Nothing Special   »   [go: up one dir, main page]

JP2009291696A - Aqueous liquid electrostatic coating method using silicon oxide aqueous solution - Google Patents

Aqueous liquid electrostatic coating method using silicon oxide aqueous solution Download PDF

Info

Publication number
JP2009291696A
JP2009291696A JP2008146493A JP2008146493A JP2009291696A JP 2009291696 A JP2009291696 A JP 2009291696A JP 2008146493 A JP2008146493 A JP 2008146493A JP 2008146493 A JP2008146493 A JP 2008146493A JP 2009291696 A JP2009291696 A JP 2009291696A
Authority
JP
Japan
Prior art keywords
silicon oxide
electrostatic coating
coating method
water
aqueous liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008146493A
Other languages
Japanese (ja)
Other versions
JP5243850B2 (en
Inventor
Tomokazu Kanda
智一 神田
Norio Watanabe
紀夫 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008146493A priority Critical patent/JP5243850B2/en
Publication of JP2009291696A publication Critical patent/JP2009291696A/en
Application granted granted Critical
Publication of JP5243850B2 publication Critical patent/JP5243850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体の水分散液を用いて、アースされた被塗装面に化学的に安定でかつ機械的に強固な酸化ケイ素の透明薄膜を形成する水性液体静電塗装方法の提供。
【解決手段】本発明の水性液体静電塗装方法は、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を水に分散し、機械的刺激を与えて得られた酸化ケイ素水溶液をアースされた塗装面に噴射塗装する。前記噴射塗装する手段として、スプレーガン又は静電塗装スプレーガンを用いられる。前記機械的刺激として複合体に乱流水の供給、複合体分散液の攪拌及び複合体分散液に超音波振動を付与のいずれかを行うことができる。前記酸化ケイ素水溶液タンクを複数個連結し、得られた酸化ケイ素水溶液を最初のタンクへ還流する。
【選択図】 図1
A silicon oxide that is chemically stable and mechanically strong on a grounded surface to be coated using an aqueous dispersion of a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline. Of an aqueous liquid electrostatic coating method for forming a transparent thin film.
An aqueous liquid electrostatic coating method according to the present invention is a method in which a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline is dispersed in water and mechanically stimulated to obtain an oxidation. Spray an aqueous silicon solution onto a grounded paint surface. As the spray coating means, a spray gun or an electrostatic coating spray gun is used. As the mechanical stimulation, any of supply of turbulent water to the composite, stirring of the composite dispersion, and applying ultrasonic vibration to the composite dispersion can be performed. A plurality of silicon oxide aqueous solution tanks are connected, and the obtained silicon oxide aqueous solution is refluxed to the first tank.
[Selection] Figure 1

Description

本発明はセラミックス複合体を用いた水性液体静電塗装方法に関し、更に詳しくは金属、プラスチック、光学硝子などの材料から作られた製品の被塗装表面に化学的に安定でかつ機械的に強固な酸化ケイ素の透明薄膜を形成することができる二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を用いた水性液体静電塗装方法に関するものである。   The present invention relates to an aqueous liquid electrostatic coating method using a ceramic composite. More specifically, the present invention relates to a chemically stable and mechanically strong coating surface of a product made of a material such as metal, plastic, or optical glass. The present invention relates to an aqueous liquid electrostatic coating method using a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline capable of forming a transparent thin film of silicon oxide.

通常、金属、プラスチック、光学硝子などの表面は、自然環境下においては酸化分解によるサビの発生、劣化などによる強度の低下、キズの生成などの欠陥を生じる。これら欠陥は放置すれば内部へ浸透し、その結果、これら材料全体の品質低下を引き起こす。このため、これら材料の表面のキズを防止し、光沢、色などの美観を保護し、更には内部の品質を保護するために、材料表面を塗装することが行われており、従来、粉体塗料の塗装には静電塗装スプレーガンを用いた静電塗装方法が用いられ、また水性塗料や油性塗料の塗装では、刷毛塗り、ローラー塗装、またハンドガンによって塗料をスプレーガンを用いて噴霧乃至噴射して塗装する噴霧塗装などが一般的である。粉体塗料を用いる静電塗装スプレーガンは、すでに公知であり、通常、粉体塗装用スプレーガン、いわゆる静電塗装スプレーガンは、高電圧静電気を付着させた被塗装物に粉体塗料を噴霧又は噴射して塗装することができ、この際、粉体塗料は、圧縮空気によって流動化された状態で静電スプレーガンに送り込まれ、噴射口から噴噴射され、荷電電極からの放電によるイオン化圏域を通過した際、荷電され、被塗装物に効果的に吸引されて付着することによって塗装される(例えば、特許文献1参照)。一方、本発明者等は、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を開発し、特許第4012930号として特許を取得した(例えば、特許文献2参照)。
特開2007−237089(段落0004〜段落0005) 特許第4012930号(特許請求の範囲)
Normally, surfaces of metals, plastics, optical glasses, and the like cause defects such as generation of rust due to oxidative decomposition, decrease in strength due to deterioration, and generation of scratches in a natural environment. These defects can penetrate into the interior if left unattended, resulting in degradation of the overall quality of these materials. For this reason, in order to prevent the surface of these materials from being scratched, to protect the aesthetics such as gloss and color, and to protect the internal quality, the material surface has been conventionally coated. An electrostatic coating method using an electrostatic coating spray gun is used for painting, and in the case of water-based or oil-based coating, paint is sprayed or sprayed with a spray gun using a brush, roller coating, or hand gun. In general, spray painting is used. Electrostatic coating spray guns that use powder coatings are already known. Usually, powder coating spray guns, so-called electrostatic coating spray guns, spray powder coatings on objects to which high-voltage static electricity is applied. In this case, the powder paint is fed into the electrostatic spray gun in a state of being fluidized by compressed air, sprayed from the injection port, and ionized by discharge from the charged electrode. When it passes through the area, it is charged, and is applied by being effectively sucked and adhered to the object to be coated (see, for example, Patent Document 1). On the other hand, the present inventors have developed a ceramic composite obtained by sintering a polymer initial condensate of silicon dioxide and tourmaline, and obtained a patent as Japanese Patent No. 4012930 (see, for example, Patent Document 2).
JP2007-237089 (paragraph 0004 to paragraph 0005) Patent No. 4012930 (Claims)

しかしながら、前記のように特許文献1に記載の如き静電スプレーガンは、粉体塗料を用いる場合には、効果的に塗装されるが、水性液体塗料には効果がなく、静電スプレーガンを用いて水性液体塗料を塗装する試みはなされていなかった。そこで、そのような中で、本発明者等は、水性液体塗料、特に水性塗布物である二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体の充填層に水を供給し、かつ機械的刺激を与えると水中に微水溶性の酸化ケイ素が放出され、酸化ケイ素水溶液が得られる。得られた酸化ケイ素水溶液をハンドガンや静電スプレーガンを用いてアースされた被塗装面に向けて噴霧又は噴射したところ、この微水溶性の酸化ケイ素が水と一緒に被塗装面に付着し、水は流れ落ちて酸化ケイ素膜が驚くほど極めて良好に付着することを見出した。この知見に基づいて本発明はなされたものである。 However, as described above, the electrostatic spray gun described in Patent Document 1 is effectively applied when a powder paint is used, but it is not effective for an aqueous liquid paint. No attempt has been made to use it to paint aqueous liquid paints. Under such circumstances, the present inventors supply water to a packed bed of a ceramic composite obtained by sintering an aqueous liquid paint, in particular, a polymer precondensate of silicon dioxide, which is an aqueous coating, and tourmaline. However, when mechanical stimulation is applied, slightly water-soluble silicon oxide is released into water, and an aqueous silicon oxide solution is obtained. When the obtained silicon oxide aqueous solution is sprayed or sprayed on the grounded surface to be coated using a hand gun or an electrostatic spray gun, this slightly water-soluble silicon oxide adheres to the surface to be coated together with water, It has been found that water runs down and the silicon oxide film adheres surprisingly well. The present invention has been made based on this finding.

したがって、本発明が解決しようとする課題は、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体と接触させて得られた酸化ケイ素水溶液を用いてアースされた被塗装面に噴霧又は噴射することにより、化学的に安定でかつ機械的に強固な酸化ケイ素の透明薄膜を形成することができるセラミックス複合体を用いた水性液体静電塗装方法を提供することにある。   Therefore, the problem to be solved by the present invention is that the surface to be coated is grounded using an aqueous silicon oxide solution obtained by contacting a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline. It is an object of the present invention to provide an aqueous liquid electrostatic coating method using a ceramic composite that can form a transparent thin film of silicon oxide that is chemically stable and mechanically strong by spraying or spraying.

上記の本発明の課題は、以下の各発明によってそれぞれ達成される。
(1)二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を水に分散し、機械的刺激を与えて得られた酸化ケイ素水溶液をアースされた塗装面に噴射塗装することを特徴とする水性液体静電塗装方法。
(2)セラミックス複合体が平均分子量が200〜300である二酸化ケイ素の高分子初期縮合物に電気石の微粉末を混合し、造粒し、乾燥した後、250℃から650℃までの温度で焼結して得られた複合体であることを特徴とする前記第1項に記載の水性液体静電塗装方法。
(3)前記噴射塗装する手段として、ハンドガン又は静電塗装スプレーガンを用いることを特徴とする前記第1項又は第2項に記載の静電塗装方法。
(4)前記機械的刺激として複合体に乱流水の供給、複合体分散液の攪拌及び複合体分散液に超音波振動を付与のいずれかを行うことを特徴とする前記第1項乃至第3項のいずれかに記載の水性液体静電塗装方法。
(5)前記酸化ケイ素水溶液タンクを複数個連結し、得られた酸化ケイ素水溶液を最初のタンクへ還流することを特徴とする前記第1項乃至第4項のいずれかに記載の水性液体静電塗装方法。
The above-described objects of the present invention are achieved by the following inventions.
(1) Disperse a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline in water, and spray-coat the silicon oxide aqueous solution obtained by applying mechanical stimulus to the grounded coating surface An aqueous liquid electrostatic coating method characterized by the above.
(2) After the ceramic composite is mixed with a polymer initial condensate of silicon dioxide having an average molecular weight of 200 to 300, a fine powder of tourmaline is mixed, granulated and dried, at a temperature of 250 ° C. to 650 ° C. 2. The aqueous liquid electrostatic coating method according to item 1, which is a composite obtained by sintering.
(3) The electrostatic coating method according to item 1 or 2, wherein a hand gun or an electrostatic coating spray gun is used as the means for spray coating.
(4) The first to third items, wherein the mechanical stimulation includes any one of supply of turbulent water to the complex, stirring of the complex dispersion, and imparting ultrasonic vibration to the complex dispersion. The aqueous liquid electrostatic coating method according to any one of Items.
(5) Aqueous liquid electrostatic according to any one of (1) to (4) above, wherein a plurality of the silicon oxide aqueous solution tanks are connected, and the obtained silicon oxide aqueous solution is returned to the first tank. How to paint.

前記第1項に係る本発明の水性液体静電塗装方法は、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体(以下、「二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体」を「セラミックス複合体」ともいう。)を水に分散し、機械的刺激を与えて得られた酸化ケイ素水溶液をアースされた塗装面に噴射塗装することを特徴とするもので、このようにアースされた塗装面に酸化ケイ素水溶液を噴霧又は噴射することにより、被塗装面には化学的に安定でかつ機械的に強固な酸化ケイ素の透明薄膜を形成することができるという優れた効果を奏するものである。またこのような複合体を用いて得られた被膜は、前記の如き効果を有することにより建材、ビルの壁面、ガラス面、床材、列車、船舶、自動車(乗用車、トラックなど)などの被塗装面に効果的に適用される。ここで、本発明に用いられる「セラミックス複合体を水に分散し」とは、水の中にセラミックス複合体を入れて浸漬すること、セラミックス複合体を布や網などに入れて水の中に浸漬すること、セラミックス複合体を容器(容器の形状はどんなものでもよい。)に充填し、一方の面から水を供給し、複合体層を通過させ、他方から取り出すこと等の手段を意味し、セラミックス複合体の表面やその気泡内部表面などが水と接触し、その結果これらの表面から酸化ケイ素が溶け出し、酸化ケイ素水溶液が形成される。 The aqueous liquid electrostatic coating method of the present invention according to the first aspect includes a ceramic composite obtained by sintering a polymer initial condensate of silicon dioxide and tourmaline (hereinafter referred to as “polymer initial condensate of silicon dioxide and electric A ceramic composite that has been sintered with stone is also referred to as a “ceramic composite”.) Dispersing the solution in water and spraying a grounded painted surface with a silicon oxide solution obtained by applying mechanical stimulation. By spraying or spraying an aqueous solution of silicon oxide onto the grounded coating surface in this way, a transparent thin film of silicon oxide that is chemically stable and mechanically strong is formed on the surface to be coated. It has an excellent effect of being able to. In addition, the coating obtained by using such a composite has the effects as described above, so that it is coated on building materials, building walls, glass surfaces, flooring, trains, ships, automobiles (passenger cars, trucks, etc.), etc. Effectively applied to the surface. Here, “dispersing the ceramic composite in water” used in the present invention means putting the ceramic composite in water and immersing it, or putting the ceramic composite in a cloth or net in the water. It means immersing, filling the ceramic composite into a container (any shape of the container), supplying water from one side, passing through the composite layer, and taking out from the other. Then, the surface of the ceramic composite or the inner surface of the bubbles comes into contact with water, and as a result, silicon oxide is dissolved from these surfaces to form an aqueous silicon oxide solution.

前記第2項に係る本発明の水性液体静電塗装方法において、セラミックス複合体が平均分子量が200〜300である二酸化ケイ素の高分子初期縮合物に電気石の微粉末を混合し、造粒し、乾燥した後、250℃から650℃までの温度で焼結して得られた複合体であることにより、テトラエトキシシランのゾル−ゲル反応により得られた高分子初期縮合物の平均分子量が200〜300であることにより、電気石を包括複合化するための適度の粘性が得られ、高温で焼結してもクラックのない且つ衝撃に対する強度の大きい最終複合体が得られる。このような複合体を用いて被覆を行う時に、電気石に水流などによる機械的エネルギーに十分耐えるという特性を有している。 In the aqueous liquid electrostatic coating method of the present invention according to the second item, fine powder of tourmaline is mixed and granulated into a polymer precondensate of silicon dioxide having an average molecular weight of 200 to 300 in the ceramic composite. After drying, the composite obtained by sintering at a temperature of 250 ° C. to 650 ° C. has an average molecular weight of 200 as a polymer initial condensate obtained by the sol-gel reaction of tetraethoxysilane. By being -300, the moderate viscosity for comprehensively combining tourmaline can be obtained, and a final composite having no cracks and high strength against impact can be obtained even when sintered at a high temperature. When such a composite is used for coating, the tourmaline has a characteristic that it can sufficiently withstand mechanical energy due to water flow or the like.

前記第3項に係る本発明の水性液体静電塗装方法は、前記第1項又は第2項に記載の水性液体静電塗装方法において、前記噴射塗装する手段として、ハンドガン又は静電塗装スプレーガンを用いることにより、アースされた被塗装面に静電スプレーガンを用いても液体塗料の被膜は付着しないが、前記の酸化ケイ素水溶液を用いる場合には、極めて効果的に良好な付着が得られると共に、得られた被膜は長期にわたって物体表面の状態を保護することができ、したがって、被覆物の補修管理の手間を軽減することができるという予想外の効果を奏する。 The aqueous liquid electrostatic coating method according to the third aspect of the present invention is the aqueous liquid electrostatic coating method according to the first or second aspect, wherein the spray gun is a hand gun or an electrostatic coating spray gun. By using the above, even if an electrostatic spray gun is used on the grounded surface to be coated, the liquid paint film does not adhere, but when the silicon oxide aqueous solution is used, good adhesion can be obtained extremely effectively. At the same time, the obtained coating film can protect the state of the object surface over a long period of time, and thus has an unexpected effect of reducing the trouble of repair management of the coating.

前記第4項に係る本発明の水性液体静電塗装方法は、前記第1項乃至第3項のいずれかに記載の水性液体静電塗装方法において、前記機械的刺激として複合体に乱流水の供給、複合体分散液の攪拌及び複合体分散液に超音波振動を付与のいずれかを行うことにより、電気石は10〜20ミクロンの範囲内に10Volt/mの電場を生じ、水媒体中で電気石が活性化されると共に、該電気石に接する酸化ケイ素より生じた微水溶性の酸化ケイ素が放出され、この酸化ケイ素が被塗装面上に強固な被膜を形成することができる。
前記第5項に係る本発明の水性液体静電塗装方法は、前記第1項乃至第4項のいずれかに記載の水性液体静電塗装方法において、前記酸化ケイ素水溶液タンクを複数個連結し、得られた酸化ケイ素水溶液を最初のタンクへ還流することにより、微水溶性の酸化ケイ素の濃度の高い溶液が得られる。
The aqueous liquid electrostatic coating method according to the fourth aspect of the present invention is the aqueous liquid electrostatic coating method according to any one of the first to third aspects, wherein turbulent water is applied to the complex as the mechanical stimulus. By performing any one of supply, stirring of the composite dispersion and applying ultrasonic vibration to the composite dispersion, the tourmaline generates an electric field of 10 7 Volt / m within the range of 10 to 20 microns, and the aqueous medium Inside, the tourmaline is activated, and the slightly water-soluble silicon oxide generated from the silicon oxide in contact with the tourmaline is released, and this silicon oxide can form a firm coating on the surface to be coated.
The aqueous liquid electrostatic coating method according to the fifth aspect of the present invention is the aqueous liquid electrostatic coating method according to any one of the first to fourth aspects, wherein a plurality of the silicon oxide aqueous solution tanks are connected, By refluxing the obtained aqueous silicon oxide solution to the first tank, a slightly water-soluble high-concentration silicon oxide solution can be obtained.

本発明の水性液体静電塗装方法は、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を水に分散し、機械的刺激を与えて得られた酸化ケイ素水溶液をアースされた塗装面に噴射塗装することを特徴とするものである。この二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体は、酸化ケイ素としてテトラエトキシシランを用いる。このテトラエトキシシランを塩基性触媒の存在下で加水分解すると共に、ゾル−ゲル反応により高分子初期縮合物を得、該初期縮合物に電気石の微粉末を混合し、造粒し、乾燥する。得られた造粒物を250℃から650℃までの温度、好ましくは250℃から650℃までの温度、更に好ましくは500℃から650℃までの温度で焼結することにより製造される。前記ゾル−ゲル反応により得られたセラミックスの特色として反応条件を制御することによりセラミックスの内部にミクロな空間を生じ、そのため一方、電気石と酸化ケイ素はセラミックの表面のみでなく、内部表面においても水が接するようになる。 The aqueous liquid electrostatic coating method of the present invention involves dispersing a silicon oxide aqueous solution obtained by dispersing a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline in water and applying mechanical stimulation to earth. It is characterized by spray coating on the painted surface. The ceramic composite obtained by sintering the polymer precondensate of silicon dioxide and tourmaline uses tetraethoxysilane as silicon oxide. The tetraethoxysilane is hydrolyzed in the presence of a basic catalyst, and a polymer initial condensate is obtained by a sol-gel reaction. Fine stone powder is mixed with the initial condensate, granulated, and dried. . The obtained granulated product is produced by sintering at a temperature of 250 ° C. to 650 ° C., preferably 250 ° C. to 650 ° C., more preferably 500 ° C. to 650 ° C. By controlling the reaction conditions as a feature of the ceramic obtained by the sol-gel reaction, a micro space is created inside the ceramic, and therefore tourmaline and silicon oxide are not only on the ceramic surface but also on the internal surface. Water comes into contact.

一方、機械的な刺激により電気石は10〜20ミクロンの範囲内に10Volt/mの電場を生じるが、この電場が内部表面においても有効に作用し、厚い酸化ケイ素の膜の形成に役立っていると考えられる。本発明に使用した電気石はブラジル産のトルマリン鉱石シェールで黒色をした結晶であるが、これに限定されるものではなく、ブラジル産のトルマリン鉱石シェールと同様な特性を有するものであれば使用することができる。この鉱石を乾式微粉砕機により平均10μmまでに微粉砕して使用したが、本発明で使用しうる好ましい平均粒径は、50μm〜5μmである。更に好ましくは20μm〜10μmである。平均粒径が5μmより小さい場合、電気石の微結晶より生じる電場が隣の微細晶より生じる電場と交絡し、相殺して電場が弱められるケースが生じ、また50μmを超えると造粒物中の電気石の微結晶の量が小となり、その結果、微細晶による電場が小となり、そのため被覆液中の酸化ケイ素の水和分子の濃度も低くなるため、十分な被膜が得られない。テトラエトキシシラン(沸点は16 6℃)は化学1級品を使用することが好ましい。また酸化ケイ素は、好ましくはテトラエトキシシランがよいが、これに限らずアルコキシシランの中から選択することができる。 On the other hand, tourmaline generates an electric field of 10 7 Volt / m in the range of 10 to 20 microns due to mechanical stimulation, but this electric field also works effectively on the inner surface, which helps to form a thick silicon oxide film. It is thought that. The tourmaline used in the present invention is a blackish crystal of a tourmaline ore shale made in Brazil, but is not limited to this, and if it has the same characteristics as a tourmaline ore shale made in Brazil, it is used. be able to. The ore was used after being finely pulverized to an average of 10 μm by a dry pulverizer, and a preferable average particle size that can be used in the present invention is 50 μm to 5 μm. More preferably, it is 20 micrometers-10 micrometers. When the average particle size is smaller than 5 μm, there is a case where the electric field generated from the tourmaline microcrystals is entangled with the electric field generated from the adjacent microcrystals, and the electric field is weakened by offsetting. The amount of tourmaline microcrystals is small, and as a result, the electric field due to the microcrystals is small, so that the concentration of hydrated molecules of silicon oxide in the coating solution is also low, so that a sufficient film cannot be obtained. Tetraethoxysilane (boiling point is 166 ° C.) is preferably a chemical first grade product. The silicon oxide is preferably tetraethoxysilane, but is not limited to this and can be selected from alkoxysilanes.

本発明のセラミックス複合体の製造方法において、焼結温度が250℃から650℃までの温度であるが、この際焼結温度は、この範囲の温度で1回以上焼結してもよく、例えば、250℃の温度で焼結し、ついで600℃の温度で焼結してもよく、250℃で焼結した後、650℃で焼結してもよい。また焼結温度300℃で1回の焼結でもよい。焼結温度が250℃より低いと、長時間かかるばかりでなく、本発明の好ましい特性が得られない。また650℃を超えると、複合体中のゲル化した酸化ケイ素の一部は溶融による内部表面の減少、更に高温にすると内部表面は喪失し、活性化された電気石による酸化ケイ素の水溶化反応は微弱となる。ここで、塩基性触媒としては、アンモニア水、ジエタノールアミン、トリエタノールアミンなどのアミン系化合物が好ましい。 In the method for producing a ceramic composite of the present invention, the sintering temperature is a temperature from 250 ° C. to 650 ° C. The sintering temperature may be one or more times at a temperature in this range, for example, Sintering at a temperature of 250 ° C., followed by sintering at a temperature of 600 ° C., or sintering at 250 ° C. and then sintering at 650 ° C. Further, the sintering may be performed once at a sintering temperature of 300 ° C. If the sintering temperature is lower than 250 ° C., not only will it take a long time, but the preferred characteristics of the present invention will not be obtained. When the temperature exceeds 650 ° C., a part of the gelled silicon oxide in the composite is reduced in the internal surface due to melting, and the internal surface is lost at a higher temperature, and the water-solubilization reaction of silicon oxide by activated tourmaline Becomes weak. Here, the basic catalyst is preferably an amine compound such as aqueous ammonia, diethanolamine, or triethanolamine.

本発明に用いられるセラミックス複合体中の電気石と酸化ケイ素の重量比は、4:96ないし76:24であり、好ましくは、8:92ないし50:50である。この重量比が4:96ないし76:24の範囲を外れると、本発明の好ましい効果を得ることができない。またテトラエトキシシランのゾル−ゲル反応により得られた高分子初期縮合物の平均分子量は、200〜300である。この範囲では、電気石を加えた造粒物は、焼成後、複合体の機械物性に優れ、工業的設備に使用した場合にも、激しい機械的な摩擦に対しても破壊しないものが得られるが、平均分子量が200未満である場合は、工業的設備に使用した場合に、激しい機械的な摩擦により破損してしまうので使用できない。また平均分子量が300を超えると、電気石を加えた焼成後の複合体はもろくなり工業的設備には使用することができない。 The weight ratio of tourmaline to silicon oxide in the ceramic composite used in the present invention is 4:96 to 76:24, preferably 8:92 to 50:50. When this weight ratio is out of the range of 4:96 to 76:24, the preferable effect of the present invention cannot be obtained. The average molecular weight of the polymer precondensate obtained by the sol-gel reaction of tetraethoxysilane is 200-300. In this range, the granulated material with tourmaline added has excellent mechanical properties of the composite after firing, and even when used in industrial equipment, it can be obtained that does not break even with intense mechanical friction. However, when the average molecular weight is less than 200, it cannot be used because it is damaged by intense mechanical friction when used in industrial equipment. On the other hand, if the average molecular weight exceeds 300, the composite after firing with tourmaline becomes brittle and cannot be used for industrial equipment.

前記で得られたセラミックス複合体の表面積は、BET法表面積測定で29m/g〜460m/gであり、好ましくは30m/g〜460m/gであり、更に好ましくは40m/g〜460m/gである。更にいっそう好ましくは、110m/g〜460m/gである。この複合体の表面積が29m/g未満のときは、酸化ケイ素の被膜を厚くすることが困難であり、また460m/gを越えてもそれ以上の効果を期待することができない。本発明に用いられる複合体は、水媒体中で機械的刺激により先ず電気石が活性化される。ついで該電気石に接することにより酸化ケイ素が活性化され、水分子と集合体を形成し微水溶性の酸化ケイ素となって放出され、これが、物体上に沈積して強固な被膜を形成する。この機械的刺激としては、特に限定されるものではないが、水流による造粒物相互の摩擦、機械的攪拌による造粒物相互の摩擦、超音波放射による衝撃等が挙げられる。
本発明の水性液体静電塗装方法は、前記で得られたセラミックス複合体を水に分散すると、前述の如く電気石と酸化ケイ素はセラミックの表面のみでなく、内部表面においても水が接し、微水溶性の酸化ケイ素を溶出して酸化ケイ素水溶液が形成される。この際、機械的刺激を与えることにより十分の量の酸化ケイ素を比較的早く溶出させることができる。前記の機械的刺激としては、セラミックス複合体に乱流水の供給、セラミックス複合体を攪拌、セラミックス複合体に超音波振動を与える等の手段を用いてセラミックス複合体の分散液に刺激を与える。これにより水分子と集合体を形成し微水溶性の酸化ケイ素となって放出され、酸化ケイ素が水中に十分溶解した酸化ケイ素水溶液が得られる。水溶液中の酸化ケイ素は、微水溶性の酸化ケイ素の微粒子として存在しているので、このような酸化ケイ素水溶液をアースされた被塗装面に噴射塗装すると、被塗装面に酸化ケイ素粒子のみが付着し、水はそのまま流れ落ちる。このようにして被塗装面には酸化ケイ素の被膜だけが形成される。
Surface area of the obtained ceramic composite in the is 29m 2 / g~460m 2 / g by BET method surface area measurement, preferably 30m 2 / g~460m 2 / g, more preferably 40 m 2 / g ˜460 m 2 / g. Even more preferably, a 110m 2 / g~460m 2 / g. When the surface area of this composite is less than 29 m 2 / g, it is difficult to increase the thickness of the silicon oxide film, and even if it exceeds 460 m 2 / g, no further effect can be expected. In the composite used in the present invention, tourmaline is first activated in the aqueous medium by mechanical stimulation. The silicon oxide is then activated by contact with the tourmaline, forming aggregates with water molecules and being released as slightly water-soluble silicon oxide, which deposits on the object to form a strong coating. The mechanical stimulation is not particularly limited, and examples thereof include friction between granulated materials caused by water flow, friction between granulated materials caused by mechanical stirring, impact caused by ultrasonic radiation, and the like.
In the aqueous liquid electrostatic coating method of the present invention, when the ceramic composite obtained above is dispersed in water, as described above, the tourmaline and silicon oxide are in contact with water not only on the ceramic surface but also on the internal surface. Water-soluble silicon oxide is eluted to form an aqueous silicon oxide solution. At this time, a sufficient amount of silicon oxide can be eluted relatively quickly by applying mechanical stimulation. As the mechanical stimulation, the ceramic composite dispersion is stimulated using means such as supplying turbulent water to the ceramic composite, stirring the ceramic composite, and applying ultrasonic vibration to the ceramic composite. This forms an aggregate with water molecules and is released as slightly water-soluble silicon oxide, thereby obtaining an aqueous silicon oxide solution in which silicon oxide is sufficiently dissolved in water. Since silicon oxide in aqueous solution exists as fine water-soluble silicon oxide fine particles, when such silicon oxide aqueous solution is spray-coated on the grounded surface to be coated, only silicon oxide particles adhere to the surface to be coated. And the water flows down as it is. In this way, only the silicon oxide film is formed on the surface to be coated.

本発明に用いられるハンドガン又は静電塗装スプレーガンは、通常市販されているものでよく、特に、ハンドガンとしては、一般に家庭などで使用している園芸用スプレーガンでよい。また静電塗装スプレーガンは、周知であり、かつ市販されているので、これらを用いることが好ましい。またセラミックス複合体を水に分散し、微水溶性の酸化ケイ素を取り出すためのタンクは、圧力下にハンドガンから噴射させるので、密閉されるタンクが好ましい。更に微水溶性の酸化ケイ素の濃度を高めるためにセラミックス複合体収納部を水が循環するのが好ましく、複数のタンクを使用し、供給した水がこれらの間を循環する(以下、循環して得られた微水溶性の酸化ケイ素を含む酸化ケイ素水溶液を循環水ともいう)。この循環水を用いて被塗装面に噴霧又は噴射する最も簡単なハンドガンは、園芸用スプレーガンでもよい。ダイアフラム式ポンプを備えたタンク(市販されている。)に循環水を入れた後、前述の如き園芸用スプレーガンを接続し、アースされた被塗装面に噴霧状に散水する。これにより酸化ケイ素被膜が形成されるが、必要に応じて複数回噴霧することが好ましい。好ましくは1回又は2回の噴霧が最適である。更にアースとしては、被塗装面に少なくとも一箇所に設けることが好ましく、被塗装面の面積が大きいほどアースを設ける箇所を多くすることが好ましい。またアースは、被塗装層面における噴霧塗装又は噴射塗装後、これらのアースの設置箇所を移動して更にアースの設置箇所跡又は痕を噴霧塗装又は噴射塗装し、被塗装装面に均一の被膜を形成することが好ましい。被塗装面に、酸化ケイ素水溶液を噴霧又は噴射することにより、この被塗装面は親水性の効果で水滴状に付着するのではなく、前記の酸化ケイ素水溶液の膜で覆われ、酸化ケイ素だけが被塗装面に付着し、水は流れ落ちる。したがって、得られた被塗装面には、所望の厚みの酸化ケイ素被膜だけが残る。これにより水は、そのまま下水などに放流することができ、環境上も極めて優れている。またアース複数のアースを設置することにより、効率的に酸化ケイ素被膜が形成されるので、塗装時に少ない量の水で塗装することができる。本発明の静電塗装方法は、通常、公知の方法でよく、この静電塗装方法に使用される機器は、市販のものでよい。また循環水供給器としては、市販の塗料供給器を用いることができ、更に静電塗装に用いられる静電コントローラは市販されているので、このような静電コントローラを用いて適宜、帯電量を制御することができる。 The hand gun or electrostatic coating spray gun used in the present invention may be a commercially available one. In particular, the hand gun may be a garden gun spray gun generally used at home. In addition, electrostatic coating spray guns are well known and commercially available, and it is preferable to use them. The tank for dispersing the ceramic composite in water and taking out the slightly water-soluble silicon oxide is preferably sprayed from the hand gun under pressure, so that a sealed tank is preferable. In order to further increase the concentration of slightly water-soluble silicon oxide, it is preferable that water circulates in the ceramic composite container, and a plurality of tanks are used, and the supplied water circulates between them (hereinafter referred to as circulate The obtained aqueous silicon oxide solution containing slightly water-soluble silicon oxide is also referred to as circulating water). The simplest hand gun that sprays or sprays the surface to be coated using this circulating water may be a horticultural spray gun. After circulating water is put into a tank (commercially available) equipped with a diaphragm pump, a horticultural spray gun as described above is connected to spray water on the grounded surface to be painted. Although a silicon oxide film is formed by this, it is preferable to spray several times as needed. Preferably one or two sprays are optimal. Further, as the ground, it is preferable to provide at least one location on the surface to be coated, and it is preferable to increase the number of locations where the ground is provided as the area of the surface to be coated increases. In addition, after spray coating or spray coating on the surface of the coating layer, move the ground installation location and spray or spray paint the trace or trace of the ground installation location to apply a uniform coating on the coating surface. It is preferable to form. By spraying or spraying a silicon oxide aqueous solution on the surface to be coated, this surface to be coated is not attached in the form of water droplets due to the hydrophilic effect, but is covered with the film of the silicon oxide aqueous solution, and only the silicon oxide is covered. Water adheres to the surface to be painted and flows down. Therefore, only the silicon oxide film having a desired thickness remains on the surface to be coated. Thereby, water can be discharged into sewage or the like as it is, and the environment is extremely excellent. Moreover, since a silicon oxide film is efficiently formed by installing a plurality of grounds, it is possible to paint with a small amount of water during painting. The electrostatic coating method of the present invention may usually be a known method, and equipment used in this electrostatic coating method may be a commercially available one. As the circulating water supply, a commercially available paint supply can be used. Further, since electrostatic controllers used for electrostatic coating are commercially available, the charge amount can be appropriately adjusted using such an electrostatic controller. Can be controlled.

更に本発明の水性液体静電塗装方法について、図面を用いて詳述するが、本発明は、これに限定されるものではない。図1は、本発明の水性液体静電塗装方法に用いられるセラミックス複合体内蔵装置と微水溶性の酸化ケイ素を供給器からなる循環水供給装置を示す断面図である。図2は、園芸用スプレーガンを示す略図である。図3は静電塗装スプレーガンの一例を示す断面図である。図1において、タンク11の上部と下部にそれぞれ収納板14を有し、これらの間にセラミックス複合体15が充填されて収納されている(いわゆるセラミックス複合体内蔵装置11又は12)。このセラミックス複合体内蔵装置を2個を用意し、これらの間をパイプ21とパイプ22で接続する。パイプ21の一端はセラミックス複合体内蔵装置11の上面に接続され、また他端はタンク12の底面に接続されている。またパイプ22は、セラミックス複合体内蔵装置11とセラミックス複合体内蔵装置12の上面にそれぞれ接続されている。セラミックス複合体内蔵装置11の底面にはパイプ20が接続され、他端は水道の蛇口に接続されている。水道水は、セラミックス複合体内蔵装置11の底面から導入され、セラミックス複合体内蔵装置11、12を通過し、その間にセラミックス複合体は、微水溶性の酸化ケイ素を放出し、パイプ21を通ってセラミックス複合体内蔵装置12へ導入される。ここで、セラミックス複合体内蔵装置11、12を通過した水道水は、その一部は、パイプ23を通って循環水供給器13に導入され、他の一部は、パイプ22を通ってフィードバックされ、セラミックス複合体内蔵装置11に戻る。これにより循環水供給器13に濃度の高い微水溶性の酸化ケイ素の循環水(酸化ケイ素水溶液)17が得られる。この循環水供給器13には、ダイアフラム式ポンプを有しており、循環水17はこのダイアフラム式ポンプによって園芸用スプレーガン10(図2参照)又は静電塗装スプレーガン1(図3参照)に供給され、塗装に際し、アースされた被塗装面に噴霧又は噴射される。この循環水供給器13に代えて酸化ケイ素水溶液を充填したボトルを用いてもよい。得られた被膜はガラス質のシールド膜が形成される。本発明の静電塗装方法により列車、船舶、自動車(乗用車、トラックなど)などの被塗装面に効果的に適用されるばかりでなく、家屋、ビルの壁面、ガラス窓、床面、特に病院などの埃を嫌う環境下に適用することにより、誇り、塵などが被覆面に吸着されることなく長期間きれいな状態を維持できるという好ましい環境が得られる。 Furthermore, although the aqueous liquid electrostatic coating method of this invention is explained in full detail using drawing, this invention is not limited to this. FIG. 1 is a cross-sectional view showing a circulating water supply device comprising a ceramic composite built-in device and a slightly water-soluble silicon oxide supply device used in the aqueous liquid electrostatic coating method of the present invention. FIG. 2 is a schematic diagram showing a horticultural spray gun. FIG. 3 is a sectional view showing an example of an electrostatic coating spray gun. In FIG. 1, a storage plate 14 is provided at each of an upper portion and a lower portion of a tank 11, and a ceramic composite 15 is filled and stored between them (so-called ceramic composite built-in device 11 or 12). Two ceramic composite built-in devices are prepared, and these are connected by a pipe 21 and a pipe 22. One end of the pipe 21 is connected to the upper surface of the ceramic composite built-in device 11, and the other end is connected to the bottom surface of the tank 12. The pipes 22 are connected to the upper surfaces of the ceramic composite built-in device 11 and the ceramic composite built-in device 12, respectively. A pipe 20 is connected to the bottom surface of the ceramic composite built-in device 11, and the other end is connected to a water tap. Tap water is introduced from the bottom surface of the ceramic composite built-in device 11 and passes through the ceramic composite built-in devices 11 and 12, while the ceramic composite releases slightly water-soluble silicon oxide and passes through the pipe 21. It is introduced into the ceramic composite built-in device 12. Here, part of the tap water that has passed through the ceramic composite built-in devices 11 and 12 is introduced into the circulating water supply 13 through the pipe 23, and the other part is fed back through the pipe 22. Return to the ceramic composite built-in device 11. As a result, a circulating water supply device 13 is provided with circulating water (silicon oxide aqueous solution) 17 having a high concentration of slightly water-soluble silicon oxide. The circulating water supply unit 13 has a diaphragm pump, and the circulating water 17 is transferred to the horticultural spray gun 10 (see FIG. 2) or the electrostatic coating spray gun 1 (see FIG. 3) by the diaphragm pump. When supplied and painted, it is sprayed or sprayed onto the grounded surface to be painted. Instead of the circulating water supply device 13, a bottle filled with an aqueous silicon oxide solution may be used. A glassy shield film is formed on the obtained film. The electrostatic coating method of the present invention is not only effectively applied to painted surfaces of trains, ships, automobiles (passenger cars, trucks, etc.), but also houses, building walls, glass windows, floor surfaces, especially hospitals, etc. By applying it in an environment that dislikes dust, it is possible to obtain a favorable environment in which pride, dust, and the like can be maintained in a clean state for a long time without being adsorbed on the coating surface.

〔セラミックス複合体の製造例〕
ガラス製反応器に21gのテトラエトキシシラン、18ミリリットルの蒸留水、7.3gのジメチルホルムアミドの混合溶液を入れ、これにゲル化反応触媒として10%アンモニア水 1ミリリットルを加え、攪拌しながら35℃で6時間反応を行う。反応物を蒸留器に移し、50℃で8時間かけて反応により生成したエタノール水の混合物を溜去する。内容物は白い微結晶を含んだ粘重な液体である。次にこの中から分子量測定用の検体を少量採取した後、電気石の微粉末0.26gとジメチルホルムアミド1gを加え、径5mmの球体に造粒する。造粒物は50℃で4時間乾燥し後、100℃で4時間、150℃で4時間加熱
する。水とジメチルホルムアミドを溜去し、これを高温加熱炉中で250℃4時間、500℃で4時間焼成する。造粒時のゲル(初期縮合物)の分子量は280、複合体の表面積は452m/gであった。
[Production example of ceramic composite]
A glass reactor was charged with 21 g of tetraethoxysilane, 18 ml of distilled water, and 7.3 g of dimethylformamide mixed solution. To this, 1 ml of 10% aqueous ammonia was added as a gelation reaction catalyst and stirred at 35 ° C. For 6 hours. The reaction product is transferred to a still, and the mixture of ethanol water produced by the reaction is distilled off at 50 ° C. for 8 hours. The content is a viscous liquid containing white microcrystals. Next, after collecting a small amount of a sample for molecular weight measurement, 0.26 g of tourmaline fine powder and 1 g of dimethylformamide are added and granulated into a sphere having a diameter of 5 mm. The granulated product is dried at 50 ° C. for 4 hours, and then heated at 100 ° C. for 4 hours and 150 ° C. for 4 hours. Water and dimethylformamide are distilled off and calcined in a high-temperature furnace at 250 ° C. for 4 hours and at 500 ° C. for 4 hours. The molecular weight of the gel (initial condensate) at the time of granulation was 280, and the surface area of the composite was 452 m 2 / g.

次に実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例によって何等限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

〔実施例1〜4〕
ナノシャインシステム機器(商品名、株式会社システムパートナー製)30(二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を内蔵したセラミックス複合体内蔵装置)11、12に循環水供給装置13を接続し、この循環水供給装置13にポンプ9として、ハンディポンプをセットし、静電コントローラーで出力電圧60kv、出力電流140μA、塗装圧0.1MPaに制御した後、静電塗装スプレーガン1として、図3に示されるノズル口径φ1.1mm及びノズル先端部に管状の荷電電極を有する静電スプレーガンを用いてアースされたガラス板(A4サイズ)を90°に立てかけ、吹付け距離20cmにおいて循環水供給装置13中の循環水(酸化ケイ素水溶液)17を噴霧塗装した。吹付け環境は、気温21℃、湿度40%である。比較例は、水ガラス水溶液を用いた。得られた結果を表1に示す。なお、表1の吹付量は、1回に吹き付ける量である。
[Examples 1 to 4]
Nanoshine system equipment (trade name, manufactured by System Partner Co., Ltd.) 30 (ceramic composite built-in device containing a ceramic composite obtained by sintering a polymer initial condensate of silicon dioxide and tourmaline) A supply device 13 is connected, a handy pump is set as the pump 9 in the circulating water supply device 13, and the output voltage is controlled to 60 kv, the output current is 140 μA, and the coating pressure is 0.1 MPa by an electrostatic controller. As the gun 1, a grounded glass plate (A4 size) is set to 90 ° using an electrostatic spray gun having a nozzle diameter of 1.1 mm and a tubular charged electrode at the nozzle tip shown in FIG. At 20 cm, the circulating water (silicon oxide aqueous solution) 17 in the circulating water supply device 13 was spray-coated. The spray environment is an air temperature of 21 ° C. and a humidity of 40%. In the comparative example, a water glass aqueous solution was used. The obtained results are shown in Table 1. In addition, the spraying amount of Table 1 is the amount sprayed at once.

Figure 2009291696
Figure 2009291696

表1から明らかなように、比較例1,2では、被覆率、膜厚共に0であり、被膜は得られなかったが、本発明では、1回吹付けで膜厚5nm、被覆率8%のものが得られたが、更に2回吹付けでは膜厚5nm、被覆率22%が得られた。 As is clear from Table 1, in Comparative Examples 1 and 2, the coverage and film thickness were both 0, and no film was obtained. However, in the present invention, the film thickness was 5 nm and the coverage was 8% by one spraying. However, when sprayed twice, a film thickness of 5 nm and a coverage of 22% were obtained.

〔実施例5〕
実施例1において、アースされたガラス板(A4サイズ)のアースとして、アース放電装置に接続された3個の着脱可能に形成されたアース電極を用い、該電極をガラス板の下方に横方向に等距離にそれぞれ付着配置した以外は、実施例1と同様にして噴霧塗装した。ついで、電極の位置をずらし、その跡又は痕に同様にして噴霧塗装した。このようにして得られた被膜は、実施例2で得られた被膜の形成に使用した酸化ケイ素水溶液の量よりも少ない使用量で得られ、かつむらのない均一な被膜が得られた。
Example 5
In Example 1, three detachable earth electrodes connected to the earth discharge device were used as the earth of the earthed glass plate (A4 size), and the electrodes were laterally arranged below the glass plate. Spray coating was carried out in the same manner as in Example 1 except that they were respectively arranged at equal distances. Subsequently, the position of the electrode was shifted and spray coating was similarly applied to the trace or mark. The film thus obtained was obtained in a smaller amount than the amount of the aqueous silicon oxide solution used for forming the film obtained in Example 2, and a uniform film without unevenness was obtained.

〔実施例6〕
実施例1において、ノズル口径φ1.1mmのハンドガンに代えて園芸用スプレーガン10を用い、ナノシャインシステム機器30(二酸化ケイ素の高分子初期縮合物と電気石を焼結したセラミックス複合体を内蔵したセラミックス複合体内蔵装置11、12)に循
環水供給装置13を接続し、この循環水供給装置13に、ハンディポンプをセットした後、実施例1と同様にしてアースされたガラス板(A4サイズ)を90°に立てかけ、吹付け距離20cmにおいて循環水供給装置13中の循環水17を噴霧塗装した。吹付け環境は、気温21℃、湿度40%である。本発明に用いられる循環水供給装置13に園芸用スプレーガン10を使用しても実用可能な被膜が得られた。なおナノシャインシステム機器30のパイプ20に水道の蛇口を直接接続し、更ナノシャインシステム機器30のパイプ23に園芸用スプレーガン10を直接接続して、噴霧塗装しても実用可能な被膜が得られた。
Example 6
In Example 1, a horticultural spray gun 10 was used instead of a hand gun having a nozzle diameter of 1.1 mm, and a nanoshine system device 30 (containing a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline) was incorporated. A glass plate (A4 size) grounded in the same manner as in Example 1 after connecting the circulating water supply device 13 to the ceramic composite built-in devices 11 and 12), and setting the handy pump in the circulating water supply device 13. The circulating water 17 in the circulating water supply device 13 was spray-coated at a spraying distance of 20 cm. The spray environment is an air temperature of 21 ° C. and a humidity of 40%. Even if the horticultural spray gun 10 was used for the circulating water supply device 13 used in the present invention, a practical film was obtained. In addition, a water faucet is directly connected to the pipe 20 of the nanoshine system device 30, and the horticultural spray gun 10 is directly connected to the pipe 23 of the nanoshine system device 30 to obtain a coating film that can be used even by spray coating. It was.

近年、大気汚染の進行に伴い、屋外に暴露している構造物、列車、船舶、車などの輸送媒体は、汚染や腐蝕が著しくなってきている。そのため、塗料による塗装、清掃作業と補修などの経費が増大しているところ、二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体に水が接触して得られた酸化ケイ素水溶液を用いて、アースされた被塗装面に化学的に安定でかつ機械的に強固な酸化ケイ素の均一な透明薄膜を形成することができるので、化学的に最も安定な且つ硬度の大であるガラス質の薄膜を被覆される物体の美的感覚を損なうことなく従来の方法では得られなかった厚みで簡単な方法で被覆することが可能となり、産業上大きな貢献が期待されるものである。   In recent years, with the progress of air pollution, transportation media such as structures, trains, ships, vehicles, etc. exposed to the outdoors are significantly contaminated and corroded. For this reason, the costs of painting with paint, cleaning work and repairs are increasing, and silicon oxide obtained by contacting water with a ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline. A uniform transparent thin film of silicon oxide that is chemically stable and mechanically strong can be formed on the grounded surface to be coated using an aqueous solution, so that it is chemically most stable and has high hardness. The glassy thin film can be coated by a simple method with a thickness that cannot be obtained by the conventional method without impairing the aesthetic sense of the object to be coated, and a great contribution in the industry is expected.

本発明の水性液体静電塗装方法に用いられるセラミックス複合体内蔵装置と微水溶性の酸化ケイ素を供給器からなる循環水供給装置を示す断面図である。It is sectional drawing which shows the circulating water supply apparatus which consists of a ceramic composite built-in apparatus used for the aqueous liquid electrostatic coating method of this invention and a slightly water-soluble silicon oxide supply apparatus. 本発明に用いられる園芸用スプレーガンを示す略図である。1 is a schematic view showing a horticultural spray gun used in the present invention. 本発明に用いられる静電塗装ハンドガンの一例を示す断面図である。It is sectional drawing which shows an example of the electrostatic coating hand gun used for this invention.

符号の説明Explanation of symbols

1 ガン本体
2 噴出口
3 調整空気口
4 エアー供給路
5 荷電電極
6 液体噴出管
7 ノズル先端部
8 液体導入ホース
9 ポンプ
10 園芸用スプレーガン
11、12 セラミックス複合体内臓装置
13 循環水供給器
14 収納板
15 セラミックス複合体
16 水
17 循環水
20、21、22、23 パイプ
24 接続部
25 ノズル
26 引き金
27 握り手
30 ナノシャインシステム機器
DESCRIPTION OF SYMBOLS 1 Gun body 2 Spout 3 Adjusting air port 4 Air supply path 5 Charged electrode 6 Liquid ejection pipe 7 Nozzle tip 8 Liquid introduction hose 9 Pump 10 Gardening spray gun 11, 12 Ceramic composite internal organ device 13 Circulating water supply device 14 Storage plate 15 Ceramic composite 16 Water 17 Circulating water 20, 21, 22, 23 Pipe 24 Connection portion 25 Nozzle 26 Trigger 27 Grip hand 30 Nanoshine system equipment

Claims (5)

二酸化ケイ素の高分子初期縮合物と電気石とを焼結したセラミックス複合体を水に分散し、機械的刺激を与えて得られた酸化ケイ素水溶液をアースされた塗装面に噴射塗装することを特徴とする水性液体静電塗装方法。 A ceramic composite obtained by sintering a polymer precondensate of silicon dioxide and tourmaline is dispersed in water, and an aqueous solution of silicon oxide obtained by applying mechanical stimulation is spray-coated on a grounded painted surface. An aqueous liquid electrostatic coating method. セラミックス複合体が平均分子量が200〜300である二酸化ケイ素の高分子初期縮合物に電気石の微粉末を混合し、造粒し、乾燥した後、250℃から650℃までの温度で焼結して得られた複合体であることを特徴とする請求項1に記載の水性液体静電塗装方法。 A ceramic composite is mixed with a polymer initial condensate of silicon dioxide having an average molecular weight of 200 to 300, fine powder of tourmaline, granulated, dried, and then sintered at a temperature of 250 ° C. to 650 ° C. The aqueous liquid electrostatic coating method according to claim 1, wherein the aqueous liquid electrostatic coating method is a composite obtained. 前記噴射塗装する手段として、ハンドガン又は静電塗装スプレーガンを用いることを特徴とする請求項1又は請求項2に記載の水性液体静電塗装方法。 3. The aqueous liquid electrostatic coating method according to claim 1, wherein a hand gun or an electrostatic coating spray gun is used as the spray coating means. 前記機械的刺激として複合体に乱流水の供給、複合体分散液の攪拌及び複合体分散液に超音波振動を付与のいずれかを行うことを特徴とする請求項1乃至請求項3のいずれかに記載の水性液体静電塗装方法。 The turbulent water is supplied to the composite as the mechanical stimulus, the composite dispersion is stirred, or ultrasonic vibration is applied to the composite dispersion. An aqueous liquid electrostatic coating method as described in 1. 前記酸化ケイ素水溶液タンクを複数個連結し、得られた酸化ケイ素水溶液を最初のタンクへ還流することを特徴とする請求項1乃至請求項4のいずれかに記載の水性液体静電塗装方法。 5. The aqueous liquid electrostatic coating method according to claim 1, wherein a plurality of the silicon oxide aqueous solution tanks are connected, and the obtained silicon oxide aqueous solution is refluxed to the first tank.
JP2008146493A 2008-06-04 2008-06-04 Aqueous liquid flow spray coating method and aqueous liquid flow spray coating apparatus using aqueous silicon oxide solution Active JP5243850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146493A JP5243850B2 (en) 2008-06-04 2008-06-04 Aqueous liquid flow spray coating method and aqueous liquid flow spray coating apparatus using aqueous silicon oxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146493A JP5243850B2 (en) 2008-06-04 2008-06-04 Aqueous liquid flow spray coating method and aqueous liquid flow spray coating apparatus using aqueous silicon oxide solution

Publications (2)

Publication Number Publication Date
JP2009291696A true JP2009291696A (en) 2009-12-17
JP5243850B2 JP5243850B2 (en) 2013-07-24

Family

ID=41540385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146493A Active JP5243850B2 (en) 2008-06-04 2008-06-04 Aqueous liquid flow spray coating method and aqueous liquid flow spray coating apparatus using aqueous silicon oxide solution

Country Status (1)

Country Link
JP (1) JP5243850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000518A (en) * 2009-06-17 2011-01-06 Tomokazu Kanda Cylinder device having ceramic composite and coating liquid circulation system using the cylinder device
WO2012081064A1 (en) * 2010-12-17 2012-06-21 Kanda Tomokazu Cylinder device with ceramic complex, and circulating device and coating device that comprise said cylinder device
WO2017149741A1 (en) * 2016-03-04 2017-09-08 神田 智一 Coating liquid preparing device and coating device
WO2020129124A1 (en) * 2018-12-17 2020-06-25 神田 智一 Machinery management system and machinery management method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122873A (en) * 1988-11-02 1990-05-10 Nordson Kk Applying method for aerosol
JP2001019420A (en) * 1999-07-07 2001-01-23 Matsushita Electric Ind Co Ltd Powder and its applied materials, powder manufacturing method
JP2002126514A (en) * 2000-10-25 2002-05-08 Daikin Ind Ltd Production equipment for fine particle carrying sheet
JP2002336813A (en) * 2001-05-11 2002-11-26 Electric Power Dev Co Ltd Multifunctional fly ash and method for producing the same
JP2004216374A (en) * 1993-02-04 2004-08-05 Shosuke Nagata Coating device of tatami facing
JP2005306628A (en) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Production method of ceramic slurry
JP4012930B1 (en) * 2006-11-25 2007-11-28 孝 菅谷 A method for producing a composite comprising tourmaline and silicon oxide.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122873A (en) * 1988-11-02 1990-05-10 Nordson Kk Applying method for aerosol
JP2004216374A (en) * 1993-02-04 2004-08-05 Shosuke Nagata Coating device of tatami facing
JP2001019420A (en) * 1999-07-07 2001-01-23 Matsushita Electric Ind Co Ltd Powder and its applied materials, powder manufacturing method
JP2002126514A (en) * 2000-10-25 2002-05-08 Daikin Ind Ltd Production equipment for fine particle carrying sheet
JP2002336813A (en) * 2001-05-11 2002-11-26 Electric Power Dev Co Ltd Multifunctional fly ash and method for producing the same
JP2005306628A (en) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Production method of ceramic slurry
JP4012930B1 (en) * 2006-11-25 2007-11-28 孝 菅谷 A method for producing a composite comprising tourmaline and silicon oxide.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000518A (en) * 2009-06-17 2011-01-06 Tomokazu Kanda Cylinder device having ceramic composite and coating liquid circulation system using the cylinder device
WO2012081064A1 (en) * 2010-12-17 2012-06-21 Kanda Tomokazu Cylinder device with ceramic complex, and circulating device and coating device that comprise said cylinder device
CN103260738A (en) * 2010-12-17 2013-08-21 神田智一 Cylinder device with ceramic complex, and circulating device and coating device that comprise said cylinder device
TWI558363B (en) * 2010-12-17 2016-11-21 Tomokazu Kanda A cylindrical device having a ceramic composite body, a circulation device having a cylindrical device, and a coating device
KR101780681B1 (en) 2010-12-17 2017-09-21 도모카즈 간다 Cylinder device with ceramic complex, and circulating device and coating device that comprise said cylinder device
WO2017149741A1 (en) * 2016-03-04 2017-09-08 神田 智一 Coating liquid preparing device and coating device
WO2020129124A1 (en) * 2018-12-17 2020-06-25 神田 智一 Machinery management system and machinery management method

Also Published As

Publication number Publication date
JP5243850B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
ES2181611T3 (en) PARTICULATED METAL ALLOY COATING TO PROVIDE PROTECTION AGAINST CORROSION.
CN100375769C (en) Coating solution containing polysilazane
CN105131786B (en) A kind of environmentally friendly anticorrosive paint, preparation method and its painting method
CN101954775B (en) Method for preparing metal plate base for ink-jet printing computer to plate
JP5243850B2 (en) Aqueous liquid flow spray coating method and aqueous liquid flow spray coating apparatus using aqueous silicon oxide solution
JP5291293B2 (en) Hydrophobic coating film forming composition, hydrophobic coating film, method for forming the same, and functional material including the same
KR20150103368A (en) Copper complex titanium oxide dispersion liquid, coating material composition, and antibacterial/antiviral member
CN1345358A (en) Primer coating of steel
JP7104841B2 (en) Water-based anticorrosion paint composition and anticorrosion coating method
CN106398522A (en) An antifouling composition comprising silica nanometer particles and functionalized silane compounds and coated products thereof
CN1455804A (en) Primer coating of steel
CN106994436B (en) Coating process for preparing water-based heavy anti-corrosion coating based on single-pass thick film technology
CN104525458A (en) Ship corrosion preventing method
CN109535981A (en) A kind of aqueous polyurethane static conductive coating and preparation method thereof
JP4444490B2 (en) Inorganic zinc rich paint
Golgoon et al. Nanocomposite protective coatings fabricated by electrostatic spray method
US9011979B2 (en) Process for producing polymer-containing coatings
CN102433056A (en) Epoxy zinc-rich antirust paint and preparation method thereof
JP2008031237A (en) Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
CN109971302B (en) Water-based coating composition having excellent corrosion resistance
JP4514445B2 (en) Highly anticorrosive coating material containing zinc dust
JP4012930B1 (en) A method for producing a composite comprising tourmaline and silicon oxide.
JP2008073588A (en) Photocatalyst coating formation method
JP2010138358A5 (en)
CN107446417A (en) A kind of thick coated type chlorinated rubber antirust paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5243850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250