JP2009217950A - Ion conductive polymer electrolyte membrane, and manufacturing method thereof - Google Patents
Ion conductive polymer electrolyte membrane, and manufacturing method thereof Download PDFInfo
- Publication number
- JP2009217950A JP2009217950A JP2008057385A JP2008057385A JP2009217950A JP 2009217950 A JP2009217950 A JP 2009217950A JP 2008057385 A JP2008057385 A JP 2008057385A JP 2008057385 A JP2008057385 A JP 2008057385A JP 2009217950 A JP2009217950 A JP 2009217950A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- group
- ion
- ion conductive
- electrolyte membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子型燃料電池に好適なイオン伝導性高分子電解質膜とその製造方法に関するものである。 The present invention relates to an ion conductive polymer electrolyte membrane suitable for a polymer electrolyte fuel cell and a method for producing the same.
燃料電池は排出物が少なく、かつ高エネルギー効率で環境への負担の低い発電装置であるため、近年の地球環境保護への高まりの中で再び脚光を浴びている。従来の大規模発電施設に比べ、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として、将来的にも期待されている発電装置である。また、小型移動機器や携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。 A fuel cell is a power generation device with low emissions, high energy efficiency, and low environmental burden, and is therefore in the spotlight again in recent years due to the increase in global environmental protection. Compared to conventional large-scale power generation facilities, this is a power generation device expected in the future as a relatively small-scale distributed power generation facility, and as a power generation device for mobile objects such as automobiles and ships. It is also attracting attention as a power source for small mobile devices and portable devices, and is expected to be installed in mobile phones and personal computers in place of secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
その中でも注目されている固体高分子型燃料電池は、一般に膜電極アッセンブリ(MEA)と呼ばれる基本単位から構成され、MEAではイオン伝導性高分子膜(PEM)が陰極と陽極に挟まれており、陽極で形成されるイオンを陰極へ輸送して電極に接続されている外部回路に電流を流す。PEMは適切なイオン伝導性を保有するのみならず、発電装置の運転条件下で要求される機械的、化学的強度を有していなければならない。
このようなPEM材料として超強酸基含有フッ素系高分子が知られているが、これらのPEM材料はフッ素系の高分子であるため非常に高価であると共にガラス転移温度が低いため、装置の操作温度が100℃前後の場合においては、水分保持が十分でないために高いイオン伝導性を活かしきれず、イオン伝導度が急激に低下し電池として作用できなくなるという問題があった。
Among them, a polymer electrolyte fuel cell that is attracting attention is generally composed of basic units called membrane electrode assemblies (MEA), and in MEA, an ion conductive polymer membrane (PEM) is sandwiched between a cathode and an anode, The ions formed at the anode are transported to the cathode and a current is passed through an external circuit connected to the electrode. PEMs must not only have adequate ionic conductivity, but must have the mechanical and chemical strengths required under the operating conditions of the power plant.
As such PEM materials, fluoropolymers containing super strong acid groups are known. However, since these PEM materials are fluoropolymers, they are very expensive and have a low glass transition temperature. When the temperature is around 100 ° C., the water retention is not sufficient, so that high ionic conductivity cannot be fully utilized, and the ionic conductivity is drastically lowered, which makes it impossible to function as a battery.
このような欠点を克服するため、非フッ素系芳香族環含有ポリマーにスルホン酸基を導入したPEMが種々検討されている。ポリマー骨格としては耐熱性や化学的安定性を考慮すると、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類などの芳香族ポリアリーレンエーテル化合物が注目されており、ポリアリーレンエーテルスルホンをスルホン化したもの(例えば、非特許文献1)、ポリエーテルエーテルケトンをスルホン化したもの(例えば、特許文献1)などが報告されている。
しかしながら、これらのポリマーにスルホン酸基を導入したものは、スルホン酸基の導入量増加に伴い膨潤時の寸法変化が大きくなり、燃料電池などの運転条件では膜の破壊が起こりやすくなる欠点がある。この欠点を改善するために高分子鎖間の架橋形成が可能な構成単位を導入して寸法変化を抑制する試みが報告されている(例えば特許文献2〜4)が、架橋だけでは必ずしも膨潤時の寸法変化を十分に抑制されるものではなかった。
またイオン性基非含有ポリマーをブレンドすることで性能を改善する試み(例えば、特許文献5、6)や、イオン伝導性高分子を多孔性不活性膜中に含浸させて複合膜を形成させる試み(例えば、特許文献7)が報告されている。しかしブレンドにより相溶するものは寸法安定性とプロトン伝導性を両立させるには至らず、相分離させたものは層間剥離などによる膜強度の低下が見られた。含浸させたものは、その製造法が簡便でないと言える。また分散体から製造された膜は熱処理の制御が困難であると共に、膜強度が必ずしも十分ではない。
In order to overcome such drawbacks, various PEMs in which sulfonic acid groups are introduced into non-fluorinated aromatic ring-containing polymers have been studied. In view of heat resistance and chemical stability, aromatic polyarylene ether compounds such as aromatic polyarylene ether ketones and aromatic polyarylene ether sulfones are attracting attention as polymer skeletons. (For example, Non-Patent Document 1), sulfonated polyether ether ketone (for example, Patent Document 1), and the like have been reported.
However, those having sulfonic acid groups introduced into these polymers have the disadvantage that the dimensional change during swelling increases with an increase in the amount of sulfonic acid groups introduced, and membrane breakage is likely to occur under operating conditions such as fuel cells. . In order to remedy this drawback, attempts have been reported to introduce structural units capable of forming crosslinks between polymer chains to suppress dimensional changes (for example, Patent Documents 2 to 4). The dimensional change was not sufficiently suppressed.
Attempts to improve performance by blending non-ionic group-containing polymers (for example, Patent Documents 5 and 6) and attempts to form a composite membrane by impregnating an ion-conductive polymer in a porous inert membrane (For example, Patent Document 7) has been reported. However, those that were compatible by blending did not achieve both dimensional stability and proton conductivity, and those that were phase separated showed a decrease in film strength due to delamination. It can be said that the impregnated product is not easy to manufacture. In addition, the film produced from the dispersion is difficult to control the heat treatment, and the film strength is not always sufficient.
そこで、本発明は上記事情に着目してなされたものであり、その目的は化学的安定性に優れ、高いプロトン伝導性を示すイオン性基含有ポリマーと、機械的・化学的安定性に優れるイオン性基非含有ポリマーを用いることで、耐熱性、加工性、イオン伝導性に優れると共に、機械的耐久性、化学的耐久性にも優れたイオン伝導性高分子膜を得ることにある。 Therefore, the present invention has been made paying attention to the above circumstances, and the purpose thereof is an ionic group-containing polymer having excellent chemical stability and high proton conductivity, and an ion having excellent mechanical and chemical stability. The purpose of the present invention is to obtain an ion conductive polymer film having excellent heat resistance, processability, and ion conductivity as well as excellent mechanical durability and chemical durability by using a polymer having no functional group.
本発明者らは、上記課題を解決するため鋭意研究した結果、遂に本発明を完成するに至った。即ち、本発明は下記の構成からなる。
1.少なくともイオン交換基を有するポリマーAからなる連続相と、ポリマーAと非相溶であるが同一溶媒に溶解可能なイオン交換基を有さないポリマーBとの共連続相、もしくはポリマーBの分散相とを含む膜であり、かつ該膜中のポリマーAが架橋され、架橋後のポリマーAのイオン交換容量が1.0〜4.0meq/gであることを特徴とするイオン伝導性高分子電解質膜。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention has the following configuration.
1. Co-continuous phase of polymer A having at least an ion exchange group and co-continuous phase of polymer B which is incompatible with polymer A but does not have an ion exchange group soluble in the same solvent, or dispersed phase of polymer B And a polymer A in the membrane is crosslinked, and the ion exchange capacity of the polymer A after crosslinking is 1.0 to 4.0 meq / g. film.
2.イオン伝導性と面積変化率が下記式(1)を、また飽和吸水率と面積変化率が下記式(2)を満たす前記1に記載のイオン伝導性高分子電解質膜。
面積変化率(%)/イオン伝導性(S/cm)≦100 (1)
面積変化率(%)/飽和吸水率(重量%)≦0.5 (2)
3.ポリマーBがポリフッ化ビニリデン、ポリフッ化ビニル、エチレン−テトラエチレン共重合体、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、エチレン−クロロトリフルオロエチレン共重合体、ヘキサフルオロプロピレン−フッ化ビニリデン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体からなる群から選ばれる1種以上からなる前記1又は2に記載のイオン伝導性高分子電解質膜。
4.ポリマーAが架橋可能な部位を有するポリアリーレンであり、架橋後のポリマーAのイオン交換容量が1.0〜4.0meq/gである前記1〜3のいずれかに記載のイオン伝導性高分子電解質膜。
2. 2. The ion conductive polymer electrolyte membrane according to 1, wherein the ion conductivity and area change rate satisfy the following formula (1), and the saturated water absorption rate and area change rate satisfy the following formula (2).
Area change rate (%) / ion conductivity (S / cm) ≦ 100 (1)
Area change rate (%) / saturated water absorption rate (% by weight) ≦ 0.5 (2)
3. Polymer B is polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetraethylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, The above 1 or 2 comprising at least one selected from the group consisting of an ethylene-chlorotrifluoroethylene copolymer, a hexafluoropropylene-vinylidene fluoride copolymer, and a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer The ion conductive polymer electrolyte membrane described in 1.
4). The ion conductive polymer according to any one of 1 to 3 above, wherein the polymer A is a polyarylene having a crosslinkable site, and the ion exchange capacity of the polymer A after crosslinking is 1.0 to 4.0 meq / g. Electrolyte membrane.
5.ポリマーAが一般式(1)と共に一般式(2)で示される構成成分を含むポリアリーレンエーテル系化合物である前記4に記載のイオン伝導性高分子電解質膜。
6.ポリマーAが一般式(3)と共に構造式(4)で示される構成成分を含むポリアリーレンエーテル系化合物である前記4に記載のイオン伝導性高分子電解質膜。
8.ポリマーA/ポリマーBの組成比(重量/重量)が30/70〜90/10である前記1〜7のいずれかに記載のイオン伝導性高分子電解質膜。
9.イオン交換基を含有し架橋可能な反応部位を有するポリマーAと、イオン交換基を有さないポリマーBの均一混合溶液をキャスティングする工程、キャスティングした膜を溶媒含有状態で架橋させる工程、溶媒を除去する工程及び架橋膜中のイオン交換基を酸性水溶液処理することで酸変換する工程とを有することを特徴とする前記1〜8のいずれかに記載のイオン伝導性高分子電解質膜の製造方法。
10.キャスティングする混合溶液のポリマー濃度が5〜30重量%の濃度であり、溶媒を含んだ状態で架橋させる前記9に記載のイオン伝導性高分子膜の製造方法。
6). 5. The ion conductive polymer electrolyte membrane according to 4 above, wherein the polymer A is a polyarylene ether-based compound including a structural component represented by the structural formula (4) together with the general formula (3).
8). 8. The ion conductive polymer electrolyte membrane according to any one of 1 to 7 above, wherein the composition ratio (weight / weight) of polymer A / polymer B is 30/70 to 90/10.
9. Casting a homogeneous mixed solution of polymer A containing an ion exchange group and having a crosslinkable reaction site and polymer B having no ion exchange group, cross-linking the cast membrane in a solvent-containing state, removing the solvent The method for producing an ion conductive polymer electrolyte membrane according to any one of 1 to 8 above, further comprising: a step of acid conversion by treating the ion exchange group in the crosslinked membrane with an acidic aqueous solution.
10. 10. The method for producing an ion conductive polymer membrane according to 9 above, wherein the polymer solution of the mixed solution to be cast has a concentration of 5 to 30% by weight and is crosslinked in a state containing a solvent.
本発明のイオン伝導性高分子電解質膜は、化学的安定性に優れ高いプロトン伝導性を示すイオン交換基含有ポリマーAからなる連続相と、ポリマーAと非相溶であるが同一溶媒に溶解可能な機械的・化学的安定性に優れるイオン交換基非含有ポリマーBとの共連続相、もしくはポリマーB分散相とからなり、かつイオン交換基含有ポリマーAが架橋されており、架橋させない場合には、機械的物性が劣るか、さらには安定して膜の状態を維持できないようなポリマー同士が複合された膜であるため、イオン伝導性が高く、吸水性も高いにもかかわらず、耐熱性、加工性、寸法安定性に優れるという二律背反的特性を保有するため、燃料電池などの高分子電解質膜として好適な膜である。また本発明のイオン伝導性高分子電解質膜はメタノール透過性が低いという特徴もあり、ダイレクトメタノール型燃料電池用の高分子電解質膜としても有用である。
また、本発明の膜の製造方法によれば、イオン伝導性高分子を多孔性不活性膜中に含浸させて製造する複合膜のように多孔質膜を予め製造する必要がなく、一連の連続した製膜工程で複合膜の製造が可能であり、製造が容易である。
The ion conductive polymer electrolyte membrane of the present invention has a continuous phase composed of an ion exchange group-containing polymer A having excellent chemical stability and high proton conductivity, and is incompatible with the polymer A, but can be dissolved in the same solvent. In the case where it consists of a co-continuous phase with an ion exchange group-free polymer B having excellent mechanical and chemical stability, or a polymer B dispersed phase, and the ion exchange group-containing polymer A is crosslinked and not crosslinked , Because the film is a composite of polymers that are inferior in mechanical properties or cannot stably maintain the state of the film, heat resistance, despite high ion conductivity and high water absorption, Since it possesses a trade-off property of being excellent in processability and dimensional stability, it is a membrane suitable as a polymer electrolyte membrane for fuel cells and the like. The ion conductive polymer electrolyte membrane of the present invention is also characterized by low methanol permeability and is useful as a polymer electrolyte membrane for direct methanol fuel cells.
Further, according to the membrane production method of the present invention, there is no need to produce a porous membrane in advance as in the case of a composite membrane produced by impregnating a porous inert membrane with an ion conductive polymer, and a series of continuous The composite film can be manufactured by the film forming process and is easy to manufacture.
まず、本発明におけるイオン伝導性ポリマーについて説明する。本発明のイオン伝導性高分子電解質膜は、イオン交換基を有するポリマーAとイオン交換基を有しないポリマーBから構成されている。ポリマーAはイオン交換基と共に架橋可能な反応部位を有しており、製膜可能なポリマーであることが必要である。 First, the ion conductive polymer in this invention is demonstrated. The ion conductive polymer electrolyte membrane of the present invention is composed of a polymer A having an ion exchange group and a polymer B having no ion exchange group. The polymer A has a reactive site capable of crosslinking together with an ion exchange group, and is required to be a polymer that can be formed into a film.
本発明におけるイオン伝導性ポリマーのイオン性基は、負電荷を有する原子団であれば特に限定されるものではないが、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。ここで、スルホン酸基とは−SO2(OH)、スルホンイミド基とは−SO2NHSO2R(ただし、Rは有機基を意味する。)、硫酸基とは−OSO2(OH)、ホスホン酸基とは−PO(OH)2、リン酸基とは−OPO(OH)2、カルボン酸基とは−CO(OH)、およびこれらの塩のことを意味する。これらのイオン性基は前記高分子固体電解質中に2種類以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。イオン交換基の例として、スルホン酸基、ホスホン酸基、スルホンイミド基などのプロトン酸基を挙げることができる。中でもスルホン酸基が好ましい。 The ionic group of the ion conductive polymer in the present invention is not particularly limited as long as it is an atomic group having a negative charge, but preferably has a proton exchange ability. As such a functional group, a sulfonic acid group, a sulfonimide group, a sulfuric acid group, a phosphonic acid group, a phosphoric acid group, and a carboxylic acid group are preferably used. Here, the sulfonic acid group is —SO 2 (OH), the sulfonimide group is —SO 2 NHSO 2 R (where R means an organic group), and the sulfuric acid group is —OSO 2 (OH), A phosphonic acid group means —PO (OH) 2 , a phosphoric acid group means —OPO (OH) 2 , a carboxylic acid group means —CO (OH), and salts thereof. Two or more kinds of these ionic groups can be contained in the polymer solid electrolyte, and may be preferable by combining them. The combination is appropriately determined depending on the structure of the polymer. Among them, it is more preferable to have at least a sulfonic acid group, a sulfonimide group, and a sulfuric acid group from the viewpoint of high proton conductivity, and most preferable to have at least a sulfonic acid group from the viewpoint of hydrolysis resistance. Examples of ion exchange groups include proton acid groups such as sulfonic acid groups, phosphonic acid groups, and sulfonimide groups. Of these, sulfonic acid groups are preferred.
本発明におけるポリマーAとしては、十分な機械強度と高イオン性基密度のポリマーを 容易に合成できる点から、ポリマー骨格としては、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルフィド、ポリイミド、ポリエーテルイミド、ポリイミダゾール、ポリオキサゾール、ポリフェニレン、ポリスチレン及びこれらの骨格成分が共重合された構造のものを挙げることができる。 As the polymer A in the present invention, a polymer having a sufficient mechanical strength and a high ionic group density can be easily synthesized. As a polymer skeleton, polyphenylene oxide, polyether ketone, polyether ether ketone, polyether sulfone, polysulfone, Examples include ether ether sulfone, polyphenylene sulfide, polyimide, polyether imide, polyimidazole, polyoxazole, polyphenylene, polystyrene, and a structure in which these skeleton components are copolymerized.
これらのポリマーの中で、ポリマーAが一般式(1)と共に一般式(2)で示される構成成分を含むポリアリーレンエーテル系化合物であることが好ましい。
但し、Ar' は2価の芳香族基を示す。
さらに、ポリマーAが一般式(3)と共に構造式(4)で示される構成成分を含むポリアリーレンエーテル系化合物であることが好ましい。
Among these polymers, it is preferable that the polymer A is a polyarylene ether-based compound including the structural component represented by the general formula (2) together with the general formula (1).
However, Ar ′ represents a divalent aromatic group.
Furthermore, it is preferable that the polymer A is a polyarylene ether-based compound containing the structural component represented by the structural formula (4) together with the general formula (3).
これらのポリマーの分子量については、常温で固体であれば特に限定されないが、膜強度および溶剤への溶解性の観点から重量平均分子量が1000以上、1×107 以下が好ましい。 The molecular weight of these polymers is not particularly limited as long as it is solid at room temperature, but the weight average molecular weight is preferably 1000 or more and 1 × 10 7 or less from the viewpoint of film strength and solubility in a solvent.
本発明に使用されるイオン性基を有するポリマーAにおける架橋後のイオン交換容量(IEC)は、1.0〜4.0meq/gであり、好ましくは1.0〜3.0meq/gである。1.0meq/g未満であるとプロトン伝導性が低くなる傾向があり、4.0meq/gを超えると膜の機械的強度が弱くなる傾向にある。 The ion exchange capacity (IEC) after crosslinking in the polymer A having an ionic group used in the present invention is 1.0 to 4.0 meq / g, preferably 1.0 to 3.0 meq / g. . If it is less than 1.0 meq / g, the proton conductivity tends to be low, and if it exceeds 4.0 meq / g, the mechanical strength of the membrane tends to be weak.
また、本発明におけるポリマーAは、架橋可能な反応部位を有し、後で述べるポリマーBとブレンドされた後、架橋可能な反応部位を介して架橋させられることが必要である。
本発明におけるポリマーAの架橋可能な反応部位としては、ポリマーAの主鎖、側鎖、末端基などにおいて、紫外線、赤外線、放射線、電子線などのエネルギー線の照射によって架橋する部位、部位同士の反応によって架橋する部位、架橋剤と反応して架橋する部位などを意味するが、これらの部位は、ポリマーAの重合時にこれらの部位を有するモノマーを予め共重合する方法、ポリマーAの重合後に導入する方法のいずれであってもよい。
In addition, the polymer A in the present invention has crosslinkable reaction sites, and after blending with the polymer B described later, it is necessary that the polymer A be crosslinked through the crosslinkable reaction sites.
In the present invention, the crosslinkable reaction site of the polymer A includes a main chain, a side chain, a terminal group, etc. of the polymer A that are cross-linked by irradiation with energy rays such as ultraviolet rays, infrared rays, radiation, and electron beams. It means a site that crosslinks by reaction, a site that crosslinks by reacting with a crosslinking agent, etc. These sites are introduced after polymerization of polymer A by a method of previously copolymerizing monomers having these sites during polymerization of polymer A Either method may be used.
エネルギー線の照射によって架橋する部位の例としては、ベンゾフェノン基、α−ジケトン基、アシロイン基、アシロインエーテル基、ベンジルアルキルケタール基、アセトフェノン基、多核キノン類、チオキサントン基、アシルフォスフィン基、エチレン性不飽和基などを挙げることができる。中でもベンゾフェノン基などの光によりラジカルを発生することのできる基と、メチル基やエチル基などの炭化水素基を有する芳香族基などの、ラジカルと反応することのできる基との組み合わせが好ましく、例として下記式(イ)、(ロ)のような基を挙げることができる。 Examples of sites that crosslink upon irradiation with energy rays include benzophenone groups, α-diketone groups, acyloin groups, acyloin ether groups, benzyl alkyl ketal groups, acetophenone groups, polynuclear quinones, thioxanthone groups, acylphosphine groups, ethylene. And unsaturated unsaturated groups. Among them, a combination of a group capable of generating a radical by light such as a benzophenone group and a group capable of reacting with a radical such as an aromatic group having a hydrocarbon group such as a methyl group or an ethyl group is preferable. Examples of the groups include the following formulas (A) and (B).
また、架橋剤と反応する部位としては、架橋剤の反応性基と反応できる部位であれば主鎖、側鎖、末端など限定されず、反応によりポリマー鎖間に新たな結合を形成しうるものであれば良い。
例えば、アルコール性水酸基、フェノール性水酸基、カルボン酸基、酸無水物基、ハロゲン基やスルホン酸基及びそれらの塩基、スルフィン酸基及びそれらの塩基、変性スルホン酸基などのイオン性基などが挙げられるがこれらに限定されない。
これらの中で、スルホン酸基は、イオン伝導性であるとともに、架橋剤の反応性基とすることができる点で好ましい。
例えば、スルホン酸基に塩化チオニルなどのハロゲン化チオニルを作用させ、その後、Na2SO3水溶液などで処理を行うと、比較的容易に−SO2X基〔Xはハロゲンまたは一価の陽イオン〕に変性することができ、さらに、−SO2X基は、1,8-ジヨードオクタンのような有機ジハロゲン化化合物を架橋剤として架橋させることができる。
Moreover, as a site | part which reacts with a crosslinking agent, as long as it can react with the reactive group of a crosslinking agent, a main chain, a side chain, a terminal, etc. will not be limited, A thing which can form a new bond between polymer chains by reaction If it is good.
Examples include alcoholic hydroxyl groups, phenolic hydroxyl groups, carboxylic acid groups, acid anhydride groups, halogen groups and sulfonic acid groups and their bases, sulfinic acid groups and their bases, and ionic groups such as modified sulfonic acid groups. However, it is not limited to these.
Among these, a sulfonic acid group is preferable in that it is ion conductive and can be a reactive group of a crosslinking agent.
For example, when thionyl halide such as thionyl chloride is allowed to act on a sulfonic acid group and then treated with an aqueous solution of Na 2 SO 3 or the like, a —SO 2 X group [X is a halogen or a monovalent cation] Furthermore, the —SO 2 X group can be crosslinked using an organic dihalogenated compound such as 1,8-diiodooctane as a crosslinking agent.
これらの基のポリマー中の含有量は、0.01〜5mmol/gが好ましく、より好ましくは、0.1〜2.5mmol/gである。0.01mmol/g未満であると架橋が不十分で相分離を十分に抑制できない傾向にあり、5mmol/gを越えると、得られた膜が硬く脆くなる傾向にあり、加工性や耐久性に悪影響を及ぼす可能性がある。 The content of these groups in the polymer is preferably from 0.01 to 5 mmol / g, more preferably from 0.1 to 2.5 mmol / g. If it is less than 0.01 mmol / g, crosslinking tends to be insufficient and phase separation cannot be sufficiently suppressed, and if it exceeds 5 mmol / g, the resulting film tends to be hard and brittle, and processability and durability are improved. May have adverse effects.
本発明で使用されるポリマーBとしては、ポリマーAと非相溶であるが同一溶媒に溶解可能であれば特に限定されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリスチレン、ポリカーボネート、ポリアリレート、ポリメチルメタクリレート、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリフッ化ビニリデン、ポリ六フッ化プロピレン、ポリ四フッ化エチレン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルピロリドン、ポリアミドおよびポリエーテルケトンなどが挙げられ、ポリマーAは単独でも2種以上の混合でも、共重合体でもよい。 The polymer B used in the present invention is not particularly limited as long as it is incompatible with the polymer A but can be dissolved in the same solvent. Specific examples include polyethylene, polypropylene, polybutadiene, polystyrene, polycarbonate, polyarylate. , Polymethyl methacrylate, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, polyvinyl pyrrolidone, polyamide and polyether Examples thereof include ketones, and the polymer A may be a single type, a mixture of two or more types, or a copolymer.
これらのポリマーの分子量については、常温で固体であれば特に限定されないが、膜強度および溶剤への溶解性の観点から重量平均分子量が1000以上、1×107 以下が好ましい。 The molecular weight of these polymers is not particularly limited as long as it is solid at room temperature, but the weight average molecular weight is preferably 1000 or more and 1 × 10 7 or less from the viewpoint of film strength and solubility in a solvent.
本発明のイオン伝導性高分子膜は、イオン交換基を有するポリマーAからなる連続相と、ポリマーAと非相溶であるが同一溶媒に溶解可能なイオン交換基を有さないポリマーBとの共連続相、もしくはポリマーB分散相とからなる複合膜であり、相分離抑制のためポリマーAが架橋されていることが必要である。ポリマーAが架橋されているため、ポリマーAとポリマーBとの相分離が抑制されて、膜構造の維持が可能であるが、ポリマーAが架橋されていない場合には、使用中に膜が崩壊に至ることになる。 The ion conductive polymer membrane of the present invention comprises a continuous phase composed of a polymer A having an ion exchange group and a polymer B which is incompatible with the polymer A but does not have an ion exchange group which can be dissolved in the same solvent. It is a composite membrane composed of a co-continuous phase or a polymer B dispersed phase, and the polymer A needs to be cross-linked to suppress phase separation. Since the polymer A is crosslinked, phase separation between the polymer A and the polymer B is suppressed and the membrane structure can be maintained. However, when the polymer A is not crosslinked, the membrane collapses during use. It will lead to.
イオン交換基を有するポリマーAからなる連続相と、ポリマーAと非相溶であるが同一溶媒に溶解可能なイオン交換基を有さないポリマーBとの共連続相、もしくはポリマーB分散相を膜中に形成させる方法としては、ポリマーAとポリマーBとの双方が溶解する溶媒に溶解させる溶液ブレンド法が好ましい。
ブレンドに用いる溶媒は、ポリマーAとポリマーBとの双方が溶解する溶媒であれば特に限定されないが、溶解性や取り扱い性、コストの面などからN−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、テトラメチルウレア、ジメチルイミダゾリジノン、ジメチルスルホキシド、ヘキサメチルホスホンアミドなどの有機極性溶媒が望ましく、また、これらの混合物であってもよい。溶解温度には特に限定はなく、室温下であっても、加熱下であってもよい。
ポリマーAとポリマーBの両者の溶解後のポリマー濃度は5〜30重量%である事が好ましい。ポリマー濃度が30重量%を超えると、溶液粘度が高すぎるため製膜が困難となり、また、5重量%未満であっても溶液粘度が低すぎるために製膜が困難となる。
A continuous phase composed of a polymer A having an ion exchange group and a co-continuous phase of a polymer B that is incompatible with the polymer A but does not have an ion exchange group that can be dissolved in the same solvent, or a polymer B dispersed phase As a method for forming the polymer, a solution blend method in which both the polymer A and the polymer B are dissolved in a solvent is preferable.
The solvent used for blending is not particularly limited as long as both the polymer A and the polymer B are soluble, but N-methyl-2-pyrrolidone, N, N-dimethyl are considered in terms of solubility, handling properties, and cost. Desirable organic polar solvents such as acetamide, N, N-dimethylformamide, tetramethylurea, dimethylimidazolidinone, dimethyl sulfoxide, hexamethylphosphonamide, or a mixture thereof. There is no particular limitation on the dissolution temperature, and it may be at room temperature or under heating.
The polymer concentration after dissolution of both polymer A and polymer B is preferably 5 to 30% by weight. If the polymer concentration exceeds 30% by weight, film formation becomes difficult because the solution viscosity is too high, and even if it is less than 5% by weight, film formation becomes difficult because the solution viscosity is too low.
ポリマーA/ポリマーBの組成比(重量/重量)は、30/70〜90/10であることが好ましい。ポリマーAの割合が少なすぎるとプロトン伝導性が悪くなる傾向にあり、多すぎるとブレンドの効果が期待できなくなる。 The composition ratio (weight / weight) of polymer A / polymer B is preferably 30/70 to 90/10. If the ratio of the polymer A is too small, proton conductivity tends to deteriorate, and if it is too large, the effect of blending cannot be expected.
ポリマーAとポリマーBとの相分離を抑制するためには、ポリマーAを架橋させることが必要である。ポリマーAを架橋させる方法としては、相分離を抑制することができれば特に限定されないが、ポリマーAが有する前記の架橋可能な反応部位を利用して、架橋剤の使用、紫外線や電子線などによるエネルギー線照射などによって架橋させることが好ましい。
架橋部位の量は、架橋反応後にポリマーAがN−メチルピロリドンやN,N−ジメチルホルムアミドなどの有機溶媒に再溶解しない量が導入されていれば、特に制限されない。
本発明のポリマーAが架橋されたイオン伝導性高分子膜は、膜中において、ポリマーAからなる連続相と、ポリマーBとの共連続相、もしくはポリマーB分散相とからなるが、ポリマーBが分散層を形成している場合は、膜断面の電子顕微鏡によるモルフォロジー観察において、島成分であるポリマーBのアスペクト比が2〜100の範囲にあり、そのサイズが5μm以下であることが好ましい。
In order to suppress the phase separation between the polymer A and the polymer B, it is necessary to crosslink the polymer A. The method for crosslinking the polymer A is not particularly limited as long as the phase separation can be suppressed. However, by using the crosslinkable reaction site of the polymer A, the use of a crosslinking agent, energy by ultraviolet rays, electron beams, and the like. It is preferable to crosslink by irradiation with a beam or the like.
The amount of the crosslinking site is not particularly limited as long as the polymer A is introduced after the crosslinking reaction so that the polymer A is not redissolved in an organic solvent such as N-methylpyrrolidone or N, N-dimethylformamide.
The ion conductive polymer membrane crosslinked with the polymer A of the present invention comprises a continuous phase composed of the polymer A and a co-continuous phase with the polymer B, or a polymer B dispersed phase. In the case where the dispersion layer is formed, it is preferable that the aspect ratio of the polymer B, which is an island component, is in the range of 2 to 100 and the size is 5 μm or less in the observation of the morphology of the film cross section with an electron microscope.
本発明のポリマーAが架橋されたイオン伝導性高分子膜は、イオン伝導性と面積変化率が下記式(1)を、また吸水率と面積変化率が下記式(2)を満たすことが好ましい。
面積変化率(%)/イオン伝導性(S/cm)≦100 (1)
面積変化率(%)/吸水率(重量%)≦0.5 (2)
さらには、面積変化率(%)/イオン伝導性(S/cm)≦50、及び
面積変化率(%)/吸水率(重量%)≦0.2を満足することが好ましい。
すなわち、本発明のイオン伝導性高分子膜は、イオン交換基を有するポリマーAのイオン伝導性及び吸水性が高いにもかかわらず、膜の寸法安定性が従来になく優れる特性が認められることが特徴である。
The ion conductive polymer membrane crosslinked with the polymer A of the present invention preferably has an ion conductivity and area change rate of the following formula (1), and a water absorption rate and area change rate of the following formula (2). .
Area change rate (%) / ion conductivity (S / cm) ≦ 100 (1)
Area change rate (%) / water absorption rate (% by weight) ≦ 0.5 (2)
Furthermore, it is preferable that the area change rate (%) / ion conductivity (S / cm) ≦ 50 and the area change rate (%) / water absorption rate (% by weight) ≦ 0.2 are satisfied.
That is, the ion-conducting polymer membrane of the present invention has a characteristic that the dimensional stability of the membrane is superior to that of the prior art, despite the high ion conductivity and water absorption of the polymer A having an ion exchange group. It is a feature.
本発明のポリマーAが架橋されたイオン伝導性高分子膜は、以下の主要工程を経て製造することができる。
すなわち、イオン交換基を含有し架橋可能な反応部位を有するポリマーAと、イオン交換基を有さないポリマーBの均一混合溶液をキャスティングする工程、キャスティングした膜を溶媒含有状態で架橋させる工程、溶媒を除去する工程及び架橋膜中のイオン交換基を酸性水溶液処理することで酸変換する工程を経て製造することができる。
The ion conductive polymer film in which the polymer A of the present invention is crosslinked can be produced through the following main steps.
That is, a step of casting a homogeneous mixed solution of a polymer A containing an ion exchange group and having a crosslinkable reaction site and a polymer B having no ion exchange group, a step of crosslinking the cast membrane in a solvent-containing state, a solvent It can be manufactured through a step of removing acid and a step of acid conversion by treating the ion exchange group in the crosslinked membrane with an acidic aqueous solution.
溶媒含有状態で架橋させる工程では、架橋中に少なくとも5〜30重量%の溶媒を含んでいる事が好ましい。また、使用する溶媒の沸点等を考慮し、架橋中に加熱する事もできる。さらに、架橋時間は、1〜300分間の範囲で行う事が好ましい。 In the step of crosslinking in a solvent-containing state, it is preferable that at least 5 to 30% by weight of the solvent is included during the crosslinking. Further, in consideration of the boiling point of the solvent to be used, heating can be performed during the crosslinking. Furthermore, it is preferable to perform the crosslinking time in the range of 1 to 300 minutes.
溶媒の除去法は、乾燥によることがイオン伝導性膜の均一性からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下で乾燥することもできる。
本発明のイオン伝導性膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが望ましい。具体的には5〜250μmであることが好ましく、5〜100μmであることがさらに好ましい。イオン伝導性膜の厚みが5μmより薄いとイオン伝導性膜の取り扱いが困難となり燃料電池を作成した場合に短絡等が起こる傾向にあり、250μmよりも厚いとイオン伝導性膜の電気抵抗値が高くなり燃料電池の発電性能が低下する傾向にある。
The method for removing the solvent is preferably from the viewpoint of the uniformity of the ion conductive membrane. Moreover, in order to avoid decomposition | disassembly and alteration of a compound or a solvent, it can also dry under reduced pressure.
The ion conductive film of the present invention can have any film thickness depending on the purpose, but is desirably as thin as possible from the viewpoint of ion conductivity. Specifically, the thickness is preferably 5 to 250 μm, and more preferably 5 to 100 μm. If the thickness of the ion conductive membrane is less than 5 μm, it is difficult to handle the ion conductive membrane and a short circuit or the like tends to occur when a fuel cell is formed. If the thickness is greater than 250 μm, the electric resistance value of the ion conductive membrane is high. Therefore, the power generation performance of the fuel cell tends to decrease.
以下に実施例によって本発明を具体的に説明するが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の主旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に含まれる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited by the following examples, but should be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, any of them is also included in the technical scope of the present invention.
各種測定は以下の通りに実施した。
1.還元粘度
80℃で一晩減圧乾燥させたポリマー粉末を0.5g/dlの濃度でN−メチルピロリドン(NMP)に溶解し、25℃の高温槽中でウベローデ粘度計を用いて粘度測定を行い、還元粘度ηsp/c=〔(t−t0)/t0〕/cを評価した。〔t0:溶媒のみの滴下時間(s)、t:試料溶液の滴下時間(s)、c:試料溶液の濃度(g/dl)〕
Various measurements were performed as follows.
1. Reduced viscosity The polymer powder dried under reduced pressure at 80 ° C. overnight was dissolved in N-methylpyrrolidone (NMP) at a concentration of 0.5 g / dl, and the viscosity was measured using a Ubbelohde viscometer in a high temperature bath at 25 ° C. The reduced viscosity ηsp / c = [(t−t0) / t0] / c was evaluated. [T0: dropping time of solvent only (s), t: dropping time of sample solution (s), c: concentration of sample solution (g / dl)]
2.イオン交換容量
80℃で一晩減圧乾燥させたポリマーを50mg秤量し、0.01M-NaOH水溶液60ml中で1時間攪拌した。その後、溶液を50ml取り出し、自動滴定装置(HIRANUMA TITSTATION TS-980)を用いて0.02M−HCl水溶液で滴定した。イオン交換容量(IEC)は下式より計算した。
IEC=〔ブランク平均滴下量(ml)−サンプル滴下量(ml) 〕×1.2×(2/100)/サンプル重量(g)
2. Ion exchange capacity 50 mg of the polymer dried under reduced pressure at 80 ° C. overnight was weighed and stirred in 60 ml of 0.01 M NaOH aqueous solution for 1 hour. Thereafter, 50 ml of the solution was taken out and titrated with an aqueous 0.02M HCl solution using an automatic titrator (HIRANUMA TITSTATION TS-980). The ion exchange capacity (IEC) was calculated from the following equation.
IEC = [average blank dripping amount (ml) −sample dripping amount (ml)] × 1.2 × (2/100) / sample weight (g)
3.イオン伝導性
測定用プローブ(PTFE製)上で幅1cmの短冊状膜サンプルの表面に白金線(直径:0.2mm)を押しあて、80℃、相対湿度95%の恒温恒湿槽中にサンプルを保持し、白金線間の10kHzにおける交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を1cmから4cmまで1cm間隔で変化させて測定し、極間距離と抵抗測定値をプロットした直線の勾配Dr(Ω/cm)から下式により膜と白金線間の接触抵抗をキャンセルして算出した。
σ(S/cm)=1/〔膜幅(cm)×膜厚(cm)×Dr(Ω/cm)〕
3. Ion conductivity A platinum wire (diameter: 0.2 mm) is pressed against the surface of a strip-shaped membrane sample having a width of 1 cm on a probe for measurement (made of PTFE), and the sample is placed in a constant temperature and humidity chamber at 80 ° C. and a relative humidity of 95%. The AC impedance at 10 kHz between the platinum wires was measured by SOLARTRON 1250 FREQUENCY RESPONSE ANALYSER. Measured by changing the distance between the electrodes from 1 cm to 4 cm at 1 cm intervals, and canceling the contact resistance between the film and the platinum wire using the following formula from the slope Dr (Ω / cm) of the straight line plotting the distance between the electrodes and the measured resistance value And calculated.
σ (S / cm) = 1 / [film width (cm) × film thickness (cm) × Dr (Ω / cm)]
4.飽和吸水率
5cm四方のサンプルを80℃で一晩真空乾燥させた後、乾燥重量を測定した。乾燥サンプルを80℃の水中に1日以上保持して飽和吸水後重量(測定開始後重量変化が無くなった時点での重量)を求めて下式よりサンプルの吸水率(%)を算出した。
飽和吸水率(%)=〔(飽和吸水後重量/乾燥重量)−1〕×100
4). A sample having a water absorption of 5 cm square was vacuum-dried at 80 ° C. overnight, and the dry weight was measured. The dry sample was kept in water at 80 ° C. for 1 day or longer, and the weight after saturated water absorption (weight when the weight change disappeared after the start of measurement) was determined to calculate the water absorption rate (%) of the sample from the following formula.
Saturated water absorption (%) = [(weight after saturated water absorption / dry weight) -1] × 100
5.面積変化率
5cm四方のサンプルを80℃で一晩真空乾燥させた後、乾燥後面積を測定した。乾燥サンプルを80℃の水中に1日以上保持して飽和吸水後面積(測定開始後面積変化が無くなった時点での面積)を求めて下式よりサンプルの面積変化率(%)を算出した。
面積変化率(%)=〔(飽和吸水後面積/乾燥後面積)−1〕×100
5. Area change rate A sample of 5 cm square was vacuum-dried at 80 ° C. overnight, and then the area after drying was measured. The dried sample was kept in water at 80 ° C. for 1 day or longer, and the area after saturated water absorption (the area when the area change disappeared after the start of measurement) was determined, and the area change rate (%) of the sample was calculated from the following formula.
Area change rate (%) = [(Area after saturated water absorption / Area after drying) -1] × 100
(ポリマーA1の合成)
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩(略号:S−DCDPS)15.0g〔0.03026mol〕、2,6−ジクロロベンゾニトリル(略号:DCBN)2.81g〔0.01629mol〕、4,4’−ビフェノール8.6747g〔0.04655mol〕、炭酸カリウム7.0775gを200ml四つ口フラスコに秤量し、窒素を流した。89.1mlのNMPを加えて、150℃で1時間攪拌した後、反応温度を195−200℃に昇温して系の粘性が十分上がるのを目安に反応を続けた(約6時間)。その後、放冷して水中にストランド状に沈殿させた。得られたポリマーは水中で洗浄した後、乾燥した。ポリマーの還元粘度は1.93(dl/g)、IECは2.3(meq/g)であった。続いて得られたポリマー15gと塩化チオニル200ml、DMF10mlを300ml四ッ口フラスコに計り取り、窒素を流した。70℃で約3時間反応後、90℃で塩化チオニルを留去した。その後THF150mlに溶解させ、2-プロパノールに再沈殿させる作業を繰り返すことで塩化チオニルを除去した。得られた生成物18gを2L三角フラスコに秤量し、1Lの2M−Na2SO3を加え、70℃で24時間反応させた。生成物をろ過し、得られたろ物を10%LiCl水溶液中に入れて室温で24時間攪拌して塩交換することでポリマーA1を合成した。このポリマーA1は、1H NMR分析の結果、全てのスルホン酸基の内、73%がSO2Liに変換されていた。
(Synthesis of polymer A1)
3,3′-disulfo-4,4′-dichlorodiphenylsulfone disodium salt (abbreviation: S-DCDPS) 15.0 g [0.03026 mol], 2,6-dichlorobenzonitrile (abbreviation: DCBN) 2.81 g [0.01629 mol], 4,4′-biphenol 8.6747 g [0.04655 mol] and potassium carbonate 7.0775 g were weighed into a 200 ml four-necked flask and flushed with nitrogen. After adding 89.1 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction temperature was raised to 195-200 ° C., and the reaction was continued with the aim of sufficiently increasing the viscosity of the system (about 6 hours). Thereafter, the mixture was allowed to cool and precipitated into strands in water. The obtained polymer was washed in water and then dried. The reduced viscosity of the polymer was 1.93 (dl / g), and the IEC was 2.3 (meq / g). Subsequently, 15 g of the polymer obtained, 200 ml of thionyl chloride, and 10 ml of DMF were weighed into a 300 ml four-necked flask and flushed with nitrogen. After reacting at 70 ° C. for about 3 hours, thionyl chloride was distilled off at 90 ° C. Thereafter, thionyl chloride was removed by repeating the work of dissolving in 150 ml of THF and reprecipitating in 2-propanol. 18 g of the obtained product was weighed into a 2 L Erlenmeyer flask, 1 L of 2M-Na 2 SO 3 was added, and reacted at 70 ° C. for 24 hours. The product was filtered, and the obtained filtrate was placed in a 10% LiCl aqueous solution, stirred at room temperature for 24 hours, and salt exchanged to synthesize polymer A1. As a result of 1 H NMR analysis, this polymer A1 had 73% of all sulfonic acid groups converted to SO 2 Li.
(ポリマーA2の合成)
デカフルオロビフェニル6.017g〔0.018mol〕、4、4’-ヘキサフルオロイソプロピリデンジフェノール(略号:6F−BPA)5.378g〔0.016mol〕、炭酸カリウム6.62g〔0.048mol〕を200ml四つ口フラスコに秤量し、窒素を流した。80mlのDMAcを加えて2時間で120℃まで昇温させた後、4時間保持した。その後、放冷して水中にストランド状に沈殿させた。得られたオリゴマーは水中で洗浄した後、80℃で減圧乾燥することでオリゴマーA2を得た。続いてS−DCDPS4.412g〔0.0089mol〕、4,4’−ビフェノール1.862g〔0.01mol〕、炭酸カリウム2.75gを500ml四ッ口フラスコに秤量し、窒素を流した。35mlのNMPを加えて150℃で4時間反応させた後、180℃で18時間、195℃で4時間反応させた。この反応溶液を90℃まで冷却した後、オリゴマーA2の6.021gをNMPに10重量%で溶解させた溶液を数回に分けて加え、その後110℃で24時間反応させた。反応中に粘度が高くなったら適宜NMPを追加した。得られたポリマー溶液を放冷して水中にストランド状に沈殿させた。得られたポリマーは水中で洗浄した後、80℃で減圧乾燥した。ポリマーの還元粘度は1.51(dl/g)、IECは1.5(meq/g)であった。
続いて得られたポリマー10gと塩化チオニル150ml、DMF5mlを300ml四ッ口フラスコに計り取り、窒素を流した。70℃で約3時間反応後、90℃で塩化チオニルを留去した。その後THF150mlに溶解させ、2-プロパノールに再沈殿させる作業を繰り返すことで塩化チオニルを除去した。得られた生成物10gを1L三角フラスコに秤量し、600mlの2M-Na2SO3を加え、70℃で24時間反応させた。生成物をろ過し、得られたろ物を10%LiCl水溶液中に入れて室温で24時間攪拌して塩交換することでポリマーA2を合成した。このポリマーA1は、1H NMR分析の結果、全てのスルホン酸基の内、53%がSO2Liに変換されていた。
(Synthesis of polymer A2)
Four 200 ml of 6.017 g [0.018 mol] decafluorobiphenyl, 5.378 g [0.016 mol] of 4,4′-hexafluoroisopropylidenediphenol (abbreviation: 6F-BPA) and 6.62 g [0.048 mol] potassium carbonate. Weighed into a neck flask and flushed with nitrogen. 80 ml of DMAc was added and the temperature was raised to 120 ° C. in 2 hours, and then maintained for 4 hours. Thereafter, the mixture was allowed to cool and precipitated into strands in water. The obtained oligomer was washed in water and then dried under reduced pressure at 80 ° C. to obtain oligomer A2. Subsequently, 4.412 g [0.0089 mol] of S-DCDPS, 1.862 g [0.01 mol] of 4,4′-biphenol, and 2.75 g of potassium carbonate were weighed in a 500 ml four-necked flask, and nitrogen was allowed to flow. 35 ml of NMP was added and reacted at 150 ° C. for 4 hours, and then reacted at 180 ° C. for 18 hours and 195 ° C. for 4 hours. After cooling this reaction solution to 90 ° C., a solution prepared by dissolving 6.021 g of oligomer A2 in NMP at 10% by weight was added in several portions, and then reacted at 110 ° C. for 24 hours. When the viscosity increased during the reaction, NMP was added appropriately. The obtained polymer solution was allowed to cool and precipitated in water into strands. The obtained polymer was washed in water and then dried under reduced pressure at 80 ° C. The reduced viscosity of the polymer was 1.51 (dl / g), and the IEC was 1.5 (meq / g).
Subsequently, 10 g of the obtained polymer, 150 ml of thionyl chloride, and 5 ml of DMF were weighed into a 300 ml four-necked flask, and nitrogen was allowed to flow. After reacting at 70 ° C. for about 3 hours, thionyl chloride was distilled off at 90 ° C. Thereafter, thionyl chloride was removed by repeating the work of dissolving in 150 ml of THF and reprecipitating in 2-propanol. 10 g of the obtained product was weighed into a 1 L Erlenmeyer flask, 600 ml of 2M-Na 2 SO 3 was added, and reacted at 70 ° C. for 24 hours. The product was filtered, and the obtained filtrate was placed in a 10% LiCl aqueous solution, stirred at room temperature for 24 hours, and subjected to salt exchange to synthesize polymer A2. As a result of 1 H NMR analysis, this polymer A1 had 53% of all sulfonic acid groups converted to SO 2 Li.
(ポリマーA3の合成)
S−DCDPS 17.1414g〔0.03489mol〕、DCBN 4.0013g〔0.02326mol〕、4,4’-ビフェノール10.8292g〔0.05816mol〕、4,4’-ジフルオロベンゾフェノン 1.4101g〔0.00546mol〕、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)メタン、炭酸カリウム10.2711gを200ml四つ口フラスコに秤量し、窒素を流した。103mlのNMPを加えて、150℃で1時間攪拌した後、反応温度を195−200℃に昇温して系の粘性が十分上がるのを目安に反応を続けた(約6時間)。その後、放冷して水中にストランド状に沈殿させた。得られたポリマーは水中で洗浄した後、乾燥した。ポリマーの還元粘度は0.79(dl/g)、IECは2.21(meq/g)であった。
(Synthesis of polymer A3)
S-DCDPS 17.1414 g [0.03489 mol], DCBN 4.0013 g [0.02326 mol], 4,4′-biphenol 10.8392 g [0.05816 mol], 4,4′-difluorobenzophenone 1.4101 g [0.00546 mol], bis (4-Hydroxy-2,5-dimethylphenyl) methane and 10.2711 g of potassium carbonate were weighed into a 200 ml four-necked flask and flushed with nitrogen. After adding 103 ml of NMP and stirring at 150 ° C. for 1 hour, the reaction was continued by raising the reaction temperature to 195-200 ° C. and sufficiently increasing the viscosity of the system (about 6 hours). Thereafter, the mixture was allowed to cool and precipitated into strands in water. The obtained polymer was washed in water and then dried. The reduced viscosity of the polymer was 0.79 (dl / g), and the IEC was 2.21 (meq / g).
(実施例1)
ポリマーA1のNMP溶液12g(10重量%)とPVDF(Mw=180,000)のNMP溶液8g(10重量%)を混合し、均一なNMP溶液とした。そこに架橋剤として1,8-ジヨードオクタン(純度=85%)42.1μl(0.180mmol)を加えて5分間攪拌した後、ガラス板に約400μm厚にキャストし、25℃で3時間保持してポリマーA1を架橋させた後、120℃で3時間減圧乾燥した。得られたフイルムは2M-NaOH水溶液中、80℃で12時間処理、2M−H2SO4水溶液中、80℃で12時間処理した後、純水で洗浄することで複合膜を得た。得られた複合膜1のIEC、イオン伝導性、吸水率、面積変化率などの特性を表1にまとめた。なお、膜断面のTEM(透過型電子顕微鏡)観察写真を図1に示した。
Example 1
12 g (10% by weight) of NMP solution of polymer A1 and 8 g (10% by weight) of NDF solution of PVDF (Mw = 180,000) were mixed to obtain a uniform NMP solution. Thereto, 42.1 μl (0.180 mmol) of 1,8-diiodooctane (purity = 85%) was added as a cross-linking agent, stirred for 5 minutes, cast to a thickness of about 400 μm on a glass plate, and kept at 25 ° C. for 3 hours. The polymer A1 was cross-linked and then dried under reduced pressure at 120 ° C. for 3 hours. The obtained film was treated in a 2M-NaOH aqueous solution at 80 ° C. for 12 hours, treated in a 2M-H 2 SO 4 aqueous solution at 80 ° C. for 12 hours, and then washed with pure water to obtain a composite film. Table 1 summarizes the characteristics of the obtained composite membrane 1 such as IEC, ion conductivity, water absorption, and area change rate. A TEM (transmission electron microscope) observation photograph of the film cross section is shown in FIG.
(実施例2)
ポリマーA1/PVDFの割合を5/5(重量%)に変化させ、1,8-ジヨードオクタン(純度=85%)の添加量を35.1μl(0.150mmol)にした以外は実施例1と同様の手法で実施した。得られた膜特性を表1にまとめた。
(実施例3)
ポリマーA1/PVDFの割合を4/6(重量%)に変化させ、1,8-ジヨードオクタン(純度=85%)の添加量を28.1μl(0.120mmol)にした以外は実施例1と同様の手法で実施した。得られた膜特性を表1にまとめた。
(実施例4)
ポリマーA1をポリマーA2に変更した以外は実施例1と同様の手法で実施した。得られた膜特性を表1にまとめた。
(Example 2)
Example 1 except that the ratio of polymer A1 / PVDF was changed to 5/5 (% by weight) and the amount of 1,8-diiodooctane (purity = 85%) was changed to 35.1 μl (0.150 mmol). It implemented by the same method. The obtained film properties are summarized in Table 1.
(Example 3)
Example 1 except that the ratio of polymer A1 / PVDF was changed to 4/6 (% by weight) and the amount of 1,8-diiodooctane (purity = 85%) was changed to 28.1 μl (0.120 mmol). It implemented by the same method. The film properties obtained are summarized in Table 1.
Example 4
The same procedure as in Example 1 was performed except that the polymer A1 was changed to the polymer A2. The film properties obtained are summarized in Table 1.
(実施例5)
ポリマーA3のNMP溶液12g(10重量%)とPVDF(Mw=180,000)のNMP溶液8g(10重量%)を混合し、均一なNMP溶液とした。その溶液をガラス板に約400μm厚にキャストし、紫外線照射装置(ORC3000)を用いて1時間照射した後、120℃で3時間減圧乾燥した。得られたフイルムを2M−H2SO4水溶液中、室温で12時間処理した後、純水で洗浄することで複合膜を得た。得られた複合膜のIEC、イオン伝導性、吸水率、面積変化率などの特性を表1にまとめた。
(Example 5)
12 g (10% by weight) of NMP solution of polymer A3 and 8 g (10% by weight) of NDF solution of PVDF (Mw = 180,000) were mixed to obtain a uniform NMP solution. The solution was cast on a glass plate to a thickness of about 400 μm, irradiated with an ultraviolet irradiation device (ORC3000) for 1 hour, and then dried under reduced pressure at 120 ° C. for 3 hours. The obtained film was treated in a 2M-H 2 SO 4 aqueous solution at room temperature for 12 hours, and then washed with pure water to obtain a composite film. Table 1 shows the characteristics of the obtained composite membrane, such as IEC, ionic conductivity, water absorption, and area change rate.
(比較例1)
架橋剤を添加しなかった以外は実施例1と同様の手法で実施した。得られた膜特性を表1にまとめたが、吸水率、面積変化率は浸漬中に膜が崩壊したため測定できなかった。なお、膜断面のTEM観察写真を図2に示した。
(比較例2)
PVDF、架橋剤を加えず、ポリマーAの単独膜を実施例1と同様の手法により調製し、得られた膜のIEC、イオン伝導性、吸水率、面積変化率などの特性を表1にまとめた。
(比較例3)
ナフィオン(Nafion)(登録商標;デュポン社)112を用いた単独膜において実施例1と同様の評価を実施し、その特性を表1にまとめた。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that no crosslinking agent was added. The obtained film characteristics are summarized in Table 1. However, the water absorption rate and area change rate could not be measured because the film collapsed during the immersion. A TEM observation photograph of the film cross section is shown in FIG.
(Comparative Example 2)
A single membrane of polymer A was prepared by the same method as in Example 1 without adding PVDF and a crosslinking agent, and the properties such as IEC, ion conductivity, water absorption rate, area change rate, etc. of the obtained membrane were summarized in Table 1. It was.
(Comparative Example 3)
The same evaluation as in Example 1 was performed on a single membrane using Nafion (registered trademark; DuPont) 112, and the characteristics are summarized in Table 1.
本発明のイオン伝導性高分子電解質膜は、イオン伝導性だけでなく耐熱性、加工性、寸法安定性に優れた燃料電池などの高分子電解質膜として際立った性能を示す材料であり、また、メタノール透過性が低いという特徴もあり、ダイレクトメタノール型燃料電池用の高分子電解質膜としても有用である。 The ion conductive polymer electrolyte membrane of the present invention is a material that exhibits outstanding performance as a polymer electrolyte membrane such as a fuel cell excellent in heat resistance, workability, and dimensional stability as well as ion conductivity, It is also characterized by low methanol permeability and is useful as a polymer electrolyte membrane for direct methanol fuel cells.
Claims (10)
面積変化率(%)/イオン伝導性(S/cm)≦100 (1)
面積変化率(%)/飽和吸水率(重量%)≦0.5 (2) The ion conductive polymer electrolyte membrane according to claim 1, wherein the ion conductivity and area change rate of the membrane satisfy the following formula (1), and the saturated water absorption rate and area change rate of the membrane satisfy the following formula (2).
Area change rate (%) / ion conductivity (S / cm) ≦ 100 (1)
Area change rate (%) / saturated water absorption rate (% by weight) ≦ 0.5 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008057385A JP2009217950A (en) | 2008-03-07 | 2008-03-07 | Ion conductive polymer electrolyte membrane, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008057385A JP2009217950A (en) | 2008-03-07 | 2008-03-07 | Ion conductive polymer electrolyte membrane, and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009217950A true JP2009217950A (en) | 2009-09-24 |
Family
ID=41189622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008057385A Withdrawn JP2009217950A (en) | 2008-03-07 | 2008-03-07 | Ion conductive polymer electrolyte membrane, and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009217950A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544547A (en) * | 2012-01-06 | 2012-07-04 | 东华大学 | Alkaline negative ion exchange composite film with alkali stability and preparation and application thereof |
JP5760312B2 (en) * | 2008-05-08 | 2015-08-05 | 東洋紡株式会社 | Novel sulfonic acid group-containing segmented block copolymer polymer and use thereof, and method for producing novel block copolymer polymer |
EP2750233A4 (en) * | 2011-08-22 | 2015-08-19 | Toyo Boseki | Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery |
-
2008
- 2008-03-07 JP JP2008057385A patent/JP2009217950A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5760312B2 (en) * | 2008-05-08 | 2015-08-05 | 東洋紡株式会社 | Novel sulfonic acid group-containing segmented block copolymer polymer and use thereof, and method for producing novel block copolymer polymer |
EP2750233A4 (en) * | 2011-08-22 | 2015-08-19 | Toyo Boseki | Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery |
CN102544547A (en) * | 2012-01-06 | 2012-07-04 | 东华大学 | Alkaline negative ion exchange composite film with alkali stability and preparation and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101889B2 (en) | Branched sulfonated multiblock copolymer and electrolyte membrane using the same | |
JP5858129B2 (en) | Method for producing polymer electrolyte molded body | |
Liu et al. | A superhydrophobic bromomethylated poly (phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells | |
JP2004149779A (en) | Poly(arylene ether) compound, composition containing the same and method for producing them | |
TWI403537B (en) | Polymer electrolyte membrane | |
Li et al. | New highly proton-conducting membrane based on sulfonated poly (arylene ether sulfone) s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells | |
EP1873789A1 (en) | Crosslinked polymer electrolyte and method for producing same | |
KR101569719B1 (en) | Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof | |
Zhang et al. | Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity | |
JP4929569B2 (en) | POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME | |
JP2009217950A (en) | Ion conductive polymer electrolyte membrane, and manufacturing method thereof | |
JP2008117754A (en) | Polymer electrolyte material, polymer electrolyte membrane using same, membrane electrode assembly, and polymer electrolyte fuel cell | |
JP2005350658A (en) | Polymer electrolyte material, and polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell produced by using the same | |
JP5028736B2 (en) | POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME | |
JP5309822B2 (en) | Aromatic sulfonic acid derivative, sulfonated polymer, polymer electrolyte material and polymer electrolyte fuel cell using the same | |
JP5412718B2 (en) | POLYMER ELECTROLYTE MOLDED MANUFACTURING METHOD, POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE COMPONENT, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE FUEL CELL | |
JP4867174B2 (en) | POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME | |
JP5649017B2 (en) | Process for producing aromatic polyether polymer | |
JP2005054170A (en) | Copolymer and its application | |
JP2009252480A (en) | Ion-conducting polymer electrolyte membrane and its manufacturing method | |
JP2004528683A (en) | Fuel cell | |
JP2010021126A (en) | Ion-conductive composite polymeric membrane, and process for producing the same | |
JP5590568B2 (en) | Block copolymer and use thereof | |
JP5151051B2 (en) | POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE PARTS, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE TYPE FUEL CELL USING SAME | |
JP2011181278A (en) | Polymer electrolyte, its manufacturing method, and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110208 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20130123 |