Nothing Special   »   [go: up one dir, main page]

JP2009231685A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2009231685A
JP2009231685A JP2008077391A JP2008077391A JP2009231685A JP 2009231685 A JP2009231685 A JP 2009231685A JP 2008077391 A JP2008077391 A JP 2008077391A JP 2008077391 A JP2008077391 A JP 2008077391A JP 2009231685 A JP2009231685 A JP 2009231685A
Authority
JP
Japan
Prior art keywords
external connection
connection terminal
semiconductor device
power semiconductor
aluminum wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008077391A
Other languages
Japanese (ja)
Inventor
Toshihiro Matsunaga
俊宏 松永
Yasumi Kamigai
康己 上貝
Yohei Omoto
洋平 大本
Daisuke Echizenya
大介 越前谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008077391A priority Critical patent/JP2009231685A/en
Publication of JP2009231685A publication Critical patent/JP2009231685A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor device capable of improving reliability to power cycle. <P>SOLUTION: This power semiconductor device includes semiconductor elements 2 provided on an insulating substrate 5 on which a wiring pattern 4 is formed, an external connecting terminal 8 for connecting to an external apparatus, and an interconnecting wire for connecting between the semiconductor elements or between the semiconductor element and the wiring pattern. The interconnecting wire and the external connecting terminal are connected via an insulating member 9. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、パワー半導体装置に関する。   The present invention relates to a power semiconductor device.

パワー半導体装置において、半導体素子と主電極等との間の電気配線のために、主にアルミワイヤによるワイヤボンド接合が用いられている。しかしながら、パワー半導体装置が扱う電流が大きい場合には、半導体素子による発熱に加えて、ワイヤ自身にジュール熱が発生する。パワー半導体装置の使用時には、上述の発熱と、パワー半導体装置に設けたヒートシンクによる冷却とが当該パワー半導体装置には繰返し作用する。この熱サイクルを一般的にパワーサイクルと呼ぶ。ここで、アルミワイヤの線膨張係数(α=24.5×10−6/K)と、半導体素子の線膨張係数(α=3.5×10−6/K)との差が大きいため、アルミワイヤと、半導体素子との接合部には、パワーサイクルにより熱応力が繰返し作用することになる。 In a power semiconductor device, wire bond bonding mainly using an aluminum wire is used for electrical wiring between a semiconductor element and a main electrode. However, when the current handled by the power semiconductor device is large, Joule heat is generated in the wire itself in addition to heat generated by the semiconductor element. When the power semiconductor device is used, the above-described heat generation and cooling by a heat sink provided in the power semiconductor device repeatedly act on the power semiconductor device. This thermal cycle is generally called a power cycle. Here, since the difference between the linear expansion coefficient of the aluminum wire (α = 24.5 × 10 −6 / K) and the linear expansion coefficient of the semiconductor element (α = 3.5 × 10 −6 / K) is large, Thermal stress repeatedly acts on the joint between the aluminum wire and the semiconductor element due to the power cycle.

このようなパワーサイクルに対するパワー半導体装置の信頼性を向上させるために、半導体素子の下に、はんだ層を介して高熱伝導性の金属板を設けた構成が提案されている。該構成によれば、半導体素子の横方向にも熱を拡散可能とし、パワー半導体装置の放熱性を高めて、温度上昇を低減することにより熱負荷が低減可能である(例えば特許文献1)。   In order to improve the reliability of the power semiconductor device against such a power cycle, a configuration in which a metal plate having high thermal conductivity is provided under the semiconductor element via a solder layer has been proposed. According to this configuration, heat can be diffused also in the lateral direction of the semiconductor element, and the heat load can be reduced by improving the heat dissipation of the power semiconductor device and reducing the temperature rise (for example, Patent Document 1).

特開平7−142648号公報(図1)Japanese Patent Laid-Open No. 7-142648 (FIG. 1)

上述したパワー半導体装置では、半導体素子の下方向に対する冷却性能を向上させることができ、半導体素子の冷却には効果的である。しかしながら、ジュール発熱によるアルミワイヤ自身の熱は、アルミワイヤが接続された半導体素子を介して除去されることになるので、アルミワイヤ自体に対する効率的な冷却は困難である。したがって、アルミワイヤと半導体素子との接合部には、アルミワイヤの発熱による余分な熱負荷が加わるという問題があった。   In the power semiconductor device described above, the cooling performance in the downward direction of the semiconductor element can be improved, which is effective for cooling the semiconductor element. However, since the heat of the aluminum wire itself due to Joule heat is removed through the semiconductor element to which the aluminum wire is connected, it is difficult to efficiently cool the aluminum wire itself. Therefore, there has been a problem that an extra thermal load is applied to the joint between the aluminum wire and the semiconductor element due to the heat generated by the aluminum wire.

本発明は、このような問題点を解決するためになされたもので、パワーサイクルに対する信頼性を向上させることができるパワー半導体装置を提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a power semiconductor device capable of improving the reliability with respect to the power cycle.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の一態様におけるパワー半導体装置は、絶縁基板の配線パターン上に配置された半導体素子と、外部機器と接続するための外部接続用端子と、上記半導体素子間または上記半導体素子と上記配線パターンとの間を接続する配線用ワイヤとを備え、上記配線用ワイヤと上記外部接続用端子とを絶縁部材を介して接続することを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, a power semiconductor device according to one embodiment of the present invention includes a semiconductor element disposed on a wiring pattern of an insulating substrate, an external connection terminal for connecting to an external device, the semiconductor element, or the semiconductor element and the above. A wiring wire for connecting the wiring pattern to the wiring pattern, wherein the wiring wire and the external connection terminal are connected via an insulating member.

本発明の一態様におけるパワー半導体装置によれば、配線用ワイヤに比べて十分に大きな熱容量を有する外部接続用端子に絶縁部材を介して上記配線用ワイヤを接続させたことにより、上記配線用ワイヤに発生するジュール熱を外部接続用端子へ逃がすことができる。その結果、配線用ワイヤの温度が低下し、配線用ワイヤの発熱による熱負荷が半導体素子及びワイヤ接合部へ伝わりにくくなる。したがって、パワーサイクルによる熱応力を低減することが可能となり、パワー半導体装置の信頼性を向上させる効果を得ることができる。   According to the power semiconductor device of one aspect of the present invention, the wiring wire is connected to the external connection terminal having a sufficiently larger heat capacity than the wiring wire through the insulating member. Joule heat generated in the can be released to the external connection terminal. As a result, the temperature of the wiring wire is lowered, and the thermal load due to the heat generated by the wiring wire is not easily transmitted to the semiconductor element and the wire bonding portion. Therefore, it is possible to reduce the thermal stress due to the power cycle, and the effect of improving the reliability of the power semiconductor device can be obtained.

本発明の実施形態であるパワー半導体装置について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。当該パワー半導体装置は、半導体素子に接続されるアルミワイヤと、アルミワイヤに比べて十分に大きな熱容量を有する外部接続用端子とを、樹脂やセラミック等の絶縁物質を介して接続させたものである。   A power semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. The power semiconductor device is formed by connecting an aluminum wire connected to a semiconductor element and an external connection terminal having a sufficiently large heat capacity as compared with the aluminum wire through an insulating material such as resin or ceramic. .

実施の形態1.
図1Aは、本発明の実施の形態1におけるパワー半導体装置20の一例を示す断面図である。
図1Aに示すように、アルミナ、窒化アルミ、窒化珪素などのセラミックから成り表面及び裏面に銅配線パターン4を形成した絶縁基板5が、半田などに代表されるダイボンド材3にて、放熱用で金属材にてなるベース板6上に取り付けられている。絶縁基板5の表面における銅配線パターン4上には、ダイボンド材3にて半導体素子2が接続されている。又、絶縁基板5とは分離したベース板6上の位置には、ベース板6と電気的に絶縁された状態で、外部接続用端子8が配置されている。
Embodiment 1 FIG.
FIG. 1A is a cross-sectional view showing an example of a power semiconductor device 20 according to Embodiment 1 of the present invention.
As shown in FIG. 1A, an insulating substrate 5 made of a ceramic such as alumina, aluminum nitride, or silicon nitride and having a copper wiring pattern 4 formed on the front surface and back surface thereof is used for heat dissipation by a die bond material 3 typified by solder. It is attached on a base plate 6 made of a metal material. A semiconductor element 2 is connected to the copper wiring pattern 4 on the surface of the insulating substrate 5 by a die bond material 3. Further, an external connection terminal 8 is disposed at a position on the base plate 6 separated from the insulating substrate 5 while being electrically insulated from the base plate 6.

さらに、ベース板6上には、半導体素子2を接続した絶縁基板5及び外部接続用端子8を覆って樹脂材等にてなるケース7が被せられている。ケース7の外面7aには、外部接続用端子8の露出部8aが配置され、露出部8aは、当該パワー半導体装置20以外の外部機器と電気的に接続される。ケース7内では、外部接続用端子8は、半導体素子2の上方を通過して引き回されて露出部8aに至っている。このようなケース7内には、シリコンゲル10が充填されている。   Further, a case 7 made of a resin material or the like is covered on the base plate 6 so as to cover the insulating substrate 5 to which the semiconductor element 2 is connected and the external connection terminals 8. An exposed portion 8 a of the external connection terminal 8 is disposed on the outer surface 7 a of the case 7, and the exposed portion 8 a is electrically connected to an external device other than the power semiconductor device 20. In the case 7, the external connection terminal 8 passes around the semiconductor element 2 and is led to the exposed portion 8 a. Such a case 7 is filled with silicon gel 10.

配線用ワイヤの一例に相当するアルミワイヤ1の一端1aは、半導体素子2の電極と接続され、他端1bは、別の半導体素子2、外部接続用端子8、銅配線パターン4等に接続されている。即ち、アルミワイヤ1の一端1aは、半導体素子2がアルミワイヤ1により電気的接続を行うための一方の箇所に相当する。又、半導体素子2が別の半導体素子2、外部接続用端子8、銅配線パターン4等と電気的接続を行うための他方の箇所を、アルミワイヤ1の他端1bとする。尚、図示するように、外部接続用端子8は、アルミワイヤ1に比べて太く体積も大きいことから、アルミワイヤ1に比して大きな熱容量を有する。又、この大きな熱容量は、アルミワイヤ1に発生するジュール熱を放熱するに十分な熱容量である。   One end 1a of an aluminum wire 1 corresponding to an example of a wiring wire is connected to an electrode of a semiconductor element 2, and the other end 1b is connected to another semiconductor element 2, an external connection terminal 8, a copper wiring pattern 4, and the like. ing. That is, the one end 1 a of the aluminum wire 1 corresponds to one portion where the semiconductor element 2 is electrically connected by the aluminum wire 1. The other part of the aluminum wire 1 for electrical connection between the semiconductor element 2 and another semiconductor element 2, the external connection terminal 8, the copper wiring pattern 4, etc. is defined as the other end 1 b of the aluminum wire 1. As shown in the figure, the external connection terminal 8 is thicker and larger in volume than the aluminum wire 1 and therefore has a larger heat capacity than the aluminum wire 1. Further, this large heat capacity is a heat capacity sufficient to dissipate Joule heat generated in the aluminum wire 1.

パワー半導体装置の多くのタイプにて、半導体素子2間の配線として、例えばワイヤ径が約300〜500μm程度の線形状のアルミ製のワイヤによるワイヤボンディングが用いられていることから、本実施形態でも、配線用ワイヤとしてアルミワイヤ1を例に採った。しかしながら、配線用ワイヤの材質は、アルミニウムに限定するものではなく、電気抵抗の小さい金属なら配線に適している。アルミニウム以外の材料例とし、銅などが挙げられる。また、配線用ワイヤの形状として、線形状の代わりにワイヤ幅が太い板状のワイヤ(リボンワイヤ:幅1.0〜2.5mm程度、板厚0.1〜0.3mm程度)を使用してもよい。リボンワイヤの材質についても、アルミニウムや銅などが使用可能である。また、図1Aでは、図示を簡略化しているが、アルミワイヤ1は、1つの半導体素子2に対して1本ではなく、実際には数本〜数十本のアルミワイヤがボンディングされている。また、半導体素子2と銅配線パターン4などにも配線されている。   In many types of power semiconductor devices, as the wiring between the semiconductor elements 2, for example, wire bonding using a linear aluminum wire having a wire diameter of about 300 to 500 μm is used. The aluminum wire 1 was taken as an example of the wiring wire. However, the material of the wiring wire is not limited to aluminum, and a metal having a low electrical resistance is suitable for wiring. Examples of materials other than aluminum include copper. Also, as the shape of the wiring wire, a plate-like wire having a large wire width (ribbon wire: width of about 1.0 to 2.5 mm, plate thickness of about 0.1 to 0.3 mm) is used instead of the wire shape. May be. As for the material of the ribbon wire, aluminum or copper can be used. In FIG. 1A, although the illustration is simplified, the number of aluminum wires 1 is not one for one semiconductor element 2, but actually several to several tens of aluminum wires are bonded. Moreover, it is wired also to the semiconductor element 2, the copper wiring pattern 4, etc.

ケース7内にて引き回されている外部接続用端子8は、アルミワイヤ1の他端1bと、アルミワイヤ1の一端1aとの間に位置するアルミワイヤ1の放熱部分1cにて、絶縁部材9を介してアルミワイヤ1と接続している。又、絶縁部材9を介してのアルミワイヤ1との接続が容易に行えるように、外部接続用端子8は、絶縁基板5の厚み方向において半導体素子2の上方を通るように配置され、図示するように、ベース板6とは反対側に位置するケース7の上部に外部接続用端子8の露出部8aを配置している。アルミワイヤ1は、半導体素子2の上方を通る外部接続用端子8に接続容易なように、絶縁基板5の厚み方向において凸状に配線される。又、外部接続用端子8は、アルミワイヤ1に比して線径又は線幅がより大きい導電性線材にてなり、絶縁部材9及びアルミワイヤ1との接続部分では、他の部分に比して上記厚み方向に直交する方向に幅広の形状としてもよい。   The external connection terminal 8 routed in the case 7 is an insulating member at a heat radiation portion 1c of the aluminum wire 1 located between the other end 1b of the aluminum wire 1 and one end 1a of the aluminum wire 1. 9 is connected to the aluminum wire 1. In addition, the external connection terminal 8 is disposed so as to pass over the semiconductor element 2 in the thickness direction of the insulating substrate 5 so that the connection with the aluminum wire 1 through the insulating member 9 can be easily performed. As described above, the exposed portion 8 a of the external connection terminal 8 is arranged on the upper portion of the case 7 located on the side opposite to the base plate 6. The aluminum wire 1 is wired in a convex shape in the thickness direction of the insulating substrate 5 so that it can be easily connected to the external connection terminal 8 passing above the semiconductor element 2. The external connection terminal 8 is made of a conductive wire having a larger wire diameter or wire width than the aluminum wire 1, and the connecting portion between the insulating member 9 and the aluminum wire 1 is compared with other portions. The shape may be wide in the direction perpendicular to the thickness direction.

絶縁部材9と、アルミワイヤ1及び外部接続用端子8との接続方法としては、エポキシ樹脂、ポリアミド樹脂、及びポリイミド樹脂などの接着剤を硬化させることで、絶縁部材9を形成して接続する方法が考えられる。   As a method for connecting the insulating member 9 to the aluminum wire 1 and the external connection terminal 8, a method of forming and connecting the insulating member 9 by curing an adhesive such as epoxy resin, polyamide resin, and polyimide resin. Can be considered.

図1Aでは、1本の外部接続用端子8に対して複数本のアルミワイヤ1を接続させた構成を図示している。しかしながら、アルミワイヤ1及び外部接続用端子8は、1つのパワー半導体装置に何本か存在するため、アルミワイヤ1は、特定の外部接続用端子8にのみ接続させるものではない。図1Bに他の接続構造を示すように、アルミワイヤ1と外部接続用端子8との構造に応じて、複数の外部接続用端子8に対してアルミワイヤ1を接続することができる。このとき、一つの半導体素子2に接続されている複数のアルミワイヤ1のそれぞれを絶縁部材9を介して、一つの同じ外部接続用端子8に接続させてもよいし、互いに異なる複数の外部接続用端子8に接続させてもよい。   FIG. 1A shows a configuration in which a plurality of aluminum wires 1 are connected to one external connection terminal 8. However, since several aluminum wires 1 and external connection terminals 8 exist in one power semiconductor device, the aluminum wire 1 is not connected only to a specific external connection terminal 8. As shown in FIG. 1B, the aluminum wire 1 can be connected to a plurality of external connection terminals 8 according to the structure of the aluminum wire 1 and the external connection terminal 8. At this time, each of the plurality of aluminum wires 1 connected to one semiconductor element 2 may be connected to one same external connection terminal 8 through an insulating member 9, or a plurality of different external connections It may be connected to the terminal 8 for use.

このように、アルミワイヤ1の一端1aと他端1bとの間の放熱部分1cを、絶縁部材9を介して外部接続用端子8に接続させることで、アルミワイヤ1よりも熱容量の大きい外部接続用端子8は、アルミワイヤ1自身に発生したジュール熱を吸収、放散することが可能となる。
又、図1A及び図1Bに示すように、半導体素子2と外部接続用端子8とを接続するアルミワイヤ1を、このアルミワイヤ8と接続されている外部接続用端子8とは異なる外部接続用端子に絶縁部材9を介して接続することによって、放熱経路を2倍にすることができ、アルミワイヤ1自身に発生したジュール熱をより多く吸収、放散することが可能となる。
In this way, by connecting the heat radiation portion 1c between the one end 1a and the other end 1b of the aluminum wire 1 to the external connection terminal 8 via the insulating member 9, the external connection having a larger heat capacity than the aluminum wire 1 is achieved. The terminal 8 can absorb and dissipate Joule heat generated in the aluminum wire 1 itself.
Further, as shown in FIGS. 1A and 1B, the aluminum wire 1 for connecting the semiconductor element 2 and the external connection terminal 8 is used for external connection different from the external connection terminal 8 connected to the aluminum wire 8. By connecting to the terminal via the insulating member 9, the heat dissipation path can be doubled, and more Joule heat generated in the aluminum wire 1 itself can be absorbed and dissipated.

尚、絶縁性能を高めるために、本実施形態では、ケース7内に、シリコンゲル10を注入して封止する構造を採る。その他のパワー半導体装置の構造としては、装置全体をモールド樹脂で封止するタイプなどもある。よって、本発明は、アルミワイヤ1と半導体素子2がワイヤボンドにより接続されている場合のパワー半導体装置全てを対象としている。   In order to enhance the insulation performance, the present embodiment adopts a structure in which the silicon gel 10 is injected into the case 7 and sealed. Other power semiconductor device structures include a type in which the entire device is sealed with a mold resin. Therefore, the present invention is intended for all power semiconductor devices when the aluminum wire 1 and the semiconductor element 2 are connected by wire bonding.

以上のように構成されるパワー半導体装置20でも、アルミワイヤ1に電流が流れることで、アルミワイヤ1にはジュール熱が発生する。しかしながら、本実施形態に示す構成を採ることで、ワイヤ1に発生したジュール熱は、アルミワイヤ1の電気的接続箇所に相当する上述の一端1a及び他端1bにおいて半導体素子2等を介して放熱されるが、さらに、一端1a及び他端1b以外の部分であるアルミワイヤ1の放熱部分1cからも直接に外部接続用端子8へ放熱することができる。   Even in the power semiconductor device 20 configured as described above, Joule heat is generated in the aluminum wire 1 when a current flows through the aluminum wire 1. However, by adopting the configuration shown in the present embodiment, Joule heat generated in the wire 1 is dissipated through the semiconductor element 2 or the like at the above-described one end 1a and the other end 1b corresponding to the electrical connection portion of the aluminum wire 1. However, heat can be directly radiated from the heat radiating portion 1c of the aluminum wire 1 other than the one end 1a and the other end 1b to the external connection terminal 8.

ここで外部接続用端子8は、アルミワイヤ1よりも大きな電流を扱うために、アルミワイヤ1に比べ大きな熱容量を有しており、さらに、パワー半導体装置20の外部に延在していることから、パワー半導体装置20の他の内部構造部材よりも冷却され易い状態にある。よって、外部接続用端子8は、アルミワイヤ1よりも温度が低い状態になり、アルミワイヤ1の熱を常に吸収、放熱できる状態になっている。   Here, the external connection terminal 8 has a larger heat capacity than the aluminum wire 1 in order to handle a larger current than the aluminum wire 1, and further extends outside the power semiconductor device 20. The power semiconductor device 20 is more easily cooled than other internal structural members. Therefore, the external connection terminal 8 is in a state where the temperature is lower than that of the aluminum wire 1, and the external connection terminal 8 can always absorb and dissipate the heat of the aluminum wire 1.

従来では上述したように、アルミワイヤ1で発生したジュール熱は、アルミワイヤ1を通じて半導体素子2とアルミワイヤ1との接合部に伝わり、該接合部で発生する熱応力を増加させていた。しかしながら、本実施形態では、上述の冷却効果により、上記接合部へ伝わる熱負荷を減少させ、熱応力を低下させることが可能となる。そのため、パワーサイクルに起因するパワー半導体装置の寿命短縮を防止することができ、パワー半導体装置の長寿命化を図ることができる。   Conventionally, as described above, the Joule heat generated in the aluminum wire 1 is transmitted to the junction between the semiconductor element 2 and the aluminum wire 1 through the aluminum wire 1 and increases the thermal stress generated in the junction. However, in the present embodiment, due to the cooling effect described above, it is possible to reduce the thermal load transmitted to the joint and to reduce the thermal stress. Therefore, it is possible to prevent the life of the power semiconductor device from being shortened due to the power cycle, and to extend the life of the power semiconductor device.

尚、放熱部分1cにおけるアルミワイヤ1と外部接続用端子8との接続は、本実施形態では樹脂製の接着剤によることから、アルミワイヤ1と外部接続用端子8との間は絶縁されており、接続によるショートは防止されている。   In addition, since the connection between the aluminum wire 1 and the external connection terminal 8 in the heat radiation portion 1c is made of a resin adhesive in this embodiment, the aluminum wire 1 and the external connection terminal 8 are insulated. Short circuit due to connection is prevented.

実施の形態2.
上述の実施の形態1では、放熱部分1cにてアルミワイヤ1を外部接続用端子8に接続させるに当たり、絶縁部材9として作用する接着剤を使用した。しかしながら、絶縁部材9の設け方は、これに限定されない。例えば、アルミワイヤ1及び外部接続用端子8のどちらか一方、もしくは両方に、絶縁性を有する樹脂を予めコーティングしておいてもよい。コーティングする樹脂としては、エポキシ樹脂やポリアミド樹脂及びポリイミド樹脂などがある。
Embodiment 2. FIG.
In the above-described first embodiment, the adhesive acting as the insulating member 9 is used when the aluminum wire 1 is connected to the external connection terminal 8 in the heat radiation portion 1c. However, the method of providing the insulating member 9 is not limited to this. For example, one or both of the aluminum wire 1 and the external connection terminal 8 may be previously coated with an insulating resin. Examples of the resin to be coated include an epoxy resin, a polyamide resin, and a polyimide resin.

このような構成によれば、アルミワイヤ1と外部接続用端子8とを絶縁した状態にて、アルミワイヤ1に電流が流れたときにアルミワイヤ1に発生するジュール熱を外部接続用端子8へ放熱することができる。これにより、実施の形態1と同様に、アルミワイヤ1と半導体素子2との間に生じる熱応力を低下させ、パワーサイクルに起因するパワー半導体装置の寿命短縮を防止することができ、パワー半導体装置の長寿命化を図ることができる。   According to such a configuration, Joule heat generated in the aluminum wire 1 when the current flows through the aluminum wire 1 in a state where the aluminum wire 1 and the external connection terminal 8 are insulated is transmitted to the external connection terminal 8. It can dissipate heat. Thereby, as in the first embodiment, the thermal stress generated between the aluminum wire 1 and the semiconductor element 2 can be reduced, and the shortening of the life of the power semiconductor device due to the power cycle can be prevented. It is possible to extend the service life.

実施の形態3.
図2は、本発明の実施の形態3によるパワー半導体装置21における、アルミワイヤ1と外部接続用端子8との接続部分を拡大して図示している。本実施形態のパワー半導体装置21では、上記放熱部分1cに対応して、外部接続用端子8にアルミワイヤ1を押圧する絶縁性を有する弾性部材11を絶縁基板5に立設した構造を有する。絶縁性を有する弾性部材11の材料としては、エポキシ樹脂、ポリイミド樹脂や耐熱シリコーンゴムなどを用いることが好ましい。その他の構成は、上述した実施の形態1及び実施の形態2の構成に同じである。尚、弾性部材11は、絶縁基板5に形成されている銅配線パターン4上に立設してもよい。
Embodiment 3 FIG.
FIG. 2 is an enlarged view of a connection portion between the aluminum wire 1 and the external connection terminal 8 in the power semiconductor device 21 according to the third embodiment of the present invention. The power semiconductor device 21 of the present embodiment has a structure in which an insulating elastic member 11 that presses the aluminum wire 1 against the external connection terminal 8 is erected on the insulating substrate 5 corresponding to the heat radiating portion 1c. As a material of the elastic member 11 having insulating properties, it is preferable to use an epoxy resin, a polyimide resin, a heat resistant silicone rubber, or the like. Other configurations are the same as those of the first and second embodiments described above. The elastic member 11 may be erected on the copper wiring pattern 4 formed on the insulating substrate 5.

実施の形態1では、絶縁部材9と、アルミワイヤ1及び外部接続用端子8とは、化学的な結合により接続する方法を採っているが、本実施形態の構成によれば、弾性部材11を挿入することで発生する圧力により、絶縁部材9を間に挟んだ絶縁状態で、アルミワイヤ1を外部接続用端子8に圧接することができる。即ち、絶縁部材9と、アルミワイヤ1及び外部接続用端子8とは、物理的、機械的に接続される。そのため、絶縁部材9には、例えばアルミナ、窒化アルミニウム、窒化珪素などのセラミック材を用いることができる。また、フィラーなどを加えて熱伝導率を高め、成型された樹脂板を予め絶縁部材9として用いることも可能である。   In the first embodiment, the insulating member 9, the aluminum wire 1 and the external connection terminal 8 are connected by chemical bonding. However, according to the configuration of the present embodiment, the elastic member 11 is With the pressure generated by the insertion, the aluminum wire 1 can be pressed against the external connection terminal 8 in an insulated state with the insulating member 9 interposed therebetween. That is, the insulating member 9, the aluminum wire 1, and the external connection terminal 8 are physically and mechanically connected. Therefore, the insulating member 9 can be made of a ceramic material such as alumina, aluminum nitride, or silicon nitride. Further, it is possible to increase the thermal conductivity by adding a filler or the like, and to use a molded resin plate as the insulating member 9 in advance.

本実施形態の構成により、上述の実施の形態1、2の場合と同様に、アルミワイヤ1に発生するジュール熱を外部接続用端子8へ放熱することができる。さらに、弾性部材11による押圧作用を増すことで、アルミワイヤ1と外部接続用端子8との間の熱抵抗の減少効果を増すことができるため、更なる放熱効果の向上も期待できる。したがって、本実施形態によっても、実施の形態1、2と同様に、アルミワイヤ1と半導体素子2との間に生じる熱応力を低下させ、パワーサイクルに起因するパワー半導体装置の寿命短縮を防止することができ、パワー半導体装置の長寿命化を図ることができる。   With the configuration of the present embodiment, Joule heat generated in the aluminum wire 1 can be radiated to the external connection terminals 8 as in the case of the first and second embodiments. Furthermore, since the effect of reducing the thermal resistance between the aluminum wire 1 and the external connection terminal 8 can be increased by increasing the pressing action by the elastic member 11, further improvement of the heat dissipation effect can be expected. Therefore, also in the present embodiment, as in the first and second embodiments, the thermal stress generated between the aluminum wire 1 and the semiconductor element 2 is reduced, and the life of the power semiconductor device due to the power cycle is prevented from being shortened. Thus, the life of the power semiconductor device can be extended.

但し、弾性部材11の押圧作用により、アルミワイヤ1全体にテンションがかかる状態になると、アルミワイヤ1と半導体素子2の接合部とは別にアルミワイヤ1自体にも負荷がかかることになる。よって、アルミワイヤ1は、適度な余裕を持たせた状態で配線することが望ましい。   However, when the tension is applied to the entire aluminum wire 1 due to the pressing action of the elastic member 11, a load is applied to the aluminum wire 1 itself in addition to the joint portion between the aluminum wire 1 and the semiconductor element 2. Therefore, it is desirable that the aluminum wire 1 be wired with an appropriate margin.

実施の形態4.
図3は、本発明の実施の形態4によるパワー半導体装置22における、アルミワイヤ1と外部接続用端子8との接続部分を拡大して図示している。本実施形態では、アルミワイヤ1と外部接続用端子8との接続箇所において、絶縁部材9とアルミワイヤ1との間に、アルミワイヤ1以上の熱伝導率を有する金属材12を、ヒートスプレッダーとしてさらに設けた。その他の構成は、上述した実施の形態1及び実施の形態2の構成に同じである。
尚、本実施形態では、金属材12は、絶縁部材9により接着されている。ここでの絶縁部材9は、外部接続用端子8及び金属材12を接着するため、エポキシ樹脂やポリアミド樹脂及びポリイミド樹脂などの接着剤が好ましい。また、金属材12としては。アルミニウムや銅などによる。さらに金属材12とアルミワイヤ1との接続には、ワイヤボンディングなどが好ましい。
Embodiment 4 FIG.
FIG. 3 is an enlarged view of a connection portion between the aluminum wire 1 and the external connection terminal 8 in the power semiconductor device 22 according to the fourth embodiment of the present invention. In the present embodiment, a metal material 12 having a thermal conductivity equal to or higher than that of the aluminum wire 1 is used as a heat spreader between the insulating member 9 and the aluminum wire 1 at the connection portion between the aluminum wire 1 and the external connection terminal 8. Further provided. Other configurations are the same as those of the first and second embodiments described above.
In the present embodiment, the metal material 12 is bonded by the insulating member 9. The insulating member 9 here is preferably an adhesive such as an epoxy resin, a polyamide resin, or a polyimide resin in order to bond the external connection terminal 8 and the metal material 12. Also, as the metal material 12. Depending on aluminum or copper. Further, wire bonding or the like is preferable for the connection between the metal material 12 and the aluminum wire 1.

このような構成によれば、ヒートスプレッダーである金属材12による熱の拡散により、アルミワイヤ1の放熱性がさらに高められる。よって、アルミワイヤ1と半導体素子2との間に生じる熱応力を低下させ、パワーサイクルに起因するパワー半導体装置の寿命短縮を防止することができ、パワー半導体装置の長寿命化を図ることができる。   According to such a structure, the heat dissipation of the aluminum wire 1 is further enhanced by the diffusion of heat by the metal material 12 that is a heat spreader. Therefore, the thermal stress generated between the aluminum wire 1 and the semiconductor element 2 can be reduced, the life of the power semiconductor device can be prevented from being shortened due to the power cycle, and the life of the power semiconductor device can be extended. .

実施の形態5.
図4は、本発明の実施の形態5によるパワー半導体装置23における、ケース7の外面7aに配置された外部接続用端子8の露出部8aを拡大して図示している。本実施形態では、露出部8aにヒートシンク13を取り付けた構造を有している。その他の構成は、上述した実施の形態1及び実施の形態2の構成に同じである。
Embodiment 5 FIG.
FIG. 4 is an enlarged view of the exposed portion 8a of the external connection terminal 8 arranged on the outer surface 7a of the case 7 in the power semiconductor device 23 according to the fifth embodiment of the present invention. In the present embodiment, the heat sink 13 is attached to the exposed portion 8a. Other configurations are the same as those of the first and second embodiments described above.

このような構成によれば、外部接続用端子8の冷却能力が向上する。よって、ヒートシンク13を設けない構成に比べて、外部接続用端子8をより低い温度にすることができる。その結果、ケース7内で外部接続用端子8と接続されているアルミワイヤ1も冷却され易くなるため、アルミワイヤ1と半導体素子2との間に生じる熱応力を低下させ、パワーサイクルに起因するパワー半導体装置の寿命短縮を防止することができ、パワー半導体装置の長寿命化を図ることができる。   According to such a configuration, the cooling capacity of the external connection terminal 8 is improved. Therefore, the temperature of the external connection terminal 8 can be lowered as compared with the configuration in which the heat sink 13 is not provided. As a result, since the aluminum wire 1 connected to the external connection terminal 8 in the case 7 is also easily cooled, the thermal stress generated between the aluminum wire 1 and the semiconductor element 2 is reduced, resulting in a power cycle. The life of the power semiconductor device can be prevented from being shortened, and the life of the power semiconductor device can be extended.

尚、上述した各実施形態を適宜組み合わせた構成を採ることも可能である。   It is also possible to adopt a configuration in which the above-described embodiments are appropriately combined.

本発明の実施の形態1及び2によるパワー半導体装置を示す断面図である。It is sectional drawing which shows the power semiconductor device by Embodiment 1 and 2 of this invention. 本発明の実施の形態1及び2によるパワー半導体装置を示す断面図である。It is sectional drawing which shows the power semiconductor device by Embodiment 1 and 2 of this invention. 本発明の実施の形態3によるパワー半導体装置におけるアルミワイヤと外部接続用端子との接続構成を説明するための図である。It is a figure for demonstrating the connection structure of the aluminum wire and external connection terminal in the power semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態4によるパワー半導体装置におけるアルミワイヤと外部接続用端子との接続構成を説明するための図である。It is a figure for demonstrating the connection structure of the aluminum wire and external connection terminal in the power semiconductor device by Embodiment 4 of this invention. 本発明の実施の形態5によるパワー半導体装置における外部接続用端子の構成を示す図である。It is a figure which shows the structure of the terminal for external connection in the power semiconductor device by Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 アルミワイヤ、2 半導体素子、4 銅配線パターン、5 絶縁基板、
6 ベース板、7 ケース、8 外部接続用端子、9 絶縁部材、11 弾性部材、
12 金属材、13 ヒートシンク、20〜23 パワー半導体装置。
1 aluminum wire, 2 semiconductor element, 4 copper wiring pattern, 5 insulating substrate,
6 Base plate, 7 Case, 8 External connection terminal, 9 Insulating member, 11 Elastic member,
12 metal material, 13 heat sink, 20-23 power semiconductor device.

Claims (6)

絶縁基板の配線パターン上に配置された半導体素子と、外部機器と接続するための外部接続用端子と、上記半導体素子間または上記半導体素子と上記配線パターンとの間を接続する配線用ワイヤとを備え、
上記配線用ワイヤと上記外部接続用端子とを絶縁部材を介して接続することを特徴とするパワー半導体装置。
A semiconductor element disposed on the wiring pattern of the insulating substrate; an external connection terminal for connecting to an external device; and a wiring wire for connecting between the semiconductor elements or between the semiconductor element and the wiring pattern. Prepared,
A power semiconductor device, wherein the wiring wire and the external connection terminal are connected via an insulating member.
絶縁基板の配線パターン上に配置された半導体素子と、外部機器と接続するための外部接続用端子と、上記半導体素子間または上記半導体素子と上記配線パターンとの間を接続する配線用ワイヤとを備え、
上記配線用ワイヤと、当該配線用ワイヤが接続される外部接続用端子以外の外部接続用端子とを絶縁部材を介して接続することを特徴とするパワー半導体装置。
A semiconductor element disposed on the wiring pattern of the insulating substrate; an external connection terminal for connecting to an external device; and a wiring wire for connecting between the semiconductor elements or between the semiconductor element and the wiring pattern. Prepared,
A power semiconductor device, wherein the wiring wire and an external connection terminal other than the external connection terminal to which the wiring wire is connected are connected via an insulating member.
上記外部接続用端子の熱容量は、絶縁部材を介して接続される上記配線用ワイヤの熱容量よりも大きいことを特徴とする請求項1または2に記載のパワー半導体装置。   3. The power semiconductor device according to claim 1, wherein a heat capacity of the external connection terminal is larger than a heat capacity of the wiring wire connected through an insulating member. 上記絶縁基板に立設され、上記外部接続用端子に上記配線用ワイヤを押圧する弾性部材をさらに備えたことを特徴とする請求項1から3のいずれか1項に記載のパワー半導体装置。   4. The power semiconductor device according to claim 1, further comprising an elastic member that is erected on the insulating substrate and that presses the wiring wire to the external connection terminal. 5. 上記配線用ワイヤと上記外部接続用端子との接触箇所において、上記絶縁部材と上記配線用ワイヤとの間に、上記配線用ワイヤの熱伝導率以上の熱伝導率を有する金属材をさらに設けたことを特徴とする請求項1から4のいずれか1項に記載のパワー半導体装置。   A metal material having a thermal conductivity equal to or higher than the thermal conductivity of the wiring wire is further provided between the insulating member and the wiring wire at the contact point between the wiring wire and the external connection terminal. The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device. 上記外部接続用端子は、当該パワー半導体装置の外面に露出した露出部を有するとともに、該露出部にヒートシンクを設けたことを特徴とする請求項1から5のいずれか1項に記載のパワー半導体装置。   6. The power semiconductor according to claim 1, wherein the external connection terminal has an exposed portion exposed on an outer surface of the power semiconductor device, and a heat sink is provided in the exposed portion. apparatus.
JP2008077391A 2008-03-25 2008-03-25 Power semiconductor device Pending JP2009231685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077391A JP2009231685A (en) 2008-03-25 2008-03-25 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077391A JP2009231685A (en) 2008-03-25 2008-03-25 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2009231685A true JP2009231685A (en) 2009-10-08

Family

ID=41246731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077391A Pending JP2009231685A (en) 2008-03-25 2008-03-25 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2009231685A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050389A1 (en) * 2012-09-27 2014-04-03 富士電機株式会社 Power semiconductor module
WO2015079600A1 (en) * 2013-11-26 2015-06-04 三菱電機株式会社 Power module and power-module manufacturing method
EP3863045A1 (en) * 2020-02-04 2021-08-11 Infineon Technologies AG Power semiconductor module arrangement and method for producing the same
WO2023024450A1 (en) * 2021-08-23 2023-03-02 无锡利普思半导体有限公司 Internal connection copper sheet of power module and manufacturing method therefor, and power semiconductor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050389A1 (en) * 2012-09-27 2014-04-03 富士電機株式会社 Power semiconductor module
JP5925328B2 (en) * 2012-09-27 2016-05-25 富士電機株式会社 Power semiconductor module
WO2015079600A1 (en) * 2013-11-26 2015-06-04 三菱電機株式会社 Power module and power-module manufacturing method
JPWO2015079600A1 (en) * 2013-11-26 2017-03-16 三菱電機株式会社 Power module
US9673118B2 (en) 2013-11-26 2017-06-06 Mitsubishi Electric Corporation Power module and method of manufacturing power module
EP3863045A1 (en) * 2020-02-04 2021-08-11 Infineon Technologies AG Power semiconductor module arrangement and method for producing the same
WO2023024450A1 (en) * 2021-08-23 2023-03-02 无锡利普思半导体有限公司 Internal connection copper sheet of power module and manufacturing method therefor, and power semiconductor module

Similar Documents

Publication Publication Date Title
JP3740117B2 (en) Power semiconductor device
US9171773B2 (en) Semiconductor device
KR100723144B1 (en) Light emitting diode package
JP4262453B2 (en) Power semiconductor device
KR101388737B1 (en) Semiconductor package, semiconductor module, and mounting structure thereof
JP2008060172A (en) Semiconductor device
WO2016174899A1 (en) Semiconductor device
JP2007184315A (en) Resin-sealed power semiconductor module
JP2007305702A (en) Semiconductor device and its manufacturing method
JPWO2017208802A1 (en) Semiconductor device
JP4146888B2 (en) Semiconductor module and method for manufacturing semiconductor module
WO2019038876A1 (en) Semiconductor device
JP2009231685A (en) Power semiconductor device
JP6248803B2 (en) Power semiconductor module
JP4164874B2 (en) Semiconductor device
JP2010177619A (en) Semiconductor module
JP4375299B2 (en) Power semiconductor device
JP6021745B2 (en) Cooling member and semiconductor device
JP5840102B2 (en) Power semiconductor device
JP2010021410A (en) Thermo-module
JP4135101B2 (en) Semiconductor device
JP2008211168A (en) Semiconductor device and semiconductor module
JP2006294729A (en) Semiconductor device
JP2001332664A (en) Semiconductor device and manufacturing method thereof
JP5682511B2 (en) Semiconductor module