Nothing Special   »   [go: up one dir, main page]

JP2009219314A - Rotator of rotary electric machine, and method of manufacturing the same - Google Patents

Rotator of rotary electric machine, and method of manufacturing the same Download PDF

Info

Publication number
JP2009219314A
JP2009219314A JP2008062907A JP2008062907A JP2009219314A JP 2009219314 A JP2009219314 A JP 2009219314A JP 2008062907 A JP2008062907 A JP 2008062907A JP 2008062907 A JP2008062907 A JP 2008062907A JP 2009219314 A JP2009219314 A JP 2009219314A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
rotor
rotor core
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062907A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuura
広幸 鈴浦
Hirohito Hayashi
裕人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008062907A priority Critical patent/JP2009219314A/en
Publication of JP2009219314A publication Critical patent/JP2009219314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotator of a rotary electric machine that reduces eddy current generated in a permanent magnet in driving the rotary electric machine and can also facilitate insertion of a magnetized permanent magnet into a magnet receiving hole of the rotator in manufacturing the rotator. <P>SOLUTION: A plurality of permanent magnets 17 are accommodated, in a state divided in the axial direction of a rotor core 12, in the magnet receiving holes 16 formed in the rotor core 12 formed by laminating a plurality of electromagnetic steel plates 12a. Each permanent magnet 17 is covered with an electric insulating sheet 18 over the entire surface thereof. The electric insulating sheet 18 is so formed as to make bag portions 19 continuous for accommodating the permanent magnets 17 one by one, wherein one permanent magnet 17 is accommodated in each bag portion 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転電機の回転子及びその製造方法に係り、詳しくは永久磁石埋め込み型回転電機の回転子及びその製造方法に関する。   The present invention relates to a rotor for a rotating electric machine and a method for manufacturing the same, and more particularly to a rotor for a permanent magnet embedded type rotating electric machine and a method for manufacturing the same.

永久磁石埋め込み型回転電機の回転子は、一般に電磁鋼板を複数枚積層して形成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に永久磁石が収容されるとともに、ロータコアが端板に挟持されている。磁石収容孔は各電磁鋼板を所定形状にプレス加工で打ち抜き形成するときに同時に形成され、その周囲に面取り加工は施されていない。そのため、磁石収容孔に永久磁石を直接挿入すると、永久磁石が各電磁鋼板の磁石収容孔の周縁角部やバリに接触して永久磁石の割れや欠けが発生する。そのため、永久磁石の磁石収容孔への挿入時における永久磁石の割れや欠けを防止する方法が提案されている(例えば、特許文献1参照)。特許文献1の方法では、図10(a)に示すように、回転子51の孔52に永久磁石53を挿入する際、永久磁石53を積層シート54で挟んで挿入する。   In a rotor of a permanent magnet embedded type rotating electrical machine, a permanent magnet is generally housed in a rotor housing formed by laminating a plurality of electromagnetic steel plates in a magnet housing hole formed to extend in the axial direction of the rotor core. It is sandwiched between end plates. The magnet housing hole is formed simultaneously when each electromagnetic steel sheet is punched into a predetermined shape by press working, and the periphery thereof is not chamfered. Therefore, when a permanent magnet is directly inserted into the magnet housing hole, the permanent magnet comes into contact with the peripheral corners and burrs of the magnet housing hole of each electromagnetic steel sheet, and the permanent magnet is cracked or chipped. For this reason, a method for preventing the permanent magnet from cracking or chipping when the permanent magnet is inserted into the magnet housing hole has been proposed (see, for example, Patent Document 1). In the method of Patent Document 1, as shown in FIG. 10A, when the permanent magnet 53 is inserted into the hole 52 of the rotor 51, the permanent magnet 53 is inserted between the laminated sheets 54.

また、例えば、ハイブリッド自動車の走行用モータでは、低速域から中速域では回転速度が変化しても出力トルクが一定で大きなトルクを確保し、高速域ではトルクの大小にかかわらず回転数を確保するという特性の要求がある。この要求を満たす方法として、高速域では弱め界磁制御を行う方法がある。高速域で弱め界磁制御を行うと、永久磁石に渦電流が発生して発熱する。発熱が大きいと永久磁石が減磁されてモータの効率が悪くなる。   In addition, for example, in a hybrid motor vehicle motor, the output torque is constant and large torque is secured even if the rotational speed changes from low speed to medium speed, and the rotational speed is secured regardless of the magnitude of the torque at high speed. There is a demand for the property to do. As a method of satisfying this requirement, there is a method of performing field weakening control in a high speed region. When field-weakening control is performed in a high-speed region, eddy current is generated in the permanent magnet and heat is generated. If the heat generation is large, the permanent magnet is demagnetized and the efficiency of the motor is deteriorated.

そして、磁石表面の渦電流の発生を低減できる永久磁石回転電機として、図10(b)に示すように、ロータコア55の永久磁石挿入孔56に、複数の永久磁石57が永久磁石挿入孔56の幅方向に隙間を空けて挿入されたものが提案されている(例えば、特許文献2参照。)。複数の永久磁石57間には絶縁物58が挿入されている。   As a permanent magnet rotating electrical machine that can reduce the generation of eddy currents on the magnet surface, a plurality of permanent magnets 57 are inserted into the permanent magnet insertion holes 56 of the rotor core 55 as shown in FIG. The one inserted with a gap in the width direction has been proposed (for example, see Patent Document 2). An insulator 58 is inserted between the plurality of permanent magnets 57.

また、回転時に単位鉄心(電磁鋼板)に加わる荷重を全ての単位鉄心にほぼ均等に分担させるための永久磁石式回転子とその製造方法も提案されている(特許文献3参照)。特許文献3では、磁石収容孔を有する板状の単位鉄心を複数積層して積層鉄心が形成され、積層鉄心の磁石収容孔に永久磁石片が収容されてなる永久磁石式回転子において、磁石収容孔には単位鉄心毎に該単位鉄心と同じ厚みの永久磁石片が収容されている。その製造方法として、磁石収容孔を有する単位鉄心を形成する単位鉄心形成工程と、前記単位鉄心の前記磁石収容孔に磁石素材を収容し、焼結して磁石片を形成する磁石焼結工程と、前記磁石片を備えた単位鉄心を所定数積層して一体化する積層工程とを備える方法が提案されている。
特開2004−104966号公報 特開平11−4555号公報 特開2005−304193号公報
There has also been proposed a permanent magnet rotor and a method for manufacturing the permanent magnet rotor for causing all unit iron cores to share the load applied to the unit iron core (electromagnetic steel sheet) almost evenly during rotation (see Patent Document 3). In Patent Document 3, in a permanent magnet rotor in which a laminated iron core is formed by laminating a plurality of plate-shaped unit cores having magnet accommodation holes, and a permanent magnet piece is accommodated in the magnet accommodation hole of the laminated iron core, The hole accommodates a permanent magnet piece having the same thickness as the unit core for each unit core. As its manufacturing method, a unit core forming step for forming a unit core having a magnet receiving hole, and a magnet sintering step for storing a magnet material in the magnet receiving hole of the unit core and sintering to form a magnet piece, And a laminating step in which a predetermined number of unit iron cores including the magnet pieces are laminated and integrated.
JP 2004-104966 A Japanese Patent Laid-Open No. 11-4555 JP 2005-304193 A

各磁石収容孔に収容される永久磁石を複数に分割することにより、永久磁石に発生する渦電流が小さくなり、渦電流の発生による発熱を小さくすることができる。しかし、特許文献2のように、永久磁石を磁石収容孔の幅方向において複数に分割した場合は、永久磁石を磁石収容孔のロータコア軸方向に分割した場合に比較して渦電流は小さくならない。   By dividing the permanent magnet accommodated in each magnet accommodation hole into a plurality of parts, the eddy current generated in the permanent magnet is reduced, and the heat generated by the generation of the eddy current can be reduced. However, as in Patent Document 2, when the permanent magnet is divided into a plurality of pieces in the width direction of the magnet housing hole, the eddy current does not become smaller than when the permanent magnet is divided in the rotor core axial direction of the magnet housing hole.

特許文献3には、各単位鉄心(電磁鋼板)の磁石収容孔毎に永久磁石片が収容された構成、即ち、磁石収容孔にロータコア軸方向に分割された複数個の永久磁石が収容された回転子が開示されている。永久磁石片は磁石収容孔に収容される前に予め磁石素材の磁化(着磁)を行って、永久磁石になった状態で磁石収容孔に収容されるのではなく、単位鉄心を積層して一体化された後に磁石素材の磁化が行われる。しかし、単位鉄心の磁石収容孔に収容され状態で磁石素材の磁化(着磁)を行った場合は、着磁効率が悪く、永久磁石を磁石収容孔に収容した場合に比較して永久磁石の磁力が弱くなり、同じ大きさの回転子を使用しても回転電機の効率が悪くなる。また、特許文献3は、永久磁石で発生する渦電流の低減を目的として永久磁石を単位鉄心の磁石収容孔毎に独立した構成にしたものではないが、結果として永久磁石で発生する渦電流は低減される。しかし、製造工数がかかるばかりでなく、隣接する永久磁石は互いに接触した状態にあり、隣接する永久磁石にわたって渦電流が流れることは可能なため、渦電流の低減効果が低い。   In Patent Document 3, a configuration in which a permanent magnet piece is accommodated for each magnet accommodation hole of each unit iron core (electromagnetic steel sheet), that is, a plurality of permanent magnets divided in the rotor core axial direction are accommodated in the magnet accommodation hole. A rotor is disclosed. The permanent magnet pieces are magnetized (magnetized) in advance before being housed in the magnet housing holes, and are not housed in the magnet housing holes in a state of becoming permanent magnets, but are laminated by unit iron cores. After being integrated, the magnet material is magnetized. However, when the magnet material is magnetized (magnetized) in the state of being accommodated in the magnet housing hole of the unit iron core, the magnetization efficiency is poor, and the permanent magnet is not compared with the case where the permanent magnet is housed in the magnet housing hole. The magnetic force is weakened, and the efficiency of the rotating electrical machine is deteriorated even if a rotor of the same size is used. Moreover, although patent document 3 does not make the permanent magnet the independent structure for every magnet accommodation hole of a unit core for the purpose of reduction of the eddy current generate | occur | produced with a permanent magnet, as a result, the eddy current generated with a permanent magnet is Reduced. However, not only the number of manufacturing steps is required, but the adjacent permanent magnets are in contact with each other, and an eddy current can flow through the adjacent permanent magnets. Therefore, the effect of reducing the eddy current is low.

特許文献1には予め着磁された永久磁石を積層シートで挟持した状態で磁石収容孔に挿入することは開示されているが、永久磁石で発生する渦電流の低減や、ロータコアの軸方向において分割された複数の永久磁石を、磁石収容孔に挿入することに関しては何ら記載されていない。また、ロータコアの軸方向において複数に分割された永久磁石を、単純に積層シートで挟持した状態で磁石収容孔に挿入しようとしても、隣接する永久磁石同士が反発して挿入が円滑に行われない。   Patent Document 1 discloses that a previously magnetized permanent magnet is inserted into a magnet housing hole while being sandwiched between laminated sheets. However, in the axial direction of the rotor core, the eddy current generated in the permanent magnet is reduced. There is no description about inserting a plurality of divided permanent magnets into the magnet accommodation hole. Further, even if a permanent magnet divided into a plurality in the axial direction of the rotor core is simply inserted into the magnet housing hole while being sandwiched between laminated sheets, the adjacent permanent magnets repel each other and the insertion is not performed smoothly. .

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、回転電機の駆動時に永久磁石に発生する渦電流の低減と、回転子の製造時に回転子の磁石収容孔への着磁済み永久磁石の挿入し易さとを両立させることができる回転電機の回転子及びその製造方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is to reduce eddy currents generated in a permanent magnet when a rotating electrical machine is driven and to a magnet housing hole of a rotor during manufacture of the rotor. An object of the present invention is to provide a rotor of a rotating electrical machine that can achieve both easy insertion of a magnetized permanent magnet and a method of manufacturing the same.

前記の目的を達成するため、請求項1に記載の発明は、強磁性材製の磁性板が複数枚積層されて形成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に永久磁石が収容されるとともに、前記ロータコアを挟持する端板が設けられた回転電機の回転子である。そして、前記磁石収容孔には複数の永久磁石が、前記ロータコアの軸方向において分割された状態で収容され、各永久磁石は、少なくとも磁極面が電気的絶縁シートで覆われるとともに、隣接する永久磁石の端面間が前記電気的絶縁シートで区画されている。ここで、「磁極面」とは、永久磁石の磁束が出入りする面を意味する。   In order to achieve the above object, the invention according to claim 1 is directed to a magnet receiving hole formed in a rotor core formed by laminating a plurality of ferromagnetic magnetic plates and extending in the axial direction thereof. A rotor of a rotating electrical machine in which a permanent magnet is accommodated and an end plate that sandwiches the rotor core is provided. A plurality of permanent magnets are accommodated in the magnet accommodation hole in a state of being divided in the axial direction of the rotor core, and each permanent magnet has at least a magnetic pole surface covered with an electrically insulating sheet and adjacent permanent magnets. The end surfaces are partitioned by the electrical insulating sheet. Here, the “magnetic pole surface” means a surface through which the magnetic flux of the permanent magnet enters and exits.

この発明では、磁石収容孔に収容されている永久磁石がロータコアの軸方向において複数に分割されるとともに、隣接する永久磁石の端面間が電気的絶縁シートで区画されているため、回転子の回転時に永久磁石内に発生する渦電流は、各永久磁石内で流れる小さな渦電流になる。そのため、渦電流の発生による発熱が、隣接する永久磁石の端面間を区画する電気的絶縁シートが存在しない場合に比較して小さくなる。また、各永久磁石は、少なくとも磁極面が電気的絶縁シートで覆われるとともに、隣接する永久磁石の端面間が前記電気的絶縁シートで区画されているため、回転子の組み付け時に、着磁された永久磁石を磁石収容孔に挿入し易くなる。したがって、回転電機の駆動時に永久磁石に発生する渦電流の低減と、回転子の製造時に回転子の磁石収容孔への着磁済み永久磁石の挿入し易さとを両立させることができる。   In this invention, the permanent magnet accommodated in the magnet accommodation hole is divided into a plurality of parts in the axial direction of the rotor core, and the end surfaces of the adjacent permanent magnets are partitioned by the electrically insulating sheet. Sometimes the eddy current generated in the permanent magnet becomes a small eddy current flowing in each permanent magnet. For this reason, heat generation due to the generation of eddy current is reduced as compared to the case where there is no electrical insulating sheet that partitions between the end faces of adjacent permanent magnets. In addition, each permanent magnet is magnetized when the rotor is assembled because at least the magnetic pole surface is covered with an electrical insulating sheet and the end surfaces of adjacent permanent magnets are partitioned by the electrical insulating sheet. It becomes easy to insert the permanent magnet into the magnet housing hole. Therefore, it is possible to achieve both reduction of eddy current generated in the permanent magnet when the rotating electrical machine is driven and easy insertion of the magnetized permanent magnet into the magnet housing hole of the rotor when the rotor is manufactured.

請求項2に記載の発明は、請求項1に記載の発明において、前記各永久磁石は、表面全体が前記電気的絶縁シートで覆われている。この発明では、各永久磁石の磁極面と、隣接する永久磁石の端面間が電気的絶縁シートで覆われた構成に比較して、回転子の組み付け時に、永久磁石を磁石収容孔に挿入し易くなる。   According to a second aspect of the present invention, in the first aspect of the present invention, the entire surface of each permanent magnet is covered with the electrical insulating sheet. In this invention, compared to a configuration in which the magnetic pole surface of each permanent magnet and the end surface of the adjacent permanent magnet are covered with an electrical insulating sheet, the permanent magnet can be easily inserted into the magnet housing hole when the rotor is assembled. Become.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記電気的絶縁シートは、前記永久磁石を1個ずつ収容する袋部が連続するように形成され、各袋部に1個ずつ永久磁石が収容されている。この発明では、回転子の組み付け時に、永久磁石を磁石収容孔に挿入する作業がより容易になる。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the electrically insulating sheet is formed such that a bag portion that houses the permanent magnets one by one is continuous, One permanent magnet is accommodated in each part. In this invention, the operation of inserting the permanent magnet into the magnet housing hole becomes easier when the rotor is assembled.

請求項4に記載の発明は、強磁性材製の磁性板が複数枚積層されて形成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に、複数の永久磁石が、前記ロータコアの軸方向において分割された状態で収容されるとともに、前記ロータコアを挟持する端板が設けられた回転電機の回転子の製造方法である。そして、前記磁石収容孔に収容される各永久磁石が、予め収容後の大きさに形成されると共に着磁された状態で、少なくとも磁極面及び前記磁石収容孔への挿入方向前側が電気的絶縁シートで覆われた状態で各磁石収容孔に挿入される永久磁石収容工程と、全ての永久磁石が各磁石収容孔に挿入された後、ロータコアをその両側に配置された端板で、押圧した状態で両端板を回転軸に固定する端板押圧固定工程とを備えている。   According to a fourth aspect of the present invention, in the rotor core formed by laminating a plurality of magnetic plates made of a ferromagnetic material, a plurality of permanent magnets are provided in the magnet housing hole formed so as to extend in the axial direction thereof. This is a method of manufacturing a rotor of a rotating electrical machine that is accommodated in a state of being divided in the axial direction of the rotor core and that is provided with an end plate that sandwiches the rotor core. Each permanent magnet accommodated in the magnet accommodation hole is formed in a size after being accommodated in advance and magnetized, and at least the magnetic pole surface and the front side in the insertion direction to the magnet accommodation hole are electrically insulated. The permanent magnet accommodation process inserted into each magnet accommodation hole in the state covered with the sheet, and after all the permanent magnets were inserted into each magnet accommodation hole, the rotor core was pressed with the end plates arranged on both sides thereof And an end plate pressing and fixing step of fixing the both end plates to the rotating shaft.

この発明では、ロータコアに形成された各磁石収容孔に、複数の永久磁石を収容する永久磁石収容工程において、永久磁石は、予め磁石収容孔に収容後の大きさに形成されると共に着磁された状態で、少なくとも磁極面及び磁石収容孔への挿入方向前側が電気的絶縁シートで覆われた状態で各磁石収容孔に挿入される。したがって、ロータコアの軸方向において分割された複数の永久磁石の磁石収容孔への挿入が容易になる。また、回転電機の駆動時に永久磁石に発生する渦電流の低減を図ることができる回転子を製造することができる。   In this invention, in the permanent magnet housing step of housing a plurality of permanent magnets in each magnet housing hole formed in the rotor core, the permanent magnet is previously formed in a size after being housed in the magnet housing hole and magnetized. In this state, at least the magnetic pole surface and the front side in the direction of insertion into the magnet housing hole are covered with the electrical insulating sheet and inserted into each magnet housing hole. Therefore, it becomes easy to insert a plurality of permanent magnets divided in the axial direction of the rotor core into the magnet accommodation holes. Further, it is possible to manufacture a rotor that can reduce the eddy current generated in the permanent magnet when the rotating electrical machine is driven.

請求項5に記載の発明は、請求項4に記載の発明において、前記永久磁石収容工程において、前記永久磁石は、永久磁石を1個ずつ収容する袋部が連続するように形成された電気的絶縁シートの各袋部に収容された状態で、電気的絶縁シートと共に連続する状態で各磁石収容孔に挿入される。この発明では、ロータコアを構成する全ての磁性板が積層された状態において、各永久磁石を磁石収容孔に容易に挿入することができる。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, in the permanent magnet housing step, the permanent magnet is formed such that a bag portion for housing the permanent magnets one by one is continuous. In the state accommodated in each bag part of an insulation sheet, it inserts in each magnet accommodation hole in the state continuous with the electrical insulation sheet. In this invention, in a state where all the magnetic plates constituting the rotor core are laminated, each permanent magnet can be easily inserted into the magnet accommodation hole.

請求項6に記載の発明は、請求項4又は請求項5に記載の発明において、前記端板押圧固定工程において、ロータコアをその両側に配置された端板で押圧する際、前記ロータコアを構成する各磁性板は、前記回転軸の軸方向に延びるガイド部にガイドされる状態で押圧される。この発明では、分割された永久磁石間の反発力が存在しても、各磁性板が所定の位置関係で両端板によって押圧挟持される。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein, in the end plate pressing and fixing step, the rotor core is configured when pressing the rotor core with the end plates arranged on both sides thereof. Each magnetic plate is pressed while being guided by a guide portion extending in the axial direction of the rotating shaft. In this invention, even if there is a repulsive force between the divided permanent magnets, the magnetic plates are pressed and clamped by the both end plates in a predetermined positional relationship.

本発明によれば、回転電機の駆動時に永久磁石に発生する渦電流の低減と、回転子の製造時に回転子の装着孔への着磁済み永久磁石の挿入し易さとを両立させることができる回転電機を提供することができる。   According to the present invention, it is possible to achieve both reduction of eddy current generated in a permanent magnet during driving of a rotating electrical machine and ease of insertion of a magnetized permanent magnet into a rotor mounting hole during manufacture of the rotor. A rotating electrical machine can be provided.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図6にしたがって説明する。
図1(a)に示すように、回転子11は、強磁性材製の磁性板としての円板状の電磁鋼板12aが複数枚積層されたロータコア12と、ロータコア12の両端に配置された円板状の端板13と、ロータコア12及び端板13の中心に形成された軸孔11aに貫挿された回転軸14とを備えている。回転軸14は、基端寄り(図1(a)の左端寄り)に鍔部14aを備えている。そして、鍔部14aに一方の端板13が当接し、両端板13でロータコア12が押圧された状態で、回転軸14の先端側から嵌められるとともに他方の端板13に当接した状態で回転軸14にカシメ固定されたリング状の固定部材15により、ロータコア12が端板13と共に回転軸14に締結されている。なお、回転軸14の周面には軸方向に延びるキー溝14b(図1(b)にのみ図示)が形成されており、電磁鋼板12a及び端板13にはキー溝14bと係合して位置決め及び回り止めの役割を果たす凸部が形成されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1A, the rotor 11 includes a rotor core 12 in which a plurality of disk-shaped electromagnetic steel plates 12 a as magnetic plates made of a ferromagnetic material are stacked, and circles disposed at both ends of the rotor core 12. A plate-shaped end plate 13 and a rotary shaft 14 inserted through a shaft hole 11 a formed at the center of the rotor core 12 and the end plate 13 are provided. The rotating shaft 14 includes a flange portion 14a near the base end (closer to the left end in FIG. 1A). Then, one end plate 13 abuts on the flange portion 14 a, and the rotor core 12 is pressed by the both end plates 13. The rotor core 12 is fitted from the front end side of the rotary shaft 14 and is rotated in a state abutting on the other end plate 13. The rotor core 12 is fastened to the rotating shaft 14 together with the end plate 13 by a ring-shaped fixing member 15 that is caulked and fixed to the shaft 14. A key groove 14b (shown only in FIG. 1B) extending in the axial direction is formed on the peripheral surface of the rotary shaft 14, and the electromagnetic steel plate 12a and the end plate 13 are engaged with the key groove 14b. Protrusions that serve as positioning and detents are formed.

図1(b)に示すように、ロータコア12には、その軸方向に延びるように磁石収容孔16が形成され、磁石収容孔16に永久磁石17が収容されている。磁石収容孔16は、ロータコア12の周方向に複数(この実施形態では8個)に等分割された各仮想領域にそれぞれ1個ずつ、その幅方向がロータコア12の径方向と直交状態に形成されている。各永久磁石17は、着磁方向が厚さ方向となるように着磁されるとともに、隣り合う仮想領域に配置された永久磁石17同士は、ロータコア12の外周側が異なる極になるように配置されている。   As shown in FIG. 1B, the rotor core 12 is formed with a magnet accommodation hole 16 extending in the axial direction, and a permanent magnet 17 is accommodated in the magnet accommodation hole 16. One magnet housing hole 16 is formed in each virtual region equally divided into a plurality (eight in this embodiment) in the circumferential direction of the rotor core 12, and the width direction thereof is formed in a state orthogonal to the radial direction of the rotor core 12. ing. The permanent magnets 17 are magnetized so that the magnetization direction is the thickness direction, and the permanent magnets 17 arranged in adjacent virtual regions are arranged so that the outer peripheral sides of the rotor core 12 are different poles. ing.

図1(c)に示すように、磁石収容孔16には複数の永久磁石17が、ロータコア12の軸方向において分割された状態で収容されている。各永久磁石17は、少なくとも磁極面が電気的絶縁シート18で覆われるとともに、隣接する永久磁石17の端面17a間が電気的絶縁シート18で区画されている。この実施形態では、各永久磁石17は、表面全体が電気的絶縁シート18で覆われている。そして、永久磁石17は、磁石収容孔16の幅方向両端部に連続するように形成されている図示しないフラックスバリア内に設けられた図示しないに固定手段により、電気的絶縁シート18と共に磁石収容孔16内に固定されている。固定手段としては、例えば、接着剤やばね部材が使用される。   As shown in FIG. 1C, a plurality of permanent magnets 17 are accommodated in the magnet accommodation hole 16 in a state of being divided in the axial direction of the rotor core 12. Each permanent magnet 17 has at least a magnetic pole surface covered with an electrical insulating sheet 18, and an end surface 17 a between adjacent permanent magnets 17 is partitioned by the electrical insulating sheet 18. In this embodiment, the entire surface of each permanent magnet 17 is covered with an electrical insulating sheet 18. The permanent magnet 17 is fixed together with the electrically insulating sheet 18 by a fixing means (not shown) provided in a flux barrier (not shown) formed so as to be continuous with both ends of the magnet accommodation hole 16 in the width direction. 16 is fixed inside. For example, an adhesive or a spring member is used as the fixing means.

電気的絶縁シート18は、図2(a),(b)に示すように、永久磁石17を1個ずつ収容する袋部19が連続するように形成され、各袋部19に1個ずつ永久磁石17が収容されている。電気的絶縁シート18の材質としては、プラスチックフィルムが使用され、
プラスチックフィルムとしてはフッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム等が挙げられる。永久磁石17は、着磁方向が厚さ方向となるように着磁されている。
As shown in FIGS. 2A and 2B, the electrical insulating sheet 18 is formed so that the bag portions 19 for storing the permanent magnets 17 one by one are continuous, and each bag portion 19 is permanent one by one. A magnet 17 is accommodated. As a material of the electrical insulating sheet 18, a plastic film is used,
Examples of the plastic film include a fluororesin film, a polyethylene terephthalate film, and a polyimide film. The permanent magnet 17 is magnetized so that the magnetization direction is the thickness direction.

次に前記のように構成された回転子11の製造方法を説明する。この製造方法では、ロータコア12は、ロータコア12に必要な枚数の電磁鋼板12aを、一度にプレス機にセットしてプレスすることにより製造するのではなく、予め複数種類の所定の厚さに対応する枚数の電磁鋼板12aを、プレス機でプレスして形成された積層コアを複数個使用してロータコア12を構成する。所定の厚さとは、例えば、10mm〜30mm程度の厚さである。積層コアは、必要に応じて電磁鋼板12aが接着剤などで仮止めされた状態で保管されている。   Next, a method for manufacturing the rotor 11 configured as described above will be described. In this manufacturing method, the rotor core 12 is not manufactured by setting and pressing the number of electromagnetic steel plates 12a necessary for the rotor core 12 in a press at once, but corresponds to a plurality of types of predetermined thicknesses in advance. The rotor core 12 is configured by using a plurality of laminated cores formed by pressing a number of electromagnetic steel sheets 12a with a press. The predetermined thickness is, for example, a thickness of about 10 mm to 30 mm. The laminated core is stored in a state in which the electromagnetic steel sheet 12a is temporarily fixed with an adhesive or the like as necessary.

先ず、図4(a)に示すように、プレス機の支持部30上に治具31を配置し、治具31の収容部32に回転軸14を鍔部14a側が下になるように収容するとともに、一方の端板13及び複数個(この実施形態では4個)の積層コア20を同心状かつ磁石収容孔16が一致するように順に積み重ねる。このとき、回転軸14のキー溝14bに端板13及び積層コア20の凸部が係合する状態で積み重ねることにより、各積層コア20の磁石収容孔16が一致する状態になる。なお、図4(a)では図示の都合上、各積層コア20が互いに密接した状態で図示しているが、実際は各積層コア20間に隙間や段差が生じる可能性がある。   First, as shown in FIG. 4A, a jig 31 is arranged on a support part 30 of the press machine, and the rotary shaft 14 is accommodated in the accommodating part 32 of the jig 31 so that the flange part 14a side is downward. At the same time, one end plate 13 and a plurality (four in this embodiment) of laminated cores 20 are stacked in order so that the magnet housing holes 16 are concentric. At this time, by stacking the end plates 13 and the convex portions of the laminated core 20 in engagement with the key grooves 14b of the rotary shaft 14, the magnet accommodating holes 16 of the laminated cores 20 are brought into alignment. In FIG. 4A, for convenience of illustration, the laminated cores 20 are shown in close contact with each other, but in reality, there is a possibility that a gap or a step is generated between the laminated cores 20.

次に図3に示すように、積み重ねられた積層コア20の各磁石収容孔16に、電気的絶縁シート18に覆われた状態の永久磁石17が電気的絶縁シート18と共に順に挿入される永久磁石収容工程が行われる。着磁された複数の永久磁石17を一つの磁石収容孔16に順に挿入しようとすると、各永久磁石17は自身の吸引力により電磁鋼板12aに吸着する状態になり、その先端が磁石収容孔16の壁面に当接する状態になる。磁石収容孔16の壁面は複数の電磁鋼板12aが連続することで形成されているため、滑らかな面ではない。また、積み重ねられた積層コア20の境界部分には隙間や段差が生じる可能性があるため、永久磁石17の先端が積層コア20の端面と磁石収容孔16の壁面とが連続する角部と干渉する状態になる。そのため、永久磁石17の挿入が円滑に行われない。しかし、永久磁石17は電気的絶縁シート18に全体が覆われているため、電気的絶縁シート18と共に永久磁石17を磁石収容孔16へ挿入する際に、永久磁石17の先端が磁石収容孔16の壁面や、積層コア20の端面と磁石収容孔16の壁面との角部に引っかかることなく、円滑に磁石収容孔16に挿入される。また、隣接する永久磁石17同士には斥力(反発力)が作用するため、自由状態では隣接する袋部19同士は密着状態とならない。その結果、図4(a)に二点鎖線で示すように、最上部に載置された積層コア20の上端面から永久磁石17の一部が突出する状態で全ての磁石収容孔16に永久磁石17が挿入された状態になる。   Next, as shown in FIG. 3, the permanent magnets 17, which are covered with the electrical insulation sheet 18, are inserted together with the electrical insulation sheets 18 in order in the magnet accommodation holes 16 of the stacked laminated cores 20. A containment process is performed. When trying to sequentially insert a plurality of magnetized permanent magnets 17 into one magnet housing hole 16, each permanent magnet 17 is in a state of being attracted to the electromagnetic steel plate 12 a by its own attractive force, and the tip thereof is magnet housing hole 16. It will be in the state contact | abutted to the wall surface. The wall surface of the magnet housing hole 16 is not a smooth surface because it is formed by a plurality of continuous electromagnetic steel plates 12a. Further, since there may be a gap or a step at the boundary portion of the stacked laminated cores 20, the tip of the permanent magnet 17 interferes with the corner where the end face of the laminated core 20 and the wall surface of the magnet housing hole 16 are continuous. It becomes a state to do. Therefore, the permanent magnet 17 cannot be inserted smoothly. However, since the permanent magnet 17 is entirely covered with the electrical insulation sheet 18, when the permanent magnet 17 is inserted into the magnet accommodation hole 16 together with the electrical insulation sheet 18, the tip of the permanent magnet 17 is positioned at the magnet accommodation hole 16. And smoothly inserted into the magnet housing hole 16 without being caught by the corners between the end surface of the laminated core 20 and the wall surface of the magnet housing hole 16. In addition, since a repulsive force (repulsive force) acts between the adjacent permanent magnets 17, the adjacent bag portions 19 are not in close contact with each other in a free state. As a result, as indicated by a two-dot chain line in FIG. 4A, the permanent magnets 17 are permanently attached to all the magnet housing holes 16 in a state in which a part of the permanent magnets 17 protrudes from the upper end surface of the laminated core 20 placed on the top. The magnet 17 is inserted.

次に端板押圧固定工程が行われる。端板押圧固定工程では、図4(b)に示すように、他方の端板を積層コア20の上に載置する。その状態では、永久磁石17は磁石収容孔16から一部が突出した状態にある。その状態でプレス機が駆動されて、図示しない待機位置にあったプレス治具33が下降移動され、端板13が永久磁石17を磁石収容孔16内に押し込みながらロータコア12と当接する状態になり、図5(a)に示すように、所定の加圧力で両端板13がロータコア12を挟持する状態になる。   Next, an end plate pressing and fixing step is performed. In the end plate pressing and fixing step, the other end plate is placed on the laminated core 20 as shown in FIG. In this state, the permanent magnet 17 is in a state in which a part protrudes from the magnet accommodation hole 16. In this state, the press machine is driven, the pressing jig 33 in a standby position (not shown) is moved down, and the end plate 13 comes into contact with the rotor core 12 while pushing the permanent magnet 17 into the magnet housing hole 16. As shown in FIG. 5A, both end plates 13 are in a state of sandwiching the rotor core 12 with a predetermined pressure.

次にその状態でプレス治具33の間から固定部材15を回転軸14に対してその先端側から嵌めるとともに、端板13と当接する位置で14にカシメ固定する。なお、回転軸14には固定部材15がカシメ固定される箇所に凹部が形成されており、固定部材15は一部が凹部と嵌合する状態で回転軸14に抜け止めされた状態で固定される。次にプレス治具33が図示しない退避位置まで上昇移動されると、図5(b)に示すように、完成した回転子11を収容部32から取り出すことが可能な状態になる。その状態から回転子11を収容部32から取り出すと回転子11の製造が完了する。   Next, in this state, the fixing member 15 is fitted to the rotary shaft 14 from the front end side between the press jigs 33, and is caulked and fixed to 14 at a position in contact with the end plate 13. The rotating shaft 14 is formed with a recess at a position where the fixing member 15 is fixed by caulking, and the fixing member 15 is fixed in a state in which the fixing member 15 is secured to the rotating shaft 14 while being partially engaged with the recess. The Next, when the pressing jig 33 is moved up to a retracted position (not shown), the completed rotor 11 can be taken out from the accommodating portion 32 as shown in FIG. When the rotor 11 is taken out of the housing portion 32 from this state, the manufacture of the rotor 11 is completed.

端板押圧固定工程では、両端板13の間隔が予め設定された距離になるまで押圧した状態で両端板13を回転軸14に固定する。「予め設定された距離」とは、この実施形態のように、両端板13がロータコア12の端面に当接する構成では、ロータコア12が押圧されたときの厚さを意味し、両端板13とロータコア12の端面との間に介在物が存在する構成では、ロータコア12が押圧されたときの厚さと介在物の厚さとの和を意味する。   In the end plate pressing and fixing step, the both end plates 13 are fixed to the rotary shaft 14 while being pressed until the distance between the both end plates 13 reaches a preset distance. The “preset distance” means the thickness when the rotor core 12 is pressed in the configuration in which the both end plates 13 abut against the end surface of the rotor core 12 as in this embodiment, and the both end plates 13 and the rotor core In the configuration in which inclusions exist between the end faces of 12, this means the sum of the thickness when the rotor core 12 is pressed and the thickness of the inclusions.

次に前記のように構成された回転子11を備えた電動機の作用を説明する。
電動機が負荷状態で駆動される場合は、固定子のコイルに電流が供給されて固定子に回転磁界が発生し、回転子11に回転磁界が作用する。そして、回転磁界と永久磁石17との間の磁気的な吸引力及び反発力により回転子11が回転磁界と同期して回転する。
Next, the operation of the electric motor provided with the rotor 11 configured as described above will be described.
When the motor is driven in a load state, a current is supplied to the stator coil, a rotating magnetic field is generated in the stator, and the rotating magnetic field acts on the rotor 11. Then, the rotor 11 rotates in synchronization with the rotating magnetic field by the magnetic attractive force and repulsive force between the rotating magnetic field and the permanent magnet 17.

回転子11が高速で回転すると回転時に回転子11に作用する鎖交磁束の変化が大きくなり、回転子11内に渦電流が発生する。渦電流は電磁鋼板12aの部分だけでなく永久磁石17にも発生する。磁石収容孔16に収容されている永久磁石17がロータコア12の軸方向において分割されていない場合は、図6(b)に示すように、渦電流Ieは永久磁石17の長手方向全長を経路とする大きな渦電流Ieになり、渦電流の発生による発熱が大きくなる。永久磁石17がロータコア12の軸方向において分割されている場合は、図6(c)に示すように、渦電流Ieは分割された永久磁石17内でそれぞれ流れる状態になって小さな渦電流Ieとなり、渦電流の発生による発熱が小さくなる。しかし、単に永久磁石17を分割しただけでは、図6(c)に二点鎖線で示すように、分割された永久磁石17に跨って流れる渦電流Ieが発生する虞もある。   When the rotor 11 rotates at a high speed, a change in the interlinkage magnetic flux acting on the rotor 11 during rotation increases, and an eddy current is generated in the rotor 11. Eddy current is generated not only in the electromagnetic steel sheet 12a but also in the permanent magnet 17. When the permanent magnet 17 accommodated in the magnet accommodation hole 16 is not divided in the axial direction of the rotor core 12, as shown in FIG. 6B, the eddy current Ie takes the entire length in the longitudinal direction of the permanent magnet 17 as a path. Large eddy current Ie, and heat generation due to the generation of eddy current increases. When the permanent magnet 17 is divided in the axial direction of the rotor core 12, as shown in FIG. 6C, the eddy current Ie flows in the divided permanent magnet 17 and becomes a small eddy current Ie. Heat generation due to the generation of eddy current is reduced. However, if the permanent magnet 17 is simply divided, an eddy current Ie flowing across the divided permanent magnet 17 may be generated, as indicated by a two-dot chain line in FIG.

一方、この実施形態の回転子11は、永久磁石17がロータコア12の軸方向において複数に分割されるとともに、隣接する永久磁石17の端面17a間が電気的絶縁シート18で区画されている。そのため、図6(a)に示すように、永久磁石17に発生する渦電流Ieは、各永久磁石17内で流れる小さな渦電流Ieのみとなり、渦電流の発生による発熱が隣接する永久磁石17の端面17a間を区画する電気的絶縁シート18が存在しない場合に比較して小さくなる。例えば、図6(b)に示すように、永久磁石17を分割しない場合と、図6(a)のように、永久磁石17を4分割するとともに隣接する永久磁石17の端面17a間を電気的絶縁シート18で区画した場合とを比較すると、渦電流の発生は、4分割した方が分割しない場合の1/3より小さくなった。   On the other hand, in the rotor 11 of this embodiment, the permanent magnet 17 is divided into a plurality of parts in the axial direction of the rotor core 12, and the end surfaces 17 a of the adjacent permanent magnets 17 are partitioned by an electrical insulating sheet 18. Therefore, as shown in FIG. 6A, the eddy current Ie generated in the permanent magnet 17 is only a small eddy current Ie flowing in each permanent magnet 17, and the heat generated by the generation of the eddy current is generated by the adjacent permanent magnets 17. This is smaller than when there is no electrical insulating sheet 18 that partitions the end faces 17a. For example, as shown in FIG. 6B, when the permanent magnet 17 is not divided, and when the permanent magnet 17 is divided into four as shown in FIG. 6A, the end surfaces 17a of the adjacent permanent magnets 17 are electrically connected. Comparing with the case of partitioning with the insulating sheet 18, the generation of eddy currents was smaller than 1/3 of the case of dividing into four when not dividing.

この実施形態によれば、以下に示す効果を得ることができる。
(1)電磁鋼板12aが複数枚積層されて形成されたロータコア12に、その軸方向に延びるように形成された磁石収容孔16には、複数の永久磁石17が、ロータコア12の軸方向において分割された状態で収容され、各永久磁石17は、少なくとも磁極面が電気的絶縁シート18で覆われている。また、隣接する永久磁石17の端面17a間が電気的絶縁シート18で区画されている。したがって、回転電機の駆動時に永久磁石17に発生する渦電流の低減と、回転子11の製造時に回転子11の磁石収容孔16への着磁済み永久磁石17の挿入し易さとを両立させることができる。
According to this embodiment, the following effects can be obtained.
(1) A plurality of permanent magnets 17 are divided in the axial direction of the rotor core 12 in the magnet housing hole 16 formed so as to extend in the axial direction of the rotor core 12 formed by laminating a plurality of electromagnetic steel plates 12a. Each permanent magnet 17 is covered with an electrically insulating sheet 18 at least on the magnetic pole surface. Further, the end surfaces 17 a of the adjacent permanent magnets 17 are partitioned by an electrical insulating sheet 18. Therefore, both reduction of eddy current generated in the permanent magnet 17 when the rotating electric machine is driven and easy insertion of the magnetized permanent magnet 17 into the magnet housing hole 16 of the rotor 11 when the rotor 11 is manufactured are achieved. Can do.

(2)各永久磁石17は、表面全体が電気的絶縁シート18で覆われている。したがって、各永久磁石17の磁極面と、隣接する永久磁石17の端面間が電気的絶縁シート18で覆われた構成に比較して、回転子11の組み付け時に、永久磁石17を磁石収容孔16に挿入し易くなる。   (2) The entire surface of each permanent magnet 17 is covered with the electrical insulating sheet 18. Therefore, the permanent magnet 17 is inserted into the magnet housing hole 16 when the rotor 11 is assembled, as compared with the configuration in which the magnetic pole surface of each permanent magnet 17 and the end surface of the adjacent permanent magnet 17 are covered with the electrical insulating sheet 18. It becomes easy to insert into.

(3)電気的絶縁シート18は、永久磁石17を1個ずつ収容する袋部19が連続するように形成され、各袋部19に1個ずつ永久磁石17が収容されている。したがって、回転子11の組み付け時に、永久磁石17を磁石収容孔16に挿入する作業がより容易になる。   (3) The electrically insulating sheet 18 is formed so that the bag portions 19 for storing the permanent magnets 17 one by one are continuous, and one permanent magnet 17 is stored in each bag portion 19. Therefore, when the rotor 11 is assembled, the operation of inserting the permanent magnet 17 into the magnet accommodation hole 16 becomes easier.

(4)回転子11の製造方法は、磁石収容孔16に収容される各永久磁石17が、予め収容後の大きさに形成されると共に着磁された状態で、少なくとも磁極面及び磁石収容孔16への挿入方向前側が電気的絶縁シート18で覆われた状態で各磁石収容孔16に挿入される永久磁石収容工程を備えている。したがって、ロータコア12の軸方向において分割された複数の永久磁石17の磁石収容孔16への挿入が容易になる。   (4) The method of manufacturing the rotor 11 is such that each permanent magnet 17 accommodated in the magnet accommodation hole 16 is previously formed in a size after being accommodated and magnetized, and at least the magnetic pole surface and the magnet accommodation hole. 16 is provided with a permanent magnet accommodation step that is inserted into each magnet accommodation hole 16 in a state in which the front side in the direction of insertion into 16 is covered with the electrical insulating sheet 18. Accordingly, the plurality of permanent magnets 17 divided in the axial direction of the rotor core 12 can be easily inserted into the magnet housing holes 16.

(5)回転子11の製造方法は、全ての永久磁石17が各磁石収容孔16に挿入された後、ロータコア12をその両側に配置された端板13で、両端板13の間隔が予め設定された距離(この実施形態では、ロータコア12が押圧されたときの厚さ)になるまで押圧した状態で両端板13を回転軸14に固定する端板押圧固定工程を備えている。したがって、積層された積層コア20を両端板13で押圧して両端板13の間隔が予め設定された距離になるようにする作業が容易になる。   (5) In the method of manufacturing the rotor 11, after all the permanent magnets 17 are inserted into the respective magnet housing holes 16, the rotor core 12 is the end plate 13 disposed on both sides, and the interval between the both end plates 13 is set in advance. An end plate pressing and fixing step of fixing the both end plates 13 to the rotary shaft 14 in a pressed state until the distance is reached (in this embodiment, the thickness when the rotor core 12 is pressed) is provided. Therefore, it becomes easy to press the laminated core 20 with the both end plates 13 so that the distance between the both end plates 13 becomes a preset distance.

(6)永久磁石収容工程において、永久磁石17は、永久磁石17を1個ずつ収容する袋部19が連続するように形成された電気的絶縁シート18の各袋部19に収容された状態で、電気的絶縁シート18と共に連続する状態で各磁石収容孔16に挿入される。したがって、ロータコア12を構成する全ての電磁鋼板12aが積層された状態において、各永久磁石17を磁石収容孔16に容易に挿入することができる。   (6) In the permanent magnet accommodation step, the permanent magnets 17 are accommodated in the respective bag portions 19 of the electrically insulating sheet 18 formed so that the bag portions 19 for accommodating the permanent magnets 17 one by one are continuous. The magnet housing holes 16 are inserted in a continuous state together with the electrical insulating sheet 18. Therefore, each permanent magnet 17 can be easily inserted into the magnet housing hole 16 in a state in which all the electromagnetic steel plates 12 a constituting the rotor core 12 are laminated.

(7)端板押圧固定工程において、ロータコア12をその両側に配置された端板13で押圧する際、ロータコア12を構成する各電磁鋼板12aは、回転軸14の軸方向に延びるガイド部(回転軸14のキー溝14bと電磁鋼板12aの凸部)にガイドされる状態で移動される。したがって、分割された永久磁石17間の反発力が存在しても、各電磁鋼板12aが所定の位置関係で両端板13によって容易に押圧挟持される。   (7) In the end plate pressing and fixing step, when the rotor core 12 is pressed by the end plates 13 disposed on both sides thereof, the electromagnetic steel plates 12a constituting the rotor core 12 are guide portions (rotations) extending in the axial direction of the rotary shaft 14. It is moved while being guided by the keyway 14b of the shaft 14 and the convex portion of the electromagnetic steel plate 12a. Therefore, even if there is a repulsive force between the divided permanent magnets 17, the electromagnetic steel plates 12 a are easily pressed and clamped by the both end plates 13 in a predetermined positional relationship.

(第2の実施形態)
次に第2の実施形態を図7及び図8にしたがって説明する。この実施形態では、磁石収容孔16に収容されている各永久磁石17を覆う電気的絶縁シート18の構成が第1の実施形態と異なっており、その他の構成は第1の実施形態と同じである。第1の実施形態と同様の部分は同一符号を付して詳しい説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, the configuration of the electrical insulating sheet 18 covering each permanent magnet 17 accommodated in the magnet accommodation hole 16 is different from that of the first embodiment, and other configurations are the same as those of the first embodiment. is there. The same parts as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図7は第1の実施形態の図1(c)に対応する模式断面図である。図7に示すように、電気的絶縁シート18は、1個の永久磁石17の磁極面、即ち厚さ方向の両面と、隣接する永久磁石17の端面17a間を区画する形状に折り曲げられた状態で配置されている。即ち、第1の実施形態では、一つの磁石収容孔16内に配置された電気的絶縁シート18は一体に形成されていたが、この実施形態では、永久磁石17と同じ数の電気的絶縁シート18が一つの磁石収容孔16内に配置されている。   FIG. 7 is a schematic cross-sectional view corresponding to FIG. 1C of the first embodiment. As shown in FIG. 7, the electrical insulating sheet 18 is bent into a shape that partitions the magnetic pole surfaces of one permanent magnet 17, that is, both surfaces in the thickness direction, and the end surface 17 a of the adjacent permanent magnet 17. Is arranged in. That is, in the first embodiment, the electrical insulating sheets 18 arranged in one magnet housing hole 16 are integrally formed, but in this embodiment, the same number of electrical insulating sheets as the permanent magnets 17 are formed. 18 is arranged in one magnet housing hole 16.

この実施形態の回転子11を製造する場合は、積層コア20をロータコア12に必要な数積層した後、永久磁石17を電気的絶縁シート18と共に各磁石収容孔16に挿入するのではなく、各磁石収容孔16に永久磁石17が電気的絶縁シート18と共に収容された積層コア20を必要な数積層する。永久磁石17及び電気的絶縁シート18の磁石収容孔16への挿入は、永久磁石17の幅と同じ幅の電気的絶縁シート18を略U字状に折り曲げて、図8(a)に示すように、永久磁石17の磁極面(厚さ方向両端面)及び磁石収容孔16への挿入方向前側を覆う状態で行う。そして、永久磁石17が電気的絶縁シート18と共に磁石収容孔16に挿入された状態で、電気的絶縁シート18の磁石収容孔16からはみ出している部分を切断する。この積層コア20を第1の実施形態と同様に、治具31を使用して回転軸14に対して端板13と共に組み付けると、図8(b)に示すように、各磁石収容孔16内に収容された永久磁石17は、その磁極面及び隣接する端面17a間に電気的絶縁シート18が存在する状態になる。   When the rotor 11 of this embodiment is manufactured, the required number of laminated cores 20 are laminated on the rotor core 12 and then the permanent magnets 17 are not inserted into the respective magnet housing holes 16 together with the electrical insulating sheets 18. A required number of laminated cores 20 in which the permanent magnets 17 are accommodated together with the electrical insulating sheets 18 are laminated in the magnet accommodation holes 16. As shown in FIG. 8A, the permanent magnet 17 and the electrical insulation sheet 18 are inserted into the magnet housing hole 16 by bending the electrical insulation sheet 18 having the same width as the permanent magnet 17 into a substantially U shape. In addition, the magnetic pole surfaces (both end surfaces in the thickness direction) of the permanent magnet 17 and the front side in the insertion direction into the magnet housing hole 16 are covered. Then, in a state where the permanent magnet 17 is inserted into the magnet housing hole 16 together with the electrical insulating sheet 18, the portion protruding from the magnet housing hole 16 of the electrical insulating sheet 18 is cut. When the laminated core 20 is assembled together with the end plate 13 with respect to the rotary shaft 14 using the jig 31 as in the first embodiment, as shown in FIG. The permanent magnets 17 accommodated in the state are in a state in which the electrical insulating sheet 18 exists between the magnetic pole face and the adjacent end face 17a.

この第2の実施形態によれば、第1の実施形態の(1)、(4)、(5)及び(7)の効果に加えて以下の効果を得ることができる。
(8)永久磁石収容工程において、積層コア20をロータコア12に必要な数積層した後、永久磁石17を電気的絶縁シート18と共に各磁石収容孔16に挿入するのではなく、予め永久磁石17及び電気的絶縁シート18が各磁石収容孔16に収容された積層コア20を必要な数、端板13間に配置する。したがって、電気的絶縁シート18は袋状でなくてもよい。また、積層コア20の軸方向の長さに対応してそれぞれ異なる電気的絶縁シート18を準備する必要はなく、1種類の電気的絶縁シート18で対応することができる。
According to the second embodiment, in addition to the effects (1), (4), (5) and (7) of the first embodiment, the following effects can be obtained.
(8) In the permanent magnet housing step, after the necessary number of laminated cores 20 are laminated on the rotor core 12, the permanent magnets 17 are not inserted into the respective magnet housing holes 16 together with the electrical insulating sheets 18; The required number of laminated cores 20 in which the electrical insulating sheets 18 are accommodated in the respective magnet accommodation holes 16 are arranged between the end plates 13. Therefore, the electrical insulation sheet 18 does not have to be bag-shaped. Further, it is not necessary to prepare different electrical insulation sheets 18 corresponding to the lengths of the laminated core 20 in the axial direction, and one type of electrical insulation sheet 18 can be used.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第2の実施形態のように、予め永久磁石17及び電気的絶縁シート18が各磁石収容孔16に収容された積層コア20を必要な数、端板13間に配置してロータコア12を形成する場合、図9に示すように、永久磁石17を袋状の電気的絶縁シート18で密封されたものを使用してもよい。この場合、第1の実施形態で使用した電気的絶縁シート18、即ち永久磁石17を1個ずつ収容する袋部19が連続するように形成された電気的絶縁シート18から、各袋部19を永久磁石17と共に1個ずつ切り離して使用してもよいし、永久磁石17を袋状の電気的絶縁シート18に1個収容したものを複数準備してもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
○ As in the second embodiment, the required number of laminated cores 20 in which the permanent magnets 17 and the electrical insulating sheets 18 are previously accommodated in the magnet accommodation holes 16 are arranged between the end plates 13 to form the rotor core 12. In this case, as shown in FIG. 9, a permanent magnet 17 sealed with a bag-like electrical insulating sheet 18 may be used. In this case, each bag portion 19 is formed from the electrical insulation sheet 18 used in the first embodiment, that is, the electrical insulation sheet 18 formed so that the bag portions 19 for accommodating the permanent magnets 17 one by one are continuous. The permanent magnets 17 may be used separately from each other, or a plurality of the permanent magnets 17 accommodated in a bag-like electrical insulating sheet 18 may be prepared.

○ 電気的絶縁シート18は、永久磁石17の有する6つの面のうち、磁極面の2面とロータコア12の軸方向における両端面の2面を合わせた4面のみを覆うようにしてもよい。   The electrical insulating sheet 18 may cover only four surfaces of the six surfaces of the permanent magnet 17 including the two magnetic pole surfaces and the two end surfaces in the axial direction of the rotor core 12.

○ ロータコア12を構成する積層コア20の数は4個に限らず、例えば、ロータコア12の軸方向の長さや径の大きさによって適宜変更してもよい。
○ ロータコア12は、全て同じ厚さの積層コア20で構成されるものに限らず、異なる厚さの積層コア20が混在してもよい。例えば、ロータコア12の軸方向の長さに拘わらず、基本となる同じ厚さの積層コア20を複数使用して、足りない長さの分を別の厚さの積層コア20で補うようにしてもよい。ロータコア12の軸方向の長さに拘わらず同じ数の積層コア20でロータコア12を構成しようとすると、ロータコア12の種類と同じだけ、少なくとも積層コア20及び永久磁石17の種類が必要になる。しかし、基本となる厚さの積層コア20を複数使用して、足りない長さの分を別の厚さの積層コア20で補うようにする構成を採用すると、予め準備する積層コア20の種類や異なる種類の積層コア20をそれぞれ多数準備するのを避けることができ、保管場所の確保も容易になる。
The number of the laminated cores 20 constituting the rotor core 12 is not limited to four, and may be appropriately changed depending on, for example, the axial length and the diameter of the rotor core 12.
The rotor core 12 is not limited to the laminated core 20 having the same thickness, and may be a mixture of laminated cores 20 having different thicknesses. For example, regardless of the length of the rotor core 12 in the axial direction, a plurality of basic laminated cores 20 having the same thickness are used, and the insufficient length is compensated by the laminated cores 20 having different thicknesses. Also good. If the rotor core 12 is configured with the same number of laminated cores 20 regardless of the axial length of the rotor core 12, at least the types of the laminated core 20 and the permanent magnet 17 are required as much as the types of the rotor core 12. However, if a configuration is adopted in which a plurality of basic laminated cores 20 are used and the insufficient length is compensated for by the laminated cores 20 having different thicknesses, the types of the laminated cores 20 prepared in advance are used. In addition, it is possible to avoid preparing a large number of different types of laminated cores 20 and to secure a storage place.

○ ロータコア12は、電磁鋼板12aを予め積層して形成した積層コア20を複数使用して構成する製造方法に限らず、ロータコア12を構成する必要な数の電磁鋼板12aを一度に積層してロータコア12を製造してもよい。この場合、永久磁石17は、第1の実施形態のように、永久磁石17を1個ずつ収容する袋部19が連続するように形成された電気的絶縁シート18の各袋部19に収容された状態で、電気的絶縁シート18と共に連続する状態で各磁石収容孔16に挿入されるのが好ましい。   The rotor core 12 is not limited to a manufacturing method in which a plurality of laminated cores 20 formed by laminating electromagnetic steel plates 12a in advance are used, and a required number of electromagnetic steel plates 12a constituting the rotor core 12 are laminated at once. 12 may be manufactured. In this case, the permanent magnets 17 are accommodated in the respective bag portions 19 of the electrically insulating sheet 18 formed so that the bag portions 19 for accommodating the permanent magnets 17 one by one as in the first embodiment. In this state, it is preferably inserted into each magnet accommodation hole 16 in a state of being continuous with the electrical insulating sheet 18.

○ 積層コア20を複数使用してロータコア12が形成される工程を備えた製造方法において、必ずしも永久磁石17の長さを積層コア20の厚さとほぼ同じにして、積層コア20と同じ数の永久磁石17を使用しなくてもよい。例えば、永久磁石17の数を積層コア20の数より多くしたり、あるいは少なくしたりしてもよい。   In the manufacturing method including the step of forming the rotor core 12 using a plurality of laminated cores 20, the length of the permanent magnet 17 is not necessarily the same as the thickness of the laminated core 20, and the same number of permanents as the laminated core 20 is used. The magnet 17 may not be used. For example, the number of permanent magnets 17 may be made larger or smaller than the number of laminated cores 20.

○ ロータコアをその両側に配置された端板で押圧する際、前記ロータコアを構成する各磁性板を回転軸の軸方向に移動させるようにガイドするガイド部を、治具31の収容部32の内面に形成された直線状の凸条と、その凸条と係合するように電磁鋼板12aの占めに形成された凹部とで構成してもよい。   When the rotor core is pressed by the end plates disposed on both sides thereof, guide portions that guide the magnetic plates constituting the rotor core so as to move in the axial direction of the rotation shaft are provided on the inner surface of the housing portion 32 of the jig 31. You may comprise by the linear ridge formed in this and the recessed part formed in the occupation of the electromagnetic steel plate 12a so that it may engage with the ridge.

○ 永久磁石17は平板状に限らず、例えば、断面円弧状やU字状のものをロータコア12の中心に向かって凸となるように配置してもよい。
○ 永久磁石17は各極1個に限らず、例えば、2個の平板状の永久磁石17をV字状に配置してもよい。
The permanent magnet 17 is not limited to a flat plate shape. For example, a permanent magnet having a circular arc shape or a U shape may be arranged so as to protrude toward the center of the rotor core 12.
The number of permanent magnets 17 is not limited to one for each pole. For example, two flat permanent magnets 17 may be arranged in a V shape.

○ 回転子11の極数は8極に限らず、偶数極であればよいが、4極以上が好ましく、回転子11の大きさにより適宜設定される。
○ 磁性板は電磁鋼板12aに限らず、他の強磁性材製であってもよい。
The number of poles of the rotor 11 is not limited to eight but may be an even number, but is preferably four or more, and is appropriately set depending on the size of the rotor 11
The magnetic plate is not limited to the electromagnetic steel plate 12a and may be made of other ferromagnetic materials.

○ 電動機に限らず発電機に適用してもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)強磁性材製の磁性板が複数枚積層されて形成された複数の積層コアで構成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に、複数の永久磁石が、前記ロータコアの軸方向において分割された状態で収容されるとともに、前記ロータコアを挟持する端板が設けられた回転電機の回転子の製造方法であって、
予め永久磁石が、少なくとも磁極面及び前記磁石収容孔への挿入方向前側が電気的絶縁シートで覆われた状態で前記磁石収容孔に挿入された前記積層コアを形成する積層コア形成工程と、その積層コアを所定数、一対の端板に挟まれた状態で回転軸に挿通された状態に配置し、両端板の間隔が予め設定された距離になるまで押圧した状態で両端板を回転軸に固定することを特徴とする回転電機の回転子の製造方法。
○ It may be applied not only to motors but also to generators.
The following technical idea (invention) can be understood from the embodiment.
(1) A plurality of permanent magnets are provided in a magnet housing hole formed to extend in the axial direction of a rotor core composed of a plurality of laminated cores formed by laminating a plurality of magnetic plates made of a ferromagnetic material. The rotor core is housed in a state of being divided in the axial direction of the rotor core, and is a method of manufacturing a rotor of a rotating electrical machine provided with an end plate sandwiching the rotor core,
A laminated core forming step in which a permanent magnet forms the laminated core inserted into the magnet accommodation hole in a state where at least the magnetic pole surface and the front side in the insertion direction to the magnet accommodation hole are covered with an electrical insulating sheet; A predetermined number of laminated cores are placed between the pair of end plates and inserted into the rotating shaft, and the both end plates are used as the rotating shaft while being pressed until the distance between the end plates reaches a preset distance. A method of manufacturing a rotor of a rotating electrical machine, wherein the rotor is fixed.

(2)請求項6又は前記技術的思想(1)に記載の発明において、前記ガイド部は、前記回転軸の外面にその軸方向に沿って延びるように形成された溝又は凸条と、前記各磁性板に形成されるとともに前記回転軸に形成された溝又は凸条と係合する凸条又は溝とで構成されている。   (2) In the invention described in claim 6 or the technical idea (1), the guide portion is formed on the outer surface of the rotating shaft so as to extend along the axial direction thereof, and Each of the magnetic plates is formed of a ridge or groove that engages with the groove or ridge formed on the rotating shaft.

(a)は第1の実施形態における回転子の模式側面図、(b)は(a)のB−B線断面図、(c)は(b)のC−C線における模式断面図。(A) is a schematic side view of the rotor in 1st Embodiment, (b) is the BB sectional view taken on the line of (a), (c) is the schematic sectional view in the CC line of (b). (a)は電気的絶縁シートに収容された永久磁石の模式斜視図、(b)は模式断面図。(A) is a schematic perspective view of the permanent magnet accommodated in the electrical insulation sheet, (b) is a schematic cross section. ロータコアの磁石収容孔に永久磁石を電気的絶縁シートと共に収容する状態を示す模式斜視図。The schematic perspective view which shows the state which accommodates a permanent magnet with an electrically insulating sheet in the magnet accommodation hole of a rotor core. (a)は治具の収容部に回転子、一方の端板が収容された状態の模式図、(b)は他方の端板が配置された状態を示す模式図。(A) is a schematic diagram of the state in which the rotor and one end plate are accommodated in the accommodation part of a jig, (b) is a schematic diagram which shows the state by which the other end plate is arrange | positioned. (a)は他方の端板が配置された後、プレス治具でプレスされた状態を示す模式図、(b)は締結具が固定され、プレス治具が退避した状態の模式図。(A) is a schematic diagram which shows the state pressed by the press jig after the other end plate is arrange | positioned, (b) is a schematic diagram of the state which the fastener was fixed and the press jig evacuated. (a)はこの実施形態の回転子の作用を示す模式図、(b)は従来技術の回転子の作用を示す模式図、(c)は別の従来技術の回転子の作用を示す模式図。(A) is a schematic diagram showing the operation of the rotor of this embodiment, (b) is a schematic diagram showing the operation of the rotor of the prior art, and (c) is a schematic diagram showing the operation of another prior art rotor. . 第2の実施形態における図1(c)に対応する模式断面図。The schematic cross section corresponding to FIG.1 (c) in 2nd Embodiment. (a)は積層コアの磁石収容孔に永久磁石を挿入する状態を示す模式図、(b)は積層コアの組み付け時における永久磁石と電気的絶縁シートを示す模式図。(A) is a schematic diagram which shows the state which inserts a permanent magnet in the magnet accommodation hole of a lamination | stacking core, (b) is a schematic diagram which shows a permanent magnet and an electrically insulating sheet at the time of the assembly | attachment of a lamination | stacking core. 別の実施形態の積層コアと永久磁石と電気的絶縁シートとを示す模式図。The schematic diagram which shows the laminated core of another embodiment, a permanent magnet, and an electrically insulating sheet. (a)は従来技術の模式図、(b)は別の従来技術のロータコアの部分模式図。(A) is a schematic diagram of a prior art, (b) is a partial schematic diagram of another prior art rotor core.

符号の説明Explanation of symbols

11…回転子、12…ロータコア、12a…強磁性材製の磁性板としての電磁鋼板、13…端板、14…回転軸、16…磁石収容孔、17…永久磁石、17a…端面、18…電気的絶縁シート、19…袋部。   DESCRIPTION OF SYMBOLS 11 ... Rotor, 12 ... Rotor core, 12a ... Electromagnetic steel plate as a magnetic plate made of a ferromagnetic material, 13 ... End plate, 14 ... Rotating shaft, 16 ... Magnet accommodation hole, 17 ... Permanent magnet, 17a ... End face, 18 ... Electrical insulating sheet, 19 ... bag part.

Claims (6)

強磁性材製の磁性板が複数枚積層されて形成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に永久磁石が収容されるとともに、前記ロータコアを挟持する端板が設けられた回転電機の回転子であって、
前記磁石収容孔には複数の永久磁石が、前記ロータコアの軸方向において分割された状態で収容され、各永久磁石は、少なくとも磁極面が電気的絶縁シートで覆われるとともに、隣接する永久磁石の端面間が前記電気的絶縁シートで区画されていることを特徴とする回転電機の回転子。
A rotor core formed by laminating a plurality of magnetic plates made of a ferromagnetic material has a permanent magnet accommodated in a magnet accommodation hole formed so as to extend in the axial direction, and an end plate for sandwiching the rotor core is provided. A rotating electric machine rotor,
A plurality of permanent magnets are accommodated in the magnet accommodation hole in a state of being divided in the axial direction of the rotor core, and each permanent magnet has at least a magnetic pole surface covered with an electrically insulating sheet and an end surface of an adjacent permanent magnet. A rotor of a rotating electrical machine characterized in that a space is partitioned by the electrical insulating sheet.
前記各永久磁石は、表面全体が前記電気的絶縁シートで覆われている請求項1に記載の回転電機の回転子。   The rotor of the rotating electrical machine according to claim 1, wherein the surface of each permanent magnet is covered with the electrical insulating sheet. 前記電気的絶縁シートは、前記永久磁石を1個ずつ収容する袋部が連続するように形成され、各袋部に1個ずつ永久磁石が収容されている請求項1又は請求項2に記載の回転電機の回転子。   The said electrical insulation sheet is formed so that the bag part which accommodates the said permanent magnet one by one may be continued, and the permanent magnet is accommodated one by one in each bag part. Rotor for rotating electrical machines. 強磁性材製の磁性板が複数枚積層されて形成されたロータコアに、その軸方向に延びるように形成された磁石収容孔に、複数の永久磁石が、前記ロータコアの軸方向において分割された状態で収容されるとともに、前記ロータコアを挟持する端板が設けられた回転電機の回転子の製造方法であって、
前記磁石収容孔に収容される各永久磁石が、予め収容後の大きさに形成されると共に着磁された状態で、少なくとも磁極面及び前記磁石収容孔への挿入方向前側が電気的絶縁シートで覆われた状態で各磁石収容孔に挿入される永久磁石収容工程と、
全ての永久磁石が各磁石収容孔に挿入された後、ロータコアをその両側に配置された端板で、押圧した状態で両端板を回転軸に固定する端板押圧固定工程と
を備えていることを特徴とする回転電機の回転子の製造方法。
A state in which a plurality of permanent magnets are divided in the axial direction of the rotor core in a magnet receiving hole formed so as to extend in the axial direction of the rotor core formed by laminating a plurality of magnetic plates made of ferromagnetic material And a method of manufacturing a rotor of a rotating electrical machine provided with an end plate for sandwiching the rotor core,
Each permanent magnet accommodated in the magnet accommodating hole is formed in a size after being accommodated in advance and magnetized, and at least the magnetic pole surface and the front side in the insertion direction to the magnet accommodating hole are electrically insulating sheets. A permanent magnet housing step to be inserted into each magnet housing hole in a covered state;
After all the permanent magnets are inserted into the respective magnet housing holes, an end plate pressing and fixing step of fixing the both end plates to the rotating shaft in a pressed state with the end plates arranged on both sides of the rotor core is provided. A method for manufacturing a rotor of a rotating electrical machine, characterized in that
前記永久磁石収容工程において、前記永久磁石は、永久磁石を1個ずつ収容する袋部が連続するように形成された電気的絶縁シートの各袋部に収容された状態で、電気的絶縁シートと共に連続する状態で各磁石収容孔に挿入される請求項4に記載の回転電機の回転子の製造方法。   In the permanent magnet housing step, the permanent magnet is housed in each bag portion of the electrically insulating sheet formed so that the bag portions for housing the permanent magnets one by one are continuous with the electrically insulating sheet. The method for manufacturing a rotor of a rotating electric machine according to claim 4, wherein the rotor is inserted into each magnet housing hole in a continuous state. 前記端板押圧固定工程において、ロータコアをその両側に配置された端板で押圧する際、前記ロータコアを構成する各磁性板は、前記回転軸の軸方向に延びるガイド部にガイドされる状態で押圧される請求項4又は請求項5に記載の回転電機の回転子の製造方法。   In the end plate pressing and fixing step, when pressing the rotor core with end plates arranged on both sides thereof, the magnetic plates constituting the rotor core are pressed in a state of being guided by guide portions extending in the axial direction of the rotation shaft. The manufacturing method of the rotor of the rotary electric machine of Claim 4 or Claim 5 to be performed.
JP2008062907A 2008-03-12 2008-03-12 Rotator of rotary electric machine, and method of manufacturing the same Pending JP2009219314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062907A JP2009219314A (en) 2008-03-12 2008-03-12 Rotator of rotary electric machine, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062907A JP2009219314A (en) 2008-03-12 2008-03-12 Rotator of rotary electric machine, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009219314A true JP2009219314A (en) 2009-09-24

Family

ID=41190623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062907A Pending JP2009219314A (en) 2008-03-12 2008-03-12 Rotator of rotary electric machine, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009219314A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147314A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Rotor for ipm motor and method of manufacturing the same
JP2015076985A (en) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 Rotor for dynamo-electric machine
JP2017046446A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Sheet
JP2017079502A (en) * 2015-10-19 2017-04-27 Tdk株式会社 Magnet structure and motor using the same
CN106655571A (en) * 2016-12-07 2017-05-10 芜湖杰诺瑞汽车电器系统有限公司 Rotor of drive motor of new energy automobile
EP2584681A4 (en) * 2010-06-17 2017-11-29 Nissan Motor Co., Ltd Device and method for manufacturing permanent magnets provided to dynamo-electric machine
JP2018067978A (en) * 2016-10-17 2018-04-26 日立オートモティブシステムズ株式会社 Rotary electric machine and manufacturing method of the same
JP2018148636A (en) * 2017-03-02 2018-09-20 本田技研工業株式会社 Rotor and method for manufacturing the same
CN108818413A (en) * 2018-06-01 2018-11-16 北京航天石化技术装备工程有限公司 A kind of strong magnetic permanent-magnet is fixed and attaching/detaching apparatus
US10454323B2 (en) * 2016-08-01 2019-10-22 Ge Oil & Gas Esp, Inc. Permanent magnet based electric machine and method of manufacturing the same
CN113113990A (en) * 2021-04-07 2021-07-13 上海大学 Permanent magnet pole of built-in permanent magnet motor rotor and PC value evaluation method thereof
JPWO2022009332A1 (en) * 2020-07-08 2022-01-13
CN114204760A (en) * 2020-09-17 2022-03-18 丰田自动车株式会社 Rotor manufacturing method
CN114257052A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method and device for manufacturing rotor for rotating electrical machine
CN114498967A (en) * 2022-01-17 2022-05-13 中车青岛四方机车车辆股份有限公司 Permanent magnet fixing structure, permanent magnet fixing method, permanent magnet motor and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP2003061283A (en) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2004007937A (en) * 2002-04-16 2004-01-08 Sumitomo Special Metals Co Ltd Rotor and rotary machine
JP2005051897A (en) * 2003-07-31 2005-02-24 Toshiba Corp Rotor of reluctance type rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324736A (en) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp Permanent magnet mounted motor
JP2003061283A (en) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2004007937A (en) * 2002-04-16 2004-01-08 Sumitomo Special Metals Co Ltd Rotor and rotary machine
JP2005051897A (en) * 2003-07-31 2005-02-24 Toshiba Corp Rotor of reluctance type rotating electric machine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197105B2 (en) 2010-01-18 2015-11-24 Toyota Jidosha Kabushiki Kaisha IPM motor rotor and production method therefor
JP2011147314A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Rotor for ipm motor and method of manufacturing the same
EP2584681A4 (en) * 2010-06-17 2017-11-29 Nissan Motor Co., Ltd Device and method for manufacturing permanent magnets provided to dynamo-electric machine
JP2015076985A (en) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 Rotor for dynamo-electric machine
JP2017046446A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Sheet
JP2017079502A (en) * 2015-10-19 2017-04-27 Tdk株式会社 Magnet structure and motor using the same
US10454323B2 (en) * 2016-08-01 2019-10-22 Ge Oil & Gas Esp, Inc. Permanent magnet based electric machine and method of manufacturing the same
JP2018067978A (en) * 2016-10-17 2018-04-26 日立オートモティブシステムズ株式会社 Rotary electric machine and manufacturing method of the same
CN106655571A (en) * 2016-12-07 2017-05-10 芜湖杰诺瑞汽车电器系统有限公司 Rotor of drive motor of new energy automobile
JP2018148636A (en) * 2017-03-02 2018-09-20 本田技研工業株式会社 Rotor and method for manufacturing the same
CN108818413B (en) * 2018-06-01 2020-03-17 北京航天石化技术装备工程有限公司 Device for fixing, dismounting and mounting strong magnetic permanent magnet
CN108818413A (en) * 2018-06-01 2018-11-16 北京航天石化技术装备工程有限公司 A kind of strong magnetic permanent-magnet is fixed and attaching/detaching apparatus
JPWO2022009332A1 (en) * 2020-07-08 2022-01-13
CN114204760B (en) * 2020-09-17 2023-09-15 丰田自动车株式会社 Rotor manufacturing method
US11799367B2 (en) 2020-09-17 2023-10-24 Toyota Jidosha Kabushiki Kaisha Rotor manufacturing method
CN114204760A (en) * 2020-09-17 2022-03-18 丰田自动车株式会社 Rotor manufacturing method
JP2022049985A (en) * 2020-09-17 2022-03-30 トヨタ自動車株式会社 Rotor manufacturing method
JP7362042B2 (en) 2020-09-17 2023-10-17 トヨタ自動車株式会社 Rotor manufacturing method
CN114257052A (en) * 2020-09-23 2022-03-29 丰田自动车株式会社 Method and device for manufacturing rotor for rotating electrical machine
CN114257052B (en) * 2020-09-23 2023-09-15 丰田自动车株式会社 Method and apparatus for manufacturing rotor for rotating electrical machine
CN113113990A (en) * 2021-04-07 2021-07-13 上海大学 Permanent magnet pole of built-in permanent magnet motor rotor and PC value evaluation method thereof
CN114498967A (en) * 2022-01-17 2022-05-13 中车青岛四方机车车辆股份有限公司 Permanent magnet fixing structure, permanent magnet fixing method, permanent magnet motor and vehicle
CN114498967B (en) * 2022-01-17 2024-02-20 中车青岛四方机车车辆股份有限公司 Permanent magnet fixing structure, permanent magnet fixing method, permanent magnet motor and vehicle

Similar Documents

Publication Publication Date Title
JP2009219314A (en) Rotator of rotary electric machine, and method of manufacturing the same
CN108370178B (en) Axial gap type rotating electric machine and method for manufacturing same
JP4561770B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP5238231B2 (en) Rotating electrical machine rotor
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
US20060145562A1 (en) A stator structure of an axial gap rotating electrical device
US20150001979A1 (en) Axial Gap Rotating Electric Machine
WO2014102950A1 (en) Rotating electrical machine
WO2017061305A1 (en) Rotor and rotating electric machine
JP2016220514A (en) Rotary electric machine
JP2016005350A (en) Axial gap rotary electric machine
JP2014212589A (en) Dynamo-electric machine
JP2006050853A (en) Motor
JP2006109683A (en) Rotary electric machine
JP2002209349A (en) Rotor of permanent magnet type rotating electric machine
JP2020010466A (en) Rotor of permanent magnet embedded type rotary electric machine and method for manufacturing the same
JP2007143331A (en) Permanent-magnet-embedded rotor
JPH08205437A (en) Synchronous motor
WO2018190062A1 (en) Stator core of dynamo-electric machine, and stator
JP5691451B2 (en) Rotor for rotating electrical machines
JP2006320088A (en) Permanent-magnet rotary electric machine
JP5793948B2 (en) Synchronous motor
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
KR20170060501A (en) Rotor for Wound Rotor Synchronous Motor
WO2022163868A1 (en) Rotor of rotating electrical machine and method for manufacturing rotor of rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925