Nothing Special   »   [go: up one dir, main page]

JP2009292976A - プレス成形用プリプレグ及び成形品の製造方法 - Google Patents

プレス成形用プリプレグ及び成形品の製造方法 Download PDF

Info

Publication number
JP2009292976A
JP2009292976A JP2008149889A JP2008149889A JP2009292976A JP 2009292976 A JP2009292976 A JP 2009292976A JP 2008149889 A JP2008149889 A JP 2008149889A JP 2008149889 A JP2008149889 A JP 2008149889A JP 2009292976 A JP2009292976 A JP 2009292976A
Authority
JP
Japan
Prior art keywords
epoxy resin
mold
resin composition
prepreg
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008149889A
Other languages
English (en)
Inventor
Yasushi Suzumura
靖 鈴村
Yuji Kazahaya
祐二 風早
Yoshihide Kakimoto
佳秀 柿本
Shinichiro Furuya
真一郎 古屋
Hisao Koba
久雄 木場
Noriyoshi Terasawa
知徳 寺澤
Koichi Akiyama
浩一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008149889A priority Critical patent/JP2009292976A/ja
Publication of JP2009292976A publication Critical patent/JP2009292976A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】常温時における取り扱い性に優れ、かつTg及び硬化速度をほとんど低下させることなく高温高圧成形時における樹脂の過剰な流動を抑え、得られる成形品の外観不良、性能不良、及び金型の不良等を抑制することができるプレス成形用プリプレグ、並びに該プレス成形用プリプレグを用いた成形品の製造方法。
【解決手段】エポキシ樹脂(X)と、質量平均分子量が10,000〜60,000のポリエーテルスルホン樹脂(Y)と、エポキシ硬化剤(Z)とを含み、100〜150℃における最低粘度が2〜20Pa・s、30℃における粘度が10,000〜100,000Pa・sのエポキシ樹脂組成物が、繊維補強材に含浸されたプレス成形用プリプレグ。また、該プレス成形用プリプレグを用いた成形品の製造方法。
【選択図】なし

Description

本発明は、プレス成形用プリプレグ、及び該プレス成形用プリプレグを用いた成形品の製造方法に関する。
繊維強化複合材料(以下、「FRP」という。)は、軽量かつ高強度、高剛性であるため、釣り竿やゴルフシャフト等のスポーツ・レジャー用途、自動車や航空機等の産業用途等の幅広い分野で用いられている。FRPの製造には、強化繊維等の長繊維からなる繊維補強材に樹脂を含浸した中間材料であるプリプレグを使用する方法が好適に用いられる。プリプレグを所望の形状に切断した後に賦形し、金型内で加熱硬化させることによりFRPからなる成形品を得ることができる。
しかしながら、一般にエポキシ樹脂系のプリプレグの成形は、成形時間が長く自動車部材のような量産性を求められる部材に使用することは難しかった。一方、高温高圧を用いるハイサイクルプレス成形は、その生産性の高さから、自動車用途に多用される成形方法として知られており、特許文献2には、プリプレグをプレス成形で成形する方法が示されている。
ハイサイクルプレス成形では、通常、100〜150℃、1〜15MPaの高温高圧条件が用いられる。これは、速硬化による硬化時間の短縮と、金型内においてプリプレグが適度に流動することによる該金型内からのガスの排出のためである。
しかし、このように高温高圧でプレス成形する場合、プリプレグの樹脂温度が上昇することにより樹脂粘度が低下し、金型の構造によってはシアエッジ部から激しい樹脂の流出が見られる。そのため、得られた成形品の表面に樹脂が不足した樹脂枯れのような外観不良、繊維蛇行等の性能上の不良、金型内のエジェクターピンやエアー弁等への樹脂流入による金型の動作不良等の成形上の問題が生じることがあった。
一方、金型内における樹脂の流動を調整する方法としては、高粘度のエポキシ樹脂を用いたり、エポキシ樹脂に熱可塑性樹脂を添加したりする方法が示されている(例えば、特許文献1、2)。
特開2005−213352号公報 国際公開第2004/48435号パンフレット
しかし、高粘度のエポキシ樹脂を用いた場合は、常温時における樹脂粘度も高くなってしまうため、積層作業等の常温でのプリプレグの取り扱い性が著しく低下する。また、エポキシ樹脂への汎用の熱可塑性樹脂の添加は、該熱可塑性樹脂のエポキシ樹脂への溶解性が低く、また得られるエポキシ樹脂組成物のガラス転移温度(以下、「Tg」という。)の低下、硬化速度の低下等をもたらすため、ハイサイクルプレス成形に適用することが困難であった。また、エポキシ樹脂系プリプレグのハイサイクルプレス成形は一般的ではなかったため、ハイサイクルプレス成形に最適な成形温度域での樹脂の最低粘度は解明されておらず、樹脂粘度を最適粘度域にコントロールするための熱可塑性樹脂の使用法は見いだされていなかった。そのため、ハイサイクルプレス成形に適用することのできるプレス成形用プリプレグが望まれている。
そこで本発明は、常温時における取り扱い性に優れ、かつTg及び硬化速度をほとんど低下させることなく高温高圧成形時における樹脂の過剰な流動を抑え、得られる成形品の外観不良、性能不良、及び金型の動作不良等を抑制することができるプレス成形用プリプレグを目的とする。
また、本発明では、前記プレス成形用プリプレグを用いた高い生産性の成形品の製造方法を提供する。
本発明のプレス成形用プリプレグは、エポキシ樹脂(X)100質量部と、質量平均分子量が10,000〜60,000のポリエーテルスルホン樹脂(Y)5〜15質量部と、エポキシ硬化剤(Z)5〜20質量部とを含み、100〜150℃における最低粘度が2〜20Pa・sであり、30℃における粘度が10,000〜100,000Pa・sのエポキシ樹脂組成物が、繊維補強材に含浸されたプリプレグである。
また、本発明の成形品の製造方法は、前記プレス成形用プリプレグを用いた成形材料を金型内で、100〜150℃、1〜15MPaの条件下で1〜20分間加熱加圧して硬化させる方法である。
本発明のプレス成形用プリプレグは、常温時における取り扱い性に優れ、かつTg及び硬化速度をほとんど低下させることなく高温高圧成形時における樹脂の過剰な流動を抑えることができる。そのため、高温高圧によるハイサイクルプレス成形であっても、得られる成形品の外観不良、性能不良、及び金型の不良等を抑制することができる。
また、本発明の製造方法によれば、高温高圧による硬化により高い生産性で成形品を得ることができる。
<プレス成形用プリプレグ>
本発明のプレス成形用プリプレグは、エポキシ樹脂(X)、ポリエーテルスルホン(PES)樹脂(Y)、及びエポキシ硬化剤(Z)を含むエポキシ樹脂組成物を、繊維補強材に含浸したプリプレグである。本発明のプレス成形用プリプレグは、特に、高温高圧下に短時間で硬化させて成形品を得るハイサイクルプレス成形に好適に用いることができる。
[エポキシ樹脂組成物]
(エポキシ樹脂(X))
エポキシ樹脂(X)としては、2官能性エポキシ樹脂、3官能以上の多官能性エポキシ樹脂が挙げられる。
2官能性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製のエピコート828(jER828))、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フルオレン型エポキシ樹脂、あるいはこれらを変性したエポキシ樹脂等が挙げられる。
3官能以上の多官能性エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルアミンのようなグリシジルアミン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタンやトリス(グリシジルオキシメタン)のようなグリシジルエーテル型エポキシ樹脂、あるいはこれらを変性したエポキシ樹脂やこれらのエポキシ樹脂をブロム化したブロム化エポキシ樹脂が挙げられる。
これらエポキシ樹脂は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
エポキシ樹脂(X)は、PES樹脂(Y)との溶解性の点から、ビスフェノール骨格を有するエポキシ樹脂であることが好ましい。
(ポリエーテルスルホン樹脂(Y))
PES樹脂(Y)は、エポキシ樹脂組成物の流動性を調整する役割を果たす樹脂である。
PES樹脂(Y)は、質量平均分子量が10,000〜60,000の樹脂であり、20,000〜50,000の樹脂であることが好ましい。
質量平均分子量が10,000以上であれば、エポキシ樹脂組成物の粘度が低くなりすぎることを防ぐことができ、適正な配合量でエポキシ樹脂組成物の粘度を本発明で規定する適正な粘度域とすることができる。質量平均分子量が60,000以下であれば、エポキシ樹脂への溶解が困難になり、極少量の配合でもエポキシ樹脂組成物の粘度が高くなり過ぎることを防ぐことができ、エポキシ樹脂組成物の粘度を本発明で規定する適正な粘度域とすることができる。
PES樹脂(Y)の具体例としては、例えば、BASF社製ウルトラゾーンE1010、E2020P、E3010、E6020P、S3010、S6010、住友化学製スミカエクセルPES3600P、PES4800P、PES5003P等が挙げられる。なかでも、少量の添加でエポキシ樹脂組成物の粘度を本発明の規定する適正な粘度域に調整でき、またエポキシ樹脂(X)への溶解性にも優れる点から、BASF社製E2020P(質量平均分子量32,000)であることが好ましい。
エポキシ樹脂組成物におけるPES樹脂(Y)の使用量は、エポキシ樹脂100質量部に対して5〜15質量部であり、7〜13質量部であることが好ましい。
PES樹脂(Y)の使用量を5質量部以上とすることにより、高温高圧成形時においてエポキシ樹脂組成物が流動しすぎることによる金型からの流出を抑制でき、樹脂枯れ等の表面欠陥がない成形品を得ることができる。また、PES樹脂(Y)の使用量を15質量部以下とすることにより、エポキシ樹脂への溶解が容易で、またエポキシ樹脂組成物のTgの低下、硬化速度の低下を抑制することができる。
(エポキシ硬化剤)
エポキシ硬化剤(Z)は、エポキシ樹脂組成物の架橋密度や硬化速度を適切な範囲に保つ役割を果たす。
エポキシ硬化剤(Z)としては、エポキシ樹脂用の硬化剤として通常用いられているものを使用することができる。エポキシ硬化剤(Z)は、硬化性、硬化後の物性に優れる点から、アミド系の硬化剤であるジシアンジアミド(DICY)が好ましい。
具体例としては、ジャパンエポキシレジン(株)製のjERキュアーDICY15等が挙げられる。
また、DICYを用いる場合には、ウレア系の硬化剤と併用することがより好ましい。DICYはエポキシ樹脂への溶解性がそれほど高くないため充分に溶解させるためには160℃以上の高温に加熱する必要があるが、ウレア系の硬化剤と併用することにより溶解温度を下げることができる。
ウレア系の硬化剤としては、例えば、フェニルジメチルウレア(PDMU)、トルエンビスジメチルウレア(TBDMU)等が挙げられる。
エポキシ樹脂組成物におけるエポキシ硬化剤(Z)の使用量は、エポキシ樹脂100質量部に対して5〜20質量部である。エポキシ硬化剤(Z)の使用量が5質量部以上であれば、架橋密度が充分になり、また充分な硬化速度が得られる。エポキシ硬化剤(Z)が20質量部以下であれば、硬化剤が過剰に存在することによる硬化樹脂の機械物性の低下や硬化樹脂の濁り等の不具合を抑制することができる。
エポキシ硬化剤(Z)として、DICY及びウレア系硬化剤(PDMU、TBDMU等)を併用する場合、それらの使用量は、エポキシ樹脂(X)100質量部に対して、DICYが2〜15質量部、ウレア系硬化剤が1〜10質量部(ただし、DICYとウレア系硬化剤の合計量が5〜20質量部である。)であることが好ましい。
(その他の成分)
また、本発明におけるエポキシ樹脂組成物には、エポキシ樹脂組成物の100〜150℃における最低粘度、30℃における粘度、Tg、硬化速度等に悪影響を及ぼさない範囲内で、前記エポキシ樹脂(X)、PES樹脂(Y)、エポキシ硬化剤(Z)以外のその他の成分が含有されていてもよい。
その他の成分としては、例えば、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン等のジアミノジフェニルスルホン(DDS)、及びこれらの変性物等が挙げられる。具体例としては、和歌山精化(株)製のセイカキュアS等が挙げられる。
DDSを用いることで、優れた機械的強度及び耐熱性が得られるだけでなく、樹脂組成物の調製に使用するエポキシ樹脂の粘度を調整したり、硬化を早めたりすることができる。
また、それ以外のその他の成分としては、微粉末状のシリカ等の無機質微粒子、顔料、エラストマー、難燃剤となる水酸化アルミニウムや臭素化合物又はリン系化合物、脱泡剤、取り扱い性や柔軟性を向上させる目的のポリビニルアセタール樹脂、フェノキシ樹脂等のエポキシ樹脂に溶解する熱可塑性樹脂、硬化反応の触媒となるイミダゾール誘導体、金属錯体塩又は3級アミン化合物等が挙げられる。
本発明のエポキシ樹脂組成物は、前記エポキシ樹脂(X)100質量部と、PES樹脂(Y)5〜15質量部と、エポキシ硬化剤(Z)5〜20質量部とを含有する組成物である。
本発明のエポキシ樹脂組成物は、100〜150℃における最低粘度が2〜20Pa・sである。100〜150℃における最低粘度とは、エポキシ樹脂組成物を加熱した場合に100℃から150℃までの温度範囲内における粘度(昇温粘度)の最低値を意味する。昇温粘度は、例えば、レオメトリック社製DSR−200又は同等の性能を有する装置を用いて、周波数1Hz、パラレルプレート(25mmφ、ギャップ0.5mm)で測定することができる。
100〜150℃における最低粘度を2Pa・s以上とすることにより、樹脂(エポキシ樹脂組成物)が適度な流動性を示し、高温高圧における成形時に金型内で過剰に流動することを抑えることができ、高品質な成形品が得られるとともに、金型のシアエッジ部から樹脂が流出して成形品に外観不良が生じたり、繊維蛇行が生じたりすることを抑制することができる。また、金型内のエジェクターピンやエアー弁等に樹脂が流入して金型の動作不良が生じることを防止できる。また、100〜150℃における最低粘度を20Pa・s以下とすることにより、成形時の粘度が高すぎるために、樹脂の流動が不十分になり、成形品からガスが抜け難くなって欠陥になったり、成形品に未充填部分が残ったりすることを防止できる。
本発明のエポキシ樹脂組成物の100〜150℃における最低粘度は、2〜20Pa・sであることが好ましく、3〜18Pa・sであることがより好ましい。
また、本発明のエポキシ樹脂組成物は、30℃における粘度が10,000〜100,000Pa・sである。プリプレグのプレス成形においては成形前にプリプレグを所定の形状に切断し、積層してプリフォームとする場合が多いが、30℃における粘度が10,000Pa・s以上であれば、常温における積層作業でプリプレグのベタツキが少なく、良好な作業性が得られる。また、30℃における粘度が100,000Pa・s以下であれば、プリプレグが十分な柔軟性を維持しており、プリフォーム作成作業でプリプレグを金型の形状に合わせて積層していくために必要な賦形性が維持できる。
粘度は、前記昇温粘度と同様に、例えば、レオメトリック社製DSR−200又は同等の性能を有する装置を用いて、周波数1Hz、パラレルプレート(25mmφ、ギャップ0.5mm)で測定することができる。
エポキシ樹脂組成物の100〜150℃における最低粘度、及び30℃における粘度は、エポキシ樹脂(X)の種類、並びにPES樹脂(Y)、エポキシ硬化剤(Z)の種類及び使用量により調節することができる。
また、本発明のエポキシ樹脂組成物の硬化物Tgは、硬化温度の−30℃以上であることが好ましい。エポキシ樹脂組成物の硬化物Tgが硬化温度の−30℃以上であれば、成形型(金型)からの脱型が容易でかつ脱型後の変形が起こり難い。
また、本発明のエポキシ樹脂組成物は、硬化温度100〜150℃、成形圧力1〜15MPaの条件で加熱加圧した際に1〜20分間で硬化するものであることが好ましい。
(エポキシ樹脂組成物の製造方法)
本発明におけるエポキシ樹脂組成物の製造方法としては、例えば、前述のエポキシ樹脂(X)、PES樹脂(Y)、エポキシ硬化剤(Z)、及び必要に応じて添加するその他の成分を適量ずつ添加して混合する方法が挙げられる。
また、その他の成分としてDDSを用いる場合には、DDSとエポキシ樹脂(X)とを予め所定粘度まで予備反応させた後に、PES樹脂(Y)及びエポキシ硬化剤(Z)と混合することもできる。所定粘度としては、例えば、90℃における粘度が4〜13Pa・sが挙げられる。
また、エポキシ硬化剤(Z)が固体である場合には、液状のエポキシ樹脂(X)に予め均一混合した後に、残りの成分と混合してもよい。
また、これらの成分を混合する際の混合温度は、50〜65℃であることが好ましく、55〜60℃であることがより好ましい。混合温度が50℃以上であれば、前記成分の混合が容易になる。また、混合温度が65℃以下であれば、エポキシ樹脂組成物が硬化反応を起こすことを抑制しやすい。
[繊維補強材]
本発明における繊維補強材としては、FRPの補強材として通常用いられる繊維を用いることができ、例えば、炭素繊維、ガラス繊維、アラミド繊維、ポリエステル繊維、鉱物繊維(例えば、バサルト繊維等)等が挙げられる。なかでも、軽量かつ高強度で高弾性率を有し、耐熱性、耐薬品性にも優れる点から、炭素繊維が好ましい。
炭素繊維としては、ピッチ系、ポリアクリロニトリル(PAN系)、レーヨン系等の種類が挙げられ、いずれの炭素繊維を用いてもよいが、炭素繊維の生産性の面から、PAN系炭素繊維の使用がより好ましい。
繊維補強材の形態としては、ミルドファイバー状、チョップドファイバー状、連続繊維、各種織物等の形態が挙げられる。
[プレス成形用プリプレグの製造方法]
本発明のプレス成形用プリプレグは、これらの繊維補強材に前述のエポキシ樹脂組成物が含浸されたプリプレグである。
プレス成形用プリプレグの製造方法は、繊維補強材にエポキシ樹脂組成物を含浸させることができる方法であればよく、例えば、離型紙上に薄く塗布したエポキシ樹脂組成物と各種形態の繊維強化材とを接触させて含浸させるプリプレグ法が挙げられる。
以上説明した本発明のプレス成形用プリプレグは、エポキシ樹脂組成物の30℃における粘度及び100〜150℃における最低粘度を制御していることから、常温における取り扱い性に優れ、かつ成形時において金型内での樹脂の過剰な流動が抑制される。また、エポキシ樹脂組成物が上記組成であるので、エポキシ樹脂組成物のTgの低下及び硬化速度の低下を抑制することができる。そのため、高温高圧下における短時間の硬化によるハイサイクルプレス成形により、高品質な成形品を高い生産性で得ることができる。
<成形品の製造方法>
本発明の成形品の製造方法は、前述のプレス成形用プリプレグを用いた成形材料を、金型により高温高圧で硬化させて成形することにより成形品を得る方法である。本発明の製造方法は、特に、自動車部材等の用途の成形品(FRP)のハイサイクルプレス成形に好適に用いることができる。
[金型]
本発明の製造方法における金型としては、成形材料を高温高圧下で硬化させることのできる金型であればよく、金型を閉じた時に該金型の内部を気密に保つことのできる構造を有する金型を用いることが好ましい。ここで、気密とは、金型を満たすのに十分な量の成形材料を金型内に入れ、加圧した際にも成形材料を構成するエポキシ樹脂組成物が金型から実質的に漏れ出さないことをいう。
内部を気密に保つ金型としては、金型を締めた時に上型・下型(雄型・雌型)が接触する部分にシアエッジ構造(図1参照)やゴムシール構造を採用した金型が挙げられる。また、金型の内部を気密に保つものであれば公知のいかなる構造を採用した金型であってもよい。
図1は、本発明の製造方法に用いることのできる金型の一実施形態例を示した断面図である。
金型1は、上型2(雌型)と下型3(雄型)とを有する。上型2には雌型シアエッジ部4が設けられており、下型3には雄型シアエッジ部5が設けられている。そして、シアエッジ構造(雌型シアエッジ部4及び雄型シアエッジ部5)により、上型2と下型3を閉じた際に金型1の内部が気密に保たれる。
また、金型1を閉じた時に金型1の内部に残存する空気は、成形品(FRP)表面のピンホールや成形品内部のボイドの原因となる場合があるが、金型1として脱気機構を有する金型を用い、金型1の内部のすべてを成形材料で満たす際に、脱気機構を用いて脱気することにより、金型1の内部に残存する空気を効果的に脱気することが可能である。脱気機構としては、例えば、金型1の下型3に開閉可能な孔(例えば、国際公開第2004/048435号パンフレットに記載の孔)を設けて空気を金型1外部に開放する機構や、該孔に更にポンプを設け、減圧する機構等が挙げられる。この場合、脱気は、金型1の内部全てを成形材料で満たす瞬間まで開孔しておき、加圧時に閉じることにより行なわれる。
更に、成形品の成形終了後、該成形品の取り出しを容易にするために、エジェクターピンやエアー弁等の成形品を脱型する機構を金型1に取り付けることもできる。この機構は、金型1の冷却を待たずに容易に成形品を取り出すことが可能となるので大量生産に好適である。なお、脱型する機構は、エジェクターピン、エアー弁以外の従来公知のいかなる機構であっても構わない。
[製造方法]
以下、本発明の成形品の製造方法の実施形態の一例として、図1に例示した金型1を用いた方法について説明する。
まず、金型1をエポキシ樹脂組成物の硬化温度以上まで調温した後、下型3上に成形材料6(必要に応じてプレス成形用プリプレグ切断し、積層したもの)を配置する(図1(A))。ついで、上型2及び下型3を閉じ、加圧して成形する(図1(B))。樹脂(エポキシ樹脂組成物)は金型1の外へはほとんど流出することはなく、成形材料6は加圧されて金型1の内部の全てを満たすこととなる。
また、金型1内での樹脂の流動を抑えて成形品の繊維蛇行を抑制する点から、金型1に入れる前の成形材料6(図1(A)における成形材料6)の片面表面積を、金型1を閉じた時に成形材料6のその片面と接触する金型内部の表面積(得られる成形品の片面表面積と同じ表面積である。)に近づけておくことが好ましい。ここで、成形材料の片面表面積とは成形品を構成する2面(上型2及び下型3と接する面)のうちの一方の面の表面積であり、いずれの面についても同様のことが言える。
具体的には、成形材料6の片面表面積Sと、金型1を閉じた時の金型内部における前記成形材料の片面との接触面の表面積Sとの比S/Sが0.8〜1であることが好ましい。
/Sが0.8以上であれば、金型1の内部における樹脂の流動を抑えやすいため、繊維蛇行が生じ難くなる。また、S/Sが1以下であれば、成形材料の周縁部が金型1からはみ出して金型1を閉じる際に障害や成形品内の成形材料不足が生じたりすることを抑制しやすい。また、金型1内で成形材料が折り畳まれて繊維配向の乱れが生じることを防止しやすい。
また、特に高品質な成形品を得る場合は、成形材料6の体積及び高さについても、得られる成形品(金型を閉じた時の金型内部の形状)に近いものを用いることが好ましい。具体的には、金型の内部に入れる成形材料6の体積を得られる成形品の体積の100〜120%、成形材料6の厚みを得られる成形品の厚みの100〜150%とすることが好ましい。
金型1の内部に入れる成形材料6の体積が得られる成形品の体積の100%未満であると、成形材料6に十分な圧力がかかり難くなる。一方、金型1の内部に入れる成形材料6の体積が得られる成形品の体積の120%を超えると、金型1を閉める際に金型1の気密性が得られる以前に成形材料6が流出しやすくなる。
また、成形材料6の厚みが得られる成形品の厚みの100%未満の場合、及び150%を超える場合には、成形材料6の全面を均等に加圧することが難しくなる。ここで、成形材料6の厚み及び得られる成形品の厚みとは、それぞれ成形材料及び得られる成形品の厚みを平均した厚みである。
硬化温度は、100〜150℃である。硬化温度が100℃以上であれば、充分に硬化反応を起こすことができ、高い生産性で成形品を得ることができる。また、成形温度が150℃以下であれば、樹脂粘度が低くなり過ぎることによる金型1内における樹脂の過剰な流動を抑えることができ、金型1からの樹脂の流出や繊維の蛇行を抑制できるため、高品質な成形品が得られる。
また、成形時の圧力は、1〜15MPaである。圧力が1MPa以上であれば、樹脂の適度な流動が得られ、ガス抜けが悪いことによる外観不良やボイドの発生を防ぐことができ、成形材料がしっかりと金型に密着するため良好な外観品質を得ることができる。また、圧力が15MPa以下であれば、樹脂を必要以上に流動させることによる外観不良や、金型に必要以上の負荷をかけることによる変形等の問題を抑制できる。
また、本発明の製造方法における硬化時間は1〜20分間である。これにより高い生産性で優れた品質の成形品を製造することができる。
以上説明した本発明の製造方法によれば、成形時に金型に不良が生じることを抑制することができ、また外観不良、性能不良等を抑えた高品質な成形品を高い生産性で得ることができる。
なお、本発明の製造方法は、図1に例示した金型1を用いる方法には限定されない。前述の高温高圧下において短時間で硬化させることができる金型であれば、金型1以外の金型を用いる方法であってもよい。
以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<エポキシ樹脂組成物>
[各種測定方法]
本実施例における、100〜150℃における最低粘度、30℃における粘度、エポキシ樹脂組成物の硬化物Tgは以下に示す方法で測定した。
(100〜150℃における最低粘度及び30℃における粘度)
装置:レオメトリックス(株)製DSR−200
測定モード:パラレルプレート(25mmφ、ギャップ0.5mm)
周波数:1Hz
温度設定:30℃から2℃/分で120℃にまで昇温しながら粘度を測定した。
最低粘度については、100℃付近で最低の粘度が確認され、それ以降粘度が上昇したため、120℃までの測定とした。
(エポキシ樹脂組成物の硬化物Tg)
エポキシ樹脂組成物の硬化物TgはTA Instrument社製ARS−DMA動的粘弾性測定装置を用いてASTM D4065に従って測定を行い、図4に示すように温度に対して貯蔵弾性率(G’)の対数値をプロットし、得られたG’曲線のガラス弾性領域と転移領域の各接線の交点での温度をガラス転移温度(Tg)とした。
(キュラストメーターによる90%キュアー時間)
装置:日合商事(株)製 キュラストメーター IIF−HT
測定モード:P.P.(ピーク測定モード)
振動数:6 CPM
振幅角度:±3°
測定温度:140℃
90%キュアー時間は日合商事(株)製キュラストメーター IIF−HTを使用し、ダイ温度140℃でのトルク値(kgf・cm)の変化を測定し、図5に示すような時間−トルク曲線を得る。ついで、該曲線からトルクが変化しなくなる最大トルク値(Tmax)を求め、測定開始からTmaxの90%のトルク値(T90)が得られる迄の経過時間(分)を90%キュアー時間(t90)とした。
[原料]
エポキシ樹脂組成物の製造に用いた原料を以下に示す。
(エポキシ樹脂(X))
EP828:ビスフェノールA型エポキシ樹脂(商品名:jER828、ジャパンエポキシレジン(株)製)
(PES樹脂(Y))
E2020P:ポリエーテルスルホン(商品名ウルトラゾーンE2020P、BASF製、質量平均分子量32,000)
(エポキシ硬化剤(Z))
DICY:ジシアンジアミド(商品名:jERキュアーDICY15、ジャパンエポキシレジン(株)製)
PDMU:フェニルジメチルウレア(商品名:オミキュア94、PTIジャパン(株)製)
(その他の成分)
DDS:4,4’−ジアミノジフェニルスルホン(商品名:セイカキュアS、和歌山精化(株)製)
YP50S:フェノキシ樹脂(商品名フェノトートYP50S、東都化成(株)製、質量平均分子量50,000〜70,000)
[製造例1]
EP828とDDSとをEP828/DDS=100/9(単位:質量部)で混合し、150℃で加熱することにより、90℃における粘度が9Pa・sとなるように予備反応を行い、樹脂組成物(I)を得た。
また、EP828にDICY及びPDMUを添加して混合し、三本ロールミルを用いて均一に分散させてEP828/DICY/PDMU=11.38/6.07/4.55(単位:質量部)のペースト状の樹脂組成物(II)を得た。
更にEP828/E2020P=7/3(単位:質量部)にて混合し180℃にて均一に溶解させて樹脂組成物(III)を得た。
ついで、樹脂組成物(I)78.10質量部、樹脂組成物(II)19.75質量部、及び樹脂組成物(III)16.70質量部を混合してエポキシ樹脂組成物(A)を得た。
得られたエポキシ樹脂組成物(A)におけるPES樹脂(Y)の質量割合は、エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して5質量部であった。また、エポキシ樹脂組成物(A)におけるエポキシ硬化剤(Z)の質量割合は、エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して、9.54質量部であった。
また、得られたエポキシ樹脂組成物(A)を140℃、5分で硬化させた硬化物のTgは137℃であった。
[製造例2]
エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対するPES樹脂(Y)の質量割合を10質量部とした以外は、実施例1と同様の方法でエポキシ樹脂組成物(B)を得た。
また、得られたエポキシ樹脂組成物(B)を140℃、5分で硬化させた硬化物のTgは139℃であった。
[製造例3]
PES樹脂(Y)を用いなかった以外は、実施例1と同様の方法でエポキシ樹脂組成物(C)を得た。
また、得られたエポキシ樹脂組成物(C)を140℃、5分で硬化させた硬化物のTgは139℃であった。
[製造例4]
EP828にフェノキシ樹脂YP50Sを2/1(質量部)の割合で配合し、160℃にて均一に溶解させて樹脂組成物(IV)を得た。樹脂組成物(I)71.61質量部、樹脂組成物(II)19.71質量部、及び樹脂組成物(IV)27.26質量部を55℃にて混合してエポキシ樹脂組成物(D)を得た。
得られたエポキシ樹脂組成物(D)におけるフェノキシ樹脂の質量割合は、エポキシ樹脂組成物(D)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して9.1質量部であった。また、エポキシ樹脂組成物(D)におけるエポキシ硬化剤(Z)の質量割合は、エポキシ樹脂組成物(D)中の全エポキシ樹脂100質量部に対して、9.49質量部であった。また、得られたエポキシ樹脂組成物(D)を140℃、10分で硬化させた硬化物のTgは131℃であった。
製造例1〜4で得られたエポキシ樹脂組成物(A)〜(D)について、100〜150℃における最低粘度と30℃における粘度を測定した結果を図1及び図2に示す。
図1及び2に示すように、PES樹脂(Y)を用いた製造例1及び2は、30℃における粘度が10,000〜100,000Pa・sの範囲内であり、かつ100℃〜150℃における最低粘度が2〜20Pa・sの範囲内であった。
また、PES樹脂(Y)を用いずにフェノキシ樹脂を用いた製造例4も、30℃における粘度が10,000〜100,000Pa・sの範囲内であり、かつ100℃〜150℃における最低粘度が2〜20Pa・sの範囲内であった。
一方、PES樹脂(Y)を用いなかった製造例3では、30℃における粘度は10,000〜100,000Pa・sの範囲内であるものの、100℃〜150℃における最低粘度が2Pa・s未満であった。
<成形品の製造>
[実施例1]
製造例1で得られたエポキシ樹脂組成物(A)を簡易型ロールコーターで離型紙上に樹脂目付133g/mで均一に塗布して樹脂層を形成した。ついで、前記樹脂層に三菱レイヨン(株)製3K平織り炭素繊維クロスTR3110Mを貼り付けた後、ローラーで100℃、線圧0.1MPaで加熱及び加圧してエポキシ樹脂組成物を炭素繊維に含浸させ、繊維目付が200g/m、樹脂含有率が40質量%のプレス成形用プリプレグを作製した。
ついで、前記プレス成形用プリプレグを縦298mm×298mmに切断し、繊維の配向方向が0°と90°が交互になるように10枚(厚さ22mm、層体積195.4cm、片面表面積S(下面の表面積)888.0cm)積層したプリフォームを用意した。
金型は図1に例示した金型1を用いた。金型1の下型3のプリフォームと接触する面(成形材料の厚み部分と接触する面を除く)の表面積Sは900.0cmであった。S/Sは、888.0/900.0=0.987であった。
金型1の上型2及び下型3を予め140℃に加熱し、下型3上に前記プリフォームを配置し、すぐに上型2を降ろして金型1を閉め、10MPaの圧力をかけて10分間加熱加圧して硬化させ、硬化後に金型1から取り出して成形品を得た。
[実施例2]
製造例2で得られたエポキシ樹脂組成物(B)を用いた以外は実施例1と同様の方法で成形品を得た。
[比較例1]
製造例3で得られたエポキシ樹脂組成物(C)を用いた以外は実施例1と同様の方法で成形品を得た。
[比較例2]
製造例4で得られたエポキシ樹脂組成物(D)を用いた以外は実施例1と同様の方法で成形品を得た。
[評価方法]
実施例1〜2及び比較例1〜2における評価は、成形品の外観(樹脂枯れ)、金型シアエッジからの樹脂流出量、エポキシ樹脂組成物の硬化物Tg、及びキュラストメーターによる90%キュアー時間を評価することにより行った。
(成形品の樹脂枯れ)
○:全く無し
△:1〜2ヵ所
×:多数発生
(金型シアエッジからの樹脂流出量(%))
W1;成形前のプリフォームの重量(g)
W2;成形後の成形品(バリ除去後)の重量(g)
樹脂流出量(%)=(W2−W1)/W1×100
実施例1〜2及び比較例1〜2についての評価結果を表1に示す。
Figure 2009292976
表1に示すように、本発明のエポキシ樹脂組成物を用いた実施例1及び2では、金型のシアエッジからの樹脂流出量が抑えられており、樹脂枯れが全く生じておらず外観に優れていた。また、エポキシ樹脂組成物の硬化物Tgの値も十分に高く、90%キュアー時間も短かった。
一方、PES樹脂(Y)を用いなかった比較例1では、金型のシアエッジからの樹脂流出量が多く、樹脂枯れが多数見られ、実施例に比べて外観が劣っていた。
また、PES樹脂(Y)を用いずにフェノキシ樹脂を用いた比較例2では、金型のシアエッジからの樹脂流出量が抑えられており、樹脂枯れが全く生じなかったものの、エポキシ樹脂組成物の硬化物Tg及び90%キュアー時間が実施例に比べて劣っていた。
本発明のプレス成形用プリプレグ及び該プレス成形用プリプレグを用いた成形品の製造方法は、優れた品質の成形品を高い生産性で製造できるため、自動車部品等の用途のFRPのハイサイクルプレス成形による製造に好適に使用できる。
本発明の成形品の製造に使用できる金型の一実施形態例を示した断面図である。(A)金型が開いている状態。(B)金型が閉じている状態。 製造例1〜3のエポキシ樹脂組成物の30〜120℃における粘度を示した図である。 製造例1〜3のエポキシ樹脂組成物の100〜150℃における最低粘度を示した図である。 硬化物の温度に対する貯蔵弾性率(G’)の対数値をプロットしたグラフであり、ガラス状態でのグラフの接線と転移領域での接線の交点から該硬化物のガラス転移温度を求めるときに使用するグラフである。 樹脂組成物の硬化挙動を評価し、90%キュアー時間を求めるときに使用するグラフである。
符号の説明
1 金型 2 上型 3 下型 6 成形材料

Claims (2)

  1. エポキシ樹脂(X)100質量部と、質量平均分子量が10,000〜60,000のポリエーテルスルホン樹脂(Y)5〜15質量部と、エポキシ硬化剤(Z)5〜20質量部とを含み、100〜150℃における最低粘度が2〜20Pa・sであり、30℃における粘度が10,000〜100,000Pa・sのエポキシ樹脂組成物が、繊維補強材に含浸されたプレス成形用プリプレグ。
  2. 請求項1に記載のプレス成形用プリプレグを用いた成形材料を金型内で、100〜150℃、1〜15MPaの条件下で1〜20分間加熱加圧して硬化させる成形品の製造方法。
JP2008149889A 2008-06-06 2008-06-06 プレス成形用プリプレグ及び成形品の製造方法 Pending JP2009292976A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149889A JP2009292976A (ja) 2008-06-06 2008-06-06 プレス成形用プリプレグ及び成形品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149889A JP2009292976A (ja) 2008-06-06 2008-06-06 プレス成形用プリプレグ及び成形品の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014000457A Division JP5700143B2 (ja) 2014-01-06 2014-01-06 プレス成形用プリプレグ及び成形品の製造方法

Publications (1)

Publication Number Publication Date
JP2009292976A true JP2009292976A (ja) 2009-12-17

Family

ID=41541458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149889A Pending JP2009292976A (ja) 2008-06-06 2008-06-06 プレス成形用プリプレグ及び成形品の製造方法

Country Status (1)

Country Link
JP (1) JP2009292976A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081407A1 (ja) 2010-12-13 2012-06-21 東レ株式会社 炭素繊維プリプレグおよびその製造方法、炭素繊維強化複合材料
JP2012201716A (ja) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd プリプレグの製造方法
EP2627710A2 (en) 2010-10-12 2013-08-21 Hexcel Corporation Improving solvent resistance of epoxy resins toughened with polyethersulfone
JP2013543035A (ja) * 2010-11-08 2013-11-28 東レ株式会社 繊維強化複合材料用のエポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
EP2787028A1 (en) * 2011-11-29 2014-10-08 Mitsubishi Rayon Co., Ltd. Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
WO2015080035A1 (ja) 2013-11-26 2015-06-04 東邦テナックス株式会社 熱硬化性樹脂組成物、プリプレグ及びこれらを用いる繊維強化複合材料の製造方法
WO2016199857A1 (ja) * 2015-06-11 2016-12-15 三菱レイヨン株式会社 エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体
JP2017110194A (ja) * 2015-12-10 2017-06-22 三菱ケミカル株式会社 内圧成形用プリプレグ、及び繊維強化複合材料の製造方法
WO2019177131A1 (ja) 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
WO2019176935A1 (ja) 2018-03-13 2019-09-19 帝人株式会社 プリプレグ及び炭素繊維強化複合材料
WO2020004421A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020032090A1 (ja) 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
US10647849B2 (en) 2015-03-31 2020-05-12 Toho Tenax Co., Ltd. Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
JP2020132733A (ja) * 2019-02-18 2020-08-31 三菱ケミカル株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP7128375B1 (ja) 2021-09-24 2022-08-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
WO2023048258A1 (ja) * 2021-09-24 2023-03-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
WO2023048260A1 (ja) * 2021-09-24 2023-03-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238657A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2004099814A (ja) * 2002-09-12 2004-04-02 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2008007682A (ja) * 2006-06-30 2008-01-17 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238657A (ja) * 2002-02-14 2003-08-27 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2004099814A (ja) * 2002-09-12 2004-04-02 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2008007682A (ja) * 2006-06-30 2008-01-17 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2627710A2 (en) 2010-10-12 2013-08-21 Hexcel Corporation Improving solvent resistance of epoxy resins toughened with polyethersulfone
JP2013538932A (ja) * 2010-10-12 2013-10-17 ヘクセル コーポレイション ポリエーテルスルホンで高靭化させたエポキシ樹脂の耐溶媒性の改善
JP2013543035A (ja) * 2010-11-08 2013-11-28 東レ株式会社 繊維強化複合材料用のエポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
US9957387B2 (en) 2010-11-08 2018-05-01 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
KR101825247B1 (ko) * 2010-11-08 2018-02-02 도레이 카부시키가이샤 섬유 강화 복합 재료용의 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
US9074064B2 (en) 2010-12-13 2015-07-07 Toray Industries, Inc. Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
WO2012081407A1 (ja) 2010-12-13 2012-06-21 東レ株式会社 炭素繊維プリプレグおよびその製造方法、炭素繊維強化複合材料
JP2012201716A (ja) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd プリプレグの製造方法
US9994697B2 (en) 2011-11-29 2018-06-12 Mitsubishi Chemical Corporation Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same
EP2787028A4 (en) * 2011-11-29 2015-04-15 Mitsubishi Rayon Co PREPREG, FIBER-REINFORCED COMPOSITE, PRODUCTION METHOD AND EPOXY RESIN COMPOSITION
EP2787028A1 (en) * 2011-11-29 2014-10-08 Mitsubishi Rayon Co., Ltd. Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
US10227476B2 (en) 2011-11-29 2019-03-12 Mitsubishi Chemical Corporation Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
WO2015080035A1 (ja) 2013-11-26 2015-06-04 東邦テナックス株式会社 熱硬化性樹脂組成物、プリプレグ及びこれらを用いる繊維強化複合材料の製造方法
US10875976B2 (en) 2013-11-26 2020-12-29 Toho Tenax Co., Ltd. Heat-curable resin composition, prepreg, and method for producing fiber-reinforced composite using each of same
KR20160090805A (ko) 2013-11-26 2016-08-01 도호 테낙구스 가부시키가이샤 열경화성 수지 조성물, 프리프레그 및 이것들을 사용하는 섬유 강화 복합 재료의 제조 방법
US10647849B2 (en) 2015-03-31 2020-05-12 Toho Tenax Co., Ltd. Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
US10513577B2 (en) 2015-06-11 2019-12-24 Mitsubishi Chemical Corporation Epoxy resin composition, molded article, prepreg, fiber-reinforced composite material and structure
WO2016199857A1 (ja) * 2015-06-11 2016-12-15 三菱レイヨン株式会社 エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体
JPWO2016199857A1 (ja) * 2015-06-11 2017-06-22 三菱ケミカル株式会社 エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体
KR101860696B1 (ko) 2015-06-11 2018-05-23 미쯔비시 케미컬 주식회사 에폭시 수지 조성물, 성형품, 프리프레그, 섬유 강화 복합 재료 및 구조체
JP2017110194A (ja) * 2015-12-10 2017-06-22 三菱ケミカル株式会社 内圧成形用プリプレグ、及び繊維強化複合材料の製造方法
WO2019176935A1 (ja) 2018-03-13 2019-09-19 帝人株式会社 プリプレグ及び炭素繊維強化複合材料
WO2019177131A1 (ja) 2018-03-16 2019-09-19 帝人株式会社 エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
WO2020004421A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JP6699803B1 (ja) * 2018-06-26 2020-05-27 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020032090A1 (ja) 2018-08-08 2020-02-13 帝人株式会社 エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、樹脂硬化物、プリプレグ、繊維強化複合材料、及びこれらの製造方法
US11319404B2 (en) 2018-08-08 2022-05-03 Teijin Limited Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production methods for these
JP2020132733A (ja) * 2019-02-18 2020-08-31 三菱ケミカル株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP7206993B2 (ja) 2019-02-18 2023-01-18 三菱ケミカル株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP7128375B1 (ja) 2021-09-24 2022-08-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
WO2023048259A1 (ja) * 2021-09-24 2023-03-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
WO2023048258A1 (ja) * 2021-09-24 2023-03-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
WO2023048260A1 (ja) * 2021-09-24 2023-03-30 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法
JP2023047268A (ja) * 2021-09-24 2023-04-05 積水化学工業株式会社 炭素繊維強化複合材料及び炭素繊維強化複合材料の製造方法

Similar Documents

Publication Publication Date Title
JP2009292976A (ja) プレス成形用プリプレグ及び成形品の製造方法
JP5589265B2 (ja) プレス成形用プリプレグ及び成形品の製造方法
JP5327964B2 (ja) プレス成形用プリプレグ、及びそれを用いた成形品の製造方法
JP4141478B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
TWI548514B (zh) 金屬複合體之製造方法及電子機器殼體
JP4141487B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5682838B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料とその製造方法
JP6131332B2 (ja) 熱硬化性樹脂組成物、プリプレグ及びこれらを用いる繊維強化複合材料の製造方法
JP5090701B2 (ja) 部分含浸プリプレグとそれを用いた繊維強化複合材料の製造方法
KR102512809B1 (ko) 섬유강화 복합재료용 에폭시 수지 조성물 및 이를 이용한 프리프레그
JP5112732B2 (ja) プリプレグ
JP5700143B2 (ja) プレス成形用プリプレグ及び成形品の製造方法
JP5966969B2 (ja) プリプレグの製造方法
JP2007291238A (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2019156982A (ja) プリプレグ及び炭素繊維強化複合材料
CN112313261A (zh) 增韧环氧组合物
JP2016210114A (ja) 繊維強化プラスチック成形体及びその製造方法、並びに積層体
JP6617367B2 (ja) マトリックス材
EP3464414B1 (en) Low-viscosity epoxy resins and low voc curable formulations therefrom
CN110684321A (zh) 纤维增强复合材料用环氧树脂组合物及利用其的预浸料
JP2004338270A (ja) 繊維強化樹脂複合材料の製造方法および繊維強化樹脂複合材料
JP6957914B2 (ja) プリプレグ及び炭素繊維強化複合材料
JP4141480B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP5280323B2 (ja) エポキシ樹脂組成物、プリプレグおよびそれを用いた成形品の製造方法
JP2023124489A (ja) 積層成形体の製造方法及び積層成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Effective date: 20121023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20121220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20131001

Free format text: JAPANESE INTERMEDIATE CODE: A02