Nothing Special   »   [go: up one dir, main page]

JP2009229276A - Method for analyzing image for cell observation, image processing program and image processor - Google Patents

Method for analyzing image for cell observation, image processing program and image processor Download PDF

Info

Publication number
JP2009229276A
JP2009229276A JP2008075670A JP2008075670A JP2009229276A JP 2009229276 A JP2009229276 A JP 2009229276A JP 2008075670 A JP2008075670 A JP 2008075670A JP 2008075670 A JP2008075670 A JP 2008075670A JP 2009229276 A JP2009229276 A JP 2009229276A
Authority
JP
Japan
Prior art keywords
cell
image
observation
cells
statistic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008075670A
Other languages
Japanese (ja)
Inventor
Masabumi Mimura
正文 三村
Hiroshi Ito
啓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008075670A priority Critical patent/JP2009229276A/en
Priority to EP09725736A priority patent/EP2270198A4/en
Priority to PCT/JP2009/054758 priority patent/WO2009119330A1/en
Priority to CN2009801014189A priority patent/CN101903532A/en
Publication of JP2009229276A publication Critical patent/JP2009229276A/en
Priority to US12/923,514 priority patent/US9080935B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means capable of quantitatively grasping the motion state of a cell. <P>SOLUTION: An image processing program of a cell observation image includes: steps (S40 and S45) for acquiring a first image, which is photographed by an imaging device and contains a plurality of cells in an observation region, and the second image of the observation region photographed by the imaging device after a predetermined time is elapsed from the photographing time of the first image; the step (S30) for selecting one cell as a cell of interest from a plurality of the cells contained in the first image; the step (S35) for indicating the cell positioned in the periphery of the cell of interest as a peripheral cell; the step (S50) for calculating the speed statistical values of the peripheral cell to the cell of interest on the basis of the values of the relative movements of the cell of interest and the peripheral cells in the first and second images; and the step (S55) for outputting the calculated statistical value of the speed of the peripheral cell to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、所定時間ごとに細胞観察を行って取得した画像から細胞の運動状態を解析する細胞観察の画像処理手段に関するものである。   The present invention relates to an image processing means for cell observation that analyzes a movement state of a cell from an image obtained by performing cell observation every predetermined time.

細胞運動の基本的な情報として細胞分裂がある。一般的に細胞分裂と足場の形成には関連があるとされており、単一で存在する細胞よりも寄り集まった細胞集団の方が正常な増殖速度を維持できる。一方、細胞によってはPDGF(血小板由来増殖因子)のような成長因子を分泌し他集団の増殖を制御することもある(例えば、非特許文献1を参照)。この様に細胞増殖は社会的相互作用によって制御されている。   Cell division is basic information on cell movement. In general, cell division and the formation of a scaffold are considered to be related to each other, and a clustered cell population can maintain a normal growth rate rather than a single existing cell. On the other hand, some cells secrete growth factors such as PDGF (platelet-derived growth factor) to control proliferation of other populations (see, for example, Non-Patent Document 1). Thus, cell proliferation is controlled by social interaction.

従来では、上記のような細胞の増殖や抑制などの状況を、一定時間毎に顕微観察を行って顕微観察像を撮影し、撮影された多数の顕微観察画像を観察して判定していた。例えば、細胞観察する上で細胞同士が接着し合いコロニー化する状況を、細胞の挙動による単独からコロニーへの変化として二値の観察を行っていた。
ブルース・アルバート(Bruce Albert)他著、中村桂子監訳、松原謙一監訳、「細胞の分子生物学(Molecular biology of the Cell:米国)」、第2版、東京ニュートンプレス、1993年11月、p.748〜749,p.1188〜1189
Conventionally, conditions such as cell proliferation and suppression as described above have been determined by performing microscopic observations at regular time intervals, photographing microscopic observation images, and observing a number of microscopic observation images. For example, when observing cells, the situation where cells adhere and colonize is observed as a binary change from single to colony due to cell behavior.
Bruce Albert et al., Translated by Keiko Nakamura and Kenichi Matsubara, “Molecular biology of the Cell (USA)”, 2nd edition, Tokyo Newton Press, November 1993, p. 748-749, p. 1188-1189

上記のように、従来の観察手法で把握される細胞の挙動は二値の変化にとどまり、細胞が集合しコロニー化するときの時系列変化や、細胞の増殖が抑制されて縮退してゆくときの時系列変化、細胞が離散してゆくときの時系列変化等について、「変化の定量化」が必要となった場合の解析手法が未解決であった。   As described above, the behavior of cells grasped by conventional observation methods is only a binary change, when time series changes when cells gather and colonize, and when cell growth is suppressed and degenerates The analysis method when “quantification of change” is necessary for the time series change of the time series and the time series change when the cells become discrete has not been solved.

また、一定時間ごとの顕微観察による判定では、撮影された膨大な顕微観察画像に基づいて判定する必要があった。そのため、多数のパラメータを僅かずつ変化させ、組み合わせごとに細胞の挙動を観察する創薬のような技術分野において、挙動解析に多大な時間を要しており、研究者の健康衛生を確保する上でも課題として指摘されていた。さらに、薬剤の作用には、特定の細胞の細胞死を引き起こすものと増殖を阻害するものがある。これまで、細胞増殖を阻害する薬剤の評価は、一般的には細胞分裂アッセイ試薬を用いて行われており、単一種を培養する環境下でないと他種細胞の分裂を含んだ値しか出せなかった。しかし、実際には他種細胞との社会的作用により制御されている細胞もあり、これらの細胞についての評価が正確性の面で課題とされていた。   Further, in the determination by microscopic observation at regular time intervals, it is necessary to make a determination based on a large number of microscopic observation images taken. For this reason, in a technical field such as drug discovery in which many parameters are changed little by little and the behavior of cells is observed for each combination, it takes a lot of time to analyze the behavior. But it was pointed out as an issue. In addition, the action of drugs includes those that cause cell death of certain cells and those that inhibit proliferation. So far, drugs that inhibit cell proliferation have been generally evaluated using cell division assay reagents, and only values that include the division of other types of cells can be obtained only in an environment where single species are cultured. It was. However, there are actually some cells that are controlled by social action with other types of cells, and the evaluation of these cells has been an issue in terms of accuracy.

本発明は、上記課題に鑑みてなされたものであり、細胞の運動状態を定量的に把握する手段を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the means to grasp | ascertain the movement state of a cell quantitatively.

本発明を例示する第1の態様に従えば、撮像装置により撮影され観察領域内に複数の細胞を含む第1画像及び第1画像よりも所定時間前に撮像装置により撮影された前記観察領域の第2画像を取得し、第1画像に含まれる複数の細胞から一の細胞を選択して注目細胞とし、注目細胞の周辺に位置する細胞を周辺細胞として、第1画像及び第2画像における注目細胞に対する各周辺細胞の相対移動量に基づいて注目細胞に対する周辺細胞の速度の統計量(例えば、実施形態における引力斥力速度、引力斥力量)を算出して、注目細胞に関する各周辺細胞の相互作用の状態を判断可能に構成したことを特徴とする細胞観察の画像解析方法が提供される。   According to the first aspect exemplifying the present invention, the first image including a plurality of cells captured in the observation area and the observation area captured by the imaging apparatus a predetermined time before the first image is captured. The second image is acquired, one cell is selected from a plurality of cells included in the first image as a target cell, and a cell located around the target cell is used as a peripheral cell, and attention is paid in the first image and the second image. Based on the relative movement amount of each peripheral cell with respect to the cell, the statistic of the velocity of the peripheral cell with respect to the cell of interest (for example, the attractive repulsion rate and the attractive repulsion amount in the embodiment) is calculated, and the interaction of each peripheral cell with respect to the target cell An image analysis method for cell observation is provided, which is configured to be able to determine the state of the cell.

本発明を例示する第2の態様に従えば、撮像装置により撮影され観察領域内に複数の細胞を含む第1画像及び第1画像よりも所定時間前に撮像装置により撮影された前記観察領域の第2画像を取得するステップと、第1画像に含まれる複数の細胞から一の細胞を注目細胞として選択するステップと、注目細胞の周辺に位置する細胞を周辺細胞として指定するステップと、第1画像及び第2画像における注目細胞と周辺細胞の相対移動量に基づいて注目細胞に対する周辺細胞の速度の統計量(例えば、実施形態における引力斥力速度、引力斥力量)を算出するステップと、算出された各周辺細胞の速度の統計量を外部に出力するステップとを備え、注目細胞に関する各周辺細胞の相互作用の状態を判断可能に構成したことを特徴とする細胞観察の画像処理プログラムが提供される。   According to the second aspect illustrating the present invention, the first image captured by the imaging device and including a plurality of cells in the observation region, and the observation region captured by the imaging device a predetermined time before the first image. Obtaining a second image; selecting a cell as a target cell from a plurality of cells included in the first image; designating a cell located around the target cell as a peripheral cell; Calculating a statistic of the velocity of the peripheral cell with respect to the target cell based on the relative movement amount of the target cell and the peripheral cell in the image and the second image (for example, attractive repulsion speed, attractive repulsion amount in the embodiment); And outputting the statistics of the velocity of each peripheral cell to the outside, and the cell observation characterized in that the state of interaction of each peripheral cell with respect to the cell of interest can be determined The image processing program is provided.

本発明を例示する第3の態様に従えば、細胞を撮影する撮像装置と、撮像装置により撮影された第1画像及び第1画像よりも所定時間前に撮像装置により撮影された第2画像を記憶する画像記憶部と、第1画像及び第2画像に基づいて観察領域内に位置する複数の細胞間の相互作用の状態を解析する画像解析部と、画像解析部による解析データを出力する出力部とを備え、画像解析部において、第1画像の観察視野内に含まれる複数の細胞から選択された一の注目細胞及び注目細胞の周辺に位置する周辺細胞について、第1画像及び第2画像における注目細胞と周辺細胞の相対移動量に基づいて注目細胞に対する周辺細胞の速度の統計量(例えば、実施形態における引力斥力速度、引力斥力量)を算出して、画像解析部において算出された速度の統計量を、出力部から出力させるように構成したことを特徴とする細胞観察の画像処理装置が提供される。   According to the third aspect exemplifying the present invention, an imaging device that images a cell, a first image that is captured by the imaging device, and a second image that is captured by the imaging device a predetermined time before the first image are obtained. An image storage unit for storing, an image analysis unit for analyzing the state of interaction between a plurality of cells located in the observation region based on the first image and the second image, and an output for outputting analysis data by the image analysis unit A first image and a second image of a target cell selected from a plurality of cells included in the observation field of the first image and a peripheral cell located around the target cell in the image analysis unit. Based on the relative amount of movement of the attention cell and the surrounding cells in the image, the statistic of the speed of the surrounding cells with respect to the attention cell (for example, the attractive repulsion speed, the attractive repulsion amount in the embodiment) is calculated, and the speed calculated in the image analysis unit The statistics, the image processing apparatus of cell observation, characterized by being configured so as to output from the output section is provided.

上記のような細胞観察の画像解析方法、画像処理プログラム、画像処理装置によれば、細胞の運動状態を定量的に把握する手段を提供することができる。   According to the cell observation image analysis method, the image processing program, and the image processing apparatus as described above, it is possible to provide means for quantitatively grasping the movement state of the cells.

以下、本発明の実施形態の具体的な説明に先立って、本実施形態を構成する基本原理について説明する。本実施形態は、社会的相互作用の一つである細胞間の引力・斥力を定量化することにより細胞状態を推定する新たな特徴量を提示するものである。   Prior to specific description of the embodiment of the present invention, the basic principle constituting this embodiment will be described below. The present embodiment presents a new feature amount for estimating a cell state by quantifying the attractive force / repulsive force between cells, which is one of social interactions.

図2は、一つの細胞(注目細胞)Ciと、その周辺の他の細胞(周辺細胞)Cjをモデル化して示す運動解析モデルの概念図である。細胞の時系列画像に対して、ある時刻tの画像における注目細胞Ciと周辺細胞Cjの面積および位置(細胞の領域に対する重心や細胞の核の位置)と、その前の時刻t−1の画像における同様の細胞の面積および位置を画像計測によって検出する。そして、注目細胞Ciについて、時刻t−1における両細胞間の距離dj、互いの細胞を結ぶ線分Lを基準として注目細胞側から移動方向を見たときの角度θj、及び時刻t−1から時刻tでの周辺細胞の移動量(注目細胞Ciに対する周辺細胞Cjの相対移動量)vjを算出する。このとき、注目細胞Ciの持つ周辺細胞Cjへの引力斥力速度Vijは、移動量vjを使って、
となる。ただし、距離djが離れている場合については信頼性を考慮して重みづけをすることを考え、その重み関数をW(dj)とおくと、距離の重み関数を考慮した引力斥力速度は
となる。周辺細胞がM個であれば引力斥力速度の総和(以下、「引力斥力量」という)Vi
と表される。この引力斥力量Viを、注目細胞Ciにおけるi=1,...,Nとして画像内のすべての細胞について総和した統計量(特許請求の範囲における総合速度統計量、以下、「総引力斥力量」という)
と計算する。
2, and one cell (target cell) C i, is a conceptual diagram of a motion analysis model illustrating a modeled other cells (peripheral cells) C j of its periphery. With respect to the time-series images of cells, the areas and positions of the cell of interest C i and the surrounding cells C j in the image at a certain time t (the center of gravity with respect to the cell region and the position of the cell nucleus), and the previous time t−1 The area and position of the same cell in the image of (2) is detected by image measurement. For the cell of interest C i , the distance d j between the cells at time t−1, the angle θ j when the moving direction is viewed from the cell of interest with reference to the line segment L connecting the cells, and time t The amount of movement of the surrounding cells at time t from −1 (the amount of relative movement of the surrounding cells C j with respect to the cell of interest C i ) v j is calculated. At this time, the attractive repulsion velocity V ij to the peripheral cell C j of the cell of interest C i is calculated using the movement amount v j ,
It becomes. However, when the distance d j is far away, considering weighting in consideration of reliability, if the weight function is W (d j ), the attractive repulsion speed considering the distance weight function is
It becomes. If the surrounding cells is a M-number of attraction repulsion rate sum (hereinafter referred to as "attraction repulsion amount") V i is
It is expressed. A statistic obtained by summing up the attractive repulsive force V i for all cells in the image as i = 1, ..., N in the cell of interest C i (the total velocity statistic in the claims, hereinafter referred to as “total attractive force”). Called repulsive force)
And calculate.

引力斥力速度は、正負の符号が角度θjによって変化し、引力と斥力とで符号が反転する。従って、細胞同士に引力が大きく生じている場合は総引力斥力量Vallが正の大きい値を、斥力が大きく生じている場合は総引力斥力量Vallが負の大きい値となって示される。従って、細胞の観察過程において時刻t−1と時刻tの画像を解析して観察領域内の細胞の総引力斥力量を算出することにより、細胞の運動状態を定量的に把握することが可能となる。なお、距離djに応じた重み付けW(dj)については、例えば1/djなどの重み付けの他、二次の重み付けまたはガウシアンなど様々な重み付けが考えられる。これらは細胞同士の挙動を観察した上で決定することが望ましい。 The sign of the attractive force repulsion speed changes depending on the angle θ j , and the sign is reversed between the attractive force and the repulsive force. Accordingly, when the attractive force is generated between the cells, the total attractive force repulsion amount V all is a positive large value, and when the repulsive force is large, the total attractive repulsion amount V all is a negative large value. . Therefore, by analyzing the images at time t-1 and time t in the cell observation process and calculating the total attractive force repulsion amount of the cells in the observation region, it is possible to quantitatively grasp the movement state of the cells. Become. For the weighting W (d j ) corresponding to the distance d j , various weights such as secondary weighting or Gaussian can be considered in addition to weighting such as 1 / d j . These are preferably determined after observing the behavior between cells.

以上では画像全体の細胞の引力、斥力を見てきたが、細胞個々の平均的な値
や、最大値、最小値、さらにはヒストグラムなども、細胞の運動状態を定量的に表すわかりやすい指標となる。従って、このような基本原理に基づいて時系列画像を解析することにより、細胞観察する過程において、細胞同士に引力または斥力が働いていることの時系列変化を観察することが可能となる。
In the above, we have seen the attraction and repulsion of cells throughout the image.
Also, the maximum value, minimum value, and histogram are also easy-to-understand indicators that quantitatively represent the movement state of cells. Therefore, by analyzing a time-series image based on such a basic principle, it becomes possible to observe a time-series change that an attractive force or a repulsive force is acting between cells in the cell observation process.

次に、本発明を実施するための形態について、図面を参照しながら説明する。本実施形態の細胞観察の画像処理装置を適用したシステムの一例として、培養観察システムの概要構成図及びブロック図を、それぞれ図3及び図4に示す。   Next, modes for carrying out the present invention will be described with reference to the drawings. As an example of a system to which the image processing apparatus for cell observation of the present embodiment is applied, a schematic configuration diagram and a block diagram of a culture observation system are shown in FIGS. 3 and 4, respectively.

この培養観察システムBSは、大別的には、筐体1の上部に設けられた培養室2と、複数の培養容器10を収容保持する棚状のストッカー3と、培養容器10内の試料を観察する観察ユニット5と、培養容器10をストッカー3と観察ユニット5との間で搬送する搬送ユニット4と、システムの作動を制御する制御ユニット6と、画像表示装置を備えた操作盤7などから構成される。   This culture observation system BS is broadly divided into a culture chamber 2 provided at the top of the housing 1, a shelf-like stocker 3 that accommodates and holds a plurality of culture containers 10, and a sample in the culture container 10. From an observation unit 5 for observation, a transport unit 4 for transporting the culture vessel 10 between the stocker 3 and the observation unit 5, a control unit 6 for controlling the operation of the system, an operation panel 7 equipped with an image display device, etc. Composed.

培養室2は、培養する細胞の種別や目的等に応じた培養環境を形成し及び維持する部屋であり、環境変化やコンタミネーションを防止するためサンプル投入後は密閉状態に保持される。培養室2に付随して、培養室内の温度を昇温・降温させる温度調整装置21、湿度を調整する加湿器22、CO2ガスやN2ガス等のガスを供給するガス供給装置23、培養室2全体の環境を均一化させるための循環ファン24、培養室2の温度や湿度等を検出する環境センサ25などが設けられている。各機器の作動は制御ユニット6により制御され、培養室2の温度や湿度、二酸化炭素濃度等により規定される培養環境が、操作盤7において設定された培養条件に合致した状態に維持される。 The culture room 2 is a room for forming and maintaining a culture environment according to the type and purpose of the cells to be cultured, and is kept sealed after the sample is charged in order to prevent environmental changes and contamination. Along with the culture chamber 2, a temperature adjustment device 21 for raising and lowering the temperature in the culture chamber, a humidifier 22 for adjusting the humidity, a gas supply device 23 for supplying a gas such as CO 2 gas and N 2 gas, and the culture A circulation fan 24 for making the environment of the entire chamber 2 uniform, an environmental sensor 25 for detecting the temperature, humidity and the like of the culture chamber 2 are provided. The operation of each device is controlled by the control unit 6, and the culture environment defined by the temperature, humidity, carbon dioxide concentration, etc. of the culture chamber 2 is maintained in a state that matches the culture conditions set on the operation panel 7.

ストッカー3は、図3における紙面直行の前後方向、及び上下方向にそれぞれ複数に仕切られた棚状に形成されている。各棚にはそれぞれ固有の番地が設定されており、例えば前後方向をA〜C列、上下方向を1〜7段とした場合に、A列5段の棚がA−5のように設定される。   The stocker 3 is formed in a shelf shape that is partitioned into a plurality of parts in the front-rear direction and the vertical direction in FIG. A unique address is set for each shelf. For example, when the front-rear direction is A to C rows and the vertical direction is 1 to 7 rows, the A-row 5 rows shelf is set as A-5. The

培養容器10は、フラスコやディッシュ、ウェルプレートなどの種類、丸型や角型などの形態、及びサイズがあり、培養する細胞の種別や目的に応じて適宜なものを選択し使用することができる。本実施形態ではディッシュを用いた構成を例示している。細胞などの試料は、フェノールレッドなどのpH指示薬が入った液体培地とともに培養容器10に注入される。培養容器10にはコード番号が付与され、ストッカー3の指定番地に対応づけて収容される。なお、培養容器10には、容器の種類や形態等に応じて形成された搬送用の容器ホルダが装着された状態で各棚に収容保持される。   The culture vessel 10 has a type such as a flask, a dish, and a well plate, a form such as a round shape and a square shape, and a size, and an appropriate one can be selected and used according to the type and purpose of the cell to be cultured. . In the present embodiment, a configuration using a dish is illustrated. Samples such as cells are injected into the culture vessel 10 together with a liquid medium containing a pH indicator such as phenol red. The culture container 10 is assigned a code number and is stored in association with the designated address of the stocker 3. The culture container 10 is housed and held on each shelf in a state where a container holder for transportation formed according to the type and form of the container is mounted.

搬送ユニット4は、培養室2の内部に上下方向に移動可能に設けられてZ軸駆動機構により昇降されるZステージ41、Zステージ41に前後方向に移動可能に取り付けられてY軸駆動機構により前後移動されるYステージ42、Yステージ42に左右方向に移動可能に取り付けられてX軸駆動機構により左右移動されるXステージ43などからなり、Yステージに対して左右移動されるXステージ43の先端側に、培養容器10を持ちあげ支持する支持アーム45が設けられている。搬送ユニット4は、支持アーム45がストッカー3の全棚と観察ユニット5の試料台15との間を移動可能な移動範囲を有して構成される。X軸駆動機構、Y軸駆動機構、Z軸駆動機構は、例えばボールネジとエンコーダ付きのサーボモータにより構成され、その作動が制御ユニット6により制御される。   The transfer unit 4 is provided inside the culture chamber 2 so as to be movable in the vertical direction and is moved up and down by the Z-axis drive mechanism. The transfer unit 4 is attached to the Z stage 41 so as to be movable in the front-rear direction and is moved by the Y-axis drive mechanism. The Y stage 42 that is moved back and forth, the X stage 43 that is attached to the Y stage 42 so as to be movable in the left-right direction and is moved left and right by the X-axis drive mechanism, etc. A support arm 45 for lifting and supporting the culture vessel 10 is provided on the distal end side. The transport unit 4 has a moving range in which the support arm 45 can move between the entire shelf of the stocker 3 and the sample table 15 of the observation unit 5. The X-axis drive mechanism, the Y-axis drive mechanism, and the Z-axis drive mechanism are configured by, for example, a servo motor with a ball screw and an encoder, and the operation thereof is controlled by the control unit 6.

観察ユニット5は、第1照明部51、第2照明部52及び第3照明部53と、試料のマクロ観察を行うマクロ観察系54、試料のミクロ観察を行う顕微観察系55、及び画像処理装置100などから構成される。試料台15は透光性を有する材質で構成されるとともに、顕微観察系55の観察領域に透明な窓部16が設けられている。   The observation unit 5 includes a first illumination unit 51, a second illumination unit 52, and a third illumination unit 53, a macro observation system 54 that performs macro observation of the sample, a micro observation system 55 that performs micro observation of the sample, and an image processing apparatus. 100 or the like. The sample stage 15 is made of a material having translucency, and a transparent window portion 16 is provided in the observation region of the microscopic observation system 55.

第1照明部51は、下部フレーム1b側に設けられた面発光の光源からなり、試料台15の下側から培養容器10全体をバックライト照明する。第2照明部52は、LED等の光源と、位相リングやコンデンサレンズ等からなる照明光学系とを有して培養室2に設けられており、試料台15の上方から顕微観察系5の光軸に沿って培養容器中の試料を照明する。第3照明部53は、それぞれ落射照明観察や蛍光観察に好適な波長の光を出射する複数のLEDや水銀ランプ等の光源と、各光源から出射された光を顕微観察系55の光軸に重畳させるビームスプリッタや蛍光フィルタ等からなる照明光学系とを有して、培養室2の下側に位置する下部フレーム1b内に配設されており、試料台15の下方から顕微観察系5の光軸に沿って培養容器中の試料を照明する。   The first illumination unit 51 is a surface-emitting light source provided on the lower frame 1 b side, and backlight-illuminates the entire culture vessel 10 from the lower side of the sample stage 15. The second illumination unit 52 includes a light source such as an LED and an illumination optical system including a phase ring, a condenser lens, and the like. The second illumination unit 52 is provided in the culture chamber 2 and receives light from the microscope observation system 5 from above the sample stage 15. Illuminate the sample in the culture vessel along the axis. The third illumination unit 53 includes a plurality of light sources such as LEDs and mercury lamps that emit light having a wavelength suitable for epi-illumination observation and fluorescence observation, and the light emitted from each light source as an optical axis of the microscopic observation system 55. And an illumination optical system composed of a beam splitter, a fluorescent filter, and the like to be superposed, disposed in the lower frame 1b located on the lower side of the culture chamber 2, and from the lower side of the sample stage 15 to the microscopic observation system 5. Illuminate the sample in the culture vessel along the optical axis.

マクロ観察系54は、観察光学系54aと観察光学系により結像された試料の像を撮影するCCDカメラ等の撮像装置54cとを有し、第1照明部51の上方に位置して培養室2内に設けられている。マクロ観察系54は、第1照明部51によりバックライト照明された培養容器10の上方からの全体観察画像(マクロ像)を撮影する。   The macro observation system 54 includes an observation optical system 54a and an imaging device 54c such as a CCD camera that takes an image of the sample imaged by the observation optical system. The macro observation system 54 is located above the first illumination unit 51 and is a culture chamber. 2 is provided. The macro observation system 54 captures a whole observation image (macro image) from above the culture vessel 10 that is backlit by the first illumination unit 51.

顕微観察系55は、対物レンズや中間変倍レンズ、蛍光フィルタ等からなる観察光学系55aと、観察光学系55aにより結像された試料の像を撮影する冷却CCDカメラ等の撮像装置55cとを有し、下部フレーム1bの内部に配設されている。対物レンズ及び中間変倍レンズは、それぞれ複数設けられるとともに、詳細図示を省略するレボルバやスライダなどの変位機構を用いて複数倍率に設定可能に構成されており、初期選択のレンズ設定に応じて、例えば2倍〜80倍等の範囲で変倍可能になっている。顕微観察系55は、第2照明部52により照明されて細胞を透過した透過光、若しくは第3照明部53により照明されて細胞により反射された反射光、または第3照明部53により照明されて細胞が発する蛍光、を顕微鏡観察した顕微観察像(ミクロ像)を撮影する。   The microscopic observation system 55 includes an observation optical system 55a composed of an objective lens, an intermediate zoom lens, a fluorescent filter, and the like, and an imaging device 55c such as a cooled CCD camera that takes an image of a sample imaged by the observation optical system 55a. And disposed inside the lower frame 1b. A plurality of objective lenses and intermediate zoom lenses are provided, and are configured to be set to a plurality of magnifications using a displacement mechanism such as a revolver or a slider (not shown in detail). For example, zooming is possible in the range of 2 to 80 times. The microscopic observation system 55 is transmitted light that has been illuminated by the second illumination unit 52 and transmitted through the cell, reflected light that has been illuminated by the third illumination unit 53 and reflected by the cell, or illuminated by the third illumination unit 53. A microscopic image (micro image) obtained by microscopic observation of fluorescence emitted by the cells is taken.

画像処理装置100は、マクロ観察系の撮像装置54c及び顕微観察系の撮像装置55cから入力された信号をA/D変換するとともに、各種の画像処理を施して全体観察画像または顕微観察画像の画像データを生成する。また、画像処理装置100は、これらの観察画像の画像データに画像解析を施し、タイムラプス画像の生成や細胞の移動量算出、細胞の運動状態の解析等を行う。画像処理装置100は、具体的には、次述する制御装置6のROMに記憶された画像処理プログラムが実行されることにより構築される。なお、画像処理装置100については、後に詳述する。   The image processing apparatus 100 performs A / D conversion on signals input from the macro observation system imaging device 54c and the micro observation system imaging device 55c, and performs various image processing to generate an image of the entire observation image or the micro observation image. Generate data. Further, the image processing apparatus 100 performs image analysis on the image data of these observation images, and performs generation of a time-lapse image, calculation of the amount of cell movement, analysis of the movement state of the cell, and the like. Specifically, the image processing device 100 is constructed by executing an image processing program stored in the ROM of the control device 6 described below. The image processing apparatus 100 will be described in detail later.

制御ユニット6は、CPU61と、培養観察システムBSの作動を制御する制御プログラムや各部を制御するためのデータが設定記憶されたROM62と、画像データ等を一時記憶するRAM63などを有し、これらがデータバスにより接続されて構成される。制御ユニット6の入出力ポートには、培養室2における温度調整装置21、加湿器22、ガス供給装置23、循環ファン24及び環境センサ25、搬送装置4におけるX,Y,Zステージ43,42,41の各軸の駆動機構、観察ユニット5における第1,第2,第3照明部51,52,53、マクロ観察系54及び顕微観察系55、操作盤7における操作パネル71や表示パネル72などが接続されている。CPU61には上記各部から検出信号が入力され、ROM62に予め設定された制御プログラムに従って上記各部を制御する。   The control unit 6 includes a CPU 61, a ROM 62 in which data for controlling the operation of the culture observation system BS and data for controlling each unit are set and stored, a RAM 63 in which image data and the like are temporarily stored, and the like. They are connected by a data bus. The input / output port of the control unit 6 includes a temperature adjustment device 21 in the culture chamber 2, a humidifier 22, a gas supply device 23, a circulation fan 24 and an environmental sensor 25, and X, Y, Z stages 43, 42 in the transfer device 4. 41, the first, second, and third illumination units 51, 52, and 53 in the observation unit 5, the macro observation system 54 and the microscopic observation system 55, the operation panel 71 and the display panel 72 in the operation panel 7, and the like. Is connected. Detection signals are input to the CPU 61 from the above-described units, and the above-described units are controlled in accordance with a control program preset in the ROM 62.

操作盤7には、キーボードやシートスイッチ、磁気記録媒体や光ディスク等から情報を読み込み及び書き込みするリード/ライト装置などの入出力機器が設けられた操作パネル71と、種々の操作画面や画像データ等を表示する表示パネル72とが設けられており、表示パネル72を参照しながら操作パネル71で観察プログラム(動作条件)の設定や条件選択、動作指令等を入力することで、CPU61を介して培養観察システムBSの各部を動作させる。すなわち、CPU61は操作パネル71からの入力に応じて培養室2の環境調整、培養室2内での培養容器10の搬送、観察ユニット5による試料の観察、取得された画像データの解析及び表示パネル72への表示などを実行する。表示パネル72には、作動指令や条件選択等の入力画面のほか、培養室2の環境条件の各数値や、解析された画像データ、異常発生時の警告などが表示される。また、CPU61は有線または無線の通信規格に準拠して構成された通信部65を介して、外部接続されるコンピュータ等との間でデータの送受信が可能になっている。   The operation panel 7 includes an operation panel 71 provided with input / output devices such as a read / write device for reading and writing information from a keyboard, a sheet switch, a magnetic recording medium, an optical disk, and the like, various operation screens, image data, and the like. And a display panel 72 for displaying the information, and setting the observation program (operating conditions), selecting conditions, operating commands, and the like on the operation panel 71 while referring to the display panel 72, thereby culturing through the CPU 61. Each part of the observation system BS is operated. That is, the CPU 61 adjusts the environment of the culture chamber 2 according to the input from the operation panel 71, transports the culture vessel 10 in the culture chamber 2, observes the sample by the observation unit 5, analyzes the acquired image data, and displays the display panel. Display to 72 is executed. On the display panel 72, in addition to input screens for operation commands, condition selection, and the like, numerical values of environmental conditions of the culture chamber 2, analyzed image data, a warning when an abnormality occurs, and the like are displayed. The CPU 61 can transmit and receive data to and from an externally connected computer or the like via a communication unit 65 configured in accordance with a wired or wireless communication standard.

RAM63には、操作パネル71において設定された観察プログラムの動作条件、例えば培養室2の温度や湿度等の環境条件や、培養容器10ごとの観察スケジュール、観察ユニット5における観察種別や観察位置、観察倍率等の観察条件などが記録される。また、培養室2に収容された各培養容器10のコード番号、各コード番号の培養容器10が収容されたストッカー3の収納番地などの培養容器10の管理データや、画像解析に用いる各種データが記録される。RAM63には、観察ユニット5により撮影された画像データを記録する画像データ記憶領域(後述する画像記憶部110)が設けられ、各画像データには培養容器10のコード番号と撮影日時等を含むインデックス・データとが対応付けて記録される。   In the RAM 63, operating conditions of the observation program set on the operation panel 71, for example, environmental conditions such as temperature and humidity of the culture chamber 2, observation schedule for each culture vessel 10, observation type and observation position in the observation unit 5, observation Observation conditions such as magnification are recorded. In addition, the management data of the culture container 10 such as the code number of each culture container 10 accommodated in the culture chamber 2, the storage address of the stocker 3 in which the culture container 10 of each code number is accommodated, and various data used for image analysis are stored. To be recorded. The RAM 63 is provided with an image data storage area (image storage unit 110 to be described later) for recording image data photographed by the observation unit 5, and each image data includes an index including a code number of the culture vessel 10 and a photographing date and time. -Data is recorded in association with each other.

このように概要構成される培養観察システムBSでは、操作盤7において設定された観察プログラムの設定条件に従い、CPU61がROM62に記憶された制御プログラムに基づいて各部の作動を制御するとともに、培養容器10内の試料の撮影を自動的に実行する。すなわち、操作パネル71に対するパネル操作(または通信部65を介したリモート操作)によって観察プログラムがスタートされると、CPU61が、RAM63に記憶された環境条件の各条件値を読み込むとともに、環境センサ25から入力される培養室2の環境状態を検出し、条件値と実測値との差異に応じて温度調整装置21、加湿器22、ガス供給装置23、循環ファン24等を作動させて、培養室2の温度や湿度、二酸化炭素濃度などの培養環境についてフィードバック制御が行われる。   In the culture observation system BS schematically configured as described above, the CPU 61 controls the operation of each part based on the control program stored in the ROM 62 according to the setting conditions of the observation program set on the operation panel 7, and the culture vessel 10 The sample inside is automatically captured. That is, when the observation program is started by a panel operation on the operation panel 71 (or a remote operation via the communication unit 65), the CPU 61 reads each condition value of the environmental conditions stored in the RAM 63, and from the environment sensor 25. The environmental state of the culture chamber 2 to be input is detected, and the temperature adjustment device 21, the humidifier 22, the gas supply device 23, the circulation fan 24, etc. are operated according to the difference between the condition value and the actual measurement value. Feedback control is performed on the culture environment such as temperature, humidity, and carbon dioxide concentration.

また、CPU61は、RAM63に記憶された観察条件を読み込み、観察スケジュールに基づいて搬送ユニット4のX,Y,Zステージ43,42,41の各軸の駆動機構を作動させてストッカー3から観察対象の培養容器10を観察ユニット5の試料台15に搬送して、観察ユニット5による観察を開始させる。例えば、観察プログラムにおいて設定された観察がマクロ観察である場合には、搬送ユニット4によりストッカー3から搬送してきた培養容器10をマクロ観察系54の光軸上に位置決めして試料台15に載置し、第1照明部51の光源を点灯させて、バックライト照明された培養容器10の上方から撮像装置54cにより全体観察像を撮影する。撮像装置54cから制御装置6に入力された信号は、画像処理装置100により処理されて全体観察画像が生成され、その画像データが撮影日時等のインデックス・データなどとともにRAM63に記録される。   Further, the CPU 61 reads the observation conditions stored in the RAM 63, operates the driving mechanism of each axis of the X, Y, and Z stages 43, 42, and 41 of the transport unit 4 based on the observation schedule, and the observation target from the stocker 3. The culture container 10 is transported to the sample stage 15 of the observation unit 5 and observation by the observation unit 5 is started. For example, when the observation set in the observation program is macro observation, the culture vessel 10 transported from the stocker 3 by the transport unit 4 is positioned on the optical axis of the macro observation system 54 and placed on the sample stage 15. Then, the light source of the first illumination unit 51 is turned on, and the entire observation image is taken by the imaging device 54c from above the culture vessel 10 that is backlit. The signal input from the imaging device 54c to the control device 6 is processed by the image processing device 100 to generate a whole observation image, and the image data is recorded in the RAM 63 together with index data such as the shooting date and time.

また、観察プログラムにおいて設定された観察が、培養容器10内の特定位置の試料のミクロ観察である場合には、搬送ユニット4により搬送してきた培養容器10の特定位置を顕微観察系55の光軸上に位置決めして試料台15に載置し、第2照明部52または第3照明部53の光源を点灯させて、透過照明、落射照明、蛍光による顕微観察像を撮像装置55cに撮影させる。撮像装置55cにより撮影されて制御装置6に入力された信号は、画像処理装置100により処理されて顕微観察画像が生成され、その画像データが撮影日時等のインデックス・データなどとともにRAM63に記録される。   When the observation set in the observation program is micro observation of the sample at a specific position in the culture container 10, the specific position of the culture container 10 that has been transported by the transport unit 4 is set to the optical axis of the microscopic observation system 55. Positioned above and placed on the sample stage 15, the light source of the second illumination unit 52 or the third illumination unit 53 is turned on, and the microscopic observation image by transmitted illumination, epi-illumination, and fluorescence is photographed by the imaging device 55c. A signal photographed by the imaging device 55c and inputted to the control device 6 is processed by the image processing device 100 to generate a microscopic observation image, and the image data is recorded in the RAM 63 together with index data such as photographing date and time. .

CPU61は、上記のような観察を、ストッカー3に収容された複数の培養容器の試料について、観察プログラムに基づいた30分〜2時間程度の時間間隔の観察スケジュールで全体観察像や顕微観察像の撮影を順次実行する。なお、本実施形態では、撮影の時間間隔は一定であってもよいし、異なっていてもよい。撮影された全体観察像や顕微観察像の画像データは、培養容器10のコード番号とともにRAM63の画像データ記憶領域(画像記憶部110)に記録される。RAM63に記録された画像データは、操作パネル71から入力される画像表示指令に応じてRAM63から読み出され、指定時刻の全体観察画像や顕微観察画像(単体画像)、あるいは指定時間領域の全体観察像や顕微観察像のタイムラプス画像が操作盤7の表示パネル72に表示される。   The CPU 61 performs the observation as described above for the samples of the plurality of culture containers accommodated in the stocker 3 according to the observation schedule with a time interval of about 30 minutes to 2 hours based on the observation program. Shoot sequentially. In this embodiment, the photographing time interval may be constant or different. The image data of the photographed whole observation image and microscopic observation image is recorded in the image data storage area (image storage unit 110) of the RAM 63 together with the code number of the culture vessel 10. The image data recorded in the RAM 63 is read from the RAM 63 in response to an image display command input from the operation panel 71, and an entire observation image or a microscopic observation image (single image) at a specified time or an entire observation in a specified time region. An image or a time-lapse image of a microscopic observation image is displayed on the display panel 72 of the operation panel 7.

さて、以上のように構成される培養観察システムBSにおいて、画像処理装置100は、上記したタイムラプス画像の生成などの基本機能に加えて、観察領域内の細胞の運動状態を解析する画像解析機能を備えている。以降、画像処理装置100が実行する画像解析の具体的な内容を説明するにあたり、まず2つの時系列画像から細胞の運動状態を定量的に算出する手法について説明する。   In the culture observation system BS configured as described above, the image processing apparatus 100 has an image analysis function for analyzing the movement state of the cells in the observation region in addition to the basic functions such as the generation of the time-lapse image described above. I have. Hereinafter, in describing the specific contents of the image analysis performed by the image processing apparatus 100, first, a method for quantitatively calculating the movement state of a cell from two time-series images will be described.

(前処理)
図5は、ある時刻tに撮影された細胞の顕微観察画像を模式的に示した図である。まず、この画像について、細胞個々の領域を抽出しセグメンテーションする。たとえば輝度値による2値化、分散値による2値化、SnakesやLevel Set法などといった動的輪郭抽出手法といった方法が上げられる。これにより図6に示すようにセグメント化された細胞領域に対して、ラベリングを施し、各細胞ラベルに対して周辺細胞のラベルを計測する手法をとる。
(Preprocessing)
FIG. 5 is a diagram schematically showing a microscopic observation image of a cell photographed at a certain time t. First, for this image, individual cell regions are extracted and segmented. For example, there are methods such as binarization using luminance values, binarization using variance values, and a dynamic contour extraction method such as Snakes or Level Set method. As a result, as shown in FIG. 6, the segmented cell region is labeled, and a technique for measuring the label of surrounding cells for each cell label is taken.

次に、図7に示すように、時刻tに撮影された画像の細胞(実線で示す細胞)と、所定時間前に撮影された時刻t−1の画像における細胞(点線で示す細胞)の対応付け、すなわち細胞トラッキングを行う。ここでは、時刻tと時刻t−1での細胞領域ラベルに対して互いに最も近傍かつ形状が似ているものを選択する。これにより各細胞の時刻t−1からtへの移動ベクトルを算出する。   Next, as shown in FIG. 7, the correspondence between the cells of the image taken at time t (cells indicated by solid lines) and the cells at the time t−1 taken before a predetermined time (cells indicated by dotted lines). In other words, cell tracking is performed. Here, the cell region labels at time t and time t−1 that are closest to each other and similar in shape are selected. Thereby, the movement vector from time t-1 to t of each cell is calculated.

(引力、斥力の計算)
前処理で得られた各細胞の移動ベクトルに対し、注目細胞Ciと周辺細胞の一つCjに対して引力または斥力による速度の統計量を算出する。速度の統計量として、注目細胞Ciに対する周辺細胞Cjの引力斥力速度や引力斥力量が代表例として挙げられる。図2に示したように、注目細胞Ciに対してその周辺細胞の一つCjの時刻t−1からtでの特徴が
細胞面積sj・・・周辺細胞Cjの輪郭内部面積
移動量vj・・・・注目細胞Ciに対する周辺細胞Cjの相対移動量
距離dj・・・・・注目細胞Ciと周辺細胞Cjの距離
角度θj・・・・細胞を結ぶ線分Lを基準として移動方向を見たときの角度
であるとする。まず、細胞が何らかのイオン物質を出し合い、その濃度によって引力または斥力が効いてくるのであれば、細胞間の距離djに反比例するようなエネルギーが考えられ、この場合重み関数W(dj)は、
面積に関係してくるならば、
となる。または、重みを付ける範囲をある一定の範囲内として決めることができるならば、
ここで、Dは細胞のインタラクション(相互作用)の範囲:ユーザー指定
といったことも考えられる。
さらに確率的に考えるならば、確率密度関数として正規分布
σは標準偏差
といった定義も考えられる。
このとき、注目細胞Ciが一つの周辺細胞Cjに及ぼす引力斥力速度Vijは、
となる。
これをすべての周辺細胞(M個)に適用すると、注目細胞Ciのもつ引力斥力量Viは、
となる。これを画像内のすべての細胞について、注目細胞Ciにおけるi=1〜Nとして注目細胞を置き換えて総和した総引力斥力量
を算出する。前述したように、細胞同士に引力が大きく生じている場合には総引力斥力量Vallが正の大きい値を、斥力が大きく生じている場合には総引力斥力量Vallが負の大きい値となる。従って、細胞の観察過程において時刻t−1と時刻tの2つの画像を解析して観察領域内の細胞の総引力斥力量Vallを算出することにより、細胞の運動状態を、引力であるか斥力であるかの別を含めて定量的に把握することが可能となる。
(Calculation of attractive force and repulsive force)
Respect to the moving vector of each cell obtained in the previous processing, to calculate a statistical amount of speed by attraction or repulsion with respect to the target cells C i and one C j of surrounding cells. Typical examples of the statistic of velocity include the attractive repulsion velocity and the attractive repulsion amount of the surrounding cell C j with respect to the cell of interest C i . As shown in FIG. 2, the contour inner area of the cell of interest C i, wherein the cell area at t from time t-1 of one C j of surrounding cells to s j · · · peripheral cells C j movement line connecting the quantity v j · · · · cell of interest relative movement distance of surrounding cells C j for C i d j · · · · · noted cell C i and the distance angle theta j · · · · cells near the cell C j It is assumed that the angle is when the moving direction is viewed with the minute L as a reference. First, if the cells share some kind of ionic substance and the attractive force or repulsive force works depending on the concentration, energy that is inversely proportional to the distance d j between the cells can be considered, and in this case the weight function W (d j ) is ,
If it is related to the area,
It becomes. Or if you can determine the weighting range within a certain range,
Here, D may be a range of cell interaction (interaction): specified by the user.
If we think more probabilistically, the normal distribution as a probability density function
σ may be defined as a standard deviation.
At this time, the attractive repulsion velocity V ij exerted by the cell of interest C i on one peripheral cell C j is
It becomes.
When you apply this to all of the surrounding cells (M number), attraction repulsion amount V i possessed by the cell of interest C i is,
It becomes. This for all cells in the image, the total attraction repulsion amount summed by replacing cells of interest as i = 1 to N in the target cell C i
Is calculated. As described above, when the attractive force between the cells is large, the total attractive force repulsive amount V all is a positive large value. When the repulsive force is large, the total attractive repulsive force amount V all is a large negative value. It becomes. Therefore, in the cell observation process, by analyzing the two images at time t-1 and time t and calculating the total attractive force repulsion amount V all of the cells in the observation region, whether the movement state of the cells is attractive or not. It is possible to quantitatively grasp whether it is repulsive or not.

さらに、図8(1)→(2)のような状態変化を生じる時系列データについて、所定時間ごとに算出された総引力斥力量の値を時系列に並べて表示し、例えば、図9に示すように横軸を時間軸としたグラフ上にプロットすることにより、引力の変化状況を可視化した変化グラフが得られる。これは、はじめ離散していた細胞が互いに固まりとなり、コロニーへと変貌を遂げる定量性を表すこととなり、細胞群の変化状況を定量的にかつ容易に把握することができる。
また、細胞個々の平均的な値や、最大値、最小値、
さらにヒストグラムなどの統計量の時系列変化も、細胞の運動状態を表す指標として興味深いものとなる。また、正の値(引力)のみ、または負の値(斥力)のみを取り扱い、引力と斥力と別々に観察することも考えられる。
Further, with respect to time-series data that causes state changes as shown in FIGS. 8 (1) → (2), the values of the total attractive force values calculated every predetermined time are displayed side by side in time series, for example, as shown in FIG. Thus, by plotting on the graph with the horizontal axis as the time axis, a change graph in which the change of the attractive force is visualized can be obtained. This represents a quantitative property in which cells that were initially separated from each other clump together and transformed into a colony, and the change state of the cell group can be grasped quantitatively and easily.
In addition, the average value of each cell, maximum value, minimum value,
Furthermore, time-series changes in statistics such as histograms are also interesting as an index representing the movement state of cells. It is also conceivable that only a positive value (attraction) or only a negative value (repulsion) is handled and observed separately from attraction and repulsion.

このような速度の統計量を画像解析により求めて細胞同士のインタラクション観察を行う上で、その観察アプリケーションとして、以下のような例が挙げられる。   The following example is given as an observation application for obtaining such speed statistics by image analysis and observing interaction between cells.

(A:計測細胞の指定)
観察者が計測対象となる細胞を1つまたは複数指定し、指定した計測細胞に対する引力・斥力の速度総和計算をする。例えば、図10(1)(2)に例示するように、画像に含まれる多数の細胞の中から特定の細胞を計測細胞Csとして指定し、引力・斥力の有効な距離(範囲)を設定して、その指定した計測細胞Csに対する引力・斥力の速度総和を計算する。また、この計測対象となる1つの細胞Csへの周辺細胞のもつ引力斥力速度を、図11に示すようにそれぞれ表示させる。これにより、その計測対象細胞Csへの個々の運動状態や最も引力または斥力が働いている細胞等を知ることができる。
(A: Measurement cell designation)
The observer designates one or a plurality of cells to be measured, and calculates the sum of the attraction and repulsion speeds for the designated measurement cells. For example, as illustrated in FIGS. 10 (1) and 10 (2), a specific cell is designated as a measurement cell C s from a large number of cells included in the image, and an effective distance (range) of attractive force / repulsive force is set. Then, the total velocity of the attractive force / repulsive force for the designated measurement cell C s is calculated. In addition, the attractive repulsion speed of the surrounding cells to one cell C s to be measured is displayed as shown in FIG. As a result, it is possible to know the individual movement state of the measurement target cell C s , the cell in which the most attractive force or repulsive force is working, and the like.

(B:速度の統計量計算および時系列変化)
図12に示すように、Aで指定した計測細胞Csを順次他の細胞に置き換えてそれぞれ各細胞の引力斥力速度を求め、求めた引力斥力速度の総和を各細胞に対して計算して各細胞について引力斥力量を表示すると、その最大値から視野内において最も影響を及ぼしている細胞を知ることができる。また、細胞個々の速度総和の統計量として、その平均値や最大値、最小値、総引力斥力量、分散を表示することにより全体の状況を知ることができる。さらに、これらの時系列データを時間軸に沿ってグラフ表示させることにより時間領域での変化を容易に把握することができる。またAで指定した計測細胞Cs自身の速度、大きさ(面積)、形状(円形度や複雑度などを含む)などの時系列変化量についても表示させることができ、これにより細胞の運動状態を詳細に把握することができる。
(B: Speed statistics calculation and time series change)
As shown in FIG. 12, the measurement cell C s designated by A is sequentially replaced with another cell to obtain the attractive force repulsion speed of each cell, and the sum of the obtained attractive force repulsion speeds is calculated for each cell. When the amount of attractive repulsive force is displayed for a cell, it is possible to know the most influential cell in the field of view from the maximum value. In addition, as a statistic of the total velocity of each cell, the average value, maximum value, minimum value, total attractive force repulsion amount, and dispersion can be displayed to know the overall situation. Furthermore, by displaying these time-series data in a graph along the time axis, changes in the time domain can be easily grasped. The measurement cell C s own speed specified by A, the size (area), shape can be displayed for the time-series variation of such (including circularity and complexity), thereby the cell state of motion Can be grasped in detail.

次に、画像処理装置100において実行される画像解析の具体的なアプリケーションについて生細胞の顕微観察画像(位相差画像)を解析する場合を例として説明する。図13に、画像処理装置100において細胞の運動状態の画像解析を行う画像解析部分の概要構成をブロック図として示す。   Next, a specific application of image analysis executed in the image processing apparatus 100 will be described by taking as an example the case of analyzing a microscopic observation image (phase difference image) of a living cell. FIG. 13 is a block diagram illustrating a schematic configuration of an image analysis portion that performs image analysis of a cell movement state in the image processing apparatus 100.

画像処理装置100は、撮像装置(54c,55c)により撮影された第1画像、及び第1画像よりも所定時間前の時刻t−1に撮影された第2画像を記憶する画像記憶部110と、第1画像及び第2画像に基づいて観察領域内に位置する複数の細胞間に作用する相互作用の状態(引力または斥力の作用状態)を解析する画像解析部120と、画像解析部120による解析データを出力する出力部130とを備え、画像解析部120において第1画像及び第2画像における注目細胞と周辺細胞の相対位置と相対移動量に基づいて各細胞の引力斥力速度を算出するとともに、これを総和して注目細胞の引力斥力量を算出し、さらに注目細胞を順次置き換えて求めた引力斥力量を総和して細胞全体の総引力斥力量を算出して、出力部130から出力して、例えば表示パネル72に表示させるように構成される。   The image processing apparatus 100 includes an image storage unit 110 that stores a first image photographed by the imaging devices (54c, 55c) and a second image photographed at a time t-1 that is a predetermined time before the first image. An image analysis unit 120 that analyzes an interaction state (attraction state of attractive force or repulsive force) acting between a plurality of cells located in the observation region based on the first image and the second image, and an image analysis unit 120 An output unit 130 that outputs analysis data, and the image analysis unit 120 calculates the attractive repulsion rate of each cell based on the relative position and relative movement amount of the cell of interest and the surrounding cells in the first image and the second image. These are summed to calculate the attractive force of the target cell, and then the total attractive force of the entire cell is calculated by summing up the attractive force obtained by sequentially replacing the target cell. To, configured so as to display example on the display panel 72.

なお、画像処理装置100は、ROM62に予め設定記憶された画像処理プログラムがCPU61に読み込まれ、画像処理プログラムに基づく処理がCPU61により実行されることによって構成される。   The image processing apparatus 100 is configured by an image processing program set and stored in advance in the ROM 62 being read by the CPU 61 and processing based on the image processing program being executed by the CPU 61.

本実施形態の画像解析の処理は、既に観察プログラムに基づいて所定時間ごとに撮影されて画像記憶部110に保存された時系列画像について実行可能であるのみならず、観察時点での細胞の運動状態を解析してリアルタイムでモニタリングすることが可能である。そこで、本実施例ではこのリアルタイムでの画像解析処理について、図1に示す画像処理プログラムGPのフローチャート、および図14に示す表示パネル72に表示される培養細胞運動解析インターフェースの表示画像を参照しながら説明する。   The image analysis processing of the present embodiment can be performed not only on a time-series image that has already been taken at predetermined time intervals based on an observation program and stored in the image storage unit 110, but also the movement of cells at the time of observation. It is possible to analyze the state and monitor in real time. Therefore, in the present embodiment, for this real-time image analysis processing, referring to the flowchart of the image processing program GP shown in FIG. 1 and the display image of the cultured cell motion analysis interface displayed on the display panel 72 shown in FIG. explain.

このインターフェースでは、表示パネル72に「ディッシュ選択」枠721が表示されてストッカー3に格納された培養容器のコード番号が表示され、ステップS10において、観察対象の培養容器10の選択が行われる。図14では、操作パネル71に設けられたカーソルによりコード番号Cell-0002の培養細胞ディッシュ(培養容器)が選択された状態を示す。   In this interface, a “dish selection” frame 721 is displayed on the display panel 72 and the code number of the culture vessel stored in the stocker 3 is displayed. In step S10, the culture vessel 10 to be observed is selected. FIG. 14 shows a state in which the cultured cell dish (culture vessel) having the code number Cell-0002 is selected by the cursor provided on the operation panel 71.

ステップS10において観察対象が選択されると、CPU61は、搬送ユニット4の各軸の駆動機構を作動させ、ストッカー3から観察対象の培養容器10を観察ユニット5に搬送する。そして、マクロ観察系54による全体観察像または顕微観察系55による顕微観察像を撮像装置(54c,55c)に撮影させ、その画像を「観察位置」枠722に表示させる。   When the observation target is selected in step S <b> 10, the CPU 61 operates the driving mechanism of each axis of the transport unit 4 to transport the observation target culture container 10 from the stocker 3 to the observation unit 5. Then, the whole observation image by the macro observation system 54 or the micro observation image by the micro observation system 55 is photographed by the imaging device (54c, 55c), and the image is displayed in the “observation position” frame 722.

ステップS20では、どの領域を観察領域にするか観察位置の設定が行われる。図14では、観察者が操作パネル71に設けられたマウス等を利用して中央右よりの網掛け領域を指定した状態を示す。このとき、設定された観察領域の画像は、画像解析部120においてすぐにセグメンテーション処理が施され、位相差画像に細胞輪郭を重ね合わせた画像または細胞輪郭による模式図(セグメンテーション画像)が「観察画像」枠723に表示される。このとき、表示パネル72に、「計測細胞の指定」724a及び「周辺細胞の指定」724bを含む「運動解析オプション」枠724が表示される。   In step S20, an observation position is set as to which region is the observation region. FIG. 14 shows a state in which the observer designates a shaded area from the center right using a mouse or the like provided on the operation panel 71. At this time, the image of the set observation region is immediately subjected to segmentation processing in the image analysis unit 120, and an image obtained by superimposing the cell contour on the phase difference image or a schematic diagram (segmentation image) based on the cell contour is “observation image”. Is displayed in a frame 723. At this time, a “motion analysis option” frame 724 including “designation cell designation” 724a and “designation of surrounding cells” 724b is displayed on the display panel 72.

ステップS30では、観察者が「観察画像」枠723に表示された模式図上でマウスにより引力斥力速度を知りたい計測対象の細胞を選択し、「計測細胞の指定」724aの決定ボタンを押して計測細胞Csを確定する。次にステップS35において周辺細胞Cjを手動で指定するか計測細胞Csからの距離(半径)で指定するかを「周辺細胞の指定」724bに設けられた選択ボタンにより選択する。手動を選択した場合には、周辺細胞Cjをマウスにより個々に選択して決定ボタンを押すことで確定し、半径指定を選択した場合にはその半径値を数値(単位はピクセルやμmなど)またはマウスで入力する。 In step S30, the observer selects a cell to be measured on the schematic diagram displayed in the “observation image” frame 723 by using the mouse, and presses the “Specify measurement cell” 724a determination button to perform measurement. to determine the cell C s. Next, in step S35, whether to designate the peripheral cell C j manually or by specifying the distance (radius) from the measurement cell C s is selected by a selection button provided in the “designate peripheral cell” 724b. When manual is selected, the peripheral cells Cj are individually selected with the mouse and confirmed by pressing the enter button. When the radius specification is selected, the radius value is a numerical value (unit is pixel, μm, etc.) Or input with the mouse.

これを初期設定とし、観察プログラムに設定された所定時間ごとの観察スケジュールで観察画像の取り込み(ステップS40)、観察画像の保存(ステップS45)が実行されタイムラプス観察が行われる。ステップS30及びステップS35で指定された観察領域内の計測細胞Cs及び周辺細胞Cjは、観察スケジュールに設定された所定時間ごとに画像解析部120において細胞画像のセグメンテーションとトラッキングが行われ、ステップS50において各細胞の引力斥力速度が計算される。 With this as an initial setting, the observation image is captured (step S40) and the observation image is stored (step S45) according to the observation schedule for each predetermined time set in the observation program, and time-lapse observation is performed. The measurement cells C s and the surrounding cells C j in the observation region designated in Step S30 and Step S35 are subjected to cell image segmentation and tracking in the image analysis unit 120 at predetermined time intervals set in the observation schedule. In S50, the attractive repulsion speed of each cell is calculated.

各細胞の引力斥力速度計算(ステップS50)の内容については、既に詳述したとおり、これをフローチャートに簡潔にまとめたのが図1中の右列のフロー(ステップS51〜ステップS55)である。すなわち、画像解析部120における各細胞の引力斥力速度計算は、時刻tの観察画像(第1画像)と所定時間前の時刻t−1の観察画像(第2画像)について、図6に示した細胞の最外殻輪郭抽出処理(セグメンテーション処理:ステップS51)、これらの2つの画像間において図7に示した計測細胞Cs及び周辺細胞Cjの対応付け(ステップS52)、この対応付けにより求められる計測細胞Csに対する周辺細胞Cjの移動ベクトルの算出(ステップS53)、図2の移動モデルで説明した手法により上記移動ベクトルに基づいて求められる計測細胞Csに対する各周辺細胞Cjの引力斥力速度の算出(ステップS54)が行われ、各細胞の引力斥力速度の計算、すなわち、M個の周辺細胞について注目細胞Ciに関する引力斥力量Viが計算されるとともに、注目細胞を置き換えた場合の各細胞の引力斥力量が算出されて、これらの計算結果が出力部130から出力される(ステップS55)。 As for the contents of the attractive repulsion rate calculation (step S50) of each cell, as already described in detail, the flow in the right column in FIG. 1 (steps S51 to S55) summarizes this briefly in the flowchart. That is, the attractive force repulsion speed calculation of each cell in the image analysis unit 120 is shown in FIG. 6 for the observation image (first image) at time t and the observation image (second image) at time t-1 a predetermined time before. Cell outermost shell contour extraction processing (segmentation processing: step S51), the measurement cell C s and the peripheral cell C j shown in FIG. 7 between these two images (step S52), and obtained by this association Calculation of the movement vector of the peripheral cell C j with respect to the measured cell C s obtained (step S53), and the attractive force of each peripheral cell C j with respect to the measurement cell C s obtained based on the movement vector by the method described in the movement model of FIG. It performed the calculation of repulsion rate (step S54), the calculation of the attraction repulsion velocity of each cell, i.e., the attraction repulsion amount V i related cell of interest C i for the M surrounding cells is calculated At the same time, the attractive repulsion amount of each cell when the target cell is replaced is calculated, and these calculation results are output from the output unit 130 (step S55).

そして、ステップS60において、図11に示したように各周辺細胞Cjの引力斥力速度や、図12に示したような各細胞の引力斥力量が各観察ごとに「観察画像」枠723の表示画面にリアルタイムで表示され、算出された各細胞の引力斥力速度の値がRAM63に蓄積される。また、ステップS70において、計測細胞Csを注目細胞Ciとし、Ciにおけるi=1〜Nとして注目細胞を置き換えて観察領域に含まれる全細胞の引力斥力量の総和(総引力斥力量)Vallの計算が実行され、これらの計算結果がRAM63に蓄積される。インターフェースでは、図11に示す各周辺細胞の引力斥力速度の表示、あるいは図12に示す引力斥力量の表示などを、「観察画像」枠723に設けた選択ボタンにより選択し表示させることができるようになっている。 In step S60, as shown in FIG. 11, the attractive repulsion speed of each peripheral cell C j and the attractive repulsive force amount of each cell as shown in FIG. 12 are displayed in the “observation image” frame 723 for each observation. The value of the attractive force repulsion speed of each cell that is displayed in real time on the screen is accumulated in the RAM 63. Further, in step S70, the measurement cell C s as the target cell C i, the sum of the attractive force repulsion of whole cells by replacing a cell of interest as i = 1 to N in C i included in the observation area (total attraction repulsion amount) The calculation of V all is executed, and these calculation results are stored in the RAM 63. In the interface, the display of the attractive repulsion speed of each peripheral cell shown in FIG. 11 or the display of the attractive repulsive force amount shown in FIG. 12 can be selected and displayed by the selection button provided in the “observation image” frame 723. It has become.

タイムラプス観察の実行中には、これが「時系列変化グラフ」枠725にグラフとしてリアルタイム表示される。このグラフには、図12を参照して先に説明したように、各細胞の引力斥力量の最大値や最小値、総引力斥力量、平均、分散などの時間軸上での変化が表示される他に、計測細胞Csの面積、形状変化(円形度や複雑度など)の経時変化が表示可能になっており、時系列変化グラフの表示項目の選択によって切り替え表示させることができる。さらに、出力部130には出力端子が設けられて通信部65に接続されており、通信部65を介して外部接続されるコンピュータ等に計算結果をエクスポートできるようになっている。 During execution of the time lapse observation, this is displayed in real time as a graph in a “time series change graph” frame 725. In this graph, as described above with reference to FIG. 12, changes in the time axis such as the maximum and minimum values of the attractive force of each cell, the total attractive force, the average, and the variance are displayed. In addition, it is possible to display the change over time of the area and shape change (circularity, complexity, etc.) of the measurement cell C s , and the display can be switched by selecting the display item of the time series change graph. Further, the output unit 130 is provided with an output terminal and is connected to the communication unit 65, and the calculation result can be exported to a computer or the like externally connected via the communication unit 65.

従って、このような画像解析手段(画像解析方法、画像処理プログラム、画像処理装置)によれば、タイムラプス観察の実行中に、観察対象の細胞の時々刻々の運動状態が具体的な数値やグラフでリアルタイム表示され、細胞の運動状態を迅速かつ定量的に把握することができる。   Therefore, according to such an image analysis means (an image analysis method, an image processing program, an image processing apparatus), during the execution of the time lapse observation, the momentary movement state of the cell to be observed is expressed by a specific numerical value or graph. Displayed in real time, the movement state of the cell can be grasped quickly and quantitatively.

なお、上記実施例では、タイムラプス観察を開始する際に計測細胞Cs及び周辺細胞Cjを指定して、タイムラプス観察の継続中に画像解析を並行して実行し、解析結果をリアルタイム表示する構成を例示したが、本発明の画像解析は、一定時間のタイムラプス観察の実行(実行中)、またはタイムラプス観察を終了して、画像記憶部110に保存された時系列画像について実施することも可能である。そこで、以下に、このような場合の画像解析の流れについて、図14及び図1を併せて参照しながら簡潔に説明する。 In the above embodiment, the measurement cell C s and the surrounding cell C j are designated when starting the time lapse observation, and the image analysis is performed in parallel during the time lapse observation, and the analysis result is displayed in real time. However, the image analysis of the present invention can be performed on a time-series image stored in the image storage unit 110 after execution of time-lapse observation for a certain time (during execution) or after the time-lapse observation is completed. is there. Therefore, hereinafter, the flow of image analysis in such a case will be briefly described with reference to FIGS. 14 and 1 together.

まず、ステップS10において「ディッシュ選択」枠721に表示された培養容器のリストから観察対象のコード番号の培養容器(例えば前述したコード番号Cell-0002の培養細胞ディッシュ)を選択する。ここで選択された観察対象の時系列画像は既に画像記憶部110に保存されている(すなわち図1に示した画像処理プログラムにおけるステップS40及びステップS45は、ステップS10より以前に実行されている)。そこで、ステップS10で観察対象が選択されると、選択された培養容器の時刻tにおける観察画像(全体観察画像または顕微観察像)が画像記憶部110から読み出されて「観察位置」枠722に表示される。なお、観察期間中のどの時刻の画像を読み出すかを選択することができ、例えば観察開始時(第2番目のデータ)を選択し、あるいは観察期間の中間時や終了時を選択することができる。   First, in step S10, a culture container having a code number to be observed (for example, a cultured cell dish having the code number Cell-0002 described above) is selected from the list of culture containers displayed in the “dish selection” frame 721. The time-series image to be observed selected here is already stored in the image storage unit 110 (that is, steps S40 and S45 in the image processing program shown in FIG. 1 are executed before step S10). . Therefore, when an observation target is selected in step S10, an observation image (entire observation image or microscopic observation image) of the selected culture container at time t is read from the image storage unit 110 and displayed in the “observation position” frame 722. Is displayed. Note that it is possible to select an image to be read at which time during the observation period. For example, it is possible to select an observation start time (second data), or an intermediate time or an end time of the observation period. .

ステップS20では、「観察位置」枠に表示された画像から、どの領域を観察するか観察領域の設定を行う。設定された観察領域の画像は画像解析部120においてすぐにセグメンテーション処理が施され、位相差画像に細胞輪郭を重ね合わせた画像または細胞輪郭による模式図が「観察画像」枠に表示される。セグメンテーション処理は、時刻tとその所定時間前の時刻t−1の2枚に対して行われ、模式図の表示は時刻tのみ、もしくは両者を時系列表示できるものとする。   In step S20, an observation area is set as to which area to observe from the image displayed in the “observation position” frame. The image of the set observation region is immediately subjected to segmentation processing in the image analysis unit 120, and an image obtained by superimposing the cell outline on the phase difference image or a schematic diagram based on the cell outline is displayed in the “observation image” frame. The segmentation process is performed for two sheets of time t and time t-1 that is a predetermined time before, and the schematic diagram is displayed only at time t or both can be displayed in time series.

次いで、ステップS30において「観察画像」枠723に表示された模式図上で計測対象の細胞を選択し「計測細胞の指定」724aの決定ボタンを押して計測細胞Csを確定する。また、ステップS35において周辺細胞Cjを手動または計測細胞Csからの距離(半径)で指定し、決定ボタンを押して確定する。これらの選択設定は前述同様である。 Next, in step S30, the measurement target cell is selected on the schematic diagram displayed in the “observation image” frame 723, and the measurement cell C s is determined by pressing the “measurement cell designation” 724a determination button. In step S35, the peripheral cell C j is designated manually or by a distance (radius) from the measurement cell C s and is confirmed by pressing the enter button. These selection settings are the same as described above.

ステップS30及びステップS35において計測細胞Cs及び周辺細胞Cjの設定が確定すると、画像解析部120は、まず、最初に画像記憶部110から読み出した時刻tと時刻t−1の画像についてステップS50の各細胞の引力斥力速度及び引力斥力量、ステップS70の全細胞の総引力斥力量の計算を実行してRAM63に記録する。また、既に所定の観察スケジュールで撮影され画像記憶部110に保存された観察画像(ステップS40、ステップS45)について時刻tを順次移動して読み出し、読み出された各画像からステップS20において設定された観察領域の画像を切り出して、セグメンテーションとトラッキングを行い、ステップS50及びステップS70の計算を順次実行してRAM63に記録する。 When the setting of the measurement cell C s and the peripheral cell C j is confirmed in step S30 and step S35, the image analysis unit 120 first performs step S50 on the images at time t and time t−1 that are first read from the image storage unit 110. The calculation of the repulsive force velocity and the repulsive force amount of each cell and the total attractive force amount of all the cells in step S70 is executed and recorded in the RAM 63. Further, the observation images (step S40, step S45) that have already been taken with a predetermined observation schedule and stored in the image storage unit 110 are read out by sequentially moving the time t and set in step S20 from the read images. The image of the observation area is cut out, segmented and tracked, and the calculations in steps S50 and S70 are sequentially executed and recorded in the RAM 63.

そして、「観察画像」枠723に設けられた選択ボタンの選択に応じて、図11に示した周辺細胞の引力斥力速度、あるいは図12に示した全細胞の引力斥力量や総引力斥力量が表示される。なおこれらの表示は、任意に選択した特定時刻の計算結果を表示させることができる。また、タイムラプス観察の実行中の場合には「時系列変化グラフ」枠725に現時点までの引力斥力量(最大値や最小値、平均値等)の変化がグラフとして表示され、観察終了後の場合には観察開始から終了に至る引力斥力量の変化が表示される。   Then, according to the selection of the selection button provided in the “observation image” frame 723, the attractive repulsion speed of the surrounding cells shown in FIG. 11, or the attractive repulsive force amount and the total attractive repulsive force amount of all the cells shown in FIG. Is displayed. In addition, these displays can display the calculation result of the specific time arbitrarily selected. In addition, when time-lapse observation is being performed, a change in the attractive force amount (maximum value, minimum value, average value, etc.) up to the present time is displayed as a graph in the “time series change graph” frame 725, and after the observation is completed. Displays the change in the amount of attractive force from the start to the end of the observation.

以上説明したように、本発明の画像処理プログラムGP、この画像処理プログラムが実行されることより構成される画像解析方法及び画像処理装置100によれば、所定時間をおいて撮影された細胞観察像から、撮影時における細胞全体の総引力斥力量が算出される。このため、細胞全体の運動状態を迅速かつ定量的に把握する手段を提供することができる。   As described above, according to the image processing program GP of the present invention, the image analysis method configured by executing the image processing program, and the image processing apparatus 100, the cell observation image photographed at a predetermined time. From this, the total attractive force of the whole cell at the time of photographing is calculated. For this reason, a means for quickly and quantitatively grasping the movement state of the whole cell can be provided.

前述したように、細胞増殖には社会的相互作用が重要である。本発明では、細胞間の相互作用、すなわち引力・斥力の作用状態を算出することにより、他細胞を引き付け足場を形成する過程や、他種の細胞への侵襲過程を定量的に評価することができる。つまり、他細胞から隔離して正常な増殖を抑制する試薬のスクリーニングや、他細胞への侵襲抑制試薬のスクリーニングに使用可能である。   As mentioned above, social interaction is important for cell proliferation. In the present invention, by calculating the interaction between cells, that is, the action state of attraction and repulsion, it is possible to quantitatively evaluate the process of attracting other cells to form a scaffold and the invasion process to other types of cells. it can. That is, it can be used for screening of a reagent that is isolated from other cells and suppresses normal growth, and a reagent for suppressing invasion to other cells.

本発明の実施例として示す画像処理プログラムのフローチャートである。It is a flowchart of the image processing program shown as an Example of this invention. 注目細胞と周辺細胞をモデル化して示す運動解析モデルの概念図である。It is a conceptual diagram of the movement analysis model which shows a cell of interest and surrounding cells as a model. 本発明の適用例として示す培養観察システムの概要構成図である。It is a general | schematic block diagram of the culture observation system shown as an example of application of this invention. 上記培養観察システムのブロック図である。It is a block diagram of the said culture observation system. 時刻tに撮影された細胞の顕微観察画像を模式的に示した模式図である。It is the schematic diagram which showed typically the microscopic observation image of the cell image | photographed at the time t. 図5に示した時刻tの顕微観察画像をセグメント化した状態の模式図である。FIG. 6 is a schematic diagram showing a state where the microscopic observation image at time t shown in FIG. 5 is segmented. 時刻tに撮影された画像の細胞(実線で示す細胞)と、時刻t−1に撮影された画像の細胞(点線で示す細胞)との対応付けを説明するための説明図である。It is explanatory drawing for demonstrating matching with the cell (cell shown as a continuous line) of the image image | photographed at the time t, and the cell (cell shown with a dotted line) of the image image | photographed at the time t-1. 細胞群の時系列変化の状態を例示する模式図であり、(1)はじめ離散していた細胞が、(2)のようにコロニーへと変化して行く状態を示す模式図である。It is a schematic diagram which illustrates the state of a time-sequential change of a cell group, (1) It is a schematic diagram which shows the state from which the cell which was initially separated changes to a colony like (2). 細胞群がコロニー化して行く場合に、所定時間ごとに算出された総引力斥力量の値を横軸を時間軸としたグラフ上にプロットしたときの総引力斥力量の変化グラフである。When a cell group colonizes, it is a change graph of the total attractive force repulsive quantity when the value of the total attractive force repulsive quantity calculated for every predetermined time is plotted on the graph which made the horizontal axis the time axis. 計測対象となる計測細胞の指定について説明するための模式図である。It is a schematic diagram for demonstrating designation | designated of the measurement cell used as measurement object. 計測細胞に対する周辺細胞の引力斥力速度を表示する画面の構成例である。It is a structural example of the screen which displays the attractive repulsion speed of the surrounding cell with respect to a measurement cell. 引力斥力量を表示した画面の構成例である。It is a structural example of the screen which displayed the amount of attractive forces. 画像処理装置の概要構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an image processing apparatus. 画像解析プログラムを実行した場合に表示パネルに表示される培養細胞運動解析インターフェースの表示画像の構成例である。It is a structural example of the display image of the cultured cell movement analysis interface displayed on a display panel when an image analysis program is executed.

符号の説明Explanation of symbols

BS 培養観察システム
GP 画像処理プログラム
Ci 注目細胞 Cj 周辺細胞
Cs 計測細胞(注目細胞)
54 マクロ観察系 54c 撮像装置
55 顕微観察系 55c 撮像装置
100 画像処理装置 110 画像記憶部
120 画像解析部 130 出力部
BS Culture observation system GP Image processing program
C i attention cell C j peripheral cell
C s measurement cell (attention cell)
54 Macro observation system 54c Imaging device 55 Microscopic observation system 55c Imaging device 100 Image processing device 110 Image storage unit 120 Image analysis unit 130 Output unit

Claims (14)

撮像装置により撮影され観察領域内に複数の細胞を含む第1画像、及び前記第1画像よりも所定時間前に前記撮像装置により撮影された前記観察領域の第2画像を取得し、
前記第1画像に含まれる複数の細胞から一の細胞を選択して注目細胞とし、
前記注目細胞の周辺に位置する細胞を周辺細胞とし、
前記第1画像及び前記第2画像における前記注目細胞と前記周辺細胞の相対移動量に基づいて前記注目細胞に対する各前記周辺細胞の速度の統計量を算出して、
前記注目細胞に関する各前記周辺細胞の相互作用の状態を判断可能に構成したことを特徴とする細胞観察の画像解析方法。
A first image captured by the imaging device and including a plurality of cells in the observation region, and a second image of the observation region captured by the imaging device a predetermined time before the first image;
Selecting one cell from a plurality of cells included in the first image as a target cell;
A cell located around the cell of interest is a peripheral cell,
Calculating a statistic of the velocity of each of the surrounding cells relative to the cell of interest based on the relative amount of movement of the cell of interest and the surrounding cell in the first image and the second image;
An image analysis method for cell observation, characterized in that the state of interaction of each of the surrounding cells with respect to the cell of interest can be determined.
前記選択した一の注目細胞を前記観察領域内に位置する他の細胞に順次置き換えて求めた前記速度の統計量を総和して前記観察領域内の細胞全体の総合速度統計量を算出し、
前記総合速度統計量により前記観察領域内の細胞間の相互作用の状態を判断可能に構成したことを特徴とする請求項1に記載の細胞観察の画像解析方法。
The total velocity statistic of the whole cell in the observation region is calculated by summing the statistic of the velocity obtained by sequentially replacing the selected one target cell with another cell located in the observation region,
The cell analysis image analysis method according to claim 1, wherein the state of interaction between cells in the observation region can be determined based on the total velocity statistic.
前記速度の統計量に、前記注目細胞と前記周辺細胞との距離に応じた重みを付けるように構成したことを特徴とする請求項1または請求項2に記載の細胞観察の画像解析方法。   The image analysis method for cell observation according to claim 1 or 2, wherein the velocity statistics are weighted according to the distance between the cell of interest and the surrounding cells. 前記相互作用の状態が、引力または斥力の作用状態であることを特徴とする請求項1から請求項3のいずれか一項に記載の細胞観察の画像解析方法。   The cell analysis image analysis method according to any one of claims 1 to 3, wherein the state of interaction is an action state of attraction or repulsion. 撮像装置により撮影され観察領域内に複数の細胞を含む第1画像、及び前記第1画像よりも所定時間前に前記撮像装置により撮影された前記観察領域の第2画像を取得するステップと、
前記第1画像に含まれる複数の細胞から一の細胞を注目細胞として選択するステップと、
前記注目細胞の周辺に位置する細胞を周辺細胞として指定するステップと、
前記第1画像及び前記第2画像における前記注目細胞と前記周辺細胞の相対移動量に基づいて前記注目細胞に対する各前記周辺細胞の速度の統計量を算出するステップと、
算出された各前記周辺細胞の前記速度の統計量を外部に出力するステップとを備え、
前記注目細胞に関する各前記周辺細胞の相互作用の状態を判断可能に構成したことを特徴とする細胞観察の画像処理プログラム。
Acquiring a first image captured by the imaging device and including a plurality of cells in the observation region, and a second image of the observation region captured by the imaging device a predetermined time before the first image;
Selecting one cell from the plurality of cells included in the first image as a target cell;
Designating cells located around the cell of interest as peripheral cells;
Calculating a statistic of the speed of each of the surrounding cells with respect to the cell of interest based on a relative amount of movement of the cell of interest and the surrounding cell in the first image and the second image;
Outputting the calculated statistics of the velocity of each of the surrounding cells to the outside,
An image processing program for cell observation, characterized in that the state of interaction of each of the surrounding cells with respect to the cell of interest can be determined.
前記選択した一の注目細胞を前記観察領域内に位置する他の細胞に順次置き換えて求めた前記速度の統計量を総和して前記観察領域内の細胞全体の総合速度統計量を算出するステップと、
算出された前記総合速度統計量を外部に出力するステップとを備え、
前記総合速度統計量により前記観察領域内の細胞間の相互作用の状態を判断可能に構成したことを特徴とする請求項5に記載の細胞観察の画像処理プログラム。
Calculating a total velocity statistic of all the cells in the observation region by summing up the statistics of the velocity obtained by sequentially replacing the selected one target cell with another cell located in the observation region; ,
Outputting the calculated total speed statistic to the outside,
6. The cell observation image processing program according to claim 5, wherein the state of interaction between cells in the observation region can be determined by the total velocity statistic.
前記速度の統計量に、前記注目細胞と前記周辺細胞との距離に応じた重みを付けるように構成したことを特徴とする請求項5または請求項6に記載の細胞観察の画像処理プログラム。   The image processing program for cell observation according to claim 5 or 6, wherein the speed statistics are weighted according to the distance between the cell of interest and the surrounding cells. 前記相互作用の状態が、引力または斥力の作用状態であることを特徴とする請求項5から請求項7のいずれか一項に記載の細胞観察の画像処理プログラム。   The cell processing image processing program according to any one of claims 5 to 7, wherein the state of interaction is an action state of attraction or repulsion. 前記撮像装置により前記所定時間ごとに撮影された3以上の画像について、撮影された画像を順次前記第1画像として前記所定時間ごとの前記総合速度統計量を算出して時系列に並べて画像表示装置に表示させるステップを備え、
前記総合速度統計量の時間的な変化を把握可能に構成したことを特徴とする請求項6から請求項8のいずれか一項に記載の細胞観察の画像処理プログラム。
An image display device that calculates the total speed statistic for each predetermined time and sequentially arranges the captured images as the first image for three or more images captured at the predetermined time by the imaging device. With steps to display
The cell processing image processing program according to any one of claims 6 to 8, wherein a temporal change in the total speed statistic can be grasped.
細胞を撮影する撮像装置と、
前記撮像装置により撮影された第1画像、及び前記第1画像よりも所定時間前に前記撮像装置により撮影された第2画像を記憶する画像記憶部と、
前記第1画像及び前記第2画像に基づいて観察領域内に位置する複数の前記細胞間の相互作用の状態を解析する画像解析部と、
前記画像解析部による解析データを出力する出力部とを備え、
前記画像解析部において、前記第1画像の前記観察領域に含まれる複数の細胞から選択された一の注目細胞及び前記注目細胞の周辺に位置する周辺細胞について、前記第1画像及び前記第2画像における前記注目細胞と前記周辺細胞の相対移動量に基づいて前記注目細胞に対する各前記周辺細胞の速度の統計量を算出して、
前記画像解析部において算出された前記速度の統計量を、前記出力部から出力させるように構成したことを特徴とする細胞観察の画像処理装置。
An imaging device for imaging cells;
An image storage unit that stores a first image taken by the imaging device and a second image taken by the imaging device a predetermined time before the first image;
An image analysis unit that analyzes the state of interaction between the plurality of cells located in the observation region based on the first image and the second image;
An output unit for outputting analysis data by the image analysis unit,
In the image analysis unit, the first image and the second image of one target cell selected from a plurality of cells included in the observation region of the first image and a peripheral cell positioned around the target cell. Calculating the statistic of the velocity of each of the surrounding cells relative to the cell of interest based on the relative amount of movement of the cell of interest and the surrounding cell in
An image processing apparatus for cell observation, characterized in that the speed statistic calculated in the image analysis unit is output from the output unit.
前記選択された一の注目細胞を前記観察領域内に位置する他の細胞に順次置き換えて求めた前記速度の統計量を総和して前記観察領域内細胞全体の総合速度統計量を算出して、
前記画像解析部において算出された前記総合速度統計量を、前記出力部から出力させるように構成したことを特徴とする請求項10に記載の細胞観察の画像処理装置。
The total velocity statistic of the entire cells in the observation region is calculated by summing the statistic of the velocity obtained by sequentially replacing the selected one target cell with another cell located in the observation region,
The cell processing image processing apparatus according to claim 10, wherein the total velocity statistic calculated by the image analysis unit is configured to be output from the output unit.
前記速度の統計量に、前記注目細胞と前記周辺細胞との距離に応じた重みを付けるように構成したことを特徴とする請求項10または請求項11に記載の細胞観察の画像処理装置。   The image processing apparatus for cell observation according to claim 10 or 11, wherein the velocity statistics are weighted according to a distance between the cell of interest and the surrounding cells. 前記相互作用の状態が、引力または斥力の作用状態であることを特徴とする請求項10から請求項12のいずれか一項に記載の細胞観察の画像処理装置。   The image processing apparatus for cell observation according to any one of claims 10 to 12, wherein the state of interaction is an action state of attraction or repulsion. 画像を表示する画像表示装置を備え、
前記画像解析部において、前記撮像装置により前記所定時間ごとに撮影された3以上の画像について、撮影された画像を順次前記第1画像として前記所定時間ごとの前記総合速度統計量を算出し、
前記所定時間ごとの前記総合速度統計量を前記出力部から前記画像表示装置に出力して画像表示装置に時系列に並べて表示させ、総合速度統計量の時間的な変化を視覚的に把握可能に構成したことを特徴とする請求項11から請求項13のいずれか一項に記載の細胞観察の画像処理装置。
An image display device for displaying images;
In the image analysis unit, for the three or more images captured every predetermined time by the imaging device, the total speed statistic for each predetermined time is calculated using the captured images as the first image sequentially,
The total speed statistic for each predetermined time is output from the output unit to the image display device and displayed in time series on the image display device, so that temporal changes in the total speed statistic can be grasped visually. The image processing apparatus for cell observation according to any one of claims 11 to 13, wherein the image processing apparatus is configured.
JP2008075670A 2008-03-24 2008-03-24 Method for analyzing image for cell observation, image processing program and image processor Pending JP2009229276A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008075670A JP2009229276A (en) 2008-03-24 2008-03-24 Method for analyzing image for cell observation, image processing program and image processor
EP09725736A EP2270198A4 (en) 2008-03-24 2009-03-12 Method for analyzing image for cell observation, image processing program, and image processing device
PCT/JP2009/054758 WO2009119330A1 (en) 2008-03-24 2009-03-12 Method for analyzing image for cell observation, image processing program, and image processing device
CN2009801014189A CN101903532A (en) 2008-03-24 2009-03-12 Method for analyzing image for cell observation, image processing program, and image processing device
US12/923,514 US9080935B2 (en) 2008-03-24 2010-09-24 Image analysis method for cell observation, image-processing program, and image-processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075670A JP2009229276A (en) 2008-03-24 2008-03-24 Method for analyzing image for cell observation, image processing program and image processor

Publications (1)

Publication Number Publication Date
JP2009229276A true JP2009229276A (en) 2009-10-08

Family

ID=41244846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075670A Pending JP2009229276A (en) 2008-03-24 2008-03-24 Method for analyzing image for cell observation, image processing program and image processor

Country Status (1)

Country Link
JP (1) JP2009229276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185106A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Image-analyzing device, image-analyzing method, and image-analyzing program
WO2018012601A1 (en) 2016-07-14 2018-01-18 大日本印刷株式会社 Image analysis system, culture management system, image analysis method, culture management method, cell group structure method, and program
JP2018109707A (en) * 2017-01-05 2018-07-12 オリンパス株式会社 Microscope parameter setting method and observation method
CN108693095A (en) * 2017-12-13 2018-10-23 青岛汉朗智能医疗科技有限公司 Immunocyte movement velocity detection method and system
JP2021036830A (en) * 2019-09-04 2021-03-11 株式会社ニコン Image analyzer, cell culture observation device, image analysis method, program and information processing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332930A (en) * 1994-04-14 1995-12-22 Mitsubishi Electric Corp Target detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332930A (en) * 1994-04-14 1995-12-22 Mitsubishi Electric Corp Target detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012041985; BioTechniques Vol.5, No.7, 1987, pp.680-682, 684-687 *
JPN6012041988; Biol. Cybern. Vol.95, 2006, pp.393-400 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185106A (en) * 2015-03-27 2016-10-27 大日本印刷株式会社 Image-analyzing device, image-analyzing method, and image-analyzing program
WO2018012601A1 (en) 2016-07-14 2018-01-18 大日本印刷株式会社 Image analysis system, culture management system, image analysis method, culture management method, cell group structure method, and program
US11398032B2 (en) 2016-07-14 2022-07-26 Dai Nippon Printing Co., Ltd. Image analysis system, culture management system, image analysis method, culture management method, cell group structure method, and program
JP2018109707A (en) * 2017-01-05 2018-07-12 オリンパス株式会社 Microscope parameter setting method and observation method
US11215808B2 (en) 2017-01-05 2022-01-04 Olympus Corporation Microscope parameter setting method and observation method recognizing the shape of a cell
CN108693095A (en) * 2017-12-13 2018-10-23 青岛汉朗智能医疗科技有限公司 Immunocyte movement velocity detection method and system
JP2021036830A (en) * 2019-09-04 2021-03-11 株式会社ニコン Image analyzer, cell culture observation device, image analysis method, program and information processing system
JP7532754B2 (en) 2019-09-04 2024-08-14 株式会社ニコン IMAGE ANALYSIS APPARATUS, CELL CULTURE OBSERVATION APPARATUS, IMAGE ANALYSIS METHOD, AND PROGRAM

Similar Documents

Publication Publication Date Title
WO2009119330A1 (en) Method for analyzing image for cell observation, image processing program, and image processing device
JP4953092B2 (en) Viable cell discrimination method in cell observation, image processing program for cell observation, and image processing apparatus
US8588504B2 (en) Technique for determining the state of a cell aggregation image processing program and image processing device using the technique, and method for producing a cell aggregation
EP2234061B1 (en) Image processing method for time lapse image, image processing program, and image processing device
JP2009229274A (en) Method for analyzing image for cell observation, image processing program and image processor
WO2011013319A1 (en) Technique for determining maturity of cell mass, and image processing program and image processing device which use the technique, and method for producing cell mass
WO2010146802A1 (en) State determination method for cell cluster, image processing program and imaging processing device using said method, and method for producing cell cluster
WO2011016189A1 (en) Technique for classifying cells, image processing program and image processing device using the technique, and method for producing cell mass
WO2011004568A1 (en) Image processing method for observation of fertilized eggs, image processing program, image processing device, and method for producing fertilized eggs
EP2272971B1 (en) Method for analyzing image for cell observation, image processing program, and image processing device
JP2010022318A (en) Status determination means for cell and image processing device for cell observation
JP2014075999A (en) Motion detection method for cardiac muscle cells, image processing program and image processing apparatus, culture method for cardiac muscle cells, and drug evaluation method and drug manufacturing method for cardiac muscle cells
JP2009229276A (en) Method for analyzing image for cell observation, image processing program and image processor
JP2011004638A (en) Mthod, program, and apparatus for processing images of observed fertilized egg
JP2012039929A (en) Image processing method, program and apparatus for observing fertilized egg, and method for producing fertilized egg
JP2012039930A (en) Method, program and apparatus of image processing for culture observation, and method for producing culture
JP2012039931A (en) Observation device, observation method, and method of producing culture material
JP6567244B2 (en) Cell motion observation method, image processing program, and image processing apparatus
JP2009027948A (en) Culture device
JP2012042327A (en) Image processing method, image processing program, and image processing apparatus for culture observation, and method for producing culture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121130