Nothing Special   »   [go: up one dir, main page]

JP2009283603A - Detection apparatus, light-receiving element array, and fabrication process therefor - Google Patents

Detection apparatus, light-receiving element array, and fabrication process therefor Download PDF

Info

Publication number
JP2009283603A
JP2009283603A JP2008132946A JP2008132946A JP2009283603A JP 2009283603 A JP2009283603 A JP 2009283603A JP 2008132946 A JP2008132946 A JP 2008132946A JP 2008132946 A JP2008132946 A JP 2008132946A JP 2009283603 A JP2009283603 A JP 2009283603A
Authority
JP
Japan
Prior art keywords
light receiving
type
light
layer
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008132946A
Other languages
Japanese (ja)
Inventor
Yoichi Nagai
陽一 永井
Yasuhiro Inoguchi
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008132946A priority Critical patent/JP2009283603A/en
Publication of JP2009283603A publication Critical patent/JP2009283603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an InGaAs light-receiving element array which has photosensitivity in a wavelength region exceeding 1.7 μm, and a low dark current, and to provide its fabrication process and a detection apparatus using the InGaAs light-receiving element array. <P>SOLUTION: A light-receiving element array comprises: an InGaAs light-receiving layer 3 having In composition exceeding 0.53; an InAsP window layer 4, located in contact with the InGaAs light-receiving layer and having a p-type total thickness portion or a thickness portion on the reverse side of a substrate; and an n-type isolation region 19 extending from the p-type InAsP window layer to reach the inside of the InGaAs light-receiving layer and formed by introducing n-type impurities to surround the light-receiving region of the light-receiving element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検出装置、受光素子アレイおよびその製造方法に関し、より具体的には、近赤外域に受光感度を有する受光素子アレイ、その製造方法およびその受光素子を備えた撮像装置やセンサなどの検出装置に関するものである。   The present invention relates to a detection device, a light receiving element array, and a manufacturing method thereof, and more specifically, a light receiving element array having light receiving sensitivity in the near infrared region, a manufacturing method thereof, an imaging device and a sensor including the light receiving element, and the like The present invention relates to a detection device.

近赤外の波長域は、動植物などの生体や環境に関連した吸収スペクトルに対応するため、受光層にIII−V族化合物半導体を用いた近赤外〜赤外域の受光素子の開発が盛んに行われている。その中でInP基板に格子整合するIn0.53Ga0.47As半導体(カットオフ波長1.7μm)は、良好な結晶を得ることができるので、ラインセンサや撮像装置への用途を目的に、一次元または二次元に配列した受光素子アレイの開発がなされている(非特許文献1)。また、さらに長波長域に受光感度を拡大するために、In組成を0.53より高くした受光素子について、概括的な解説がなされている(非特許文献2)。この解説には、In組成0.53以下の受光素子も含まれている。 Since the near-infrared wavelength region corresponds to the absorption spectrum related to living organisms such as animals and plants and the environment, development of light-receiving elements in the near-infrared to infrared region using III-V compound semiconductors in the light-receiving layer is actively conducted. Has been done. Among them, an In 0.53 Ga 0.47 As semiconductor (cut-off wavelength 1.7 μm) lattice-matched to an InP substrate can obtain a good crystal, so that one-dimensional or A light-receiving element array arranged two-dimensionally has been developed (Non-Patent Document 1). Further, in order to expand the light receiving sensitivity to a longer wavelength region, a general explanation has been made on a light receiving element having an In composition higher than 0.53 (Non-patent Document 2). This explanation includes a light receiving element having an In composition of 0.53 or less.

In組成0.53を超えたInGaAs受光層は、InP基板と格子整合がとれないため、InP基板上にグレーディドバッファ層を介在させて徐々に格子定数を変えて当該InGaAs受光層を形成する手法が提案されている(特許文献1)。しかし、グレーディドバッファ層を介在させる手法では、十分良好な結晶を得ることはできず、この結果、実用レベルにまで暗電流を低くすることが難しい。このため、上記In組成が高くInP基板と格子整合しない構成において、InGaAs受光層内にpn接合を設ける構造に代えて、InP窓層内にpn接合を形成し、空乏層をInP窓層内に限定する構造が提案された(特許文献2)。この構造によれば、受光層内で発生した受光による光電荷は拡散によって空乏層に移動し、その後、空乏層内の電界によって移動し、光電流を発生するので、暗電流を低下させることができる。
A.R.Sugg,M.J.Lange, M.H.Ettenberg, M.J.Cohen, G.H.Olsen," InGaAs/InP lineardetector arrays for spectroscopic and imaging applications on 75 mm substrates",1998 IEEE ThH5,9 9:15am-9:30am,pp.73-74 田中章雅,"アイセーフ波長及び中赤外域検知器の最近の進展",レーザー研究,第25巻第1号,pp25-28 特開2002−373999号公報 特開2002−151727号公報
Since an InGaAs light receiving layer having an In composition exceeding 0.53 cannot be lattice-matched with the InP substrate, a method of forming the InGaAs light receiving layer by gradually changing the lattice constant through the graded buffer layer on the InP substrate. Has been proposed (Patent Document 1). However, with the method in which the graded buffer layer is interposed, a sufficiently good crystal cannot be obtained, and as a result, it is difficult to reduce the dark current to a practical level. For this reason, in the configuration in which the In composition is high and the lattice matching with the InP substrate is not performed, a pn junction is formed in the InP window layer instead of the structure in which the pn junction is provided in the InGaAs light receiving layer, and the depletion layer is formed in the InP window layer A limiting structure has been proposed (Patent Document 2). According to this structure, the photocharge generated by the light reception generated in the light receiving layer moves to the depletion layer by diffusion, and then moves by the electric field in the depletion layer to generate a photocurrent, thereby reducing the dark current. it can.
ARSugg, MJLange, MHEttenberg, MJCohen, GHOlsen, "InGaAs / InP lineardetector arrays for spectroscopic and imaging applications on 75 mm substrates", 1998 IEEE ThH5,9 9:15 am-9:30am,pp.73-74 Akimasa Tanaka, "Recent Progress of Eye-Safe Wavelength and Mid-Infrared Detectors", Laser Research, Vol. 25, No. 1, pp 25-28 JP 2002-373999 A JP 2002-151727 A

撮像装置などを視野において近赤外域の受光素子の実用化をはかる場合、受光素子のアレイ化は必須であり、受光素子アレイの状態で暗電流を低くしなければならない。しかし、受光素子をアレイ化したときに、単一の受光素子における暗電流からは予測がつかない大きな暗電流が生じる。上記特許文献2の手法では窓層の表面側一部のみp型化し、空乏層を窓層内に設けることで暗電流を低減しようとしているが、充分な感度が得られない。空乏層を受光層にまで広げるために逆バイアス電圧を高くすると、この逆バイアス電圧に起因する暗電流が増加してしまう。とくに受光素子アレイでは、逆バイアス電圧増大に起因する暗電流は大きなものとなる。   When a light receiving element in the near-infrared region is put into practical use in the field of view of an imaging device or the like, an array of light receiving elements is essential, and the dark current must be lowered in the state of the light receiving element array. However, when the light receiving elements are arrayed, a large dark current that cannot be predicted from the dark current in a single light receiving element occurs. In the method of Patent Document 2, only a part of the window layer on the surface side is made p-type and a depletion layer is provided in the window layer to reduce dark current. However, sufficient sensitivity cannot be obtained. If the reverse bias voltage is increased in order to extend the depletion layer to the light receiving layer, the dark current resulting from the reverse bias voltage increases. In particular, in the light receiving element array, the dark current due to the increase of the reverse bias voltage becomes large.

本発明は、1.7μmを超える波長域に受光感度をもち、暗電流の低いInGaAs受光素子アレイ、その製造方法およびそのInGaAs受光素子アレイを用いた検出装置を提供することを目的とする。   An object of the present invention is to provide an InGaAs light receiving element array having a light receiving sensitivity in a wavelength region exceeding 1.7 μm and a low dark current, a manufacturing method thereof, and a detection apparatus using the InGaAs light receiving element array.

本発明の受光素子アレイは、InP基板に形成されたIII−V族化合物半導体の1つのエピタキシャル積層体に、受光素子が、複数、配列されている。この受光素子アレイは、In組成が0.53を超えるInGaAs受光層と、InGaAs受光層に接し、該InGaAs受光層をはさんでInP基板と反対側に位置するp型InAsP窓層と、p型InAsP窓層からInGaAs受光層内に届き、受光素子の受光領域を取り囲むようにn型不純物を導入して形成したn型分離領域とを備えることを特徴とする。 In the light receiving element array of the present invention, a plurality of light receiving elements are arranged in one epitaxial laminated body of III-V group compound semiconductor formed on an InP substrate. The light receiving element array includes an InGaAs light receiving layer having an In composition exceeding 0.53, a p-type InAsP window layer in contact with the InGaAs light receiving layer and positioned on the opposite side of the InP substrate across the InGaAs light receiving layer, and a p type And an n-type isolation region formed by introducing an n-type impurity so as to surround the light-receiving region of the light-receiving element from the InAsP window layer into the InGaAs light-receiving layer.

上記の構成によれば、受光領域のp型InAsP窓層部分は、隣り合う受光素子間において、n型分離領域によって取り囲まれるので、隣り合う受光領域のp型InAsP窓層部分がp型不純物の分布で接続されるおそれはなく、確実に分離することができる。これにより隣り合う受光素子間で電気的短絡がないため、暗電流の小さい近赤外域用の受光素子アレイを得ることができる。n型分離領域はn型不純物の導入によって形成されるが、pn接合を形成するための不純物の導入とは異なり、既に形成された界面であるpn接合の受光領域部分を取り囲むように導入されるので、横方向ににじむことがあった場合でも、受光素子間の短絡を促進することなどまったくなく、単にn型分離領域がにじんで広がるだけである。このため、上記のように、InGaAs受光層がInP基板に格子整合せず、InGaAs受光層およびp型窓層の格子欠陥密度が高く、異常拡散などが生じやすい受光素子アレイにおける暗電流の抑制に、とくに有効である。   According to the above configuration, the p-type InAsP window layer portion of the light receiving region is surrounded by the n-type isolation region between the adjacent light receiving elements, so that the p-type InAsP window layer portion of the adjacent light receiving region is made of p-type impurities. There is no fear of being connected in distribution, and separation can be ensured. Thereby, since there is no electrical short circuit between adjacent light receiving elements, a light receiving element array for the near infrared region with a small dark current can be obtained. The n-type isolation region is formed by introducing an n-type impurity. Unlike the introduction of an impurity for forming a pn junction, the n-type isolation region is introduced so as to surround a light-receiving region portion of the pn junction that is an already formed interface. Therefore, even when the image is blurred in the lateral direction, the short circuit between the light receiving elements is not promoted at all, and the n-type isolation region simply spreads and spreads. Therefore, as described above, the InGaAs light receiving layer is not lattice-matched to the InP substrate, the lattice defect density of the InGaAs light receiving layer and the p-type window layer is high, and the dark current is suppressed in the light receiving element array that is likely to cause abnormal diffusion. Is particularly effective.

上記のp型InAsP窓層のp型キャリア濃度を、1×1016/cm3以上3×1018/cm3以下とすることができる。窓層のp型キャリア濃度を1×1016/cm3以上とすることによって、p型InAsP窓層に設けるp側電極と、そのp側InAsP窓層との接触抵抗は過大にならず、定電圧電源の電圧分を効率的に受光領域のpn接合に印加することができる。窓層のp型キャリア濃度は高いほど接触抵抗を低下させることができるが、あまりp型キャリア濃度を高くすると、n型分離領域を形成する際に、非常に多量のn型不純物を導入しなければならない問題を生じる。窓層のp型キャリア濃度を3×1018/cm3以下であれば、そのp型キャリア濃度の窓層にn型不純物を導入して比較的容易にn型化することができる。 The p-type carrier concentration of the p-type InAsP window layer can be a 1 × 10 16 / cm 3 or more 3 × 10 18 / cm 3 or less. By setting the p-type carrier concentration of the window layer to 1 × 10 16 / cm 3 or more, the contact resistance between the p-side electrode provided in the p-type InAsP window layer and the p-side InAsP window layer is not excessive, and is constant. The voltage component of the voltage power supply can be efficiently applied to the pn junction in the light receiving region. The higher the p-type carrier concentration in the window layer, the lower the contact resistance. However, if the p-type carrier concentration is too high, a very large amount of n-type impurities must be introduced when forming the n-type isolation region. Cause problems. If the p-type carrier concentration of the window layer is 3 × 10 18 / cm 3 or less, an n-type impurity can be introduced into the window layer having the p-type carrier concentration to make it n-type relatively easily.

上記InGaAs受光層におけるn型キャリア濃度値を、InAsP窓層のp型キャリア濃度値よりも小さくすることができる。これによって、逆電圧をそれほど高く印加しなくとも、InGaAs受光層が空乏化するので、暗電流が低くなり、高い感度で1.7μmを超える波長域の近赤外光を受光することができる。   The n-type carrier concentration value in the InGaAs light receiving layer can be made smaller than the p-type carrier concentration value in the InAsP window layer. As a result, the InGaAs light-receiving layer is depleted without applying a reverse voltage so high, the dark current is reduced, and near-infrared light in a wavelength region exceeding 1.7 μm can be received with high sensitivity.

上記のn型分離領域を、n型不純物の選択拡散によって形成することができる。これによって、常用されるリソグラフィを用いて選択拡散用のマスクパターンを形成した後、拡散原料とInP基板とを真空封入して熱処理する、という、比較的、簡単な方法によって良質なn型分離領域を形成することができる。   The n-type isolation region can be formed by selective diffusion of n-type impurities. As a result, a high-quality n-type isolation region can be formed by a relatively simple method in which a mask pattern for selective diffusion is formed using conventional lithography, and the diffusion material and the InP substrate are then vacuum sealed and heat-treated. Can be formed.

また、n型分離領域を、n型不純物のイオン注入によって形成することもできる。これによって、簡単かつ迅速にn型分離領域を形成することができる。   The n-type isolation region can also be formed by ion implantation of n-type impurities. As a result, the n-type isolation region can be formed easily and quickly.

上記のInGaAs受光層のIn組成を0.6以上0.85以下とすることができる。これによって、InP基板を用いながら、1.8μmを超える波長域の近赤外光に対して受光感度を得ることができる。   The In composition of the InGaAs light receiving layer can be 0.6 or more and 0.85 or less. This makes it possible to obtain light receiving sensitivity for near infrared light in a wavelength region exceeding 1.8 μm while using an InP substrate.

上記のInP基板とInGaAs受光層との間に、複数層からなるグレーディドバッファ層を介在させることができる。これによって、InP基板上に、InP基板と格子整合しないIn組成が0.53より大きいInGaAs受光層のエピタキシャル層を暗電流を増加させることなく形成することができる。   A graded buffer layer composed of a plurality of layers can be interposed between the InP substrate and the InGaAs light receiving layer. As a result, an epitaxial layer of an InGaAs light receiving layer having an In composition greater than 0.53 that does not lattice match with the InP substrate can be formed on the InP substrate without increasing the dark current.

受光素子間のスペースを、2μm以上40μm以下とすることができる。この構成によって高集積化ができ、たとえば受光素子の配列ピッチを20μm以上50μm以下とすることによって、2インチウエハに10万画素クラスの二次元アレイを数個得られるようになり、歩留りを考慮しても、実用化の見込みを得ることができる。   The space between the light receiving elements can be 2 μm or more and 40 μm or less. This configuration enables high integration. For example, by setting the arrangement pitch of the light receiving elements to 20 μm or more and 50 μm or less, it becomes possible to obtain several two-dimensional arrays of the 100,000 pixel class on a 2-inch wafer, considering the yield. However, the prospect of practical use can be obtained.

本発明の受光素子アレイの製造方法は、InP基板上に位置するIII−V族化合物半導体の1つのエピタキシャル積層体に、受光素子が、複数、配列された受光素子アレイの製造方法である。この方法は、InP基板上に、In組成が0.53を超えるInGaAs受光層を形成する工程と、InGaAs受光層の上に接して、p型のInAsP窓層を形成する工程と、受光素子の受光領域の周囲のInAsP窓層から、n型不純物を、InGaAs受光層に届くように、かつ受光領域を取り囲むようにn型分離領域を形成する工程とを備えることを特徴とする。   The method for manufacturing a light receiving element array according to the present invention is a method for manufacturing a light receiving element array in which a plurality of light receiving elements are arranged in one epitaxial laminated body of III-V group compound semiconductors located on an InP substrate. This method includes a step of forming an InGaAs light receiving layer having an In composition exceeding 0.53 on an InP substrate, a step of forming a p-type InAsP window layer in contact with the InGaAs light receiving layer, Forming an n-type isolation region so that an n-type impurity reaches the InGaAs light-receiving layer and surrounds the light-receiving region from the InAsP window layer around the light-receiving region.

上記の製造方法によれば、受光領域は、隣り合う受光素子間において、n型分離領域によって取り囲まれるので、隣り合う受光領域のp型のInAsP窓層部分がp型不純物の分布で接続されるおそれはなく、確実に分離することができる。これにより隣り合う受光素子間で電気的短絡がないため、暗電流の小さい近赤外域用の受光素子アレイを得ることができる。n型分離領域はn型不純物の導入によって形成されるが、pn接合を形成するための不純物の導入とは異なり、既に形成された界面であるpn接合の受光領域部分を取り囲むように導入されるので、横方向ににじむことがあった場合でも、受光素子間の短絡を促進することなどまったくなく、単にn型分離領域がにじんで広がるだけである。このため、上記の製造方法は、InGaAs受光層がInP基板に格子整合せず、InGaAs受光層およびp型窓層の格子欠陥密度が高く、異常拡散などが生じやすい受光素子アレイの暗電流の抑制に有益である。   According to the above manufacturing method, since the light receiving region is surrounded by the n-type isolation region between the adjacent light receiving elements, the p-type InAsP window layer portion of the adjacent light receiving region is connected by the distribution of the p-type impurity. There is no fear and separation can be ensured. Thereby, since there is no electrical short circuit between adjacent light receiving elements, a light receiving element array for the near infrared region with a small dark current can be obtained. The n-type isolation region is formed by introducing an n-type impurity. Unlike the introduction of an impurity for forming a pn junction, the n-type isolation region is introduced so as to surround a light-receiving region portion of the pn junction that is an already formed interface. Therefore, even when the image is blurred in the lateral direction, the short circuit between the light receiving elements is not promoted at all, and the n-type isolation region simply spreads and spreads. For this reason, in the above manufacturing method, the InGaAs light receiving layer is not lattice-matched to the InP substrate, the lattice defect density of the InGaAs light receiving layer and the p-type window layer is high, and the dark current of the light receiving element array that is likely to cause abnormal diffusion is suppressed. It is beneficial to.

本発明の検出装置は、撮像装置、センサなどの検出装置であって、上記のいずれか一つの受光素子アレイ、または上記の製造方法で製造された受光素子アレイを備え、各受光素子から信号を読み出し電気信号を出力するCMOSを備えることを特徴とする。これによって、上記の各受光素子アレイの特徴を備えた検出装置を得ることができる。   The detection device of the present invention is a detection device such as an imaging device or a sensor, and includes any one of the light receiving element arrays described above or the light receiving element array manufactured by the manufacturing method described above, and receives a signal from each light receiving element. A CMOS that outputs a read electrical signal is provided. As a result, a detection device having the characteristics of each of the light receiving element arrays can be obtained.

本発明によれば、1.7μmを超える波長域に受光感度をもち、暗電流の低いInGaAs受光素子アレイおよびその製造方法を得ることができる。   According to the present invention, it is possible to obtain an InGaAs light receiving element array having a light receiving sensitivity in a wavelength region exceeding 1.7 μm and a low dark current, and a manufacturing method thereof.

(実施の形態1)
図1は、本発明の実施の形態1における受光素子アレイ50を用いた撮像装置を光入射側から見た平面図である。素子数や素子サイズ等を示しているが、あくまで例示である。この例示の場合、横20mm×縦16mmのアレイサイズに640×512個の受光素子10が配列されている。図2は、図1におけるII−II線に沿う断面図である。この撮像装置50は、窓層4またはp側電極12の側をCMOSのマルチプレクサに接合バンプ22によって電気接続するエピダウン実装、すなわち裏面入射の配置をとる。受光素子の二次元アレイの場合、各受光素子のp側電極からの配線を光入射側で交差させることは好ましくないので、裏面入射の構造をとることになる。
(Embodiment 1)
FIG. 1 is a plan view of an imaging device using the light receiving element array 50 according to the first embodiment of the present invention as viewed from the light incident side. Although the number of elements, element size, etc. are shown, they are merely examples. In this example, 640 × 512 light receiving elements 10 are arranged in an array size of 20 mm wide × 16 mm long. 2 is a cross-sectional view taken along line II-II in FIG. This imaging device 50 has an epi-down mounting in which the window layer 4 or the p-side electrode 12 side is electrically connected to a CMOS multiplexer by bonding bumps 22, that is, a back-side incident arrangement. In the case of a two-dimensional array of light receiving elements, it is not preferable to cross the wiring from the p-side electrode of each light receiving element on the light incident side, so that a back-incident structure is adopted.

図2の受光素子アレイ50の積層構造は、裏面側からエピタキシャル層側へと順に、次のものから形成されている。
(AR(Anti-Reflection)膜29/InP基板1/n型グレーディドバッファ層2/アンドープまたは低濃度n型InGaAs受光層3/p型InAsP窓層4/n型不純物選択拡散用マスクパターン5/絶縁保護膜9)
上記のp型InAsP窓層4には、n型不純物選択拡散用マスクパターン5の開口部からInGaAs受光層3内に届くように拡散導入されたn型不純物によって形成されたn型分離領域19が設けられており、したがってInAsP窓層4は、n型分離領域19と、そのn型分離領域19によって取り囲まれたp型領域15と、から形成される。このp型領域15が、受光素子10の受光領域10aに対応する。
The laminated structure of the light receiving element array 50 in FIG. 2 is formed in the following order from the back surface side to the epitaxial layer side.
(AR (Anti-Reflection) film 29 / InP substrate 1 / n-type graded buffer layer 2 / undoped or low-concentration n-type InGaAs light receiving layer 3 / p-type InAsP window layer 4 / n-type impurity selective diffusion mask pattern 5 / Insulating protective film 9)
The p-type InAsP window layer 4 has an n-type isolation region 19 formed by n-type impurities diffused and introduced so as to reach the InGaAs light receiving layer 3 from the opening of the n-type impurity selective diffusion mask pattern 5. Therefore, the InAsP window layer 4 is formed of an n-type isolation region 19 and a p-type region 15 surrounded by the n-type isolation region 19. This p-type region 15 corresponds to the light receiving region 10 a of the light receiving element 10.

n型不純物の選択拡散においては、InGaAs受光層3上にエピタキシャル成長されたp型InAsP窓層のp型キャリア濃度を超えるn型不純物を導入して、n型領域とする必要がある。n型分離領域19は、受光素子10の受光領域10aを取り囲み、隣り合う受光素子の間を分離する。受光素子10の受光領域10aは、n型分離領域19で取り囲まれたp型領域15にほぼ対応する。   In the selective diffusion of n-type impurities, it is necessary to introduce n-type impurities exceeding the p-type carrier concentration of the p-type InAsP window layer epitaxially grown on the InGaAs light receiving layer 3 to form an n-type region. The n-type isolation region 19 surrounds the light receiving region 10a of the light receiving element 10 and separates adjacent light receiving elements. The light receiving region 10 a of the light receiving element 10 substantially corresponds to the p-type region 15 surrounded by the n-type isolation region 19.

n型分離領域19の形成のための選択拡散の際に、n型不純物、たとえばSnが横方向に拡散して、p型領域15に近接する部分にn型不純物濃度の分布がありうる。しかし、そのような横方向へのn型不純物の拡散が相当程度あっても、受光領域10aにおいて光電荷が移動する場所は、エネルギ的にp型の場所が有利なので、p型領域15に限られ、暗電流の増大は起こることはない。p型領域15とn型分離領域19との間にはpn接合が形成され、光電荷に対して電位障壁が形成される。したがって、となり合う受光素子10間は、n型分離領域19によって分離される。   At the time of selective diffusion for forming the n-type isolation region 19, an n-type impurity, for example, Sn may be diffused in the lateral direction, and an n-type impurity concentration distribution may exist in a portion close to the p-type region 15. However, even if there is a considerable amount of n-type impurity diffusion in the lateral direction, the p-type location is advantageous as the location where the photocharge moves in the light receiving region 10a. The dark current does not increase. A pn junction is formed between the p-type region 15 and the n-type isolation region 19, and a potential barrier is formed against the photocharge. Therefore, the adjacent light receiving elements 10 are separated by the n-type isolation region 19.

n側電極11は、全受光素子10に共通に、n型グレーディッドバッファ層2にアースをとる形で電気的に接続されている。また、p側電極12は、受光素子10ごとに、p型領域15に電気的に接続され、受光素子から個別に光信号を読み出すための電極となる。受光素子アレイ50は、p側電極12を通じて、受光素子10ごとにCMOS21の電極パッドに位置する接合バンプ22に接続されている。CMOS21は、受光素子10からの光電変換された電荷を画素信号として読み出し、次いで電荷信号を電圧信号に変換し、かつ増幅して信号処理部に出力する。   The n-side electrode 11 is electrically connected to the n-type graded buffer layer 2 so as to be grounded in common to all the light receiving elements 10. Further, the p-side electrode 12 is electrically connected to the p-type region 15 for each light receiving element 10 and serves as an electrode for individually reading an optical signal from the light receiving element. The light receiving element array 50 is connected to the bonding bump 22 located on the electrode pad of the CMOS 21 for each light receiving element 10 through the p-side electrode 12. The CMOS 21 reads out the photoelectrically converted charge from the light receiving element 10 as a pixel signal, then converts the charge signal into a voltage signal, amplifies it, and outputs it to the signal processing unit.

(1)InGaAs受光層3およびグレーディドバッファ層2
図2に示すInGaAs受光層3は、カットオフ波長を1.7μmよりも大きくするために、In組成が0.53よりも大きいIn0.8Ga0.2Asとしている。すなわちバンドギャップエネルギを小さくするためにIn組成を0.8にして、その結果、格子定数は、InP基板1と格子整合するIn組成0.53のIn0.53Ga0.47Asよりも大きくなる。このため、In0.8Ga0.2Asは、InP基板1と格子整合しないことになり、そのままInP基板1に成長させたのでは、格子欠陥密度は非常に高くなるか、またはエピタキシャル層と呼べる受光層を得ることが難しい。このため、InP基板1の格子定数からIn0.8Ga0.2As受光層3の格子定数へと徐々に大きくなるように、グレーディドバッファ層またはステップバッファ層2を介在させる。1層ごとに格子定数を少しずつ大きくしながら積層したグレーディドバッファ層2は、しかしながら、何十層と積層しても、下地とは常に格子定数の相違があるので、格子欠陥が上層へと、順次、増加され累積されてゆく。このため、それほど結晶性の良好なIn0.8Ga0.2As受光層3が得られるわけではない。このため、暗電流は実用レベルで問題にならないほど低減することはできない。なお、In0.8Ga0.2As受光層3は、波長2.6μmにまで受光感度を持つことができる。
(1) InGaAs light receiving layer 3 and graded buffer layer 2
The InGaAs light receiving layer 3 shown in FIG. 2 is In 0.8 Ga 0.2 As having an In composition larger than 0.53 in order to make the cutoff wavelength larger than 1.7 μm. That is, 0.8 the In composition in order to reduce the band gap energy, as a result, the lattice constant is larger than the In 0.53 Ga 0.47 As the In composition 0.53 to lattice matching with the InP substrate 1. For this reason, In 0.8 Ga 0.2 As does not lattice match with the InP substrate 1, and if grown on the InP substrate 1 as it is, the lattice defect density becomes very high, or the light receiving layer which can be called an epitaxial layer is formed. Difficult to get. Therefore, the graded buffer layer or the step buffer layer 2 is interposed so as to gradually increase from the lattice constant of the InP substrate 1 to the lattice constant of the In 0.8 Ga 0.2 As light receiving layer 3. However, the graded buffer layer 2 that is laminated while gradually increasing the lattice constant for each layer, however, always has a difference in lattice constant from the underlayer even if it is laminated with dozens of layers. It is sequentially increased and accumulated. For this reason, the In 0.8 Ga 0.2 As light-receiving layer 3 with very good crystallinity cannot be obtained. For this reason, the dark current cannot be reduced so as not to cause a problem at a practical level. The In 0.8 Ga 0.2 As light receiving layer 3 can have light receiving sensitivity up to a wavelength of 2.6 μm.

(2)従来の受光素子アレイにおける問題点(図8参照)
上記(1)は、単一の受光素子においても問題されることであるが、従来の受光素子アレイ150においては、さらに次のような問題が加わる。図8において、グレーディドバッファ層102の介在によって、In0.8Ga0.2As受光層103は結晶性が良くないながらエピタキシャル膜を得ることができるが、そのIn0.8Ga0.2As受光層103に接して形成される窓層も下地であるIn0.8Ga0.2As受光層103の格子欠陥を引き継ぐため、上述のように、それほど良好な結晶性のエピタキシャル層とはならない。pn接合117を形成するために、p型不純物のZnを選択拡散させるとき、InAs0.630.37窓層104を通してIn0.8Ga0.2As受光層103内に届くように、温度および時間を設定する。このとき、InAs0.630.37窓層104の格子欠陥密度が高いために、Znは格子欠陥を伝って、通常の結晶中の拡散速度よりも大きな速度で拡散すると考えられる。たとえば、原子は、結晶粒内を拡散する場合よりも格子欠陥密度の高い結晶粒界を拡散するほうが拡散速度は大きいことが知られている。
(2) Problems in the conventional light receiving element array (see FIG. 8)
The above (1) is a problem even with a single light receiving element, but the conventional light receiving element array 150 has the following problem. 8, by the interposition of graded buffer layer 102, and is In 0.8 Ga 0.2 As light receiving layer 103 can be obtained epitaxial film while poor crystallinity, in contact with the In 0.8 Ga 0.2 As light-receiving layer 103 formed Since the window layer thus taken over inherits the lattice defects of the underlying In 0.8 Ga 0.2 As light-receiving layer 103, as described above, it does not become a very good crystalline epitaxial layer. In order to form the pn junction 117, when selectively diffusing Zn of the p-type impurity, the temperature and time are set so as to reach the In 0.8 Ga 0.2 As light receiving layer 103 through the InAs 0.63 P 0.37 window layer 104. At this time, since the lattice defect density of the InAs 0.63 P 0.37 window layer 104 is high, Zn is considered to diffuse through the lattice defects at a rate higher than the diffusion rate in the normal crystal. For example, it is known that the diffusion rate of atoms is higher when diffusing at a crystal grain boundary having a higher lattice defect density than when diffusing inside a crystal grain.

このような格子欠陥を伝って拡散する不純物量は、結晶中を拡散する不純物量に比べればわずかであるため、pn接合を形成するための深さ方向への拡散という点についてみれば大きな問題とならない。しかし、格子欠陥を伝って横方向へ拡散するZnについては、わずかな量といっても、隣り合う受光素子が短いピッチで配列される受光素子アレイ150では、大きな問題となる。受光素子アレイ150の場合、仮に隣の受光素子110にZnが拡散して隣のp型領域115と連続した場合、電気的に短絡された状態が発生し、暗電流は大きなものとなる。すなわち横方向に延びるZn分布によってp型配線が形成されると、受光素子110のp型領域115が接続され、暗電流は大きなものとなる。本発明は、このような、カットオフ波長1.7μmを超える長波長域の近赤外光に受光感度をもつ受光素子アレイにおける暗電流を低減することを目的としており、この問題を解決するための本発明の実施の形態のポイントを次に示す。   Since the amount of impurities diffused through such lattice defects is small compared to the amount of impurities diffused in the crystal, this is a serious problem in terms of diffusion in the depth direction for forming a pn junction. Don't be. However, even if the amount of Zn that diffuses laterally through lattice defects is small, it is a serious problem in the light receiving element array 150 in which adjacent light receiving elements are arranged at a short pitch. In the case of the light receiving element array 150, if Zn diffuses into the adjacent light receiving element 110 and continues with the adjacent p-type region 115, an electrically shorted state occurs, and the dark current becomes large. That is, when the p-type wiring is formed by the Zn distribution extending in the lateral direction, the p-type region 115 of the light receiving element 110 is connected, and the dark current becomes large. In order to solve this problem, the present invention aims to reduce dark current in a light receiving element array having light receiving sensitivity to near infrared light in a long wavelength region exceeding a cutoff wavelength of 1.7 μm. The points of the embodiment of the present invention are as follows.

(3)本発明の実施の形態のポイント
図3は、本発明の実施の形態のポイントを説明するための図である。図3に示す構成では、次の点(P1)に特徴を有する。
(P1)p型InAsP窓層4のp型領域15を、そのInAsP窓層4の表面からInGaAs受光層3内にまで届くn型分離領域19によって取り囲むことによって、受光素子10間を分離する。n型分離領域19は、どのような方法で形成してもよく、たとえば従来のp型領域115のように選択拡散によって形成してもよい。n型分離領域19の形成に選択拡散を用いて、結晶中の格子欠陥密度が高いことに起因して横方向の拡散が促進されても、光電荷のp側電極12への読み出しに対しては影響しない。暗電流に対しては、横方向の拡散があっても受光素子間の分離がより確実になるので、所定の限度までは、むしろ好ましい場合がある。
(3) Points of the Embodiment of the Present Invention FIG. 3 is a diagram for explaining the points of the embodiment of the present invention. The configuration shown in FIG. 3 is characterized by the following point (P1).
(P1) The p-type region 15 of the p-type InAsP window layer 4 is surrounded by an n-type isolation region 19 that reaches from the surface of the InAsP window layer 4 to the InGaAs light-receiving layer 3, thereby separating the light receiving elements 10. The n-type isolation region 19 may be formed by any method, and may be formed by selective diffusion like the conventional p-type region 115, for example. Even if lateral diffusion is promoted by using selective diffusion to form the n-type isolation region 19 due to the high lattice defect density in the crystal, the photocharge can be read out to the p-side electrode 12. Has no effect. For dark current, even if there is lateral diffusion, separation between the light receiving elements becomes more reliable, so it may be preferable to a predetermined limit.

次に、図1に示す受光素子アレイ50の製造方法について、図4および図5を用いて説明する。
(1)InP基板1上にOMVPE(Organic Metal Vapor Phase Epitaxy)により、n型グレーディドバッファ層2を形成する。このとき、InPの格子定数とIn0.8Ga0.2As受光層3の格子定数との差を、数十段階に分けて、数十層のグレーディドバッファ層2を形成するのがよい。InP基板1は、n側電極11を接続する場合には、Sドープによりn型化しておくのがよい。また、図2に示すように、n型グレーディドバッファ層2の受光層3に接する層にn側電極11を接続する場合には、その層のみをn型としておいてもよいし、すべてのグレーディドバッファ層2をn型としてもよい。
(2)次いで、グレーディドバッファ層2の上に、In0.8Ga0.2As受光層3を厚み2μm〜6μm程度にエピタキシャル成長させる。成長法は、エピタキシャル成長できれば何でもよく、OMVPE法でもMBE(Molecular
Beam Epitaxy)法でもかまわない。In0.8Ga0.2As受光層3は、上述のように、波長2.0μm〜2.6μmの光に受光感度を持つ。In0.8Ga0.2As受光層3は、アンドープまたは低濃度1×1016/cm3以下のn型キャリア濃度とするのがよい。
(3)このあと、In0.8Ga0.2As受光層3上に、p型InAs0.630.37窓層4をエピタキシャル成膜する。厚みは、たとえば0.8μm以下にする。この成長法についてもエピタキシャル成長できれば何でもよい。p型キャリア濃度は、上記のように1×1016/cm3以上3×1018/cm3以下とするのがよい。このInAsP窓層4を、上記p型キャリア濃度とするのが、本発明の実施の形態における重要なポイントである。なお、窓層4についてはInAlAsで置き換えてもよい。また、バッファ層2についてもInAlAsのIn組成を段階的に変えた複数層のグレーディドバッファ層または所定In組成の単層とすることができる。
Next, a method for manufacturing the light receiving element array 50 shown in FIG. 1 will be described with reference to FIGS.
(1) The n-type graded buffer layer 2 is formed on the InP substrate 1 by OMVPE (Organic Metal Vapor Phase Epitaxy). At this time, the difference between the lattice constant of InP and the lattice constant of the In 0.8 Ga 0.2 As light receiving layer 3 is preferably divided into several tens of steps to form several tens of graded buffer layers 2. The InP substrate 1 is preferably made n-type by S doping when the n-side electrode 11 is connected. In addition, as shown in FIG. 2, when the n-side electrode 11 is connected to the layer of the n-type graded buffer layer 2 in contact with the light-receiving layer 3, only that layer may be n-type, The graded buffer layer 2 may be n-type.
(2) Next, the In 0.8 Ga 0.2 As light-receiving layer 3 is epitaxially grown on the graded buffer layer 2 to a thickness of about 2 μm to 6 μm. The growth method may be anything as long as it can be epitaxially grown, and the OMVPE method is also MBE (Molecular
Beam Epitaxy) method is also acceptable. As described above, the In 0.8 Ga 0.2 As light receiving layer 3 has light receiving sensitivity to light having a wavelength of 2.0 μm to 2.6 μm. The In 0.8 Ga 0.2 As light-receiving layer 3 is preferably undoped or has an n-type carrier concentration of low concentration of 1 × 10 16 / cm 3 or less.
(3) Thereafter, a p-type InAs 0.63 P 0.37 window layer 4 is epitaxially formed on the In 0.8 Ga 0.2 As light-receiving layer 3. The thickness is, for example, 0.8 μm or less. This growth method may be anything as long as it can be epitaxially grown. The p-type carrier concentration is preferably 1 × 10 16 / cm 3 or more and 3 × 10 18 / cm 3 or less as described above. It is an important point in the embodiment of the present invention that the InAsP window layer 4 has the p-type carrier concentration. Note that the window layer 4 may be replaced with InAlAs. Further, the buffer layer 2 can also be a plurality of graded buffer layers in which the In composition of InAlAs is changed stepwise or a single layer having a predetermined In composition.

(4)SiNを蒸着法で蒸着し、フォトリソグラフィ法およびエッチングにより、n型不純物、たとえばSn選択拡散用マスクパターン5を形成する。このときの選択拡散用マスクパターン5は、図5(a)に示すように、受光素子の受光領域10aに対応した領域を被覆して、その周囲は開いた(SiN層なし)パターンとなる。受光領域10aにはn型不純物を拡散導入してはならず、その周囲の領域にのみ、n型分離領域19を形成するように、たとえばSnを拡散導入する。選択拡散によるn型不純物の導入は、イオン注入法に置き換えてもよい。
(5)次いで、Sn選択拡散用マスクパターン5の開口部からInGaAs受光層3にまで届くようにSnを選択拡散し、n型分離領域19を形成する。このとき拡散処理用のチャンバとして真空封入管(石英)を用い、上記のエピタキシャル積層構造および選択拡散マスクパターンを形成したInP基板を、n型不純物原料とともに石英管に封入し、選択拡散を行う。n型不純物Snを選択拡散する場合、n型不純物原料には、Snに600℃で飽和する量の2倍のInPを加えたものを用いるのがよい。InP過剰含有Snを上記InP基板とともに、石英管に装入し、真空排気して封止する。その石英管を電気炉に入れ、600℃に加熱して、Snを上記開口部(受光領域周囲)からInAsP窓層4を通ってInGaAs受光層3に届くように導入する。この選択拡散によって、n型分離領域19が形成される。受光領域10aは、たとえば平面的には図5(a)に示すように一辺15μmの正四角形でもよいし、または円状でもよい。たとえば画素を25μmピッチで、横640個×縦512個配列した画素領域を形成する(図1参照)。たとえば2インチ径のInP基板1に、横640個×縦512個の画素を配列した画素領域を数箇所設ける。これによって、2インチウエハに30万画素クラスの2次元アレイを数個配置することができ、歩留りを考慮しても30万画素クラスの2次元アレイを実用化することが可能となる。
(6)Snの選択拡散のあと(図5(a)の状態)、図5(b)に示すように、絶縁保護膜9を形成して、InAsP窓層4のn型分離領域19およびSn選択拡散用マスクパターン5を被覆する。次いで、絶縁保護膜9の上にレジスト膜37を成膜する。次いで、図5(c)に示すように、フォトリソグラフィ法とエッチングにより、p側電極12をp型領域15にコンタクトさせるために、p型領域15の中に含まれるように、選択拡散用マスク5、絶縁保護膜9およびレジスト膜37に、開口部37hを設ける。図5(d)は、その開口部37h内に、p側電極12をAuZnによってオーミック接触するように設け、レジストパターン37をリフトオフした状態を示す図である。また、n側電極11を、全受光素子に共通に接地電位となるように、グレーディドバッファ層2の受光層3に接する面に、オーミック接触となるようにAuGeNiで形成する。また、InP基板1の裏面に、AR膜29として、たとえば屈折率1.8、膜厚330nmのSiON膜を全面に形成する。
(4) SiN is deposited by an evaporation method, and an n-type impurity, for example, a Sn selective diffusion mask pattern 5 is formed by a photolithography method and etching. As shown in FIG. 5A, the selective diffusion mask pattern 5 at this time covers a region corresponding to the light receiving region 10a of the light receiving element, and the periphery thereof is an open (no SiN layer) pattern. N-type impurities should not be diffused and introduced into the light receiving region 10a. For example, Sn is diffused and introduced so as to form the n-type isolation region 19 only in the surrounding region. The introduction of n-type impurities by selective diffusion may be replaced with an ion implantation method.
(5) Next, Sn is selectively diffused so as to reach the InGaAs light receiving layer 3 from the opening of the Sn selective diffusion mask pattern 5 to form the n-type isolation region 19. At this time, a vacuum sealed tube (quartz) is used as a diffusion processing chamber, and the InP substrate on which the above epitaxial laminated structure and the selective diffusion mask pattern are formed is sealed in a quartz tube together with an n-type impurity material, and selective diffusion is performed. When the n-type impurity Sn is selectively diffused, it is preferable to use an n-type impurity material obtained by adding In to twice the amount of Sn saturated at 600 ° C. InP-containing Sn is loaded into a quartz tube together with the InP substrate, and is evacuated and sealed. The quartz tube is put in an electric furnace and heated to 600 ° C., and Sn is introduced so as to reach the InGaAs light receiving layer 3 through the InAsP window layer 4 from the opening (around the light receiving region). By this selective diffusion, an n-type isolation region 19 is formed. For example, the light receiving region 10a may be a regular square having a side of 15 μm as shown in FIG. For example, a pixel region in which 640 pixels × 512 pixels are arranged at a pitch of 25 μm is formed (see FIG. 1). For example, on a 2 inch diameter InP substrate 1, several pixel regions in which 640 pixels in the horizontal direction and 512 pixels in the vertical direction are arranged are provided. As a result, several 300,000 pixel class two-dimensional arrays can be arranged on a 2-inch wafer, and the 300,000 pixel class two-dimensional array can be put into practical use even in consideration of yield.
(6) After selective diffusion of Sn (state shown in FIG. 5A), as shown in FIG. 5B, an insulating protective film 9 is formed, and the n-type isolation region 19 and Sn of the InAsP window layer 4 are formed. The selective diffusion mask pattern 5 is covered. Next, a resist film 37 is formed on the insulating protective film 9. Next, as shown in FIG. 5C, a selective diffusion mask is included so as to be included in the p-type region 15 in order to make the p-side electrode 12 contact the p-type region 15 by photolithography and etching. 5. An opening 37 h is provided in the insulating protective film 9 and the resist film 37. FIG. 5D is a diagram showing a state where the p-side electrode 12 is provided in ohmic contact with AuZn in the opening 37h and the resist pattern 37 is lifted off. Further, the n-side electrode 11 is formed of AuGeNi so as to be in ohmic contact with the surface in contact with the light receiving layer 3 of the graded buffer layer 2 so that the ground potential is common to all the light receiving elements. Further, an SiON film having a refractive index of 1.8 and a film thickness of 330 nm is formed on the entire surface as the AR film 29 on the back surface of the InP substrate 1.

上記の手順で製造した受光素子アレイ50は、1.7μmを超える近赤外域に受光感度を持ち、かつ2インチのウエハに40万画素級の画素領域を数箇所設けても、暗電流の低い撮像装置を得ることができる。このような受光素子アレイ50が可能になったポイントは、InGaAs受光層3とp型InAsP窓層4とでヘテロpn接合17を形成し、受光領域の周りをInGaAs受光層3内に届くn型分離領域19で取り囲んだことによる。   The light receiving element array 50 manufactured by the above procedure has a light receiving sensitivity in the near infrared region exceeding 1.7 μm, and low dark current even if several pixel regions of 400,000 pixel class are provided on a 2-inch wafer. An imaging device can be obtained. The point where such a light receiving element array 50 is possible is that the InGaAs light receiving layer 3 and the p-type InAsP window layer 4 form a hetero pn junction 17, and the n type that reaches around the light receiving region into the InGaAs light receiving layer 3. This is because it is surrounded by the separation region 19.

(実施の形態2)
図6は、本発明の実施の形態2における一次元の受光素子アレイ50を示す平面図である。また図7は図6におけるVII−VII線に沿う断面図である。図6に示すように、この受光素子アレイ50では、細長い矩形12μm×1mmの受光素子10が長手方向を並行させ、その長手方向に直交する方向に沿って20μmピッチで一次元配列されている。この受光素子アレイ50の平面的な形状は、たとえば横8mm×縦2mmの矩形である。受光素子10の一方の端には、p側電極12と配線電極27とパッド部25との接続構造が配置される。パッド部25はCMOSの読み出し電極にワイヤボンディングで接続される。そして、隣り合う受光素子間で、上記のp側電極12と配線電極27とパッド部25との接続構造は、図5において、交互に上と下になるように配置されている。p側電極12は、一つの受光部または単位受光部に対応する。一次元配列は、たとえば20μmピッチで、合計384個の受光部が一列に配置されている。
(Embodiment 2)
FIG. 6 is a plan view showing a one-dimensional light receiving element array 50 according to Embodiment 2 of the present invention. FIG. 7 is a sectional view taken along line VII-VII in FIG. As shown in FIG. 6, in this light receiving element array 50, elongated light receiving elements 10 each having a size of 12 μm × 1 mm are arranged in a one-dimensional manner at a pitch of 20 μm along a direction orthogonal to the longitudinal direction. The planar shape of the light receiving element array 50 is, for example, a rectangle of 8 mm wide × 2 mm long. A connection structure of the p-side electrode 12, the wiring electrode 27, and the pad portion 25 is disposed at one end of the light receiving element 10. The pad portion 25 is connected to the CMOS read electrode by wire bonding. And the connection structure of said p side electrode 12, the wiring electrode 27, and the pad part 25 is arrange | positioned so that it may become alternately upper and lower in FIG. 5 between adjacent light receiving elements. The p-side electrode 12 corresponds to one light receiving unit or unit light receiving unit. In the one-dimensional array, for example, a total of 384 light receiving units are arranged in a row at a pitch of 20 μm.

図7に示すように、積層構造は、図2に示す二次元配列のものと同じであるが、二次元配列では裏面入射、すなわちエピダウン実装であるのに対して、図7の一次元配列では、上面入射、すなわちエピアップ実装である点が相違する。ただし、二次元配列では裏面入射とせざるをえないが、一次元配列では裏面入射または上面入射とすることが可能である。上面入射を採用するため、電極のうち、p側電極12は、上記のように、受光素子の端に配置される。また、n側電極11はSドープのn型InP基板1の裏面に設けられる。p側電極12およびn側電極11を形成する材料は、実施の形態1と同じとすることができる。   As shown in FIG. 7, the stacked structure is the same as that of the two-dimensional array shown in FIG. 2, but the two-dimensional array is back-side incident, that is, epi-down mounting, whereas the one-dimensional array of FIG. The difference is that the top surface incidence, that is, epi-up mounting. However, in the two-dimensional arrangement, it is unavoidable that the incident light is on the back surface, but in the one-dimensional arrangement, the light can be incident on the back surface or the top surface. Among the electrodes, the p-side electrode 12 is arranged at the end of the light receiving element as described above in order to employ the top incidence. The n-side electrode 11 is provided on the back surface of the S-doped n-type InP substrate 1. The material for forming the p-side electrode 12 and the n-side electrode 11 can be the same as in the first embodiment.

InAsP窓層4が、中濃度以上のp型キャリアを含むこと、および各受光領域10aがn型分離領域19で囲まれることについては、実施の形態1と同じである。したがって、InAsP窓層4は、p型領域15を構成する部分と、その周りを囲むように位置するn型分離領域19とからなることも、図2に示す二次元アレイの場合と同じである。   The InAsP window layer 4 includes p-type carriers having a medium concentration or more, and each light receiving region 10a is surrounded by the n-type isolation region 19 as in the first embodiment. Therefore, the InAsP window layer 4 is also composed of a portion constituting the p-type region 15 and an n-type isolation region 19 positioned so as to surround the periphery thereof, as in the case of the two-dimensional array shown in FIG. .

上記より、一次元アレイと二次元アレイの構成の特徴は同じであり、その結果、本実施の形態における一次元の受光素子アレイにおいても、1.7μmを超える波長域に受光感度を持ち、暗電流の低い受光素子アレイを得ることができる。   From the above, the characteristics of the configurations of the one-dimensional array and the two-dimensional array are the same. As a result, the one-dimensional light receiving element array in the present embodiment also has light receiving sensitivity in a wavelength region exceeding 1.7 μm, and darkness. A light receiving element array with a low current can be obtained.

次に、実施例によって本発明の受光素子アレイの作用効果を検証する。試験体は、本発明例と比較例の2つについて作製した。
(本発明例):図1および図2に示す受光素子の形状を正方形の15μm□として、受光素子間のスペース(図3参照)を、1μm、5μm、10μm、15μmと変えた4種類について、撮像装置を作製した。
(1)p型InAs0.63P0.37窓層4は、Znドーピングによりp型とした。p型キャリア濃度は、1×1018/cm3とした。
(2)n型分離領域19は、Snを選択拡散することによって形成した。Snの選択拡散は、上述のようにInP過剰含有Snを、選択拡散用マスクパターンを形成したウエハとともに石英管に真空封入して、600℃に加熱して行った。Snのドーピング量は3×1018/cm3とした。n型不純物は、Snの代わりにSiやSを用いてもよく、また選択拡散によらずにイオン注入を用いてもよい。
(3)低濃度n型In0.8Ga0.2As受光層3のn型キャリア濃度は、1×1016/cm3とした。
(4)AR膜29は受光領域に重なるように、SiONによって作製した。
Next, the function and effect of the light receiving element array of the present invention will be verified by examples. Test specimens were prepared for two examples of the present invention and a comparative example.
(Example of the present invention): For the four types in which the shape of the light receiving element shown in FIGS. 1 and 2 is 15 μm square and the space between the light receiving elements (see FIG. 3) is changed to 1 μm, 5 μm, 10 μm, and 15 μm, An imaging device was produced.
(1) The p-type InAs0.63P0.37 window layer 4 was made p-type by Zn doping. The p-type carrier concentration was 1 × 10 18 / cm 3 .
(2) The n-type isolation region 19 was formed by selectively diffusing Sn. As described above, selective diffusion of Sn was performed by vacuum-sealing Sn containing excessive InP together with a wafer on which a selective diffusion mask pattern was formed, and heating to 600 ° C. The doping amount of Sn was 3 × 10 18 / cm 3 . As the n-type impurity, Si or S may be used instead of Sn, and ion implantation may be used regardless of selective diffusion.
(3) The n-type carrier concentration of the low-concentration n-type In 0.8 Ga 0.2 As light-receiving layer 3 was 1 × 10 16 / cm 3 .
(4) The AR film 29 was made of SiON so as to overlap the light receiving region.

(比較例):図8に示す受光素子アレイ150を作製した。本発明例との相違点は次のとおりである。
(1)In0.8Ga0.2As受光層103はアンドープとして、そのn型キャリア濃度は、5×1015/cm3であった。
(2)窓層104は、厚み1.2μmのInAs0.630.37で形成し、n型キャリア濃度は1×1015/cm3とした。すなわち、厚みは本発明例の1.7倍であり、n型キャリア濃度は50分の1である。
(3)p型領域115の形成のためのZnの選択拡散は、Zn原料を選択拡散用マスクパターン105を形成したウエハとともに真空封入して加熱処理することで行った。
(Comparative example): The light receiving element array 150 shown in FIG. 8 was produced. Differences from the example of the present invention are as follows.
(1) The In 0.8 Ga 0.2 As light-receiving layer 103 was undoped, and its n-type carrier concentration was 5 × 10 15 / cm 3 .
(2) The window layer 104 was formed of InAs 0.63 P 0.37 having a thickness of 1.2 μm, and the n-type carrier concentration was 1 × 10 15 / cm 3 . That is, the thickness is 1.7 times that of the example of the present invention, and the n-type carrier concentration is 1/50.
(3) The selective diffusion of Zn for forming the p-type region 115 was performed by vacuum-sealing the Zn raw material together with the wafer on which the selective diffusion mask pattern 105 was formed, and performing heat treatment.

(評価方法):
(1)−1Vの電圧を加えたときの暗電流の測定
(2)±10mVのRoA(シャント抵抗と受光領域面積との積)
(Evaluation methods):
(1) Measurement of dark current when a voltage of -1 V is applied (2) ± 10 mV RoA (product of shunt resistance and light receiving area)

(測定結果):
1.暗電流(図9)
隣の受光素子10とのスペース(受光素子間スペース)が1μmでは、本発明例および比較例ともに、暗電流は極端に大きくなる。ただし、本発明例は悪いとはいえ、比較例よりは確実に暗電流は低い。
受光素子間のスペースが5μmでは、本発明例の暗電流は5×10-8A程度となり、1×10-6Aの比較例よりも格段に暗電流が低減されていることが分かる。受光素子間が1μmの場合には、本発明例による構造によっては、隣の受光素子との電気的短絡を防止できないものと思われる。
2.RoA(図10)
感度の指標であるRoAについても、暗電流と同様に、受光素子間のスペース1μmでは、本発明例は15Ωcm2程度であり劣る結果であった。また、比較例については、上記スペース1μmのとき0.1Ωcm2であった。暗電流の場合と同様に、スペース1μmの場合に、本発明例は低いとはいえ、比較例よりは良好である。
上記スペースが5μm以上では、本発明例ではRoAは90Ωcm2以上となり、良好となる。これに対して、比較例では、スペース5μmでも0Ωcm2付近であり、スペース10μmになってはじめて数Ωcm2程度となる。
上記の暗電流およびRoAと、受光素子間のスペースとの関係から、本発明例は、比較例に比べて、質的に歴然と、その特性が改善されていることが確認された。
(Measurement result):
1. Dark current (Fig. 9)
When the space between adjacent light receiving elements 10 (space between light receiving elements) is 1 μm, the dark current becomes extremely large in both the present invention example and the comparative example. However, although the example of the present invention is bad, the dark current is surely lower than that of the comparative example.
When the space between the light receiving elements is 5 μm, the dark current in the example of the present invention is about 5 × 10 −8 A, and it can be seen that the dark current is significantly reduced as compared with the comparative example of 1 × 10 −6 A. When the distance between the light receiving elements is 1 μm, it is considered that an electrical short circuit with an adjacent light receiving element cannot be prevented depending on the structure according to the example of the present invention.
2. RoA (Figure 10)
Regarding RoA, which is an index of sensitivity, as in the case of dark current, in the case of a space of 1 μm between the light receiving elements, the example of the present invention was about 15 Ωcm 2 , which was inferior. Moreover, about the comparative example, it was 0.1 ohm-cm < 2 > when the said space is 1 micrometer. As in the case of dark current, the example of the present invention is better than the comparative example even though the example of the present invention is low when the space is 1 μm.
In the space 5μm or more, RoA becomes 90Omucm 2 or more in the present invention example, the better. In contrast, in the comparative example, a 0Ωcm around 2 even space 5 [mu] m, the first several [Omega] cm 2 approximately becomes a space 10 [mu] m.
From the relationship between the above dark current and RoA and the space between the light receiving elements, it was confirmed that the characteristics of the inventive example were qualitatively improved as compared with the comparative example.

(他の実施の形態)
1.上記の実施の形態では、InP基板とInGaAs受光層との間に、グレーディドバッファ層を介在させる構造を例示したが、InGaAs受光層のエピタキシャル成長が可能であれば、グレーディドバッファ層の代わりに単一のバッファ層を用いてもよい。また、In組成が低い場合、またはそのような条件がなくても、InGaAs受光層のエピタキシャル成長が可能であれば、バッファ層はなくてもよい。
2.上記の実施の形態では、二次元受光素子アレイの場合には裏面入射、一次元受光素子アレイでは上面入射、の構造を示したが、本発明にとって光入射をどちらの面にするかは、本質的な問題ではなく、どちらでもよい。ただし、二次元受光素子アレイでは、画素信号の読み出し配線によって各受光領域への入射光に影響を与えないようにするために、裏面入射にするほうがよい。
3.窓層については、全厚み層がp型である場合についてのみ例示したが、InP基板と逆側、すなわちInGaAs受光層と逆の表面側の部分層がp型である場合であってもよい。近赤外域の長波長域の光の感度を考慮すると、全厚み層がp型であるほうが好ましいが、本発明の受光素子アレイの用途は非常に多様であり、近赤外域の長波長域の光の感度がそれほど強く要求されず、それよりも受光素子間のより完全な分離を優先させる用途もある。
(Other embodiments)
1. In the above embodiment, a structure in which the graded buffer layer is interposed between the InP substrate and the InGaAs light receiving layer is illustrated. A single buffer layer may be used. Further, if the In composition is low or if there is no such condition, the buffer layer may be omitted if the InGaAs light receiving layer can be epitaxially grown.
2. In the above embodiment, the structure of back-surface incidence is shown in the case of a two-dimensional light-receiving element array, and the top-surface incidence is shown in the case of a one-dimensional light-receiving element array. , It is not an essential problem. However, in the two-dimensional light receiving element array, it is better to make the light incident on the back surface so that the incident light to each light receiving region is not affected by the readout wiring of the pixel signal.
3. The window layer is exemplified only when the total thickness layer is p-type, but the window layer may be p-type on the side opposite to the InP substrate, that is, on the surface side opposite to the InGaAs light receiving layer. Considering the sensitivity of light in the long-wavelength region in the near infrared region, it is preferable that the entire thickness layer is p-type, but the applications of the light receiving element array of the present invention are very diverse. There is also an application in which light sensitivity is not so required and priority is given to more complete separation between light receiving elements.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明によれば、簡単な機構によって暗電流を低くした、1.7μmを超える波長域に受光感度をもつInGaAs受光素子アレイを得ることができ、高解像度の近赤外域光の撮像装置の進展に貢献が期待される。   According to the present invention, it is possible to obtain an InGaAs light receiving element array having a light receiving sensitivity in a wavelength region exceeding 1.7 μm, in which dark current is reduced by a simple mechanism, and development of a high-resolution near-infrared light imaging device. Is expected to contribute.

本発明の実施の形態1における受光素子アレイを用いた撮像装置を示す平面図である。It is a top view which shows the imaging device using the light receiving element array in Embodiment 1 of this invention. 図1の受光素子アレイのII−II線に沿う断面図である。It is sectional drawing which follows the II-II line of the light receiving element array of FIG. 本実施の形態における発明のポイントを説明するための図である。It is a figure for demonstrating the point of the invention in this Embodiment. 図1の受光素子アレイの製造方法を示す図である。It is a figure which shows the manufacturing method of the light receiving element array of FIG. 選択拡散用マスクパターン作製段階からp側電極形成までの表面を示す平面図であり、(a)は選択拡散用マスクパターンを作製し、n型不純物のSnを拡散導入した段階を、(b)は絶縁保護膜のSiONを成膜した段階を、(c)はp側電極用の開口部をもつレジストパターンを形成した段階を、(d)はp側電極を形成してレジストパターンをリフトオフした段階を、それぞれ示す図である。It is a top view which shows the surface from the mask pattern pattern for selective diffusion to p side electrode formation, (a) is a mask pattern for selective diffusion, and the stage which carried out the diffusion introduction of Sn of n type impurity, (b) (C) shows the step of forming a resist pattern having an opening for the p-side electrode, and (d) lifts off the resist pattern by forming the p-side electrode. It is a figure which shows each step. 本発明の実施の形態2における受光素子アレイを示す平面図である。It is a top view which shows the light receiving element array in Embodiment 2 of this invention. 図6の受光素子アレイのVII−VII線に沿う断面図である。It is sectional drawing which follows the VII-VII line of the light receiving element array of FIG. 実施例における比較例である従来の受光素子アレイを用いた撮像装置の断面図である。It is sectional drawing of the imaging device using the conventional light receiving element array which is a comparative example in an Example. 本発明例および比較例の撮像装置の暗電流(実測値)と、受光素子間スペースとの関係を示す図である。It is a figure which shows the relationship between the dark current (measured value) of the imaging device of the example of this invention and a comparative example, and the space between light receiving elements. 本発明例および比較例の撮像装置のRoA(実測値)と、受光素子間スペースとの関係を示す図である。It is a figure which shows the relationship between RoA (measured value) of the imaging device of the example of this invention and a comparative example, and the space between light receiving elements.

符号の説明Explanation of symbols

1 InP基板、2 バッファ層、3 InGaAs受光層、4 窓層、5 Zn選択拡散用マスクパターン、9 絶縁保護膜、10 受光素子、10a 受光領域、11 n側電極、12 p側電極、15 p型領域、17 ヘテロpn接合、19 n型分離領域、21 CMOS(Multiplexer)、22 接合バンプ、25 パッド部、27 配線電極、29 AR(Anti-Reflection)膜、37 p側電極形成用レジストパターン、37h 開口部、50 撮像装置。
1 InP substrate, 2 buffer layer, 3 InGaAs light receiving layer, 4 window layer, 5 Zn selective diffusion mask pattern, 9 insulating protective film, 10 light receiving element, 10a light receiving region, 11 n side electrode, 12 p side electrode, 15 p Type region, 17 hetero pn junction, 19 n type isolation region, 21 CMOS (Multiplexer), 22 junction bump, 25 pad portion, 27 wiring electrode, 29 AR (Anti-Reflection) film, 37 p side electrode forming resist pattern, 37h opening, 50 imaging device.

Claims (10)

InP基板に形成されたIII−V族化合物半導体の1つのエピタキシャル積層体に、受光素子が、複数、配列された受光素子アレイであって、
In組成が0.53を超えるInGaAs受光層と、
前記InGaAs受光層に接し、該InGaAs受光層をはさんで前記InP基板と反対側に位置するp型InAsP窓層と、
前記InAsP窓層から前記InGaAs受光層に届き、前記受光素子の受光領域を取り囲むようにn型不純物を導入して形成されたn型分離領域とを備えることを特徴とする、受光素子アレイ。
A light receiving element array in which a plurality of light receiving elements are arranged in one epitaxial layered body of III-V compound semiconductor formed on an InP substrate,
An InGaAs light-receiving layer having an In composition exceeding 0.53;
A p-type InAsP window layer that is in contact with the InGaAs light receiving layer and is located on the opposite side of the InP substrate across the InGaAs light receiving layer;
An n-type isolation region formed by introducing an n-type impurity so as to reach the InGaAs light-receiving layer from the InAsP window layer and surround the light-receiving region of the light-receiving element.
前記InAsP窓層のp型領域のp型キャリア濃度が、1×1016/cm3以上3×1018/cm3以下であることを特徴とする、請求項1に記載の受光素子アレイ。 2. The light receiving element array according to claim 1, wherein a p-type carrier concentration of the p-type region of the InAsP window layer is 1 × 10 16 / cm 3 or more and 3 × 10 18 / cm 3 or less. 前記InGaAs受光層におけるn型キャリア濃度値が、前記InAsP窓層のp型領域のp型キャリア濃度値よりも小さいことを特徴とする、請求項1または2に記載の受光素子アレイ。   3. The light receiving element array according to claim 1, wherein an n type carrier concentration value in the InGaAs light receiving layer is smaller than a p type carrier concentration value in a p type region of the InAsP window layer. 前記n型分離領域が、n型不純物の選択拡散によって形成されていることを特徴とする、請求項1〜3のいずれか一つに記載の受光素子アレイ。   The light receiving element array according to claim 1, wherein the n-type isolation region is formed by selective diffusion of n-type impurities. 前記n型分離領域が、n型不純物のイオン注入によって形成されていることを特徴とする、請求項1〜3のいずれか一つに記載の受光素子アレイ。   The light receiving element array according to claim 1, wherein the n-type isolation region is formed by ion implantation of an n-type impurity. 前記InGaAs受光層のIn組成が0.6以上0.85以下であることを特徴とする、請求項1〜5のいずれか一つに記載の受光素子アレイ。   6. The light receiving element array according to claim 1, wherein an In composition of the InGaAs light receiving layer is 0.6 or more and 0.85 or less. 前記InP基板と前記InGaAs受光層との間に、複数層からなるグレーディドバッファ層が介在していることを特徴とする、請求項1〜6のいずれか一つに記載の受光素子アレイ。   The light receiving element array according to any one of claims 1 to 6, wherein a graded buffer layer including a plurality of layers is interposed between the InP substrate and the InGaAs light receiving layer. 前記受光素子間のスペースが、2μm以上40μm以下であることを特徴とする、請求項1〜7のいずれか一つに記載の受光素子アレイ。   The light receiving element array according to claim 1, wherein a space between the light receiving elements is 2 μm or more and 40 μm or less. InP基板上に位置するIII−V族化合物半導体の1つのエピタキシャル積層体に、受光素子が、複数、配列された受光素子アレイの製造方法であって、
前記InP基板上に、In組成が0.53を超えるInGaAs受光層を形成する工程と、
前記InGaAs受光層の上に接して、p型のInAsP窓層を形成する工程と、
InAsP窓層から、n型不純物を、前記InGaAs受光層に届くように、かつ前記受光領域を取り囲むようにn型分離領域を形成する工程とを備えることを特徴とする、受光素子アレイの製造方法。
A method of manufacturing a light-receiving element array in which a plurality of light-receiving elements are arranged on one epitaxial stacked body of a group III-V compound semiconductor located on an InP substrate,
Forming an InGaAs light-receiving layer having an In composition exceeding 0.53 on the InP substrate;
Forming a p-type InAsP window layer in contact with the InGaAs light-receiving layer;
And a step of forming an n-type isolation region so that an n-type impurity reaches the InGaAs light-receiving layer and surrounds the light-receiving region from the InAsP window layer. .
撮像装置、センサなどの検出装置であって、請求項1〜8のいずれか一つに記載の受光素子アレイ、または請求項9に記載の製造方法で製造された受光素子アレイを備え、各受光素子から信号を読み出し電気信号を出力するCMOS(Complementary Metal Oxide Semiconductor)を備えることを特徴とする、検出装置。
A detection device such as an imaging device or a sensor, comprising: the light receiving element array according to any one of claims 1 to 8; or the light receiving element array manufactured by the manufacturing method according to claim 9. A detection apparatus comprising a CMOS (Complementary Metal Oxide Semiconductor) that reads a signal from an element and outputs an electrical signal.
JP2008132946A 2008-05-21 2008-05-21 Detection apparatus, light-receiving element array, and fabrication process therefor Pending JP2009283603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132946A JP2009283603A (en) 2008-05-21 2008-05-21 Detection apparatus, light-receiving element array, and fabrication process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132946A JP2009283603A (en) 2008-05-21 2008-05-21 Detection apparatus, light-receiving element array, and fabrication process therefor

Publications (1)

Publication Number Publication Date
JP2009283603A true JP2009283603A (en) 2009-12-03

Family

ID=41453772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132946A Pending JP2009283603A (en) 2008-05-21 2008-05-21 Detection apparatus, light-receiving element array, and fabrication process therefor

Country Status (1)

Country Link
JP (1) JP2009283603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134770A (en) * 2009-12-22 2011-07-07 Sumitomo Electric Ind Ltd Detector, light-receiving element array, and method of manufacturing the detector
WO2011089949A1 (en) * 2010-01-25 2011-07-28 アイアールスペック株式会社 Compound semiconductor light-receiving element array
JP2018147962A (en) * 2017-03-02 2018-09-20 住友電気工業株式会社 Light-receiving element
KR20200004291A (en) 2017-05-15 2020-01-13 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and imaging element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134770A (en) * 2009-12-22 2011-07-07 Sumitomo Electric Ind Ltd Detector, light-receiving element array, and method of manufacturing the detector
WO2011089949A1 (en) * 2010-01-25 2011-07-28 アイアールスペック株式会社 Compound semiconductor light-receiving element array
JPWO2011089949A1 (en) * 2010-01-25 2013-05-23 アイアールスペック株式会社 Compound semiconductor photo detector array
US8610170B2 (en) 2010-01-25 2013-12-17 Irspec Corporation Compound semiconductor light-receiving element array
JP5942068B2 (en) * 2010-01-25 2016-06-29 アイアールスペック株式会社 Compound semiconductor photo detector array
JP2018147962A (en) * 2017-03-02 2018-09-20 住友電気工業株式会社 Light-receiving element
KR20200004291A (en) 2017-05-15 2020-01-13 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and imaging element

Similar Documents

Publication Publication Date Title
KR102221682B1 (en) A dual band photodetector and a method thereof
JP6080092B2 (en) Light receiving element, semiconductor epitaxial wafer, detection device, and method for manufacturing light receiving element
US9698297B2 (en) Light-receiving device and method for producing the same
US7755079B2 (en) Strained-layer superlattice focal plane array having a planar structure
WO2011089949A1 (en) Compound semiconductor light-receiving element array
US9105804B2 (en) Method for manufacturing light-receiving device and light-receiving device
US11205668B2 (en) Light receiving device, method of manufacturing light receiving device, imaging device, and electronic apparatus
JP2012256826A (en) Light-receiving element, semiconductor epitaxial wafer, manufacturing method therefor and detector
JP2012244124A (en) Light-receiving element array, manufacturing method therefor and detector
JP2013175686A (en) Light receiving element, process of manufacturing the same, and detecting device
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
JP2012216727A (en) Light receiving element, method for manufacturing the same, and detection device
WO2012161747A1 (en) Passivated upstanding nanostructures and methods of making the same
US7968963B2 (en) Photodiode array and image pickup device using the same
JP6589662B2 (en) Semiconductor laminate and light receiving element
JP2009283603A (en) Detection apparatus, light-receiving element array, and fabrication process therefor
JP6613923B2 (en) Semiconductor laminate, light receiving element, and method of manufacturing semiconductor laminate
JP6488855B2 (en) Semiconductor laminate, light receiving element, and method of manufacturing semiconductor laminate
JP2009170551A (en) Light-receiving element array, imaging device, and manufacturing method thereof
JP2009027046A (en) Light-receiving element
JP2009283601A (en) Detection apparatus, light-receiving element array, and fabrication process therefor
JP7516730B2 (en) Infrared sensor and light detection method
US20230114881A1 (en) Barrier Infrared Detector Architecture for Focal Plane Arrays
WO2012073934A1 (en) Light receiving element, semiconductor epitaxial wafer, method for manufacturing the light receiving element and the semiconductor epitaxial wafer, and detecting apparatus
JP2012191135A (en) Light-receiving element, method of manufacturing the same, and detection device