Nothing Special   »   [go: up one dir, main page]

JP2009204373A - Light-projecting device and three-dimensional shaped measuring apparatus - Google Patents

Light-projecting device and three-dimensional shaped measuring apparatus Download PDF

Info

Publication number
JP2009204373A
JP2009204373A JP2008045342A JP2008045342A JP2009204373A JP 2009204373 A JP2009204373 A JP 2009204373A JP 2008045342 A JP2008045342 A JP 2008045342A JP 2008045342 A JP2008045342 A JP 2008045342A JP 2009204373 A JP2009204373 A JP 2009204373A
Authority
JP
Japan
Prior art keywords
light
light source
projection
imaging
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008045342A
Other languages
Japanese (ja)
Inventor
Koji Tomita
耕治 富田
Sadaji Miyagi
貞二 宮城
Daisuke Asai
大介 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikari Corp
Original Assignee
Hikari Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikari Corp filed Critical Hikari Corp
Priority to JP2008045342A priority Critical patent/JP2009204373A/en
Publication of JP2009204373A publication Critical patent/JP2009204373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost small light-projecting device capable of high-speed, wide-range measurement with high accuracy, and to provide a three-dimensional shaped measuring apparatus. <P>SOLUTION: The three-dimensional shaped measuring apparatus 1 comprises: a light source 3 generating belt-like light beams; scanning devices 4, 5 for scanning a projection plane with the light emitted from the light source; a light source control device 6 for controlling the light amount from the light source 3; an imaging device 7; and an image processing device 8 for capturing the image information from the imaging device 8 and calculating three-dimensional information. The light beams are moved parallel, in a direction perpendicular to the length direction on the projection plane by the scanning devices 4, 5, and the light amount from the light source 3 is changed by the light source control device 6 which makes the parallel movement of the light beams synchronized. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、三次元形状を光学的に測定する装置および方法に関するものである。 The present invention relates to an apparatus and method for optically measuring a three-dimensional shape.

三次元形状を光学的に測定する技術として、三角法に基づく方法が行われている。たとえば、特許文献1には光切断法に基づく立体計測装置および方法が記載されている。被計測物を載置する拡散板と、該拡散板の下に設置された1以上の照明用光源と、該拡散板に上方からライン光を照射する投光装置と、被計測物の上方に配置された撮像手段と、被計測物挿入孔と、制御部と、画像処理部を備えた立体計測装置であって、前記撮像手段は、択一的になされたライン光の照射と照明用光源の照射を撮像し、前記画像処理部は、照明用光源照射時の画像から被計測物の2次元形状情報を算出し、ライン光照射時の画像から被計測物の高さ情報を算出し、これらの情報から被計測物の立体計測情報を算出するものである。 As a technique for optically measuring a three-dimensional shape, a method based on trigonometry is performed. For example, Patent Document 1 describes a three-dimensional measurement apparatus and method based on a light cutting method. A diffuser plate on which the object to be measured is placed, one or more illumination light sources installed below the diffuser plate, a light projecting device that irradiates the diffuser with line light from above, and an object above the object to be measured A three-dimensional measuring device comprising an arranged image pickup means, an object insertion hole, a control section, and an image processing section, wherein the image pickup means is an alternative light source for illumination and illumination The image processing unit calculates the two-dimensional shape information of the measurement object from the image at the time of illumination light source irradiation, calculates the height information of the measurement object from the image at the time of line light irradiation, The three-dimensional measurement information of the object to be measured is calculated from these pieces of information.

また、格子投影法とよばれる方法もあり、測定対象面に格子状のパターンの光を投影して撮像し、全面を一度に解析して等高線情報を得るものである。ここで、格子状のパターンで光を投影するために、プロジェクターを用いる方法(特許文献2)や、格子パターンがかかれたガラス板等を通してハロゲンランプの光を照射する方法(特許文献3)などがある。また、液晶パネルに周期的な縞を表示し、これに光を通すことによって、周期的な光の縞を投影する技術も実施されている。
特開2006−98384公報 特許第3507865号公報 特許第3554816号公報
In addition, there is a method called a grid projection method, in which light of a grid pattern is projected and imaged on a measurement target surface, and the entire surface is analyzed at once to obtain contour information. Here, in order to project light with a grid pattern, there are a method using a projector (Patent Document 2), a method of irradiating light from a halogen lamp through a glass plate or the like on which a grid pattern is written (Patent Document 3), and the like. is there. In addition, a technique for projecting periodic stripes by displaying periodic stripes on a liquid crystal panel and passing light therethrough has also been implemented.
JP 2006-98384 A Japanese Patent No. 3507865 Japanese Patent No. 3554816

特許文献1に記載されたような光切断法では、一回の撮像によって、1本の光線上にあらわれる情報しか取り込むことができない。対象面のすべての情報を得るためには、線状の光線を平行移動させながら撮像を繰り返す必要がある。したがって、全面の情報を取得するまでには長時間を要する。したがって、測定時間が長くなってしまう。また、短時間で動くようなものには追随できない。 With the light cutting method described in Patent Document 1, only information that appears on one light beam can be captured by one imaging. In order to obtain all information on the target surface, it is necessary to repeat imaging while translating linear rays. Therefore, it takes a long time to acquire the entire information. Accordingly, the measurement time becomes long. Also, it cannot follow things that move in a short time.

一方、格子投影法によれば、全面を一度に解析することができるので、測定時間が短く、リアルタイムな測定も可能である。しかし、プロジェクターを用いる格子投影では、プロジェクターそのものが大型でしかも高価格であるので、測定装置全体も高価格になってしまう。また、格子パターンがかかれたガラス板等を使用する場合、格子パターンの変更を行うためには、複数のガラス板を用意し、それぞれを取り替えながら使用しなくてはならない。液晶パネルに周期的な縞を表示する方法であれば、比較的高速で投影パターンの変更もできるが、このような液晶パネル中を光が通過することによって、光量の低下が生じる。液晶の画素と画素の間に起因する光の不連続が生じるし、走査方向の分解能も画素数による限界がある。輝度の制御はデジタル的に行われるので、濃淡の程度の段階的にならざるをえない。さらに、レンズを介して光を投影するこれまでの方法では、焦点の合う範囲が限定され、高低差の大きな表面観察ができない。 On the other hand, according to the lattice projection method, since the entire surface can be analyzed at once, the measurement time is short and real-time measurement is also possible. However, in the lattice projection using a projector, since the projector itself is large and expensive, the entire measuring apparatus is also expensive. When using a glass plate or the like with a lattice pattern, a plurality of glass plates must be prepared and used while changing the lattice pattern. The method of displaying periodic stripes on the liquid crystal panel can change the projection pattern at a relatively high speed, but the amount of light is reduced when light passes through such a liquid crystal panel. Discontinuity of light caused between liquid crystal pixels occurs, and the resolution in the scanning direction is limited by the number of pixels. Since the brightness is controlled digitally, it must be stepped to the degree of shading. Furthermore, in the conventional methods of projecting light through a lens, the in-focus range is limited, and surface observation with a large height difference cannot be performed.

この発明は、広範な範囲を高速かつ高精度に測定することができ、しかも小型で低価格な光投影装置および三次元形状測定装置を提供することを目的とする。 An object of the present invention is to provide a light projection device and a three-dimensional shape measuring device that can measure a wide range at high speed and with high accuracy, and that are small and inexpensive.

上記の目的を解決するために、この発明の光投影装置は、帯状の光線を発生する光源と、光源より投射された光を投影面上に走査する走査装置と、光源の光量を制御する光源制御装置とを有し、走査装置によって光線を投影面において長さ方向に垂直な方向に平行移動させるとともに、光源制御装置により光源の光量を光線の平行移動に同期させて変化させることを特徴とする。走査装置として光源より投射された光線を反射させる鏡と、鏡を移動させる駆動装置を使用することができる。ここで、周期的な変化は正弦波関数であり、位相をπ/2ずつずらしながら投射を行い、各位相ごとに撮像を行って、4回分の画像情報より三次元形状情報を算出することがこのましい。さらに、第1の周期の正弦波関数に基づいた光線の投射および撮像と、第1の周期とは異なる第2の周期の正弦波関数に基づいた光線の投射および撮像を行うようにすることもできる。 In order to solve the above-described object, an optical projection device of the present invention includes a light source that generates a strip-shaped light beam, a scanning device that scans light projected from the light source onto a projection surface, and a light source that controls the light amount of the light source. And a light source control device for changing the light quantity of the light source in synchronization with the parallel movement of the light beam. To do. As a scanning device, a mirror that reflects the light beam projected from the light source and a driving device that moves the mirror can be used. Here, the periodic change is a sine wave function, and projection is performed while shifting the phase by π / 2, imaging is performed for each phase, and three-dimensional shape information can be calculated from four times of image information. This is true. Furthermore, the projection and imaging of the light beam based on the sine wave function of the first cycle and the projection and imaging of the light beam based on the sine wave function of the second cycle different from the first cycle may be performed. it can.

この発明の三次元形状測定装置は、上述の光投影装置と、撮像装置と、撮像装置より画像情報を取り込んで三次元形状情報を算出する画像処理装置とを有するものである。光源制御装置により光線の平行移動に同期させて光源の光量を正弦波関数に基づいて変化させ、さらに、その位相をπ/2ずつずらしながら投射を行い、各位相ごとに撮像を行って、4回分の画像情報より三次元形状情報を算出することができる。また、第1の周期の正弦波関数に基づいた光線の投射および撮像と、第1の周期とは異なる第2の周期の正弦波関数に基づいた光線の投射および撮像を行って、三次元形状情報を算出することができる。 A three-dimensional shape measuring apparatus according to the present invention includes the above-described optical projection apparatus, an imaging apparatus, and an image processing apparatus that takes in image information from the imaging apparatus and calculates three-dimensional shape information. The light source controller synchronizes with the parallel movement of the light beam to change the light quantity of the light source based on the sine wave function, and further, the projection is performed while shifting the phase by π / 2, and imaging is performed for each phase. Three-dimensional shape information can be calculated from the image information of the batch. Further, the projection and imaging of the light beam based on the sine wave function of the first cycle and the projection and imaging of the light beam based on the sine wave function of the second cycle different from the first cycle are performed to obtain a three-dimensional shape. Information can be calculated.

この発明の光投影装置および三次元形状測定装置は、光源より投射された帯状の光線を走査装置によって投影面上で走査しながらその動きに連動させて光源の光量を変化させることにより、測定対象面に所定のパターンの光を投射することができ、小型の装置で高速な三次元形状測定ができるという効果を有する。投射光のパターンも自由に設定することができ、さまざまな測定に使用できるという効果を有する。 The light projection device and the three-dimensional shape measurement device according to the present invention measure the band of light projected from the light source on the projection surface by the scanning device while changing the light amount of the light source in conjunction with the movement. A predetermined pattern of light can be projected onto the surface, and high-speed three-dimensional shape measurement can be performed with a small device. The pattern of the projection light can also be set freely, which has the effect that it can be used for various measurements.

この発明を実施するための最良の形態について説明する。図1は三次元形状測定装置の概要を示すブロック図である。三次元形状測定装置1は、帯状の光線を発生する光源3と、走査装置と、光源の光量を制御する光源制御装置6と、撮像装置7と、撮像装置7より画像情報を取り込んで三次元形状情報を算出する画像処理装置8とを有する。 The best mode for carrying out the present invention will be described. FIG. 1 is a block diagram showing an outline of a three-dimensional shape measuring apparatus. The three-dimensional shape measuring apparatus 1 captures image information from a light source 3 that generates a strip-shaped light beam, a scanning device, a light source control device 6 that controls the amount of light of the light source, an imaging device 7, and the imaging device 7 to obtain a three-dimensional shape. And an image processing device 8 for calculating shape information.

すなわち、光投影装置2は、光源3と、走査装置と、光源制御装置6を備えている。光源3は帯状の光線を発生するものである。すなわち、帯形状の幅方向では平行光である。一方、光源からの距離にしたがって、長さ方向には伸びる。このような光源として、ハロゲンランプや発光ダイオードの光を2種類のレンズによって帯状の光線を形成するような構成の装置を使用してもよい。この実施形態においては、ラインレーザーを光源3として使用する。 That is, the light projection device 2 includes a light source 3, a scanning device, and a light source control device 6. The light source 3 generates a strip-shaped light beam. That is, it is parallel light in the width direction of the band shape. On the other hand, it extends in the length direction according to the distance from the light source. As such a light source, an apparatus having a configuration in which light from a halogen lamp or a light-emitting diode is formed into a belt-like light beam by two types of lenses may be used. In this embodiment, a line laser is used as the light source 3.

走査装置は、光源より投射された光を投影面上に走査させるものである。光源3そのものを移動させたり、光線の方向を変える鏡やプリズム等の光学素子を回転や平行移動させるようなものでもよい。この実施形態においては、鏡4を利用する装置として構成している。鏡4は回転軸9を有し、その回転軸9を中心に回転自在となっている。この回転軸9には、鏡4を回転させるための駆動装置5が接続されている。ここで、回転とは、一定の方向に回り続ける場合のほか、ある角度範囲内で揺動する場合も含む。ラインレーザー3から発射された光は、この鏡4によって向きをかえ、測定対象面に投影される。 The scanning device scans light projected from a light source on a projection surface. The light source 3 itself may be moved, or an optical element such as a mirror or a prism that changes the direction of the light beam may be rotated or translated. In this embodiment, it is configured as an apparatus that uses the mirror 4. The mirror 4 has a rotating shaft 9 and is rotatable about the rotating shaft 9. A driving device 5 for rotating the mirror 4 is connected to the rotating shaft 9. Here, the term “rotation” includes not only the case of continuing to rotate in a certain direction but also the case of swinging within a certain angle range. The light emitted from the line laser 3 is turned by the mirror 4 and projected onto the measurement target surface.

ラインレーザー3の電源10は出力を調整することができ、これによって、レーザー光の強度を変化させることができる。 The power supply 10 of the line laser 3 can adjust the output, thereby changing the intensity of the laser beam.

駆動装置5およびラインレーザー3の電源10は光源制御装置6によって制御される。 The power source 10 of the driving device 5 and the line laser 3 is controlled by the light source control device 6.

撮像装置7は、測定対象面を画像として撮影するものであり、デジタルカメラやビデオカメラなどを使用することができる。この撮像装置7には画像処理装置8が接続されている。この画像処理装置8は撮像装置7より画像情報を取得し、この画像情報より測定対象物の三次元形状情報を算出する。こうして算出された三次元形状情報は例えば等高線表示などによって画像モニタなどの表示装置11に出力される。 The imaging device 7 captures a measurement target surface as an image, and a digital camera, a video camera, or the like can be used. An image processing device 8 is connected to the imaging device 7. The image processing device 8 acquires image information from the imaging device 7 and calculates three-dimensional shape information of the measurement object from the image information. The calculated three-dimensional shape information is output to a display device 11 such as an image monitor by, for example, contour display.

光源制御装置6と画像処理装置8は別々の機材として構成してもよいが、汎用のパーソナルコンピュータなどによって一体として構成してもよい。 The light source control device 6 and the image processing device 8 may be configured as separate equipment, but may be configured as a single unit by a general-purpose personal computer or the like.

ついで、この三次元形状測定装置の作用およびこれを用いた三次元形状測定方法について説明する。ラインレーザー3から発射されたレーザー光は鏡4によって向きを変え、対象面に投射される。ここで、レーザー光の長さ方向が鏡4の回転軸9と平行になるように、ラインレーザー3と鏡4の位置を設定する。また、鏡4の回転軸9を投影面にほぼ平行に設定しておく。また、レーザー光は、投影面に対して斜め方向に投射する。光源であるラインレーザー3から投影面までの間には、減光するような要素がないので、強い光線を投射することができる。 Next, the operation of this three-dimensional shape measuring apparatus and a three-dimensional shape measuring method using the same will be described. The laser light emitted from the line laser 3 is turned by the mirror 4 and projected onto the target surface. Here, the positions of the line laser 3 and the mirror 4 are set so that the length direction of the laser light is parallel to the rotation axis 9 of the mirror 4. Further, the rotation axis 9 of the mirror 4 is set substantially parallel to the projection plane. The laser light is projected in an oblique direction with respect to the projection plane. Since there is no element that reduces light between the line laser 3 as the light source and the projection surface, a strong light beam can be projected.

駆動装置5によって鏡4が回転すると、反射光の向きが変化する。これによって、レーザー光は対象面上を移動する。対象面の広さに対して、鏡4と対象面の距離が十分長ければ、鏡4の回転角とレーザー光の移動量はほぼ比例する。この鏡4の回転に連動させて電源10の出力を変動させれば、レーザー光は対象面を移動しながら、その強度を変化させる。ここで、帯状のレーザー光は、その長さ方向に垂直な方向に投影面上を平行移動していく。光源制御装置6は、この移動長さに対して所定の周期でレーザー光の強度が変動するように電源10を制御する。 When the mirror 4 is rotated by the driving device 5, the direction of the reflected light changes. As a result, the laser light moves on the target surface. If the distance between the mirror 4 and the target surface is sufficiently long with respect to the width of the target surface, the rotation angle of the mirror 4 and the amount of movement of the laser light are substantially proportional. If the output of the power supply 10 is changed in conjunction with the rotation of the mirror 4, the intensity of the laser light changes while moving on the target surface. Here, the belt-like laser light moves in parallel on the projection plane in a direction perpendicular to the length direction. The light source control device 6 controls the power source 10 so that the intensity of the laser beam varies at a predetermined period with respect to the moving length.

鏡4の回転速度を十分に高く設定し、撮像装置7が一回の撮像で要する時間に比較してより短い時間で帯状のレーザー光が走査されることによって、対象面上に所望の光の強弱が形成される。たとえば、光源制御装置6によって、周期的な光量の変動を発生させることによって、レーザー光による周期的なパターンが実現される。図2は、測定対象面上の投影パターンを模式的に示す平面図である。ここで、測定対象面は凹凸のない状態であるとする。レーザー光の長さ方向に沿ってy軸をとり、これに垂直な方向にx軸をとる。x方向にそって周期的に光量が変化するようなパターンとなっている。ここで、パターンのy方向の長さは、ラインレーザー3から投影面までの距離によって定まる。一方、x方向におけるパターンの繰り返しの間隔は、電源の出力変調の周期、鏡4の回転速度および鏡4から投影面までの距離によって定まる。したがって、電源の出力変調の制御の仕方によって、x方向におけるパターンは自由に設定することができる。電源の出力変調をアナログ的に行うことによって、光の濃淡も連続的に制御できる。走査もミラーの揺動によって連続的に行われるので、走査方向に沿った濃淡変化は連続的に形成することができる。したがって、この光投影装置の走査方向における分解能は無制限と考えてよい。 The rotational speed of the mirror 4 is set sufficiently high, and the band-shaped laser light is scanned in a shorter time than the time required for the imaging device 7 to perform one imaging, so that the desired light is projected onto the target surface. Strength is formed. For example, a periodic pattern by a laser beam is realized by causing the light source control device 6 to periodically change the amount of light. FIG. 2 is a plan view schematically showing a projection pattern on the measurement target surface. Here, it is assumed that the surface to be measured has no unevenness. The y axis is taken along the length direction of the laser beam, and the x axis is taken in the direction perpendicular to the y axis. The pattern is such that the amount of light periodically changes along the x direction. Here, the length of the pattern in the y direction is determined by the distance from the line laser 3 to the projection plane. On the other hand, the repetition interval of the pattern in the x direction is determined by the output modulation period of the power source, the rotation speed of the mirror 4, and the distance from the mirror 4 to the projection plane. Therefore, the pattern in the x direction can be freely set depending on how the output modulation of the power supply is controlled. By performing output modulation of the power supply in an analog manner, light intensity can be continuously controlled. Since the scanning is also continuously performed by the swinging of the mirror, the shading change along the scanning direction can be continuously formed. Therefore, the resolution in the scanning direction of this optical projection apparatus may be considered as unlimited.

図3は、x方向における光量変化を示すグラフである。この例においては、x軸に沿って光量が正弦波関数に従って変化している。最も明るい点の光量をImax、最も暗い点の光量をImin、繰り返し周期をλとすると、ある点(x、y)の光量は、
I(x,y)=(Imax−Imin)・sin(2πx/λ)+Imin
となる。このように、正弦波関数によるパターンで投影することによって、位相解析を行うことができる。
FIG. 3 is a graph showing a change in light amount in the x direction. In this example, the amount of light changes along the x axis according to a sine wave function. If the light quantity at the brightest point is Imax, the light quantity at the darkest point is Imin, and the repetition period is λ, the light quantity at a certain point (x, y) is
I (x, y) = (Imax−Imin) · sin (2πx / λ) + Imin
It becomes. Thus, phase analysis can be performed by projecting with a pattern based on a sine wave function.

この投影面において、三次元形状を測定する。図3に示すようなパターンでレーザー光を投射し、撮像装置7によって1回目の撮像を行う。この画像データを画像処理装置7によって取り込み、記憶領域m1に記憶させる。ついで、同じ繰返し周期λでありながら、その位相をπ/2だけずらしたパターン、すなわち、x方向にλ/4の距離だけずらしたパターンで照射する。このようなパターンは光源制御装置6によって簡単かつ正確に作り出すことができる。こうして、2回目の撮像を行い、その画像データを記憶領域m2に記憶させる。さらにパターンをπ/2だけずらしながら3回目、4回目の撮像を行い、画像データを記憶領域m3および記憶領域m4に記憶させる。以上、4回の撮像により、一回の測定に必要な情報を取得することができる。 A three-dimensional shape is measured on this projection plane. Laser light is projected in a pattern as shown in FIG. 3, and the first imaging is performed by the imaging device 7. This image data is captured by the image processing device 7 and stored in the storage area m1. Next, irradiation is performed with a pattern in which the phase is shifted by π / 2, that is, a pattern that is shifted by a distance of λ / 4 in the x direction with the same repetition period λ. Such a pattern can be easily and accurately generated by the light source control device 6. In this way, the second imaging is performed, and the image data is stored in the storage area m2. Further, the third and fourth imaging are performed while shifting the pattern by π / 2, and the image data is stored in the storage area m3 and the storage area m4. As described above, information necessary for one measurement can be acquired by four times of imaging.

ついで、これらの画像データを使った位相解析について説明する。ある点(x,y)についての測定輝度データを、1回目から4回目までの撮像のデータを記憶領域m1〜m4より読み込む。これらの値をI0,I1,I2、I3とする。 Next, phase analysis using these image data will be described. The measurement brightness data for a certain point (x, y) is read from the storage areas m1 to m4 as the first to fourth imaging data. These values are I0, I1, I2, and I3.

図4は位相シフト法の概要を示すグラフである。点(x,y)についての4つの輝度データI0,I1,I2、I3と投影光パターンの位相との関係をグラフに示すと次のような関係になる。
I(x,y)=a(x,y)・cos(θ(x、y)+α)+b(x,y)
ここで、aおよびbはその点の反射率に依存する係数、θが高さ情報を含む位相データ、αは投射光パターンの正弦波の位相(ここでは0,π/2,π,3π/2)である。位相データθを以下の手順で求めることができる。
FIG. 4 is a graph showing an outline of the phase shift method. The relationship between the four luminance data I 0, I 1, I 2, and I 3 for the point (x, y) and the phase of the projected light pattern is shown in the graph as follows.
I (x, y) = a (x, y) .cos (θ (x, y) + α) + b (x, y)
Here, a and b are coefficients depending on the reflectance of the point, θ is phase data including height information, α is the phase of the sine wave of the projection light pattern (here, 0, π / 2, π, 3π / 2). The phase data θ can be obtained by the following procedure.

I0,I1,I2、I3はそれぞれ、
I0=a・cosθ+b
I1=a・cos(θ+π/2)+b=−a・sinθ+b
I2=a・cos(θ+π)+b=−a・cosθ+b
I3=a・cos(θ+3π/2)+b=a・sinθ+b
となる。以上、4式より反射率に依存する係数a,bは消去でき、次式によってθが求まる。
tanθ=−(I3−I1)/(I2−I0)
I0, I1, I2, and I3 are respectively
I0 = a · cos θ + b
I1 = a · cos (θ + π / 2) + b = −a · sin θ + b
I2 = a · cos (θ + π) + b = −a · cos θ + b
I3 = a · cos (θ + 3π / 2) + b = a · sin θ + b
It becomes. As described above, the coefficients a and b depending on the reflectance can be eliminated from the equation (4), and θ can be obtained by the following equation.
tan θ = − (I3−I1) / (I2−I0)

まず、基準となる投影面に、何も置かないで上述の通り、α=0,π/2,π,3π/2のパターンで撮像し、xの値ごとに位相データθを求める。この基準面における位相データをθb(x)とする。 First, without placing anything on the reference projection plane, as described above, images are captured in a pattern of α = 0, π / 2, π, 3π / 2, and phase data θ is obtained for each value of x. The phase data on this reference plane is defined as θb (x).

ついで、投影面上に測定対象物をおいて、α=0,π/2,π,3π/2のパターンで撮像する。ある点(x,y)についての測定輝度データI0,I1,I2、I3より位相データθを求める。この位相データをθt(x,y)とする。すると、基準面に対するその点の高さによる位相のずれθdは
θd=θt(x,y)−θb(x)
で求められる。このθdより、点(x,y)の高さを求めることができる。
Next, an object to be measured is placed on the projection surface, and images are captured in a pattern of α = 0, π / 2, π, 3π / 2. The phase data θ is obtained from the measured luminance data I0, I1, I2, and I3 for a certain point (x, y). This phase data is θt (x, y). Then, the phase shift θd due to the height of the point with respect to the reference plane is θd = θt (x, y) −θb (x).
Is required. From this θd, the height of the point (x, y) can be obtained.

以上、すべての点について同様の計算を行うことによって、測定対象面全体の三次元形状情報を算出することができる。これをたとえば、等高線によって表示装置に表示することができる。 As described above, by performing the same calculation for all points, the three-dimensional shape information of the entire measurement target surface can be calculated. This can be displayed on the display device by contour lines, for example.

以上、4回の撮像のみで1回の三次元形状測定を行った。高低差が比較的小さくて投影パターンの繰り返し周期幅以内であれば、これで正確に測定することができる。しかし、高低差による位相θが投影パターンの繰り返し周期幅よりも大きい場合、その高さに対応する位相は
θ+2nπ (n=整数)
となり、nを求める必要がある。そこで、パターン周期幅として第1の周期λ1で上述の測定を行った後に、別のパターン周期幅である第2の周期λ2で再度測定を行うことができる。
As described above, the three-dimensional shape measurement was performed once only by four times of imaging. If the height difference is relatively small and within the repetitive period width of the projection pattern, it can be measured accurately. However, when the phase θ due to the height difference is larger than the repetition period width of the projection pattern, the phase corresponding to the height is θ + 2nπ (n = integer).
Therefore, it is necessary to obtain n. Therefore, after performing the above-described measurement at the first period λ1 as the pattern period width, the measurement can be performed again at the second period λ2 which is another pattern period width.

周期λ1により得られた位相をθ1、周期λ2により得られた位相をθ2とすると、それぞれの高さに対応しうる位相は
θ1+2nπ (n=整数)
θ2+2mπ (m=整数)
であるが、これを満たす唯一のnまたはmを決定することができる。
If the phase obtained by the period λ1 is θ1, and the phase obtained by the period λ2 is θ2, the phase that can correspond to each height is θ1 + 2nπ (n = integer)
θ2 + 2mπ (m = integer)
However, the only n or m that satisfies this can be determined.

三次元形状測定装置の概要を示すブロック図である。It is a block diagram which shows the outline | summary of a three-dimensional shape measuring apparatus. 測定対象面上の投影パターンを模式的に示す平面図である。It is a top view which shows typically the projection pattern on a measurement object surface. x方向における光量変化を示すグラフである。It is a graph which shows the light quantity change in x direction. 位相シフト法の概要を示すグラフである。It is a graph which shows the outline | summary of a phase shift method.

符号の説明Explanation of symbols

1.三次元形状測定装置
2.光投影装置
3.光源(ラインレーザー)
4.鏡
5.駆動装置
6.光源制御装置
7.撮像装置
8.画像処理装置
1. 1. Three-dimensional shape measuring device 2. Light projection device Light source (line laser)
4). Mirror 5 Drive device 6. 6. Light source control device Imaging device 8. Image processing device

Claims (5)

帯状の光線を発生する光源と、光源より投射された光を投影面上に走査する走査装置と、光源の光量を制御する光源制御装置とを有し、走査装置によって光線を投影面において長さ方向に垂直な方向に平行移動させるとともに、光源制御装置により光源の光量を光線の平行移動に同期させて変化させることを特徴とする光投影装置。 A light source that generates a strip-shaped light beam, a scanning device that scans the light projected from the light source onto the projection surface, and a light source control device that controls the amount of light from the light source. A light projection device characterized by being translated in a direction perpendicular to the direction and changing the light quantity of the light source in synchronization with the parallel movement of the light beam by a light source control device. 走査装置として光源より投射された光線を反射させる鏡と、鏡を移動させる駆動装置とを有する請求項1に記載の光投影装置。 The light projection device according to claim 1, further comprising: a mirror that reflects a light beam projected from a light source as a scanning device; and a drive device that moves the mirror. 請求項1または請求項2に記載の光投影装置と、撮像装置と、撮像装置より画像情報を取り込んで三次元形状情報を算出する画像処理装置とを有する三次元形状測定装置。 A three-dimensional shape measuring apparatus comprising: the light projection device according to claim 1; an imaging device; and an image processing device that calculates image information by taking image information from the imaging device. 光源制御装置により光線の平行移動に同期させて光源の光量を正弦波関数に基づいて変化させるものであり、その位相をπ/2ずつずらしながら投射を行い、各位相ごとに撮像を行って、4回分の画像情報より三次元形状情報を算出する請求項3に記載の三次元形状測定装置。 The light source controller synchronizes with the parallel movement of the light beam and changes the light amount of the light source based on a sine wave function, performs projection while shifting its phase by π / 2, and performs imaging for each phase. The three-dimensional shape measurement apparatus according to claim 3, wherein the three-dimensional shape information is calculated from four times of image information. 第1の周期の正弦波関数に基づいた光線の投射および撮像と、第1の周期とは異なる第2の周期の正弦波関数に基づいた光線の投射および撮像を行うものである請求項4に記載の三次元形状測定装置。 5. The projection and imaging of a light beam based on a sine wave function having a first cycle and the projection and imaging of a light beam based on a sine wave function having a second cycle different from the first cycle. The three-dimensional shape measuring apparatus described.
JP2008045342A 2008-02-27 2008-02-27 Light-projecting device and three-dimensional shaped measuring apparatus Pending JP2009204373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045342A JP2009204373A (en) 2008-02-27 2008-02-27 Light-projecting device and three-dimensional shaped measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045342A JP2009204373A (en) 2008-02-27 2008-02-27 Light-projecting device and three-dimensional shaped measuring apparatus

Publications (1)

Publication Number Publication Date
JP2009204373A true JP2009204373A (en) 2009-09-10

Family

ID=41146817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045342A Pending JP2009204373A (en) 2008-02-27 2008-02-27 Light-projecting device and three-dimensional shaped measuring apparatus

Country Status (1)

Country Link
JP (1) JP2009204373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
CN102628678A (en) * 2011-02-01 2012-08-08 索尼公司 Three-dimensional measuring apparatus, three-dimensional measuring method, and program
WO2013133286A1 (en) * 2012-03-06 2013-09-12 株式会社ニコン Shape-measurement device, system for manufacturing structural object, scanning device, method for measuring shape, method for manufacturing structural object, and shape-measurement program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666527A (en) * 1992-08-20 1994-03-08 Sharp Corp Three-dimensional measurement method
JPH11118443A (en) * 1997-10-15 1999-04-30 Ckd Corp Shape measuring device
JPH11148810A (en) * 1997-09-09 1999-06-02 Ckd Corp Shape measuring instrument
JP2001066126A (en) * 1999-05-07 2001-03-16 Matsushita Electric Ind Co Ltd Range finder device
JP2001159510A (en) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd Three-dimensional shape measuring method and its device
JP2003057021A (en) * 2001-08-16 2003-02-26 Minolta Co Ltd Three-dimensional shape input apparatus and projection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666527A (en) * 1992-08-20 1994-03-08 Sharp Corp Three-dimensional measurement method
JPH11148810A (en) * 1997-09-09 1999-06-02 Ckd Corp Shape measuring instrument
JPH11118443A (en) * 1997-10-15 1999-04-30 Ckd Corp Shape measuring device
JP2001066126A (en) * 1999-05-07 2001-03-16 Matsushita Electric Ind Co Ltd Range finder device
JP2001159510A (en) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd Three-dimensional shape measuring method and its device
JP2003057021A (en) * 2001-08-16 2003-02-26 Minolta Co Ltd Three-dimensional shape input apparatus and projection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
CN102628678A (en) * 2011-02-01 2012-08-08 索尼公司 Three-dimensional measuring apparatus, three-dimensional measuring method, and program
WO2013133286A1 (en) * 2012-03-06 2013-09-12 株式会社ニコン Shape-measurement device, system for manufacturing structural object, scanning device, method for measuring shape, method for manufacturing structural object, and shape-measurement program
US9146096B2 (en) 2012-03-06 2015-09-29 Nikon Corporation Form measuring apparatus, structure manufacturing system, scanning apparatus, method for measuring form, method for manufacturing structure, and non-transitory computer readable medium storing program for measuring form

Similar Documents

Publication Publication Date Title
TWI660212B (en) Auto-focus system
US10302422B2 (en) Measurement system, measurement method, robot control method, robot, robot system, and picking apparatus
US20210132403A1 (en) System and method for reduced-speckle laser line generation
JP5443303B2 (en) Appearance inspection apparatus and appearance inspection method
JP6363382B2 (en) Film thickness measuring apparatus and method
JPH11211443A (en) Three-dimensional shape measuring device
JP6462823B2 (en) Image inspection device
JP6230434B2 (en) Image inspection apparatus, image inspection method, image inspection program, and computer-readable recording medium
US20150324991A1 (en) Method for capturing images of a preferably structured surface of an object and device for image capture
JP4077754B2 (en) 3D shape measuring device
JP2015001381A (en) Three-dimensional shape measurement device
JP2002257528A (en) Three-dimensional shape measuring device by phase shift method
JP6516453B2 (en) Image measuring device and measuring device
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
JP2008145139A (en) Shape measuring device
JP2012189479A (en) Shape measuring device
JP2009204373A (en) Light-projecting device and three-dimensional shaped measuring apparatus
JP6234253B2 (en) Image inspection apparatus, image inspection method, image inspection program, and computer-readable recording medium
JP2011021970A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2019090647A (en) Method for determining position of liquid crystal display element in projection unit of inspection device
JP2009216702A (en) Optical measuring instrument
JP4427632B2 (en) High-precision 3D shape measuring device
KR102485214B1 (en) Apparatus and method of executing vision inspection by using a plurality of hologram devices
JP3953653B2 (en) Aspherical mirror shape measuring method and shape measuring apparatus
US20200263979A1 (en) Determining surface structures of objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Effective date: 20120605

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Written amendment

Effective date: 20120724

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20130401

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130725