating waste water containing borofluoride |
JPS57144086A (en) * | 1981-03-03 | 1982-09-06 | Kurita Water Ind Ltd | Treatment of water contg. fluoride |
JPS6253788A (en) * | 1985-08-30 | 1987-03-09 | Miyama Kk | Treatment of water containing boron fluoride |
JPS62227496A (en) * | 1986-03-31 | 1987-10-06 | Nippon Furitsuto Kk | Method for treating waste water containing borofluoride and salts of fluorine |
JPH01107890A (en) * | 1987-10-19 | 1989-04-25 | Chiyoda Corp | Treatment of effluent water containing fluorine |
JP2000189980A (en) * | 1998-12-29 | 2000-07-11 | Daiseki:Kk | Treatment of waste water |
-
2008
- 2008-03-27 JP JP2008084584A patent/JP4954131B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226759A (en) * | 1975-08-27 | 1977-02-28 | Showa Koji Kk | Method of treating waste water containing borofluoride |
JPS57144086A (en) * | 1981-03-03 | 1982-09-06 | Kurita Water Ind Ltd | Treatment of water contg. fluoride |
JPS6253788A (en) * | 1985-08-30 | 1987-03-09 | Miyama Kk | Treatment of water containing boron fluoride |
JPS62227496A (en) * | 1986-03-31 | 1987-10-06 | Nippon Furitsuto Kk | Method for treating waste water containing borofluoride and salts of fluorine |
JPH01107890A (en) * | 1987-10-19 | 1989-04-25 | Chiyoda Corp | Treatment of effluent water containing fluorine |
JP2000189980A (en) * | 1998-12-29 | 2000-07-11 | Daiseki:Kk | Treatment of waste water |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011218338A (en) * | 2010-04-14 | 2011-11-04 | Nec Facilities Ltd | Method of processing boron-containing drainage |
KR101273168B1 (en) * | 2011-06-21 | 2013-06-17 | 주식회사 이코니 | Treatment process for fluorine compounds containing water |
WO2014132887A1 (en) * | 2013-02-28 | 2014-09-04 | 栗田工業株式会社 | Method and apparatus for treating borofluoride-containing water |
CN105026320A (en) * | 2013-02-28 | 2015-11-04 | 栗田工业株式会社 | Method and apparatus for treating borofluoride-containing water |
WO2016157452A1 (en) * | 2015-03-31 | 2016-10-06 | 住友金属鉱山エンジニアリング株式会社 | Method for treating wastewater, and system for treating wastewater |
JPWO2016157452A1 (en) * | 2015-03-31 | 2018-01-25 | 住友金属鉱山エンジニアリング株式会社 | Wastewater treatment method, wastewater treatment system |
JP2018199097A (en) * | 2017-05-25 | 2018-12-20 | 株式会社 イージーエス | Water treatment method and water treatment apparatus |
JP7089345B2 (en) | 2017-05-25 | 2022-06-22 | 株式会社 イージーエス | Water treatment method and water treatment equipment |
Also Published As
Publication number | Publication date |
---|---|
JP4954131B2 (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102093004B1 (en) | Method for comprehensive recovery of magnesium-containing smelting wastewater | |
WO2012056826A1 (en) | Method for processing toxic matter-containing water and processing device | |
JP4954131B2 (en) | Treatment method of water containing borofluoride | |
WO2018092396A1 (en) | Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions | |
CN107089744A (en) | A kind of method of desulfurization wastewater advanced treating zero-emission | |
CN105129832B (en) | The method that liquid calcium chloride is continuously produced using fluorine-containing by-product waste hydrochloric acid | |
JP4747382B1 (en) | Flue gas purification treatment method | |
JP6269651B2 (en) | Method and apparatus for treating borofluoride-containing water | |
JP5915834B2 (en) | Method for producing purification treatment material | |
RU2557608C1 (en) | Method of recycling spent chrome plating electrolytes | |
Lin et al. | Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation | |
CN104591462A (en) | Fluoride coprecipitation method for treating strong-acidity high-fluorine wastewater | |
JP4863302B2 (en) | Method and apparatus for treating wastewater containing boron | |
JP2007283216A (en) | Boron-containing wastewater treatment method | |
JP5848119B2 (en) | Treatment method for fluorine-containing wastewater | |
TW200305543A (en) | Effluent water treatment method | |
JP2018130717A (en) | Processing method and system for treatment of desulfurization waste water | |
CZ305399B6 (en) | Neutralization process of waste rinsing water of stainless steel pickling plants | |
JP2008200599A (en) | Method for cleaning waste water containing ammonia nitrogen | |
JP4696017B2 (en) | Treatment method for boron-containing wastewater | |
JP2007283217A (en) | Boron-containing wastewater treatment method | |
JP2002346574A (en) | Boron-containing water treatment method | |
JP2002143607A (en) | Water treating flocculant, method for producing the same and method for treating water | |
JP5965164B2 (en) | Cadmium-containing wastewater treatment method | |
JP2003047972A (en) | Method for treating fluorine-containing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4954131 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150323 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |