JP2009291668A - Water area environment improving material and its use - Google Patents
Water area environment improving material and its use Download PDFInfo
- Publication number
- JP2009291668A JP2009291668A JP2008144696A JP2008144696A JP2009291668A JP 2009291668 A JP2009291668 A JP 2009291668A JP 2008144696 A JP2008144696 A JP 2008144696A JP 2008144696 A JP2008144696 A JP 2008144696A JP 2009291668 A JP2009291668 A JP 2009291668A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- bottom mud
- improving material
- water
- water environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 112
- 239000000463 material Substances 0.000 title claims abstract description 61
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 163
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000002893 slag Substances 0.000 claims abstract description 59
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 38
- 239000010959 steel Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 37
- 229910052742 iron Inorganic materials 0.000 claims abstract description 32
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims abstract description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 38
- -1 alkali metal salts Chemical class 0.000 claims description 34
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 22
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical group [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 claims description 15
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 abstract description 6
- 239000005416 organic matter Substances 0.000 abstract description 4
- 150000001342 alkaline earth metals Chemical class 0.000 abstract description 2
- 150000001340 alkali metals Chemical class 0.000 abstract 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 24
- 229910052760 oxygen Inorganic materials 0.000 description 24
- 229910001448 ferrous ion Inorganic materials 0.000 description 23
- 239000013049 sediment Substances 0.000 description 22
- 238000000354 decomposition reaction Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000006872 improvement Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 7
- 241000237502 Ostreidae Species 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 235000020636 oyster Nutrition 0.000 description 6
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 5
- 229910001447 ferric ion Inorganic materials 0.000 description 5
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000012851 eutrophication Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000007348 radical reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- TVVTWOGRPVJKDJ-UHFFFAOYSA-N Befunolol hydrochloride Chemical compound [Cl-].CC(C)[NH2+]CC(O)COC1=CC=CC2=C1OC(C(C)=O)=C2 TVVTWOGRPVJKDJ-UHFFFAOYSA-N 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004343 Calcium peroxide Substances 0.000 description 1
- 206010013647 Drowning Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Inorganic materials [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- 229960004374 befunolol Drugs 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- MYFXBBAEXORJNB-UHFFFAOYSA-N calcium cyanamide Chemical compound [Ca+2].[N-]=C=[N-] MYFXBBAEXORJNB-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical compound [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 description 1
- 235000019402 calcium peroxide Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004680 hydrogen peroxides Chemical class 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Treatment Of Sludge (AREA)
Abstract
【課題】底泥を効率的に分解可能な水域環境改善材、これを用いた底泥の酸化方法および底泥に含まれる有機物の分解方法を提供する。
【解決手段】本発明に係る水域環境改善材は、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含む。
【選択図】なしA water environment improving material capable of efficiently decomposing bottom mud, a method for oxidizing bottom mud using the same, and a method for decomposing organic matter contained in the bottom mud.
[MEANS FOR SOLVING PROBLEMS] A water environment improving material according to the present invention includes at least one hydrogen peroxide adduct selected from an alkali metal salt hydrogen peroxide adduct and an alkaline earth metal salt hydrogen peroxide adduct, and steel. Slag and / or iron ore.
[Selection figure] None
Description
本発明は、水域環境改善材およびその利用に関するものであり、詳しくは、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石とを含み、底泥を分解可能な底質環境改善剤、およびこれを用いた底泥の酸化方法および底泥の分解方法に関する。 The present invention relates to a water environment improving material and use thereof, and more specifically, one or more hydrogen peroxides selected from hydrogen peroxide adducts of alkali metal salts and hydrogen peroxide adducts of alkaline earth metal salts. The present invention relates to a bottom environment improving agent capable of decomposing bottom mud, including an adduct and steel slag and / or iron ore, and a bottom mud oxidation method and bottom mud decomposition method using the same.
近年、全国各地の湾、河川および湖などでは水域環境および底質の汚染が拡大している所が多くなってきていると言われている。水域環境および底質の汚染は、生活廃水および畜産排水等からの有機物の流入量の増大によるものであり、自然循環浄化能力以上に、海底、川底、湖底に有機物がヘドロとして底質へ厚く堆積している所も多い。閉鎖性水域など、汚染が顕著である場所においては、海水の交換が悪く海底に堆積したヘドロのような底泥の分解によって水中の酸素が消費され、生物に有毒な硫化水素の発生や貧酸素化による生態系の斃死などの現象が発生し、漁業や生活環境に大きな被害が多発している。 In recent years, bays, rivers, lakes, etc. throughout the country are said to have an increasing number of places where the water environment and sediment contamination are expanding. Contamination of the aquatic environment and sediment is due to an increase in the inflow of organic matter from domestic wastewater and livestock wastewater, and organic matter accumulates thickly on the bottom of the sea, riverbed, and lake as thicker than the natural circulation purification capacity. There are also many places. In places where pollution is conspicuous, such as in closed waters, oxygen in the water is consumed due to decomposition of bottom mud such as sludge accumulated on the seabed due to poor exchange of seawater, generating hydrogen sulfide that is toxic to living organisms and poor oxygen Phenomenon such as drowning of ecosystems due to commutation has occurred, causing great damage to fishery and living environment.
このような水域環境を改善する方法の1つとしては、底層への酸素の供給が挙げられる。しかしながら、従来、直接酸素ガスまたは空気をバブリングする手法が一般的に行われてきたが、酸素ガスや空気をコンプレッサー等で供給するため、エネルギーが必要であるばかりでなく、酸素供給地点の数十メートル以内の狭い範囲に一時的に効果があるのみであった。また、酸素供給装置が大型であり、水中に浸漬することから装置の設置費用、ランニングコストおよびメインテナンス費用が高額となるなどの問題点が多くあった。 One method for improving such an aquatic environment is to supply oxygen to the bottom layer. However, conventionally, a method of directly bubbling oxygen gas or air has been generally performed. However, since oxygen gas or air is supplied by a compressor or the like, not only energy is required but also several tens of oxygen supply points are used. It was only temporarily effective in a narrow area within meters. In addition, since the oxygen supply device is large and immersed in water, there are many problems such as high device installation costs, running costs, and maintenance costs.
その他の方法としては、消石灰と過酸化カルシウム等の酸素供給剤とを含み、自崩壊性を有する底質改善用造粒体が知られている(特許文献1)。
しかしながら、上記特許文献1に記載された発明は、消石灰による底質のpH上昇と、過酸化水素付加物による酸素供給のみを目的としたものであり、底泥の分解まで意図したものではないため、底泥を分解し、かつ、水域の貧酸素化を防ぐことはできない。 However, the invention described in Patent Document 1 is intended only for raising the pH of the sediment by slaked lime and supplying oxygen by the hydrogen peroxide adduct, and is not intended for the decomposition of the bottom mud. It is not possible to decompose the bottom mud and to prevent the hypoxia of the water area.
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、底泥を効率的に分解可能な水域環境改善材、これを用いた底泥の酸化方法および底泥の分解方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to improve a water environment that can efficiently decompose bottom mud, a method for oxidizing bottom mud and a method for decomposing bottom mud using the same. Is to provide.
本発明者は、底質等の水域に酸素を短時間で十分量供給し、かつ、底泥を効率的に分解可能な水域環境改善材について鋭意検討した結果、過炭酸ナトリウム等の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含む水域環境改善材が、短時間で水域に酸素を供給でき、かつ、底泥を効率的に分解しうることを見出し、本発明を完成するに至った。 As a result of intensive investigations on a water environment improving material that can supply a sufficient amount of oxygen to a water area such as sediment in a short time and that can efficiently decompose bottom mud, hydrogen peroxide such as sodium percarbonate is obtained. The water area environment improving material containing the adduct and steel slag and / or iron ore can supply oxygen to the water area in a short time and can efficiently decompose the bottom mud, thereby completing the present invention. It came to do.
本発明に係る水域環境改善材は、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含むことを特徴としている。 The water environment improving material according to the present invention comprises at least one hydrogen peroxide adduct selected from hydrogen peroxide adducts of alkali metal salts and alkaline earth metal salts, steel slag and / or And iron ore.
鉄鋼スラグは、製鉄業から大量に発生する副産物で、鉄源として有用であり、水中でゆるやかに第一鉄イオンを溶出させることができる。また、製鉄業および製鋼・圧延業は資源有効利用促進法によって特定省資源業種に指定されており、鉄鋼スラグの利用促進が強く求められている。また、鉄鉱石は、水中で鉄鋼スラグよりもゆるやかに第一鉄イオンを溶出させることができる。 Steel slag is a by-product generated in large quantities from the steel industry, and is useful as an iron source, and can elute ferrous ions gently in water. In addition, the steel industry and steelmaking / rolling industry are designated as specific resource-saving industries by the Law for Promotion of Effective Utilization of Resources, and the promotion of the use of steel slag is strongly demanded. Also, iron ore can elute ferrous ions in water more slowly than steel slag.
上記構成によれば、鉄鋼スラグおよび/または鉄鉱石によって第一鉄イオンがゆるやかに供給されるので、フェントン反応によって過酸化水素付加物由来の過酸化水素から持続的にヒドロキシラジカルを生成させることができる。一方で、過酸化水素付加物の分解によって生じ、第一鉄イオンと反応しなかった過酸化水素が分解して酸素が供給される。それゆえ、底泥を短時間で酸化的な状態にし、持続的に底泥をラジカル分解することができる。また、酸素が供給されるので、底泥を分解しても、貧酸素状態を招くことはない。したがって、水域の冨栄養化を防止しつつ、貧酸素状態を回避できるため、底質を含めて水域環境を効率的に、かつ持続的に改善することができる。 According to the above configuration, since ferrous ions are gently supplied by steel slag and / or iron ore, hydroxy radicals can be continuously generated from hydrogen peroxide derived from the hydrogen peroxide adduct by the Fenton reaction. it can. On the other hand, hydrogen peroxide, which is generated by decomposition of the hydrogen peroxide adduct and does not react with ferrous ions, is decomposed and oxygen is supplied. Therefore, the bottom mud can be oxidized in a short time and the bottom mud can be radically decomposed continuously. Moreover, since oxygen is supplied, even if the bottom mud is decomposed, an oxygen-poor state is not caused. Therefore, since it is possible to avoid an anoxic state while preventing drought of the water area, the water area environment including the sediment can be improved efficiently and continuously.
本発明に係る水域環境改善材は、上記過酸化水素付加物が、炭酸ナトリウム過酸化物であることが好ましい。炭酸ナトリウム過酸化物は分解の過程で過酸化水素を生じるので、第一鉄イオンの触媒作用によってヒドロキシラジカルを生成しうる。したがって、上記構成によれば、底泥のラジカル分解を効率的に進行させることができる。 In the water environment improving material according to the present invention, the hydrogen peroxide adduct is preferably sodium carbonate peroxide. Sodium carbonate peroxide generates hydrogen peroxide in the process of decomposition, and can generate hydroxy radicals by the catalytic action of ferrous ions. Therefore, according to the said structure, radical decomposition | disassembly of bottom mud can be advanced efficiently.
また、本発明に係る水域環境改善材は、上記過酸化水素付加物が、炭酸カルシウム過酸化物であることが好ましい。 In the water environment improving material according to the present invention, the hydrogen peroxide adduct is preferably a calcium carbonate peroxide.
炭酸カルシウムは、過酸化水素を安定に保持することができ、炭酸カルシウムが水に徐々に溶解するのに伴い、過酸化水素が徐々に放出される。したがって、上記構成によれば、徐放性、継続性のある水域環境改善材を提供することができる。 Calcium carbonate can stably hold hydrogen peroxide, and hydrogen peroxide is gradually released as calcium carbonate gradually dissolves in water. Therefore, according to the said structure, the water environment improvement material with sustained release and continuity can be provided.
本発明に係る底泥の酸化方法は、本発明に係る水域環境改善材を水域に添加することを特徴としている。 The bottom mud oxidation method according to the present invention is characterized in that the water environment improving material according to the present invention is added to the water area.
上記構成によれば、水域環境改善材に含まれる過酸化水素付加物が分解されて過酸化水素が生成し、当該過酸化水素が、水域環境改善材に含まれる鉄鋼スラグおよび/または鉄鉱石由来の第一鉄イオンと反応してヒドロキシラジカルが生成する。また、第一鉄イオンと反応しなかった過酸化水素が分解して酸素が生成する。 According to the above configuration, the hydrogen peroxide adduct contained in the water environment improvement material is decomposed to generate hydrogen peroxide, which is derived from the steel slag and / or iron ore contained in the water environment improvement material. Reacts with the ferrous ion of this to produce hydroxy radicals. Further, hydrogen peroxide that has not reacted with ferrous ions is decomposed to generate oxygen.
よって、極度に還元的な底泥であっても、速やかに酸化的な状態に改善することができる。それゆえ、底泥を分解されやすい状態にすることができると共に底泥を迅速に酸化分解することができる。また、水域の貧酸素状態を改善することができる。 Therefore, even extremely reductive bottom mud can be promptly improved to an oxidative state. Therefore, the bottom mud can be easily decomposed and the bottom mud can be rapidly oxidized and decomposed. Moreover, the poor oxygen state of a water area can be improved.
本発明に係る底泥の分解方法は、本発明に係る水域環境改善材を水域に添加するステップ1と、還元型の底泥に光を照射するステップ2と、を含むことを特徴としている。 The method for decomposing bottom mud according to the present invention is characterized by including Step 1 for adding the water environment improving material according to the present invention to water and Step 2 for irradiating light to the reduced-type bottom mud.
上記構成によれば、ステップ1によって生成した過酸化水素が分解して酸素を発生し、底質へ酸素を供給し、底泥を酸化する。また、ステップ2ではフェントン反応によってヒドロキシラジカルが生成し、底泥を強力に分解する。この分解過程(底泥の光酸化)は第二鉄イオンを第一鉄イオンへと還元する反応とカップリングしており、鉄の触媒サイクルを形成することができる。そのため、第一鉄イオンを補充することなく、底泥を分解することができる。その結果、非常に効率よく底泥の分解を行うことができる。 According to the said structure, the hydrogen peroxide produced | generated by step 1 decomposes | disassembles, generate | occur | produces oxygen, supplies oxygen to bottom sediment, and oxidizes bottom mud. In Step 2, hydroxy radicals are generated by the Fenton reaction, and the bottom mud is strongly decomposed. This decomposition process (photooxidation of the bottom mud) is coupled with a reaction of reducing ferric ions to ferrous ions, and can form a catalytic cycle of iron. Therefore, bottom mud can be decomposed without replenishing ferrous ions. As a result, the bottom mud can be decomposed very efficiently.
以上のように、本発明に係る水域環境改善材は、少なくとも1種以上のアルカリ金属塩またはアルカリ土類金属塩の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含むという構成である。 As described above, the water environment improving material according to the present invention includes at least one or more alkali metal salt or alkaline earth metal salt hydrogen peroxide adduct and steel slag and / or iron ore. It is.
それゆえ、水域の冨栄養化を防止しつつ、貧酸素状態を回避できるため、底質等の水域環境を持続的かつ効率的に改善することができるという効果を奏する。 Therefore, since an anoxic state can be avoided while preventing the eutrophication of the water area, there is an effect that the water area environment such as sediment can be improved continuously and efficiently.
本発明の実施の形態について説明すれば以下のとおりであるが、本発明はこれに限定されるものではない。 An embodiment of the present invention will be described as follows, but the present invention is not limited to this.
(1.水域環境改善材)
一実施形態において、本発明に係る水域環境改善材は、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含む。
(1. Water environment improvement material)
In one embodiment, the water environment improving material according to the present invention includes at least one hydrogen peroxide adduct selected from a hydrogen peroxide adduct of an alkali metal salt and a hydrogen peroxide adduct of an alkaline earth metal salt, Steel slag and / or iron ore.
上記「アルカリ金属塩の過酸化水素付加物」「アルカリ土類金属塩の過酸化水素付加物」とは、アルカリ金属塩またはアルカリ土類金属塩に過酸化水素が付加物を形成した物質のことであり、水中で解離し過酸化水素を放出可能な過酸化水素付加物であればよい。例えば、炭酸ナトリウム過酸化物、炭酸カリウム過酸化物、炭酸カルシウム過酸化物、炭酸バリウム過酸化物、炭酸マグネシウム過酸化物、酸化カルシウム過酸化物等を挙げることができる。上記過酸化水素付加物は、水中で解離し容易に過酸化水素を放出するため、過酸化水素供給源として作用することができる。 The above-mentioned “hydrogen peroxide adduct of alkali metal salt” and “hydrogen peroxide adduct of alkaline earth metal salt” are substances in which hydrogen peroxide forms an adduct with an alkali metal salt or an alkaline earth metal salt. Any hydrogen peroxide adduct that can dissociate in water and release hydrogen peroxide may be used. Examples thereof include sodium carbonate peroxide, potassium carbonate peroxide, calcium carbonate peroxide, barium carbonate peroxide, magnesium carbonate peroxide, and calcium oxide peroxide. Since the hydrogen peroxide adduct dissociates in water and easily releases hydrogen peroxide, it can act as a hydrogen peroxide supply source.
上記過酸化水素付加物は、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物であればよい。例えば、アルカリ金属塩の過酸化水素付加物またはアルカリ土類金属塩の過酸化水素付加物を単独で用いてもよいし、アルカリ金属塩の過酸化水素付加物および/またはアルカリ土類金属塩の過酸化水素付加物を2種以上組み合わせて用いてもよい。 The hydrogen peroxide adduct may be one or more hydrogen peroxide adducts selected from hydrogen peroxide adducts of alkali metal salts and hydrogen peroxide adducts of alkaline earth metal salts. For example, a hydrogen peroxide adduct of an alkali metal salt or a hydrogen peroxide adduct of an alkaline earth metal salt may be used alone, or a hydrogen peroxide adduct of an alkali metal salt and / or an alkaline earth metal salt may be used. Two or more hydrogen peroxide adducts may be used in combination.
本明細書において、用語「鉄鋼スラグ」は、鉱滓と同義であり、乾式製錬工程から排出される酸化物融液またはその凝固体のことである(理化学辞典第4版669頁、岩波書店)。鉄鋼スラグは、炉内で目的金属から分離された鉱石中の脈石成分や燃料中の灰分を主体としているが、融点の低下と流動性の改善のために加えられる融材を含んでいてもよい。また、鉄鋼スラグには、塩化カルシウム、消石灰、石灰窒素、過燐酸石灰、石灰石、炭酸カルシウム、貝殻等のカルシウム含有化合物、リン安、燐酸等のリン含有化合物、塩化カリウム、硫酸カリウム、硝酸カリウム等のカリウム含有化合物、尿素、硫安、硝安、等が添加されていても良い。 In the present specification, the term “steel slag” is synonymous with iron ore and refers to an oxide melt discharged from a dry smelting process or a solidified body thereof (Rikagaku Dictionary 4th edition, page 669, Iwanami Shoten) . Iron and steel slag is mainly composed of gangue components in ore separated from the target metal in the furnace and ash in the fuel, but it may contain melting materials added to lower the melting point and improve fluidity. Good. Steel slag includes calcium-containing compounds such as calcium chloride, slaked lime, lime nitrogen, lime-lime, limestone, calcium carbonate, and shells, phosphorus-containing compounds such as phosphate, phosphoric acid, potassium chloride, potassium sulfate, potassium nitrate, etc. Potassium-containing compounds, urea, ammonium sulfate, ammonium nitrate, etc. may be added.
鉄鋼スラグは、例えば、高炉スラグ、製鋼スラグのいずれであってもよく、高炉スラグは徐冷スラグであっても水砕スラグであってもよい。また、製鋼スラグとしては、転炉スラグであっても電気炉スラグであってもよく、電気炉スラグとしては、酸化スラグであっても還元スラグであってもよい。なお、これらの鉄鋼スラグは、1種類のみ用いてもよいし、複数種を組み合わせて用いてもよい。 The steel slag may be, for example, either blast furnace slag or steelmaking slag, and the blast furnace slag may be slowly cooled slag or granulated slag. The steelmaking slag may be converter slag or electric furnace slag, and the electric furnace slag may be oxidized slag or reduced slag. In addition, only one type of these steel slags may be used, or a plurality of types may be used in combination.
このように、鉄鋼スラグとしては特に限定されるものではないが、中でも、高炉水砕スラグを好ましく用いることができる。高炉水砕スラグは、鉄鋼製造工程において副産物として発生する鉄鋼スラグの一種であり、製鋼工程で生成される。製鋼スラグはリンやケイ素等の無機栄養塩を溶出することが知られている。このため底質の汚染が顕著であり、富栄養化が進んだ場所においては、高炉水砕スラグの使用が好適である。なお、高炉水砕スラグは水域の環境改善に用いられているが(例えば特開2004−24204号公報)、汚濁した底泥に対して覆砂という形で撒かれており、本水域環境改善材の用途とは異なるものである。 Thus, although it does not specifically limit as steel slag, A blast furnace granulated slag can be used preferably especially. Blast furnace granulated slag is a kind of steel slag generated as a by-product in the steel manufacturing process, and is generated in the steel making process. Steelmaking slag is known to elute inorganic nutrient salts such as phosphorus and silicon. For this reason, in the place where bottom sediment pollution is remarkable and eutrophication progressed, use of granulated blast furnace slag is suitable. Blast furnace granulated slag is used to improve the environment of the water area (for example, Japanese Patent Application Laid-Open No. 2004-24204). It is different from the intended use.
鉄鋼スラグの粒径は特に限定されるものではない。また、鉄鋼スラグの組成や比重も特に限定されるものではないが、底泥の分解効率を高めるため、水底に沈殿するものであることが好ましい。 The particle size of the steel slag is not particularly limited. Moreover, although the composition and specific gravity of steel slag are not particularly limited, it is preferable that the steel slag is precipitated at the bottom of the water in order to increase the decomposition efficiency of the bottom mud.
鉄鋼スラグは、第一鉄イオンを徐放することができるので、上記過酸化水素付加物から供給される過酸化水素と持続的に反応し、ヒドロキシラジカルを生成することができる。そして、上記ヒドロキシラジカルが底泥をラジカル反応によって分解することができる。このように、本発明に係る水域環境改善材は、一時的にではなく、持続的に底泥を分解することができるため、底質の環境改善に非常に有用である。 Since iron and steel slag can release ferrous ions gradually, it can continuously react with hydrogen peroxide supplied from the hydrogen peroxide adduct to generate hydroxy radicals. And the said hydroxyl radical can decompose | disassemble bottom mud by radical reaction. Thus, since the water environment improvement material which concerns on this invention can decompose | disassemble bottom mud continuously, not temporarily, it is very useful for the environmental improvement of sediment.
鉄鉱石も、鉄鋼スラグと同様に持続的な底泥の分解を行う上で有用である。鉄鉱石としては、特に限定されるものではなく、赤鉄鉱、磁鉄鉱、黄鉄鉱、リョウ鉄鉱などを用いることができる。上記鉄鉱石は、1種類のみを用いてもよいし、2種類以上を組み合わせて用いても良い。鉄鉱石の形態は特に限定されるものではないが、第一鉄イオンを放出しやすくするためには表面積を増やすことが好ましいため、粉体状であることが好ましい。 Iron ore is also useful for the continuous decomposition of bottom mud, similar to steel slag. The iron ore is not particularly limited, and hematite, magnetite, pyrite, rhyolite or the like can be used. Only one type of the iron ore may be used, or two or more types may be used in combination. The form of the iron ore is not particularly limited, but since it is preferable to increase the surface area in order to facilitate the release of ferrous ions, it is preferably in a powder form.
上記水域環境改善材において、鉄鋼スラグおよび/または鉄鉱石は触媒として作用するものであるため、混合割合は特に限定されない。また、過酸化水素付加物の割合は、水域環境改善材100重量%に対して0.5〜1重量%程度であれば、発泡が穏やかであるため好ましい。ただし、上記水域環境改善材に占める過酸化水素付加物の割合は底泥の還元状態の度合いによるため、具体的な割合は限定されるものではなく、底泥の還元状態の度合いに基づいて適宜決定すればよい。 In the water environment improving material, steel slag and / or iron ore acts as a catalyst, so the mixing ratio is not particularly limited. Further, the ratio of the hydrogen peroxide adduct is preferably about 0.5 to 1% by weight with respect to 100% by weight of the water environment improving material, since foaming is gentle. However, since the proportion of hydrogen peroxide adduct in the water environment improving material depends on the degree of bottom mud reduction, the specific ratio is not limited, and is appropriately determined based on the degree of bottom mud reduction. Just decide.
上記水域環境改善材を製造する方法は特に限定されるものではない。例えば、上記過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石を、従来公知の攪拌機等を用いて適宜混合することによって製造することができる。また、上記水域環境改善材の形態は特に限定されるものではなく、使用目的に応じて適宜変更することができる。例えば、粉体であってもよいし、ペレット状の錠剤であってもよい。 The method for producing the water environment improving material is not particularly limited. For example, it can be produced by appropriately mixing the hydrogen peroxide adduct and steel slag and / or iron ore using a conventionally known stirrer or the like. Moreover, the form of the said water area environment improvement material is not specifically limited, According to the intended purpose, it can change suitably. For example, it may be a powder or a pellet tablet.
例えば、底質の環境悪化の防止または維持を目的とする場合は、ペレット状の錠剤に造粒し、過酸化水素および酸素の発生を粉体状の水域環境改善材よりも徐放性として、持続的に底泥の酸化的分解を行うことができるようにすればよい。 For example, when the purpose is to prevent or maintain the environmental degradation of the bottom sediment, granulate into pellets and make hydrogen peroxide and oxygen generated more slowly than the powdery water environment improver, What is necessary is just to be able to perform oxidative decomposition of bottom mud continuously.
また、早急に環境改善を図りたい場合は、粉体状の水域環境改善材を底泥に混合すればよい。これにより、ペレット状の錠剤を用いる場合よりも速やかに酸素の供給と酸化還元電位の上昇が行われ、その結果、底泥の酸化的分解を促すことができる。 In addition, when it is desired to improve the environment immediately, a powdery water environment improving material may be mixed with the bottom mud. Thereby, the supply of oxygen and the increase of the oxidation-reduction potential are performed more quickly than when pellet-shaped tablets are used, and as a result, oxidative decomposition of the bottom mud can be promoted.
粉体状の水域環境改善材の粒径は特に限定されるものではない。上記粉体を調製する方法は特に限定されるものではなく、従来公知のロールミル等を用いて調製すればよく、必要に応じて、JIS標準篩等を用いて粒径を調製すればよい。 The particle size of the powdery water environment improving material is not particularly limited. The method for preparing the powder is not particularly limited, and may be prepared using a conventionally known roll mill or the like, and the particle size may be prepared using a JIS standard sieve or the like as necessary.
また、上記造粒を行う方法としては特に限定されるものではなく、例えば粉体状の上記水域環境改善材を、ブリケットマシン等による加圧成形、ドラムやパンによる転動造粒、押出成形機による造粒など、従来公知の造粒方法を用いて適宜造粒すればよい。水域環境改善材を造粒する場合、含水すると体積が膨張し、造粒組成物が自ら崩壊して比表面積を大きくするようにすることが好ましい。そのために、造粒成形の事前に、生石灰、ドロマイト焼成物、モンモリロナイト等の崩壊剤を適宜混合してもよい。これにより、造粒した場合でも水域環境改善材の比表面積を大きくすることができるため、フェントン反応を速やかに進行させることができ、反応効率を向上させることができる。 Moreover, the method for performing the granulation is not particularly limited. For example, the powdery water area environment improving material is subjected to pressure molding using a briquette machine, rolling granulation using a drum or pan, and an extrusion molding machine. It may be appropriately granulated by using a conventionally known granulation method such as granulation by the above. When granulating the water environment improving material, it is preferable that the volume expands when water is contained, and the granulated composition collapses itself to increase the specific surface area. Therefore, disintegrating agents such as quick lime, baked dolomite, and montmorillonite may be appropriately mixed before granulation. Thereby, even when it granulates, since the specific surface area of a water environment improvement material can be enlarged, Fenton reaction can be advanced rapidly and reaction efficiency can be improved.
造粒した水域環境改善材の比重は、特に限定されるものではないが、ゆっくりと沈降させることを意図する場合は比重1.1〜1.2が好ましく、底質の中まで沈みこませることを意図する場合は比重1.2以上であることが好ましい。 The specific gravity of the granulated aquatic environment improvement material is not particularly limited, but when it is intended to settle slowly, a specific gravity of 1.1 to 1.2 is preferable, and it sinks into the sediment. Is intended to have a specific gravity of 1.2 or more.
上記水域環境改善材は、上記過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石以外のその他の成分を含んでいてもよい。上記その他の成分としては、例えばバインダーを挙げることができる。バインダーとしては限定されないが、例えば、水ガラス、マグネシウム塩、水酸化ナトリウム等を挙げることができる。また、上記その他の成分の上記水域環境改善剤における含有量は、35重量%以下であることが好ましい。 The water environment improving material may contain the hydrogen peroxide adduct and other components other than steel slag and / or iron ore. Examples of the other components include a binder. Although it does not limit as a binder, For example, water glass, magnesium salt, sodium hydroxide etc. can be mentioned. Moreover, it is preferable that content in the said water area environment improving agent of the said other component is 35 weight% or less.
一実施形態において、本発明に係る水域環境改善材は、上記過酸化水素付加物が炭酸ナトリウム過酸化物であることが好ましい。炭酸ナトリウム過酸化物の水溶液は、容易に炭酸ナトリウムと過酸化水素とに分解するため、過酸化水素の供給材として有用である。生じた過酸化水素は、鉄鋼スラグおよび/または鉄鉱石由来の第一鉄イオンとフェントン反応によってヒドロキシラジカルを生成し、当該ヒドロキシラジカルは底泥のラジカル分解に使用される。 In one embodiment, in the water environment improving material according to the present invention, the hydrogen peroxide adduct is preferably sodium carbonate peroxide. An aqueous solution of sodium carbonate peroxide is easily decomposed into sodium carbonate and hydrogen peroxide, and thus is useful as a supply material for hydrogen peroxide. The generated hydrogen peroxide generates hydroxy radicals by ferrous reaction with ferrous ions derived from steel slag and / or iron ore, and the hydroxy radicals are used for radical decomposition of bottom mud.
炭酸ナトリウム過酸化物からの過酸化水素の発生は以下の式(1)によって表され、ヒドロキシラジカルの発生は以下の式(2)によって表される。 Generation of hydrogen peroxide from sodium carbonate peroxide is represented by the following formula (1), and generation of hydroxy radicals is represented by the following formula (2).
2Na2CO3・3H2O2+2H2O→4Na++2HCO3 −+2OH−+3H2O2・・・(1)
Fe2++H2O2→Fe3++HO・+OH−・・・(2)
他の実施形態において、本発明に係る水域環境改善材は、上記過酸化水素付加物が炭酸カルシウム過酸化物であることが好ましい。上述のように、炭酸カルシウムは、過酸化水素を安定に保持することができ、炭酸カルシウムが水に徐々に溶解するのに伴い、過酸化水素が徐々に放出される。よって、継続的な底泥の分解を行いたい場合に特に有効である。
2Na 2 CO 3 .3H 2 O 2 + 2H 2 O → 4Na + + 2HCO 3 − + 2OH − + 3H 2 O 2 (1)
Fe 2+ + H 2 O 2 → Fe 3+ + HO · + OH − (2)
In another embodiment, in the water environment improving material according to the present invention, the hydrogen peroxide adduct is preferably a calcium carbonate peroxide. As described above, calcium carbonate can stably hold hydrogen peroxide, and hydrogen peroxide is gradually released as calcium carbonate gradually dissolves in water. Therefore, it is particularly effective when continuous bottom mud decomposition is desired.
上記炭酸カルシウム過酸化物は、天然物であってもよいが、人為的に炭酸カルシウムに過酸化物を保持させたものであってもよい。炭酸カルシウムに過酸化物を保持させる方法としては、特に限定されるものではないが、例えば炭酸カルシウムに過酸化水素の蒸気を噴霧する方法が挙げられる。この場合、下記の式(3)に示すように過酸化水素が炭酸カルシウムに保持される。 The calcium carbonate peroxide may be a natural product, but may be artificially retained in calcium carbonate. The method for retaining the peroxide in calcium carbonate is not particularly limited, and for example, a method of spraying vapor of hydrogen peroxide on calcium carbonate can be mentioned. In this case, as shown in the following formula (3), hydrogen peroxide is held in calcium carbonate.
2CaCO3+3H2O2→2CaCO3・3H2O2・・・(3)
炭酸カルシウムとしては必ずしも純品を用いる必要はなく、例えばカキ殻や石灰石等のように、炭酸カルシウムを主成分とする物を用いてもよい。この場合、過酸化水素の蒸気を噴霧する等の方法によって過酸化水素を保持させたカキ殻や石灰石等を、上記炭酸カルシウム過酸化物として用いてもよい。この場合、過酸化水素を保持させたカキ殻や石灰石等の形態は特に限定されるものではない。例えば、粉体状、塊状であってもよく、カキ殻や石灰石等を破砕せずにそのままの形態で用いたものでもよい。ただし、カキ殻等の表面積を増やすことによって過酸化水素をより多く保持させることができるため、粉体状であることが好ましい。
2CaCO 3 + 3H 2 O 2 → 2CaCO 3 · 3H 2 O 2 (3)
As the calcium carbonate, it is not always necessary to use a pure product. For example, a calcium carbonate-based material such as oyster shell or limestone may be used. In this case, oyster shells, limestone or the like in which hydrogen peroxide is held by a method such as spraying of hydrogen peroxide vapor may be used as the calcium carbonate peroxide. In this case, the form of oyster shells, limestone, etc. holding hydrogen peroxide is not particularly limited. For example, it may be in the form of powder or lump, and may be used as it is without crushing oyster shells or limestone. However, since more hydrogen peroxide can be retained by increasing the surface area of oyster shells or the like, it is preferably in the form of powder.
なお、上記「主成分」とは、カキ殻等の炭酸カルシウムを主成分とする物の重量を100重量%とした場合に、炭酸カルシウムを50重量%以上含むことをいう。炭酸カルシウム過酸化物からの過酸化水素の発生は以下の式(4)によって表される。 In addition, said "main component" means containing 50 weight% or more of calcium carbonate when the weight of the thing which has calcium carbonate as a main component, such as oyster shell, is 100 weight%. Generation of hydrogen peroxide from calcium carbonate peroxide is represented by the following formula (4).
2CaCO3・3H2O2+2H2O→2Ca2++2HCO3 −+2OH−+3H2O2・・・(4)
式(4)で表される反応によって発生した過酸化水素は、式(2)に示すようにフェントン反応によるヒドロキシラジカルの発生に用いられる。
2CaCO 3 .3H 2 O 2 + 2H 2 O → 2Ca 2+ + 2HCO 3 − + 2OH − + 3H 2 O 2 (4)
Hydrogen peroxide generated by the reaction represented by the formula (4) is used for generation of hydroxy radicals by the Fenton reaction as shown in the formula (2).
このように、本発明に係る水域環境改善材由来の過酸化水素は、鉄鋼スラグおよび/または鉄鉱石由来の第一鉄イオンとのフェントン反応によってヒドロキシラジカルを発生させる。一方で、第一鉄イオンと反応しなかった過酸化水素は、分解して酸素を発生する。それゆえ、上記ヒドロキシラジカルおよび酸素の発生によって、底質の酸化還元電位は上昇して酸化的な状態になる。そのため、底泥の酸化的分解を促進することができる。また、硫化水素を酸化によって除去することもできる。 Thus, the hydrogen peroxide derived from the water environment improving material according to the present invention generates hydroxy radicals by Fenton reaction with ferrous ions derived from steel slag and / or iron ore. On the other hand, hydrogen peroxide that has not reacted with ferrous ions is decomposed to generate oxygen. Therefore, due to the generation of the hydroxy radical and oxygen, the redox potential of the sediment is raised to an oxidative state. Therefore, oxidative decomposition of bottom mud can be promoted. Also, hydrogen sulfide can be removed by oxidation.
上記過酸化水素付加物が炭酸カルシウム過酸化物である場合は、式(4)に示す反応によって発生したカルシウムイオンが底泥を中和するため、底泥のpHを上昇させることができる。その結果、硫酸還元菌を失活させることができる。また、カルシウムと硫化水素が反応して硫化カルシウムが生成し硫化水素が低減される。さらに、炭酸カルシウムを主成分とする物としてカキ殻を用いた場合は、通常廃棄されるカキ殻を、底質改善のために有効利用することができるというメリットもあり、循環型社会の実現に寄与することができる。 When the hydrogen peroxide adduct is calcium carbonate peroxide, the calcium ions generated by the reaction shown in the formula (4) neutralize the bottom mud, so that the pH of the bottom mud can be raised. As a result, sulfate-reducing bacteria can be inactivated. In addition, calcium sulfide and hydrogen sulfide react to produce calcium sulfide, thereby reducing hydrogen sulfide. Furthermore, when oyster shells are used as the main component of calcium carbonate, there is a merit that oyster shells that are normally discarded can be effectively used to improve the bottom sediment. Can contribute.
本明細書において用語「水域」とは、水質および底質(底泥)を含むものであり、また、海水域および淡水域のいずれをも含むものである。また、用語「底質」とは用語「底泥」と同義であり、水域の底部に堆積した有機物および/または栄養塩類を含む堆積物のことをいう。例えば、ヘドロを挙げることができる。上記有機物の具体的な成分は無限に存在し、特に限定されるのもではない。上記栄養塩類としては例えば、窒素およびリンが作る塩類を挙げることができる。 In this specification, the term “water area” includes water quality and bottom sediment (bottom mud), and also includes both seawater and fresh water areas. The term “sediment” is synonymous with the term “bottom mud” and refers to sediment containing organic matter and / or nutrients deposited at the bottom of the water area. For example, sludge can be mentioned. The specific component of the organic substance is infinite and is not particularly limited. Examples of the nutrient salts include salts formed by nitrogen and phosphorus.
上記水域環境改善材の使用方法は特に限定されるものではないが、水域に散布して使用することが好ましい。水域への散布とは、水上または水中から上記水域環境改善材を投入する方法を基本とするが、水底の底泥上に当該水域環境改善材を散布する方法でもよい。底泥に確実に到達させ、底泥と反応させるためには、造粒した水域環境改善材を用いることが好ましい。また、底泥に直接上記水域環境改善材を混合してもよい。散布量、散布頻度は特に限定されるものではないが、定期的に散布水域の底質および水質の環境を調査し、適宜散布量、散布頻度を調整することが好ましい。 Although the usage method of the said water area environmental improvement material is not specifically limited, It is preferable to use by spraying in a water area. Sprinkling in the water area is basically based on a method in which the water environment improving material is introduced from the water or from the water, but may be a method of spraying the water environment improving material on the bottom mud. In order to surely reach the bottom mud and react with the bottom mud, it is preferable to use a granulated water environment improving material. Moreover, you may mix the said water area environment improving material directly into bottom mud. Although there are no particular limitations on the amount of application and the frequency of application, it is preferable to periodically investigate the bottom and water environment of the application area and adjust the application amount and application frequency as appropriate.
(2.底泥の酸化方法)
本発明に係る底泥の酸化方法は、本発明に係る水域環境改善材を水域に添加するものである。
(2. Bottom mud oxidation method)
The method for oxidizing the bottom mud according to the present invention is to add the water environment improving material according to the present invention to the water area.
本発明に係る水域環境改善材を水域に添加することによって、上記水域環境改善材に含まれる過酸化水素付加物は容易に分解し、上記式(1)、(4)のように過酸化水素を発生する。上記過酸化水素付加物については、既に説明したとおりである。 By adding the water environment improving material according to the present invention to the water area, the hydrogen peroxide adduct contained in the water environment improving material is easily decomposed, and hydrogen peroxide as represented by the above formulas (1) and (4) is obtained. Is generated. The hydrogen peroxide adduct is as already described.
上記過酸化水素は、上記水域環境改善材に含まれる鉄鋼スラグおよび/または鉄鉱石に含まれる第一鉄イオンと反応し、上記式(2)に示すように、ヒドロキシラジカルを生成する。 The hydrogen peroxide reacts with ferrous ions contained in the steel slag and / or iron ore contained in the water environment improving material, and generates hydroxy radicals as shown in the above formula (2).
また、第一鉄イオンと反応しなかった過酸化水素は、分解して酸素を発生する。本発明に係る水域環境改善材を水域に添加することによって、上記ヒドロキシラジカルおよび酸素が生成し、底質の酸化還元電位が上昇し、底質が酸化的な状態に変化するため、底泥を分解されやすい状態にすることができる。また、水域の貧酸素状態を改善することができる。 Further, hydrogen peroxide that has not reacted with ferrous ions is decomposed to generate oxygen. By adding the water environment improving material according to the present invention to the water area, the hydroxy radicals and oxygen are generated, the redox potential of the sediment is increased, and the sediment is changed to an oxidative state. It can be in a state where it can be easily decomposed. Moreover, the poor oxygen state of a water area can be improved.
水域環境改善材を水域に添加する方法は、特に限定されるものではない。例えば、水域に散布する方法、底泥に直接上記水域環境改善材を混合する方法等を挙げることができる。 The method for adding the water environment improving material to the water is not particularly limited. For example, the method of spraying in a water area, the method of mixing the said water area environment improvement material directly into bottom mud, etc. can be mentioned.
(3.底泥の分解方法)
本発明に係る底泥の分解方法は、本発明に係る水域環境改善材を水域に添加するステップ1と、還元型の底泥に光を照射するステップ2と、を含む。図1は、本発明に係る底泥の分解方法の概念図を示すものである。
(3. Decomposition method of bottom mud)
The method for decomposing bottom mud according to the present invention includes Step 1 for adding the water environment improving material according to the present invention to the water area and Step 2 for irradiating the reduced bottom mud with light. FIG. 1 shows a conceptual diagram of a method for decomposing bottom mud according to the present invention.
本発明に係る水域環境改善材を水域に添加することによって、上記水域環境改善材に含まれる過酸化水素付加物は容易に分解し、上記式(1)、(4)のように過酸化水素を発生する。上記過酸化水素付加物については、既に説明したとおりである。 By adding the water environment improving material according to the present invention to the water area, the hydrogen peroxide adduct contained in the water environment improving material is easily decomposed, and hydrogen peroxide as represented by the above formulas (1) and (4) is obtained. Is generated. The hydrogen peroxide adduct is as already described.
上記過酸化水素は、上記水域環境改善材に含まれる鉄鋼スラグおよび/または鉄鉱石に含まれる第一鉄イオンと反応し、上記式(2)に示すように、ヒドロキシラジカルを生成する。 The hydrogen peroxide reacts with ferrous ions contained in the steel slag and / or iron ore contained in the water environment improving material, and generates hydroxy radicals as shown in the above formula (2).
上記ヒドロキシラジカルは、ラジカル反応によって底泥から水素を引き抜くことによって、底泥を酸化的に分解することができる。このように、本発明に係る方法では、上記水域環境改善材を水域に添加すると、過酸化水素付加物から過酸化水素および/または酸素が生成し、生成した過酸化水素が、鉄鋼スラグおよび/または鉄鉱石からゆるやかに供給される第一鉄イオンとのフェントン反応により分解され、ヒドロキシラジカルが生成し、当該ヒドロキシラジカルが底泥を酸化的に分解する。よって、底質の富栄養状態を持続的かつ効率的に解消することができる。 The hydroxy radical can oxidatively decompose the bottom mud by extracting hydrogen from the bottom mud by radical reaction. Thus, in the method according to the present invention, when the water environment improving material is added to the water area, hydrogen peroxide and / or oxygen is generated from the hydrogen peroxide adduct, and the generated hydrogen peroxide is converted into steel slag and / or Or it decomposes | disassembles by the Fenton reaction with the ferrous ion loosely supplied from an iron ore, a hydroxy radical produces | generates, and the said hydroxy radical decomposes | disassembles bottom mud oxidatively. Therefore, the eutrophic state of the sediment can be resolved continuously and efficiently.
上記水域は特に限定されるものではないが、中でも、底質に多量の底泥が蓄積されている内湾、内海、湖沼等の閉鎖性水域に本発明に係る底泥の分解方法を適用すれば、当該水域の環境を大幅に改善することができる。特に富栄養化の影響で底質に多量の底泥が蓄積している水域に本方法を適用することが最も効果的である。 The above water area is not particularly limited, but in particular, if the bottom mud decomposition method according to the present invention is applied to closed water areas such as inner bays, inland seas and lakes where a large amount of bottom mud is accumulated in the sediment. The environment of the water area can be greatly improved. In particular, it is most effective to apply this method to water areas where a large amount of mud is accumulated in the sediment due to eutrophication.
上記水域環境改善材を水域に添加することによって、鉄鋼スラグおよび/または鉄鉱石由来の第一鉄イオンは、図1に示すように、酸化されて第二鉄イオンとなる。この反応と共役してヒドロキシラジカルが生成する。一方で、還元型の底泥の光照射下での酸化によって第二鉄イオンは第一鉄イオンへと還元される。このように第二鉄イオンが再び第一鉄イオンに還元されるため、鉄を常に溶解度の大きい2価の溶存態に保つことができる。また、第一鉄イオンを補う必要がなく、繰り返し使用することができるため、図1に示す鉄の触媒サイクル(鉄サイクル)を促進することができ、底泥の分解効率を向上させることができる。 By adding the water environment improving material to the water area, ferrous ions derived from steel slag and / or iron ore are oxidized to ferric ions as shown in FIG. In combination with this reaction, a hydroxy radical is generated. On the other hand, ferric ions are reduced to ferrous ions by oxidation of reduced-type bottom mud under light irradiation. Since ferric ions are reduced again to ferrous ions in this way, iron can always be kept in a divalent dissolved state with high solubility. Moreover, since it is not necessary to supplement ferrous ion and it can be used repeatedly, the iron catalyst cycle (iron cycle) shown in FIG. 1 can be accelerated, and the decomposition efficiency of bottom mud can be improved. .
上記「還元型の底泥」とは、酸化還元電位がマイナスである底泥を示す。還元型の底泥へ光を照射する方法は、特に限定されるものではない。例えば、太陽光を上記還元型の底泥に照射するだけでもよいし、従来公知の光源を用いて光を照射してもよい。上記光源としては、例えば、発光ダイオードのような点光源や、蛍光灯のような線光源等を挙げることができる。照射される光の波長としては、特に限定されるものではなく、可視から紫外領域の光であれば酸化反応を進行させることができる。 The “reduced bottom mud” refers to bottom mud having a negative oxidation-reduction potential. The method for irradiating the reduced-type bottom mud with light is not particularly limited. For example, sunlight may be irradiated to the reduced bottom mud, or light may be irradiated using a conventionally known light source. Examples of the light source include a point light source such as a light emitting diode and a linear light source such as a fluorescent lamp. The wavelength of the irradiated light is not particularly limited, and the oxidation reaction can proceed if the light is in the visible to ultraviolet region.
還元型の底泥を光によって酸化することによって、同時に第二鉄イオンが第一鉄イオンへ還元され底泥の酸化還元電位がプラスに転じる。 By oxidizing the reduced-type bottom mud with light, ferric ions are simultaneously reduced to ferrous ions, and the redox potential of the bottom mud turns positive.
なお本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. The form is also included in the technical scope of the present invention.
〔水域環境改善材による底泥の酸化〕
ベントス類を除去した大河入り江(広島県広島市)の底泥の湿重量100重量%に対して、(1)高炉水砕スラグ(粒径1−3 mm;JFE製、PTCスラグ)10重量%、(2)炭酸ナトリウム過酸化物(過炭酸ソーダ PC−2;松尾薬品産業(株))0.5重量%、または、(3)上記炭酸ナトリウム過酸化物0.5重量%および上記高炉水砕スラグ10重量%を添加して混合し、84.5mlのシール容器(各試験区3本立て)に充填後、蓋を被せて太陽光下で放置し、酸化還元電位(以下「ORP」と略記する)の経時変化を測定した。以下、上記(1)を高炉水砕スラグ区、(2)を炭酸ナトリウム過酸化物区、(3)を併用区と称する。また、対照としては底泥のみを用いた。
[Oxidation of bottom mud by water environment improvement material]
(1) Blast-furnace granulated slag (particle size 1-3 mm; JFE, PTC slag) 10% by weight with respect to 100% by weight of the bottom mud of the Okawa cove (Hiroshima City, Hiroshima Prefecture) from which bentos were removed (2) 0.5% by weight of sodium carbonate peroxide (sodium percarbonate PC-2; Matsuo Pharmaceutical Co., Ltd.) or (3) 0.5% by weight of sodium carbonate peroxide and blast furnace water Add and mix 10% by weight of crushed slag, fill it into 84.5ml sealed containers (3 test stands each), cover with a lid and leave under sunlight, abbreviated as "ORP" ) Was measured over time. Hereinafter, the above (1) is referred to as a blast furnace granulated slag zone, (2) as a sodium carbonate peroxide zone, and (3) as a combined zone. As a control, only bottom mud was used.
図2は、各試験区のORPの経時変化を示すものである。高炉水砕スラグ区ではORPの上昇は認められなかった。炭酸ナトリウム過酸化物区と併用区とを比較すると、併用区の方が初期のORPの上昇が顕著でかつ、試験期間を通して炭酸ナトリウム過酸化物区よりもORPが高い傾向を示した。 FIG. 2 shows the temporal change of ORP in each test section. No increase in ORP was observed in the granulated blast furnace slag. When the sodium carbonate peroxide group and the combination group were compared, the combination group showed a significant increase in the initial ORP and showed a higher ORP tendency than the sodium carbonate peroxide group throughout the test period.
炭酸ナトリウム過酸化物単独では主として過酸化水素起源の酸素による酸化のみであるが、高炉水砕スラグと併用するとスラグが鉄源となって式(2)に示すフェントン反応によってヒドロキシラジカルの生成も同時に進行するため、ORPをさらに上昇させることができたと考えられる。このように、本法は非常に微量な素材量(0.5重量%炭酸ナトリウム過酸化物+10重量%高炉水砕スラグ)で極度に還元的な底泥を極めて短時間(30分以内)に酸化的な状態に改善することができるため、非常に有用であるといえる。 Sodium carbonate peroxide alone is mainly oxidized only by oxygen originating from hydrogen peroxide, but when used in combination with granulated blast furnace slag, slag becomes an iron source and simultaneously generates hydroxy radicals by the Fenton reaction shown in Formula (2). It is considered that the ORP could be further increased due to progress. In this way, the extremely small amount of material (0.5 wt% sodium carbonate peroxide + 10 wt% blast furnace granulated slag) can be used to form extremely reductive bottom mud in an extremely short time (within 30 minutes). It can be said that it is very useful because it can be improved to an oxidative state.
本発明に係る水域環境改善材は、アルカリ金属塩の過酸化水素付加物およびアルカリ土類金属塩の過酸化水素付加物から選ばれる1種以上の過酸化水素付加物と、鉄鋼スラグおよび/または鉄鉱石と、を含むので、底泥を効率的に分解することができる。したがって、漁業、水産業、環境産業、鉄鋼業等の産業に幅広く利用することが可能である。 The water environment improving material according to the present invention comprises at least one hydrogen peroxide adduct selected from hydrogen peroxide adducts of alkali metal salts and alkaline earth metal salts, steel slag and / or Therefore, the bottom mud can be efficiently decomposed. Therefore, it can be widely used in industries such as fisheries, fisheries industry, environmental industry, and steel industry.
Claims (5)
還元型の底泥に光を照射するステップ2と、を含むことを特徴とする底泥の分解方法。 Step 1 of adding the water environment improving material according to any one of claims 1 to 3 to the water area;
And a step 2 of irradiating the reduced-type bottom mud with light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008144696A JP5099773B2 (en) | 2008-06-02 | 2008-06-02 | Sediment environment improving material and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008144696A JP5099773B2 (en) | 2008-06-02 | 2008-06-02 | Sediment environment improving material and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009291668A true JP2009291668A (en) | 2009-12-17 |
JP5099773B2 JP5099773B2 (en) | 2012-12-19 |
Family
ID=41540359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008144696A Expired - Fee Related JP5099773B2 (en) | 2008-06-02 | 2008-06-02 | Sediment environment improving material and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5099773B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161754A (en) * | 2011-02-08 | 2012-08-30 | Kajima Corp | Bottom sediment improving structure and bottom sediment improving method |
DE202012006218U1 (en) | 2012-06-27 | 2012-09-25 | Hiwin Technologies Corp. | roller bearing |
JP2015120128A (en) * | 2013-12-25 | 2015-07-02 | 株式会社Tio技研 | Waste water purification material |
JP2017087085A (en) * | 2015-11-02 | 2017-05-25 | 宍道湖漁業協同組合 | Method to render hydrogen sulfide generated in lake bed or bay bed harmless and system thereof |
CN117417070A (en) * | 2023-10-20 | 2024-01-19 | 广东海洋大学 | Device for removing antibiotic resistance genes in aquaculture water area and rapid detection method |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261600A (en) * | 1984-06-07 | 1985-12-24 | Sumitomo Cement Co Ltd | Bottom quality improving composition and its technique |
JPH02218488A (en) * | 1989-02-18 | 1990-08-31 | Nippon Sekkai Kogyo Kumiai | Granulated material for improving water quality and bottom quality having self-collapsibility |
JPH03255008A (en) * | 1990-03-02 | 1991-11-13 | Katayama Chem Works Co Ltd | Hydrogen peroxide formulation for using in water and its use |
JPH06254545A (en) * | 1991-07-09 | 1994-09-13 | Tomoji Tanaka | Purification of reservoir water of golf course and fish farm |
JPH0952092A (en) * | 1995-08-16 | 1997-02-25 | Mitsubishi Gas Chem Co Inc | Treatment of waste water |
JP2003334454A (en) * | 2002-02-27 | 2003-11-25 | National Institute Of Advanced Industrial & Technology | Ultraviolet / visible light active catalyst |
JP2004042011A (en) * | 2002-07-15 | 2004-02-12 | Toru Ueda | Early purification method for petroleum-contaminated soil using burnt lime, and greening method |
JP2005046711A (en) * | 2003-07-28 | 2005-02-24 | Kurita Water Ind Ltd | Method and agent for treating water containing organic matter |
JP2006068732A (en) * | 2004-08-06 | 2006-03-16 | Hiroshima Univ | Water environment improvement material and water environment improvement method using the same |
JP2006167713A (en) * | 2004-11-19 | 2006-06-29 | Dowa Mining Co Ltd | Method for purifying contaminated soil or contaminated groundwater |
JP2006326121A (en) * | 2005-05-30 | 2006-12-07 | Adeka Corp | Chemical substance decomposition agent and cleaning method using thereof |
JP2006341195A (en) * | 2005-06-09 | 2006-12-21 | Japan Organo Co Ltd | Method of clarifying organic contaminant |
JP2007125521A (en) * | 2005-11-07 | 2007-05-24 | Japan Organo Co Ltd | Apparatus and method for treating waste water |
JP2007209824A (en) * | 2005-10-04 | 2007-08-23 | Dowa Holdings Co Ltd | Method for cleaning contaminated soil or contaminated groundwater |
JP2007238356A (en) * | 2006-03-07 | 2007-09-20 | Jfe Steel Kk | Oxygen generating agent and its manufacturing method |
-
2008
- 2008-06-02 JP JP2008144696A patent/JP5099773B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261600A (en) * | 1984-06-07 | 1985-12-24 | Sumitomo Cement Co Ltd | Bottom quality improving composition and its technique |
JPH02218488A (en) * | 1989-02-18 | 1990-08-31 | Nippon Sekkai Kogyo Kumiai | Granulated material for improving water quality and bottom quality having self-collapsibility |
JP2719716B2 (en) * | 1989-02-18 | 1998-02-25 | 日本石灰工業組合 | Granules for water quality and sediment improvement with self-disintegration |
JPH03255008A (en) * | 1990-03-02 | 1991-11-13 | Katayama Chem Works Co Ltd | Hydrogen peroxide formulation for using in water and its use |
JPH06254545A (en) * | 1991-07-09 | 1994-09-13 | Tomoji Tanaka | Purification of reservoir water of golf course and fish farm |
JPH0952092A (en) * | 1995-08-16 | 1997-02-25 | Mitsubishi Gas Chem Co Inc | Treatment of waste water |
JP2003334454A (en) * | 2002-02-27 | 2003-11-25 | National Institute Of Advanced Industrial & Technology | Ultraviolet / visible light active catalyst |
JP2004042011A (en) * | 2002-07-15 | 2004-02-12 | Toru Ueda | Early purification method for petroleum-contaminated soil using burnt lime, and greening method |
JP2005046711A (en) * | 2003-07-28 | 2005-02-24 | Kurita Water Ind Ltd | Method and agent for treating water containing organic matter |
JP2006068732A (en) * | 2004-08-06 | 2006-03-16 | Hiroshima Univ | Water environment improvement material and water environment improvement method using the same |
JP2006167713A (en) * | 2004-11-19 | 2006-06-29 | Dowa Mining Co Ltd | Method for purifying contaminated soil or contaminated groundwater |
JP2006326121A (en) * | 2005-05-30 | 2006-12-07 | Adeka Corp | Chemical substance decomposition agent and cleaning method using thereof |
JP2006341195A (en) * | 2005-06-09 | 2006-12-21 | Japan Organo Co Ltd | Method of clarifying organic contaminant |
JP2007209824A (en) * | 2005-10-04 | 2007-08-23 | Dowa Holdings Co Ltd | Method for cleaning contaminated soil or contaminated groundwater |
JP2007125521A (en) * | 2005-11-07 | 2007-05-24 | Japan Organo Co Ltd | Apparatus and method for treating waste water |
JP2007238356A (en) * | 2006-03-07 | 2007-09-20 | Jfe Steel Kk | Oxygen generating agent and its manufacturing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161754A (en) * | 2011-02-08 | 2012-08-30 | Kajima Corp | Bottom sediment improving structure and bottom sediment improving method |
DE202012006218U1 (en) | 2012-06-27 | 2012-09-25 | Hiwin Technologies Corp. | roller bearing |
JP2015120128A (en) * | 2013-12-25 | 2015-07-02 | 株式会社Tio技研 | Waste water purification material |
JP2017087085A (en) * | 2015-11-02 | 2017-05-25 | 宍道湖漁業協同組合 | Method to render hydrogen sulfide generated in lake bed or bay bed harmless and system thereof |
CN117417070A (en) * | 2023-10-20 | 2024-01-19 | 广东海洋大学 | Device for removing antibiotic resistance genes in aquaculture water area and rapid detection method |
CN117417070B (en) * | 2023-10-20 | 2024-06-11 | 广东海洋大学 | Device for removing antibiotic resistance genes in aquaculture waters and rapid detection method |
Also Published As
Publication number | Publication date |
---|---|
JP5099773B2 (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100491276C (en) | Combined Treatment Method of High Concentration Ammonia Nitrogen Wastewater | |
CN102348648B (en) | Method of treating coal gasification wastewater | |
JP5099773B2 (en) | Sediment environment improving material and its use | |
CN106957070A (en) | A kind of rapidly and efficiently ammonia nitrogen removal agent and its preparation method and application | |
CN106391674A (en) | Harmless treatment method for cyanide-containing waste residues | |
CN109650492A (en) | A kind of iron-carbon micro-electrolysis filler and preparation method thereof | |
Cheng et al. | Application of Mo2C for enhancement of co-catalytic performance of Fe3+/PS based fenton-like reaction in degrading tetracycline hydrochloride | |
CN100404085C (en) | Harmless treatment method for arsenic contained rejectamenta | |
Miao et al. | Norfloxacin degradation in synthetic human urine using nickel converter slag-laterite heterogeneous Electro-Fenton process | |
KR100220652B1 (en) | Water and low quality magnesium compound-based improver | |
JP2009118834A (en) | Microorganism activator | |
CN103723852B (en) | Sewage treatment method based on inorganic and organic heavy metal absorbents | |
KR20060094334A (en) | Sludge Treatment and Recycling Method Using Waste Resources | |
KR101002191B1 (en) | Sludge and Wastewater Reduction and Gas Treatment Methods | |
CN105562013B (en) | A kind of nano Ce0Adulterate Fe0Composite material and methods for making and using same | |
CN115244012A (en) | Method for treating water, sediment and/or sludge | |
JP5135552B2 (en) | Method for producing steelmaking slag for water injection | |
CN107055744B (en) | Water treatment method for removing pollution by using secondary iron mineral activated peroxymonosulfate for oxidation | |
JP6890960B2 (en) | Denitrification reaction accelerator composition | |
CN111285454B (en) | Water treatment method for reducing and degrading halogenated organic matters by using copper activated thiourea dioxide | |
Mulopo | Direct elemental sulphur recovery from gold acid mine drainage streams | |
JP2006224087A (en) | Treatment method of wastewater containing nitrate nitrogen | |
RU2450979C2 (en) | Method of treating cyanide-containing water | |
EP1256278A1 (en) | Phytoplankton growth inhibitors and method of water purification with the use of the same | |
JP4269087B2 (en) | Method for producing activated material for removing nitrate nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120920 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5099773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |