JP2009283558A - Solar cell, its method for manufacturing, and solar cell system equipped with it - Google Patents
Solar cell, its method for manufacturing, and solar cell system equipped with it Download PDFInfo
- Publication number
- JP2009283558A JP2009283558A JP2008132078A JP2008132078A JP2009283558A JP 2009283558 A JP2009283558 A JP 2009283558A JP 2008132078 A JP2008132078 A JP 2008132078A JP 2008132078 A JP2008132078 A JP 2008132078A JP 2009283558 A JP2009283558 A JP 2009283558A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solar cell
- photosilver
- plating
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、結晶シリコン基板を使用した高効率でかつ高湿環境下での特性劣化が抑えられた高信頼性の太陽電池およびその製造方法、それを備えた太陽電池システムに関する。さらに詳しくは、本発明は、低抵抗を促しかつ電極に非接触で焼成電極上に重覆されためっき電極を備えた太陽電池およびその製造方法、それを備えた太陽電池システムに関する。 The present invention relates to a highly reliable solar cell that uses a crystalline silicon substrate and that is highly reliable in which deterioration of characteristics under a high humidity environment is suppressed, a method for manufacturing the solar cell, and a solar cell system including the solar cell. More specifically, the present invention relates to a solar cell including a plating electrode that promotes low resistance and is covered with a fired electrode in a non-contact manner, and a manufacturing method thereof, and a solar cell system including the solar cell.
太陽光エネルギーを直接電気エネルギーに変換する太陽電池は、近年特に地球環境の観点から次世代のエネルギー源としての期待が急激に高まっている。
このような太陽電池には、シリコン半導体、化合物半導体、有機材料などの様々な材料を用いたものが開発されているが、現在、単結晶シリコンもしくは多結晶シリコンのシリコン半導体を用いた太陽電池が主流となっている。
図1(a)〜(f)は、従来の太陽電池の製造方法における製造工程の一例を示す概略断面図である。
In recent years, expectations for solar cells that directly convert solar energy into electrical energy have increased rapidly as a next-generation energy source particularly from the viewpoint of the global environment.
Such solar cells have been developed using various materials such as silicon semiconductors, compound semiconductors, and organic materials. Currently, solar cells using single crystal silicon or polycrystalline silicon silicon semiconductors are available. It has become mainstream.
FIG. 1A to FIG. 1F are schematic cross-sectional views illustrating an example of a manufacturing process in a conventional solar cell manufacturing method.
まず、図1(a)に示すように、予め第1導電型の原子(ドーパント)がドープされた単結晶もしくは多結晶のシリコン基板1を用意する。
次に、図1(b)に示すように、結晶シリコン基板1の受光面側に第2導電型のドーパントを含有する高濃度拡散層2を形成し、図1(c)に示すようなp−n接合3を得る。
First, as shown in FIG. 1A, a monocrystalline or polycrystalline silicon substrate 1 previously doped with atoms (dopants) of the first conductivity type is prepared.
Next, as shown in FIG. 1B, a high-concentration diffusion layer 2 containing a dopant of the second conductivity type is formed on the light-receiving surface side of the crystalline silicon substrate 1, and p as shown in FIG. -N junction 3 is obtained.
次に、図1(d)に示すように、例えば、プラズマCVD法(P−CVD法)などにより、結晶シリコン基板1上に反射防止膜4を形成する。
次に、図1(e)に示すように、例えば、スクリーン印刷法などにより、受光面側および非受光面側に電極材料を塗布し熱処理を施して、それぞれ表面焼成電極5および裏面焼成電極6を得る。
Next, as shown in FIG. 1D, an antireflection film 4 is formed on the crystalline silicon substrate 1 by, for example, a plasma CVD method (P-CVD method) or the like.
Next, as shown in FIG. 1E, for example, an electrode material is applied to the light-receiving surface side and the non-light-receiving surface side by a screen printing method or the like, and heat treatment is performed. Get.
この熱処理により、表面焼成電極5は、図1(e)に示すように反射防止膜4を貫通して、高濃度拡散層2と接触(ファイアスルー)し、裏面焼成電極6から第1導電型のドーパントが結晶シリコン基板1内に拡散して、BSF(Back Surface Field)層7が形成される。
BSF層7は、裏面焼成電極6近傍の半導体中にドーパントが高濃度に分布する層であり、裏面焼成電極6近傍に内蔵電界を形成し、その電界によって裏面焼成電極6近傍で生成された電子を半導体基板1の表面に向かって押し出して、表面再結合損失を抑制して、太陽電池の性能を向上させる。
By this heat treatment, the front surface fired electrode 5 penetrates the antireflection film 4 as shown in FIG. 1E and comes into contact with the high-concentration diffusion layer 2 (fire through). Are diffused into the crystalline silicon substrate 1 to form a BSF (Back Surface Field) layer 7.
The BSF layer 7 is a layer in which a dopant is distributed at a high concentration in a semiconductor near the backside firing electrode 6, forms a built-in electric field near the backside firing electrode 6, and generates electrons near the backside firing electrode 6 by the electric field. Is pushed toward the surface of the semiconductor substrate 1 to suppress surface recombination loss and improve the performance of the solar cell.
このようにして製造された太陽電池の光電変換効率(単に「変換効率」ともいう)を向上させる方法としては、例えば、表面焼成電極5におけるシャドウロスを低減させる方法、例えば、表面焼成電極5の微細化が挙げられる。
現在、主流であるシリコン半導体を用いた太陽電池における表面焼成電極5の電極幅は100μm〜程度であり、これを〜70μm程度にすることにより、シャドウロスの低減が見込まれ、変換効率の向上を達成できる。しかしながら、表面焼成電極5の微細化に伴い、導体抵抗損失、すなわち直流抵抗成分の増大を招き、短絡電流が低下し、太陽電池の高変換効率化と相反する結果が得られてしまう。
As a method for improving the photoelectric conversion efficiency (also simply referred to as “conversion efficiency”) of the solar cell thus manufactured, for example, a method for reducing shadow loss in the surface fired electrode 5, for example, the surface fired electrode 5 One example is miniaturization.
At present, the electrode width of the surface firing electrode 5 in the solar cell using the silicon semiconductor which is the mainstream is about 100 μm to about 70 μm, and by reducing the width to about 70 μm, the reduction of shadow loss is expected and the conversion efficiency is improved. Can be achieved. However, with the miniaturization of the surface-fired electrode 5, the conductor resistance loss, that is, the direct current resistance component is increased, the short-circuit current is reduced, and a result contradicting the high conversion efficiency of the solar cell is obtained.
この問題を解決する一施策として、例えば、A.Metteら、「Increasing the Efficiency of Screen-Printed Silicon Solar Cells by Light-Induced Silver Plating」、2006 IEEE 4th WCPEC, Hawaii(非特許文献1)、特開2004−266023号公報(特許文献1)および特開2004−193337号公報(特許文献2)に記載されているような「光銀めっき法」が挙げられる。 As one measure to solve this problem, for example, A.Mette et al., "Increasing the Efficiency of Screen-Printed Silicon Solar Cells by Light-Induced Silver Plating ", 2006 IEEE 4 th WCPEC, Hawaii ( Non-Patent Document 1), Japanese Examples thereof include “photosilver plating” as described in Japanese Unexamined Patent Application Publication No. 2004-266023 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2004-193337 (Patent Document 2).
図2は、光銀めっき法の原理を示す概略図である。
この光銀めっき法によれば、例えば、水酸化カリウムを主成分とするめっき液13を介して光11(蛍光灯光)を照射することで、光起電力効果により表面焼成電極5が負電位になり、さらにめっき液13内の裏面焼成電極6に対して正電位バイアスされた銀棒12から銀イオンが析出し、表面焼成電極5が銀棒12と非接触で表面焼成電極5上に緻密かつ純度の高い光銀めっき層(図示せず、図3の図番8参照)が形成され、その結果、電極抵抗が低減される。
図2中の他の図番1は結晶シリコン基板、4は反射防止膜、9はカソード電極ローラー、10はコンベアローラー、16は可変直流電源を示す。
FIG. 2 is a schematic view showing the principle of the photosilver plating method.
According to this photosilver plating method, for example, by irradiating light 11 (fluorescent lamp light) through a plating solution 13 containing potassium hydroxide as a main component, the surface firing electrode 5 is brought to a negative potential due to the photovoltaic effect. Further, silver ions are deposited from the silver bar 12 that is positively biased with respect to the back-surface fired electrode 6 in the plating solution 13, and the surface-fired electrode 5 is densely placed on the surface-fired electrode 5 without contact with the silver bar 12. A high-purity photosilver plating layer (not shown, see FIG. 3 in FIG. 3) is formed, and as a result, the electrode resistance is reduced.
In FIG. 2, reference numeral 1 denotes a crystalline silicon substrate, 4 denotes an antireflection film, 9 denotes a cathode electrode roller, 10 denotes a conveyor roller, and 16 denotes a variable DC power source.
本発明の発明者が実際に実験機で上記の光銀めっき法を試みたところ、銀めっき後の太陽電池の最大出力Pmは、銀めっきしないものと比較して3.5%向上するという結果が得られた。
しかしながら、この光銀めっき法で電極に銀めっきを施した太陽電池を高湿環境下に曝露すると、太陽電池特性が劣化する傾向が認められた。本発明の発明者がこの原因を究明したところ、図3に示すように、等方的に成長するめっきの端部、すなわちめっき張り出し部(めっきひさし部)14にめっき液が残留し、その残留めっき液13−1が表面焼成電極5と反射防止膜4(結晶シリコン基板界面)に悪影響を及ぼし、太陽電池の特性低下を引き起こしていることが推察された。
When the inventor of the present invention actually tried the above-described photosilver plating method with an experimental machine, the result was that the maximum output Pm of the solar cell after silver plating was improved by 3.5% compared to that without silver plating. was gotten.
However, when a solar cell in which the electrode is silver-plated by this photosilver plating method is exposed to a high-humidity environment, the solar cell characteristics tend to deteriorate. When the inventor of the present invention investigated the cause, as shown in FIG. 3, the plating solution remains at the end of the plating that grows isotropically, that is, the plating overhang (plating eaves) 14, and the residue It was inferred that the plating solution 13-1 had an adverse effect on the surface fired electrode 5 and the antireflection film 4 (crystal silicon substrate interface), and caused a deterioration in the characteristics of the solar cell.
本発明は、光銀めっき処理後の太陽電池における、高湿環境下での特性劣化に起因するめっき張り出し部を除去した高効率でかつ高信頼性の太陽電池およびその製造方法を提供することを課題とする。 The present invention provides a high-efficiency and high-reliability solar cell from which a plating overhang caused by characteristic deterioration in a high-humidity environment has been removed in a solar cell after photosilver plating treatment and a method for producing the same. Let it be an issue.
本発明者は上記の課題を解決すべく鋭意研究を行った結果、表面焼成電極(下地電極)上に重覆される光銀めっき電極の幅を狭くし、めっき液の残留を防ぐことにより、高効率でかつ高信頼性の太陽電池が得られることを見出し、本発明を完成するに到った。 As a result of diligent research to solve the above-mentioned problems, the present inventor narrowed the width of the photosilver plating electrode overlaid on the surface firing electrode (underlying electrode), thereby preventing the plating solution from remaining. It has been found that a highly efficient and highly reliable solar cell can be obtained, and the present invention has been completed.
かくして、本発明によれば、
(1)第1導電型の結晶シリコン基板の受光面側に第2導電型の高濃度拡散層を形成する工程、
(2)前記第2導電型の高濃度拡散層上に反射防止膜を形成する工程、
(3)前記反射防止膜上および前記結晶シリコン基板の非受光面側に電極材料を塗布し、得られた塗膜を熱処理に付して、それぞれ表面電極を構成する表面焼成電極および裏面電極となる裏面焼成電極を形成する工程、
(4)光銀めっき法により前記表面焼成電極に重覆するように光銀めっき層を形成して、表面焼成電極および光銀めっき層からなる表面電極を得る工程、
(5)前記光銀めっき層に重覆するように樹脂材料でマスクを形成する工程、
(6)光銀めっき法により前記光銀めっき層の端部の張り出し部を電気的に剥離する工程、および
(7)前記マスクを剥離する工程
を含むことを特徴とする太陽電池の製造方法が提供される。
Thus, according to the present invention,
(1) forming a second conductivity type high-concentration diffusion layer on the light-receiving surface side of the first conductivity type crystalline silicon substrate;
(2) forming an antireflection film on the high-concentration diffusion layer of the second conductivity type;
(3) An electrode material is applied on the antireflection film and on the non-light-receiving surface side of the crystalline silicon substrate, the obtained coating film is subjected to a heat treatment, and a surface fired electrode and a back electrode respectively constituting the surface electrode; Forming a back-fired electrode,
(4) A step of forming a photosilver plating layer so as to overlap the surface firing electrode by a photosilver plating method to obtain a surface electrode composed of the surface firing electrode and the photosilver plating layer;
(5) forming a mask with a resin material so as to overlap the photosilver plating layer;
(6) A step of electrically peeling off the overhanging portion of the end of the photosilver plating layer by a photosilver plating method, and (7) a method of producing a solar cell, comprising the step of peeling off the mask. Provided.
また、本発明によれば、上記の太陽電池の製造方法により得られた、
第1導電型の結晶シリコン基板の受光面側に第2導電型の高濃度拡散層、反射防止膜および表面電極を、前記結晶シリコン基板の非受光面側に裏面電極を備え、
前記表面電極が、塗布および熱処理により形成された表面焼成電極および光銀めっき法により前記焼成電極に重覆するように形成された光銀めっき層からなり、かつマスク形成および剥離処理により前記光銀めっき層の端部の張り出し部が除去されてなる
ことを特徴とする太陽電池が提供される。
Moreover, according to the present invention, obtained by the above solar cell manufacturing method,
A second conductivity type high-concentration diffusion layer, an antireflection film and a surface electrode on the light receiving surface side of the first conductivity type crystalline silicon substrate, and a back electrode on the non-light receiving surface side of the crystal silicon substrate;
The surface electrode comprises a surface fired electrode formed by coating and heat treatment and a photosilver plating layer formed so as to overlap the fired electrode by a photosilver plating method, and the photosilver is formed by mask formation and peeling treatment. A solar cell is provided in which the protruding portion at the end of the plating layer is removed.
さらに、本発明によれば、上記の太陽電池を備えることを特徴とする太陽電池システムが提供される。 Furthermore, according to this invention, a solar cell system characterized by including said solar cell is provided.
本発明によれば、光銀めっき処理後の太陽電池における、高湿環境下での特性劣化に起因するめっき張り出し部を除去した高効率でかつ高信頼性の太陽電池およびその製造方法を提供することができる。
すなわち、本発明によれば、結晶シリコン基板を用いた太陽電池において、光銀めっき法による電極アスペクト比向上による出力向上(高効率化)と、光銀めっき層の端部の張り出し部の除去による長期信頼性確保を実現することができる。
また、本発明によれば、結晶シリコン基板を用いた太陽電池の従来の製造プロセスに、周知の光銀めっき法を組み合わせるという現行の製造プロセスを生かしつつ、ワット単価に見合った太陽電池および太陽電池システムを量産することができる。
According to the present invention, there is provided a highly efficient and highly reliable solar cell from which a plating overhang caused by characteristic deterioration in a high-humidity environment is removed in a solar cell after photosilver plating, and a method for manufacturing the solar cell. be able to.
That is, according to the present invention, in a solar cell using a crystalline silicon substrate, the output is improved (higher efficiency) by improving the electrode aspect ratio by the photosilver plating method, and the protruding portion at the end of the photosilver plating layer is removed. Long-term reliability can be ensured.
In addition, according to the present invention, a solar cell and a solar cell that meet the unit price of watts while utilizing the existing manufacturing process of combining a known photosilver plating method with a conventional manufacturing process of a solar cell using a crystalline silicon substrate The system can be mass-produced.
本発明の太陽電池の製造方法は、
(1)第1導電型の結晶シリコン基板の受光面側に第2導電型の高濃度拡散層を形成する工程、
(2)前記第2導電型の高濃度拡散層上に反射防止膜を形成する工程、
(3)前記反射防止膜上および前記結晶シリコン基板の非受光面側に電極材料を塗布し、得られた塗膜を熱処理に付して、それぞれ表面電極を構成する表面焼成電極および裏面電極となる裏面焼成電極を形成する工程、
(4)光銀めっき法により前記表面焼成電極に重覆するように光銀めっき層を形成して、表面焼成電極および光銀めっき層からなる表面電極を得る工程、
(5)前記光銀めっき層に重覆するように樹脂材料でマスクを形成する工程、
(6)光銀めっき法により前記光銀めっき層の端部の張り出し部を電気的に剥離する工程、および
(7)前記マスクを剥離する工程
を含むことを特徴とする。
The method for producing the solar cell of the present invention comprises:
(1) forming a second conductivity type high-concentration diffusion layer on the light-receiving surface side of the first conductivity type crystalline silicon substrate;
(2) forming an antireflection film on the high-concentration diffusion layer of the second conductivity type;
(3) An electrode material is applied on the antireflection film and on the non-light-receiving surface side of the crystalline silicon substrate, the obtained coating film is subjected to a heat treatment, and a surface fired electrode and a back electrode respectively constituting the surface electrode; Forming a back-fired electrode,
(4) A step of forming a photosilver plating layer so as to overlap the surface firing electrode by a photosilver plating method to obtain a surface electrode composed of the surface firing electrode and the photosilver plating layer;
(5) forming a mask with a resin material so as to overlap the photosilver plating layer;
(6) A step of electrically peeling off the protruding portion at the end of the photosilver plating layer by a photosilver plating method, and (7) a step of peeling off the mask.
本発明の太陽電池の製造方法を、図面を用いて説明するが、この説明により本発明が限定されるものではない。
図1(a)〜(g)および図4(h)〜(j)は、本発明の太陽電池の製造方法における製造工程の一例を示す概略断面図である。図1(a)〜(f)は、従来の太陽電池の製造方法における製造工程と重複する。以下、各工程について詳細に説明する。
Although the manufacturing method of the solar cell of this invention is demonstrated using drawing, this invention is not limited by this description.
1 (a) to 1 (g) and FIGS. 4 (h) to (j) are schematic cross-sectional views illustrating an example of a manufacturing process in the method for manufacturing a solar cell of the present invention. 1A to 1F overlap with the manufacturing steps in the conventional solar cell manufacturing method. Hereinafter, each step will be described in detail.
(1)第1導電型の結晶シリコン基板1の受光面側に第2導電型の高濃度拡散層2を形成する工程
図1(a)に示すような結晶シリコン基板1は、単結晶シリコン基板、多結晶シリコン基板のいずれであってもよく、その抵抗値や単結晶の場合の結晶方位などは特に限定されない。また、導電型はp型、n型のいずれであってもよいが、例えば、第1導電型のドーパントとしてAlがドープされたp型結晶シリコン基板が用いられることが多い。
また、結晶シリコン基板1は、光閉じ込め効果を持たせるために、適当なエッチャントを用いてエッチングが施され、その表面に数μm程度の微細な凹凸を有しているのが好ましい。
結晶シリコン基板1の厚さは、0.16〜0.2mm程度である。
(1) Step of forming second conductivity type high-concentration diffusion layer 2 on the light-receiving surface side of first conductivity type crystal silicon substrate 1 Crystal silicon substrate 1 as shown in FIG. Any of the polycrystalline silicon substrates may be used, and the resistance value and the crystal orientation in the case of a single crystal are not particularly limited. The conductivity type may be either p-type or n-type. For example, a p-type crystal silicon substrate doped with Al as the first conductivity type dopant is often used.
The crystalline silicon substrate 1 is preferably etched using a suitable etchant to have a light confinement effect, and has fine irregularities of about several μm on the surface.
The thickness of the crystalline silicon substrate 1 is about 0.16 to 0.2 mm.
図1(b)に示すように、結晶シリコン基板1の受光面側に、公知の方法により、高濃度拡散層2を形成する。例えば、p型の結晶シリコン基板を用いる場合には、n型のドーパントとしてリンを含有する水溶液(例えば、リン酸水溶液)を塗布し、加熱して結晶シリコン基板1にリンを含有するシリコン化合物材料からなる高濃度拡散層2を形成し、図1(c)に示すようなp−n接合3を得る。 As shown in FIG. 1B, a high concentration diffusion layer 2 is formed on the light receiving surface side of the crystalline silicon substrate 1 by a known method. For example, when a p-type crystalline silicon substrate is used, a silicon compound material containing phosphorus in the crystalline silicon substrate 1 by applying an aqueous solution containing phosphorus as an n-type dopant (for example, an aqueous phosphoric acid solution) and heating. A high-concentration diffusion layer 2 is formed to obtain a pn junction 3 as shown in FIG.
リン酸(H3PO4)水溶液は、リン酸と純水とを混合することにより調製することができ、そのリン酸濃度は1〜12重量%が好ましく、加熱後に形成されるn型半導体層のウエハ面内の均一性を良好にすることを考慮すると2〜8重量%が特に好ましい。
リン酸水溶液の塗布方法は、公知の方法を適用できる。例えば、スプレー法、スピンコート法、ロールコート法などが挙げられ、溶液を比較的簡単にウエハ面内に均一に塗布できるという点でスピンコート法が特に好ましい。
The phosphoric acid (H 3 PO 4 ) aqueous solution can be prepared by mixing phosphoric acid and pure water, and the phosphoric acid concentration is preferably 1 to 12% by weight, and the n-type semiconductor layer formed after heating Considering to improve the uniformity in the wafer surface, 2 to 8% by weight is particularly preferable.
A known method can be applied as a method of applying the phosphoric acid aqueous solution. For example, a spray method, a spin coating method, a roll coating method and the like can be mentioned, and the spin coating method is particularly preferable in that the solution can be uniformly applied on the wafer surface relatively easily.
加熱方法としては、例えば、結晶シリコン基板1を温度150〜300℃で加熱し、リン酸水溶液の塗膜を乾燥させた後、温度700〜1000℃の高温炉で加熱するのが好ましい。高温炉での加熱により、結晶シリコン基板1の表面に付着したリン酸のリン原子が結晶シリコン基板1に拡散する。 As a heating method, for example, it is preferable to heat the crystalline silicon substrate 1 at a temperature of 150 to 300 ° C., dry the phosphoric acid aqueous solution coating film, and then heat it in a high temperature furnace at a temperature of 700 to 1000 ° C. Due to the heating in the high temperature furnace, phosphorus atoms of phosphoric acid adhering to the surface of the crystalline silicon substrate 1 diffuse into the crystalline silicon substrate 1.
また、上記のリン酸水溶液の代わりに、単結晶シリコン基板ではリンチタングラス(PTG)、多結晶シリコン基板ではリンシリサイドグラス(PSG)を含む溶液を用いてもよい。
高濃度拡散層2の膜厚は、0.1〜0.5μm程度である。
p−n接合3の形成後、反射防止膜4の形成前に、結晶シリコン基板1表面の金属不純物を除去するために、HF洗浄処理を施すのが好ましい。
Further, instead of the above phosphoric acid aqueous solution, a solution containing phosphotitanium glass (PTG) may be used for a single crystal silicon substrate, and phosphorus silicide glass (PSG) may be used for a polycrystalline silicon substrate.
The film thickness of the high-concentration diffusion layer 2 is about 0.1 to 0.5 μm.
In order to remove metal impurities on the surface of the crystalline silicon substrate 1 after the formation of the pn junction 3 and before the formation of the antireflection film 4, it is preferable to perform an HF cleaning process.
(2)第2導電型の高濃度拡散層2上に反射防止膜4を形成する工程
図1(d)に示すように、太陽光などの光を有効に取り込むために、第2導電型の高濃度拡散層2上に反射防止膜(「表面反射膜」ともいう)4を形成する。
反射防止膜の材料は、公知の材料を適用できる。例えば、酸化シリコン、窒化シリコン、炭化シリコン、酸化チタンなどが挙げられ、これらの中でも汎用されている窒化シリコンが特に好ましい。
その形成方法は、公知の方法を適用できる。例えば、プラズマCVD法(P−CVD法)、触媒CVD法などが挙げられ、連続処理が可能で、量産に適したP−CVD法が特に好ましい。
(2) Step of forming the antireflection film 4 on the second conductivity type high-concentration diffusion layer 2 As shown in FIG. 1D, in order to effectively capture light such as sunlight, the second conductivity type An antireflection film (also referred to as “surface reflection film”) 4 is formed on the high concentration diffusion layer 2.
A known material can be applied as the material of the antireflection film. For example, silicon oxide, silicon nitride, silicon carbide, titanium oxide and the like can be mentioned, and among these, silicon nitride which is widely used is particularly preferable.
A known method can be applied as the formation method. For example, a plasma CVD method (P-CVD method), a catalytic CVD method, and the like can be given, and a P-CVD method that can be continuously processed and is suitable for mass production is particularly preferable.
例えば、P−CVD法により反射防止膜4として窒化シリコン膜を形成する条件は、反応室の形状などにより適宜設定すればよいが、例えば、モノシラン10〜500sccm、アンモニア10〜1000sccmおよび窒素50〜1000sccmの混合ガスの場合、圧力10〜200Pa、温度200〜600℃の範囲であるのが望ましい。このような形成条件であれば、窒化シリコン膜に優れた特性を付与することができる。
反射防止膜の厚さは、膜の屈折率や結晶シリコン基板1の表面凹凸の大きさにより適宜設定すればよいが、通常60〜100nm程度である。
For example, the conditions for forming the silicon nitride film as the antireflection film 4 by the P-CVD method may be appropriately set depending on the shape of the reaction chamber, etc. For example, monosilane 10 to 500 sccm, ammonia 10 to 1000 sccm, and nitrogen 50 to 1000 sccm. In the case of the mixed gas, it is desirable that the pressure is in the range of 10 to 200 Pa and the temperature is in the range of 200 to 600 ° C. Under such formation conditions, excellent characteristics can be imparted to the silicon nitride film.
The thickness of the antireflection film may be appropriately set according to the refractive index of the film and the size of the surface irregularities of the crystalline silicon substrate 1, but is usually about 60 to 100 nm.
(3)反射防止膜4上および結晶シリコン基板1の非受光面側に電極材料を塗布し、得られた塗膜を熱処理に付して、それぞれ表面焼成電極を構成する表面焼成電極5および裏面焼成電極となる裏面焼成電極6を形成する工程
図1(e)に示すように、反射防止膜4上に、表面焼成電極5を形成する。
その材料および形成方法は、公知の材料および方法を適用できる。例えば、スクリーン印刷法により、銀粉末、ガラス粉末、有機質ビヒクルおよび有機溶媒とを主成分とする導電性ペーストを反射防止膜上に塗布(印刷)し、温度100〜400℃で乾燥させる。
そのパターンは特に限定されず、一般に太陽電池に用いられるパターンであれば特に限定されない。例えば、魚骨型(櫛形状)が挙げられ、その幅は、パターンにもよるが、通常100〜160μm程度である。
(3) An electrode material is applied on the antireflection film 4 and on the non-light-receiving surface side of the crystalline silicon substrate 1, and the obtained coating film is subjected to a heat treatment to form a surface fired electrode 5 and a back surface, respectively, constituting the surface fired electrode Step of Forming Backside Burning Electrode 6 that Becomes a Firing Electrode As shown in FIG. 1E, a surface firing electrode 5 is formed on the antireflection film 4.
Known materials and methods can be applied as the material and formation method. For example, a conductive paste mainly composed of silver powder, glass powder, organic vehicle, and organic solvent is applied (printed) on the antireflection film by screen printing, and dried at a temperature of 100 to 400 ° C.
The pattern is not particularly limited, and is not particularly limited as long as it is a pattern generally used for solar cells. For example, a fish bone type (comb shape) is mentioned, and the width is usually about 100 to 160 μm although it depends on the pattern.
また、図1(e)に示すように、結晶シリコン基板1の非受光面側に、裏面焼成電極6を形成する。この裏面焼成電極5は、結晶シリコン基板1内で発生したキャリアを電流として取り出すために利用される。
その材料および形成方法は、公知の材料および方法を適用できる。例えば、スクリーン印刷法により、アルミニウム粉末などを含んだ導電性ペーストを太陽電池の裏面全面に塗布(印刷)し、温度100〜400℃で乾燥させる。スクリーン印刷法は量産レベルにおいてはコストを低減できるので好ましい。
Further, as shown in FIG. 1 (e), a back-surface fired electrode 6 is formed on the non-light-receiving surface side of the crystalline silicon substrate 1. The back-fired electrode 5 is used for taking out the carriers generated in the crystalline silicon substrate 1 as a current.
Known materials and methods can be applied as the material and formation method. For example, a conductive paste containing aluminum powder or the like is applied (printed) to the entire back surface of the solar cell by screen printing and dried at a temperature of 100 to 400 ° C. The screen printing method is preferable because the cost can be reduced at the mass production level.
表面焼成電極5および裏面焼成電極6となる塗膜を形成した後、図1(f)に示すように、結晶シリコン基板1を焼成処理に付して、表面焼成電極5および裏面焼成電極6を得、表面焼成電極5のファイアスルーおよび結晶シリコン基板1と裏面焼成電極6との界面にBSF(Back Surface Field)層7を同時に形成する。
ファイアスルーとは、結晶シリコン基板1を焼成する際に、表面焼成電極5に添加されているガラス粉末の作用で反射防止膜4が破られることによって起こる現象である。これにより表面焼成電極5を結晶シリコン基板1の高濃度拡散層2に接触させることができる。
After forming the coating film to be the front firing electrode 5 and the back firing electrode 6, as shown in FIG. 1 (f), the crystalline silicon substrate 1 is subjected to a firing treatment to form the front firing electrode 5 and the back firing electrode 6. A BSF (Back Surface Field) layer 7 is simultaneously formed at the fire through surface firing electrode 5 and at the interface between the crystalline silicon substrate 1 and the back firing electrode 6.
The fire-through is a phenomenon that occurs when the antireflection film 4 is broken by the action of the glass powder added to the surface firing electrode 5 when the crystalline silicon substrate 1 is fired. Thereby, the surface firing electrode 5 can be brought into contact with the high concentration diffusion layer 2 of the crystalline silicon substrate 1.
裏面焼成電極6は、結晶シリコン基板1を焼成する際に、裏面焼成電極に含まれるアルミニウムの一部が結晶シリコン基板1に拡散された領域のことであり、これにより結晶シリコン基板1内部で発生したキャリアの収集効率を向上させることができる。
焼成条件は、温度600〜900℃の範囲、焼成時間1〜300秒間程度が好ましい。
表面焼成電極5および裏面焼成電極6の厚さは、通常10〜60μm程度である。
The back-side fired electrode 6 is a region in which a part of aluminum contained in the back-side fired electrode is diffused into the crystal silicon substrate 1 when the crystal silicon substrate 1 is fired. It is possible to improve the collection efficiency of careers.
The firing conditions are preferably a temperature range of 600 to 900 ° C. and a firing time of about 1 to 300 seconds.
The thickness of the surface firing electrode 5 and the back surface firing electrode 6 is usually about 10 to 60 μm.
(4)光銀めっき法により表面焼成電極5に重覆するように光銀めっき層8を形成して、表面焼成電極および光銀めっき層からなる表面電極を得る工程
図2に示すような「光銀めっき法」により、図1(g)に示すように、表面焼成電極5上に光銀めっき層8を形成する。光銀めっき層8の膜厚(めっき厚)は、2.0〜6.0μm程度である。
光銀めっき法では、例えば、水酸化カリウムを主成分とするめっき液13を介して光11(蛍光灯光)を照射することで、光起電力効果により表面焼成電極5が負電位になり、さらにめっき液13内に裏面焼成電極6に対して正電位バイアスされた銀棒12から銀イオンが析出し、表面焼成電極5が銀棒12と非接触で表面焼成電極5上に緻密かつ純度の高い光銀めっき層8が形成される。
(4) Step of forming a photosilver plating layer 8 so as to overlap the surface fired electrode 5 by a photosilver plating method to obtain a surface electrode composed of the surface fired electrode and the photosilver plating layer as shown in FIG. As shown in FIG. 1 (g), a photosilver plating layer 8 is formed on the surface firing electrode 5 by the “photosilver plating method”. The film thickness (plating thickness) of the photosilver plating layer 8 is about 2.0 to 6.0 μm.
In the photosilver plating method, for example, by irradiating light 11 (fluorescent lamp light) through a plating solution 13 containing potassium hydroxide as a main component, the surface firing electrode 5 becomes a negative potential due to the photovoltaic effect. Silver ions are precipitated from the silver bar 12 that is positively biased with respect to the back-surface fired electrode 6 in the plating solution 13, and the surface fired electrode 5 is dense and highly pure on the surface fired electrode 5 without contact with the silver bar 12. A photosilver plating layer 8 is formed.
(5)光銀めっき層8に重覆するように樹脂材料でマスク15を形成する工程(マスク処理工程)
図4(h)に示すように、光銀めっき層8上に、表面焼成電極5と同程度またはやや狭い幅のマスク15を形成する。光銀めっき層8の幅は、表面焼成電極5の幅の0.02〜0.085倍程度である。
樹脂材料は、公知の材料を適用でき、これらに中でも、ポリビニルアルコール、ポリ酢酸ビニル、エポキシ樹脂およびアルカリ耐性のめっきレジスト材が特に好ましい。
マスクの形成方法は、公知の方法を適用でき、これらに中でも、スクリーン印刷法、インクジェット印刷法および粘着テープ貼付が特に好ましい。
(5) A step of forming the mask 15 with a resin material so as to overlap the photosilver plating layer 8 (mask processing step)
As shown in FIG. 4 (h), a mask 15 having the same or slightly narrower width as the surface firing electrode 5 is formed on the photosilver plating layer 8. The width of the photosilver plating layer 8 is about 0.02 to 0.085 times the width of the surface firing electrode 5.
As the resin material, known materials can be applied, and among these, polyvinyl alcohol, polyvinyl acetate, epoxy resin, and alkali-resistant plating resist material are particularly preferable.
As a method for forming the mask, known methods can be applied, and among these, a screen printing method, an ink jet printing method, and adhesive tape sticking are particularly preferable.
(6)光銀めっき法により光銀めっき層8の端部の張り出し部14を電気的に剥離する工程(めっき張り出し部除去処理工程)
図2に示すような「光銀めっき法」により、図4(i)に示すように、表面焼成電極5および光銀めっき層8からなる表面焼成電極に対する銀棒12のバイアスを負電位とし、めっき張り出し部14を電気的に剥離(ストリッピング)する。
(6) Step of electrically peeling off the overhanging portion 14 at the end of the photosilver plating layer 8 by the photosilver plating method (plating overhanging portion removing treatment step)
With the “photosilver plating method” as shown in FIG. 2, as shown in FIG. 4 (i), the bias of the silver bar 12 with respect to the surface fired electrode composed of the surface fired electrode 5 and the photosilver plating layer 8 is set to a negative potential, The plating overhanging portion 14 is electrically peeled off (stripped).
(7)マスク15を剥離する工程(マスク剥離処理工程)
最後に、図4(j)に示すように、公知の方法によりマスクを剥離する。これらの中でも、有機剥離とアセトン洗浄との組み合わせまたは直接剥離であるのが好ましい。
(7) Process of peeling the mask 15 (mask peeling process)
Finally, as shown in FIG. 4J, the mask is peeled off by a known method. Among these, a combination of organic peeling and acetone cleaning or direct peeling is preferable.
以上の工程により得られる太陽電池は、(A)表面焼成電極5の高さ方向の面積が拡大されてアスペクト比が高まり、電流が流れ易くなり、(B)めっきの張り出し部14が除去されることにより、シャドウロスが光銀めっき処理前と同程度であり、(C)めっき張り出し部14のめっき液残留13−1がなくなることにより、太陽電池の高湿環境下での特性劣化を抑えることができる。 In the solar cell obtained by the above steps, (A) the area in the height direction of the surface fired electrode 5 is enlarged, the aspect ratio is increased, current flows easily, and (B) the plating overhanging portion 14 is removed. Therefore, the shadow loss is about the same as that before the photosilver plating treatment, and (C) the plating solution residual 13-1 of the plating overhanging portion 14 is eliminated, thereby suppressing the deterioration of characteristics of the solar cell in a high humidity environment. Can do.
本発明の太陽電池は、上記の太陽電池の製造方法により得られ、
第1導電型の結晶シリコン基板の受光面側に第2導電型の高濃度拡散層、反射防止膜および表面電極を、前記結晶シリコン基板の非受光面側に裏面電極を備え、
前記表面電極が、塗布および熱処理により形成された表面焼成電極および光銀めっき法により前記焼成電極に重覆するように形成された光銀めっき層からなり、かつマスク形成および剥離処理により前記光銀めっき層の端部の張り出し部が除去されてなることを特徴とする。
The solar cell of the present invention is obtained by the above solar cell production method,
A second conductivity type high-concentration diffusion layer, an antireflection film and a surface electrode on the light receiving surface side of the first conductivity type crystalline silicon substrate, and a back electrode on the non-light receiving surface side of the crystal silicon substrate;
The surface electrode comprises a surface fired electrode formed by coating and heat treatment and a photosilver plating layer formed so as to overlap the fired electrode by a photosilver plating method, and the photosilver is formed by mask formation and peeling treatment. The overhanging portion at the end of the plating layer is removed.
また、本発明の太陽電池システムは、上記の太陽電池を備えることを特徴とする。
このような太陽電池システムとしては、本発明の太陽電池を直列および/または並列に接続したモジュールを用いた太陽電池パネル、ソーラー照明灯、インフォメーションディスプレーなどが挙げられる。
Moreover, the solar cell system of this invention is equipped with said solar cell, It is characterized by the above-mentioned.
Examples of such a solar cell system include a solar cell panel, a solar illumination lamp, and an information display using a module in which the solar cells of the present invention are connected in series and / or in parallel.
本発明を実施例および比較例によりさらに具体的に説明するが、実施例により本発明が限定されるものではない。 The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples.
(実施例1)
図1(a)〜(g)および図4(h)〜(j)に示す工程により、本発明の太陽電池を作製した。
まず、図1(a)に示すような、厚さ0.2mm程度のp型多結晶シリコン基板1を用意した。
次いで、図1(b)に示すように、p型多結晶シリコン基板1の受光面側に、スピンコート法によりリンシリサイドグラス(PSG)を含む溶液を塗布し、約900℃で60分間の熱処理を施して、p型結晶シリコン基板1中にn型のドーパントとしてリンを拡散させて、膜厚0.3μm程度の高濃度拡散層2を形成し、図1(c)に示すようなp−n接合3を得た。
次いで、表面の金属不純物を除去するために、HF洗浄処理を施した。
Example 1
The solar cell of this invention was produced according to the process shown to Fig.1 (a)-(g) and FIG.4 (h)-(j).
First, a p-type polycrystalline silicon substrate 1 having a thickness of about 0.2 mm as shown in FIG.
Next, as shown in FIG. 1B, a solution containing phosphorus silicide glass (PSG) is applied to the light-receiving surface side of the p-type polycrystalline silicon substrate 1 by spin coating, and heat treatment is performed at about 900 ° C. for 60 minutes. And phosphorus is diffused as an n-type dopant in the p-type crystalline silicon substrate 1 to form a high-concentration diffusion layer 2 having a film thickness of about 0.3 μm. As shown in FIG. An n-junction 3 was obtained.
Next, in order to remove metal impurities on the surface, HF cleaning treatment was performed.
次いで、図1(d)に示すように、P−CVD装置の真空室内で、p型多結晶シリコン基板1上に、膜厚約70nmの窒化シリコン膜からなる反射防止膜4を形成した。
反射防止膜4の成膜時の混合ガス流量比は、モノシラン:アンモニア:窒素=1:2:12とした。また、その他の成膜条件は、周波数13.56MHz、成膜圧力100Pa、成膜温度450℃、成膜時間225秒とした。
Next, as shown in FIG. 1D, an antireflection film 4 made of a silicon nitride film having a thickness of about 70 nm was formed on the p-type polycrystalline silicon substrate 1 in the vacuum chamber of the P-CVD apparatus.
The mixed gas flow rate ratio during the formation of the antireflection film 4 was monosilane: ammonia: nitrogen = 1: 2: 12. The other film formation conditions were a frequency of 13.56 MHz, a film formation pressure of 100 Pa, a film formation temperature of 450 ° C., and a film formation time of 225 seconds.
次いで、図1(e)に示すように、スクリーン印刷法によりp型多結晶シリコン基板1の反射防止膜4上に、銀粉末、ガラス粉末、有機質ビヒクルおよび有機溶媒を主成分とする銀ペーストを魚骨型のパターンで印刷し、温度150℃で十分に乾燥させて、厚さ30μmの層を形成した。なお、魚骨型のパターンは、バスバー電極(メイングリッド)とフィンガー電極(サブグリッド)とで形成されており、フィンガー電極が2本のバスバー電極に垂直に配置されているものを用いた。 Next, as shown in FIG. 1E, a silver paste mainly composed of silver powder, glass powder, organic vehicle and organic solvent is applied on the antireflection film 4 of the p-type polycrystalline silicon substrate 1 by screen printing. It printed with the fish-bone type pattern, and it dried sufficiently at the temperature of 150 degreeC, and formed the 30-micrometer-thick layer. In addition, the fish-bone type pattern used was formed by bus bar electrodes (main grid) and finger electrodes (sub grid), and the finger electrodes were arranged perpendicular to the two bus bar electrodes.
次いで、図1(e)に示すように、スクリーン印刷法によりp型多結晶シリコン基板1の非受光面側にアルミニウムペーストを印刷し、温度150℃で十分に乾燥させて、厚さ40μmの層を形成した。
次いで、近赤外線炉を用いてp型多結晶シリコン基板1を温度850℃で120秒間焼成処理に付して、電極高さ25μm、幅100μmの表面焼成電極5および電極厚さ60μmの裏面焼成電極6を形成し、図1(f)に示すように、表面焼成電極5のファイアスルーおよびp型多結晶シリコン基板1と裏面焼成電極6との界面にBSF層7を形成した。
Next, as shown in FIG. 1E, an aluminum paste is printed on the non-light-receiving surface side of the p-type polycrystalline silicon substrate 1 by a screen printing method and sufficiently dried at a temperature of 150 ° C. to form a layer having a thickness of 40 μm. Formed.
Next, the p-type polycrystalline silicon substrate 1 is subjected to a baking process at a temperature of 850 ° C. for 120 seconds using a near-infrared furnace, and a surface baking electrode 5 having an electrode height of 25 μm and a width of 100 μm and a backside baking electrode having an electrode thickness of 60 μm. As shown in FIG. 1 (f), a BSF layer 7 was formed at the fire-through of the front surface fired electrode 5 and at the interface between the p-type polycrystalline silicon substrate 1 and the back surface fired electrode 6.
次いで、図2に示すような「光銀めっき法」により、図1(g)に示すように、表面焼成電極5上に膜厚3μm程度の光銀めっき層8を形成した。
次いで、図4(h)に示すように、光銀めっき層8上に、粘着テープ貼付法により、カプトンテープを用いて表面焼成電極5の幅の0.7倍程度(70μm程度)のマスク15を形成した。
次いで、光銀めっき法により光銀めっき層8の端部の張り出し部14を電気的に剥離した。
次いで、有機剥離とアセトン洗浄との組み合わせによりマスク15を剥離して、本発明の太陽電池を得た。
Next, as shown in FIG. 1G, a photosilver plating layer 8 having a film thickness of about 3 μm was formed by the “photosilver plating method” as shown in FIG.
Next, as shown in FIG. 4 (h), a mask 15 about 0.7 times the width of the surface firing electrode 5 (about 70 μm) is used on the photosilver plating layer 8 by an adhesive tape sticking method using a Kapton tape. Formed.
Next, the overhanging portion 14 at the end of the photosilver plating layer 8 was electrically peeled off by a photosilver plating method.
Next, the mask 15 was peeled off by a combination of organic peeling and acetone cleaning, to obtain a solar cell of the present invention.
ソーラーシミュレータを用いて、得られた太陽電池にAM1.5、100mW/cm2の擬似光を照射し(温度条件:25℃)、変換効率(%)を測定したところ、15.4%であった。 Using a solar simulator, the obtained solar cell was irradiated with simulated light of AM 1.5 and 100 mW / cm 2 (temperature condition: 25 ° C.), and the conversion efficiency (%) was measured. As a result, it was 15.4%. It was.
(比較例1)
図1(g)および図4(h)〜(j)に示す工程を行なわないこと以外は、実施例1と同様にして太陽電池を作製し、その変換効率(%)を測定したところ、14.9%であった。
(Comparative Example 1)
Except not performing the process shown in FIG.1 (g) and FIG.4 (h)-(j), when the solar cell was produced similarly to Example 1 and the conversion efficiency (%) was measured, it was 14 9%.
(比較例2)
図4(h)〜(j)に示す工程を行なわないこと以外は、実施例1と同様にして太陽電池を作製し、その変換効率(%)を測定したところ、15.6%であった。
(Comparative Example 2)
A solar cell was produced in the same manner as in Example 1 except that the steps shown in FIGS. 4H to 4J were not performed, and the conversion efficiency (%) was measured. As a result, it was 15.6%. .
得られた結果から、光銀めっき層を有する実施例1および比較例2の太陽電池は、比較例1の太陽電池に比べて、出力(変換効率より算出)が3%以上向上していることがわかる。
実施例1および比較例2の太陽電池を高湿環境下(温度85℃、湿度85%)に保持し、変換効率(%)を測定したところ、それぞれ15.4%および14.6%であった。
また、実施例1および比較例2の太陽電池の表面電極を観察したところ、後者にはめっき液の残留が観察されたが、前者には観察されなかった。
これらの結果から、比較例2の太陽電池では、残留めっき液が表面焼成電極5と反射防止膜4に悪影響を及ぼし、太陽電池の特性低下を引き起こしているものと推察される。
From the obtained results, the solar cells of Example 1 and Comparative Example 2 having the photosilver plating layer have an output (calculated from the conversion efficiency) improved by 3% or more compared to the solar cell of Comparative Example 1. I understand.
When the solar cells of Example 1 and Comparative Example 2 were kept in a high humidity environment (temperature 85 ° C., humidity 85%) and the conversion efficiency (%) was measured, they were 15.4% and 14.6%, respectively. It was.
Moreover, when the surface electrode of the solar cell of Example 1 and Comparative Example 2 was observed, the remaining plating solution was observed in the latter, but not in the former.
From these results, in the solar cell of Comparative Example 2, it is surmised that the residual plating solution has an adverse effect on the surface-fired electrode 5 and the antireflection film 4 and causes the characteristics of the solar cell to deteriorate.
1 第1導電型の結晶シリコン基板
2 第2導電型の高濃度拡散層
3 p−n接合
4 反射防止膜(表面反射膜)
5 表面焼成電極
6 裏面焼成電極
7 BSF層
8 光銀めっき層
9 カソード電極ローラー
10 コンベアローラー
11 光(蛍光灯光)
12 銀棒
13 めっき液
13−1 残留めっき液
14 めっき張り出し部(めっきひさし部)
15 マスク
16 可変直流電源
DESCRIPTION OF SYMBOLS 1 Crystalline silicon substrate of 1st conductivity type 2 High concentration diffusion layer of 2nd conductivity type 3 pn junction 4 Antireflection film (surface reflection film)
5 Surface firing electrode 6 Back surface firing electrode 7 BSF layer 8 Photosilver plating layer 9 Cathode electrode roller 10 Conveyor roller 11 Light (fluorescent lamp light)
12 Silver Bar 13 Plating Solution 13-1 Residual Plating Solution 14 Plating Overhang (Plating Eaves)
15 Mask 16 Variable DC power supply
Claims (7)
(2)前記第2導電型の高濃度拡散層上に反射防止膜を形成する工程、
(3)前記反射防止膜上および前記結晶シリコン基板の非受光面側に電極材料を塗布し、得られた塗膜を熱処理に付して、それぞれ表面電極を構成する表面焼成電極および裏面電極となる裏面焼成電極を形成する工程、
(4)光銀めっき法により前記表面焼成電極に重覆するように光銀めっき層を形成して、表面焼成電極および光銀めっき層からなる表面電極を得る工程、
(5)前記光銀めっき層に重覆するように樹脂材料でマスクを形成する工程、
(6)光銀めっき法により前記光銀めっき層の端部の張り出し部を電気的に剥離する工程、および
(7)前記マスクを剥離する工程
を含むことを特徴とする太陽電池の製造方法。 (1) forming a second conductivity type high-concentration diffusion layer on the light-receiving surface side of the first conductivity type crystalline silicon substrate;
(2) forming an antireflection film on the high-concentration diffusion layer of the second conductivity type;
(3) An electrode material is applied on the antireflection film and on the non-light-receiving surface side of the crystalline silicon substrate, the obtained coating film is subjected to a heat treatment, and a surface fired electrode and a back electrode respectively constituting the surface electrode; Forming a back-fired electrode,
(4) A step of forming a photosilver plating layer so as to overlap the surface firing electrode by a photosilver plating method to obtain a surface electrode composed of the surface firing electrode and the photosilver plating layer;
(5) forming a mask with a resin material so as to overlap the photosilver plating layer;
(6) A step of electrically peeling off the protruding portion at the end of the photosilver plating layer by a photosilver plating method, and (7) a step of peeling off the mask.
第1導電型の結晶シリコン基板の受光面側に第2導電型の高濃度拡散層、反射防止膜および表面電極を、前記結晶シリコン基板の非受光面側に裏面電極を備え、
前記表面電極が、塗布および熱処理により形成された表面焼成電極および光銀めっき法により前記焼成電極に重覆するように形成された光銀めっき層からなり、かつマスク形成および剥離処理により前記光銀めっき層の端部の張り出し部が除去されてなる
ことを特徴とする太陽電池。 Obtained by the method for producing a solar cell according to any one of claims 1 to 5,
A second conductivity type high-concentration diffusion layer, an antireflection film and a surface electrode on the light receiving surface side of the first conductivity type crystalline silicon substrate, and a back electrode on the non-light receiving surface side of the crystal silicon substrate;
The surface electrode comprises a surface fired electrode formed by coating and heat treatment and a photosilver plating layer formed so as to overlap the fired electrode by a photosilver plating method, and the photosilver is formed by mask formation and peeling treatment. A solar cell, wherein an overhang portion at an end of a plating layer is removed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008132078A JP5097617B2 (en) | 2008-05-20 | 2008-05-20 | SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL SYSTEM HAVING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008132078A JP5097617B2 (en) | 2008-05-20 | 2008-05-20 | SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL SYSTEM HAVING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009283558A true JP2009283558A (en) | 2009-12-03 |
JP5097617B2 JP5097617B2 (en) | 2012-12-12 |
Family
ID=41453741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008132078A Expired - Fee Related JP5097617B2 (en) | 2008-05-20 | 2008-05-20 | SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL SYSTEM HAVING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5097617B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011111192A1 (en) * | 2010-03-10 | 2011-09-15 | 三菱電機株式会社 | Method for forming electrode of solar cell, and solar cell |
KR101300803B1 (en) | 2013-05-03 | 2013-08-29 | 고려대학교 산학협력단 | Solar cell of doping layer fabrication method using solid phase epitaxy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60189931A (en) * | 1984-02-17 | 1985-09-27 | エナージー・コンバーション・デバイセス・インコーポレーテッド | Method of electrically coating semiconductor device |
JP2004193337A (en) * | 2002-12-11 | 2004-07-08 | Sharp Corp | Method for forming electrode for solar cell and solar cell manufactured thereby |
JP2004266023A (en) * | 2003-02-28 | 2004-09-24 | Sharp Corp | Solar battery and method of manufacturing the same |
JP2008057035A (en) * | 2006-06-05 | 2008-03-13 | Rohm & Haas Electronic Materials Llc | Plating process |
-
2008
- 2008-05-20 JP JP2008132078A patent/JP5097617B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60189931A (en) * | 1984-02-17 | 1985-09-27 | エナージー・コンバーション・デバイセス・インコーポレーテッド | Method of electrically coating semiconductor device |
JP2004193337A (en) * | 2002-12-11 | 2004-07-08 | Sharp Corp | Method for forming electrode for solar cell and solar cell manufactured thereby |
JP2004266023A (en) * | 2003-02-28 | 2004-09-24 | Sharp Corp | Solar battery and method of manufacturing the same |
JP2008057035A (en) * | 2006-06-05 | 2008-03-13 | Rohm & Haas Electronic Materials Llc | Plating process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011111192A1 (en) * | 2010-03-10 | 2011-09-15 | 三菱電機株式会社 | Method for forming electrode of solar cell, and solar cell |
KR101300803B1 (en) | 2013-05-03 | 2013-08-29 | 고려대학교 산학협력단 | Solar cell of doping layer fabrication method using solid phase epitaxy |
Also Published As
Publication number | Publication date |
---|---|
JP5097617B2 (en) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5649580B2 (en) | Manufacturing method of solar cell | |
JP6258576B2 (en) | Method for manufacturing photoelectric device | |
JP5490231B2 (en) | SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
WO2012008061A1 (en) | Silicon solar cell having boron diffusion layer and method for manufacturing same | |
US20100243059A1 (en) | Solar battery cell | |
JP2007281447A (en) | Solar cell | |
KR102120147B1 (en) | Solar cell and method of manufacturing the same | |
CN113113501A (en) | MWT heterojunction solar cell and preparation method thereof | |
JP5991945B2 (en) | Solar cell and solar cell module | |
TWI390755B (en) | Method of fabricating solar cells | |
JP2014011246A (en) | Solar cell element and solar cell module | |
JP2006156646A (en) | Solar cell manufacturing method | |
JP5097617B2 (en) | SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL SYSTEM HAVING THE SAME | |
JP6330108B1 (en) | High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell | |
JP5623131B2 (en) | SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
JP2003273382A (en) | Solar cell element | |
JP2004281569A (en) | Method for producing solar cell element | |
JP6114205B2 (en) | Manufacturing method of solar cell | |
KR102563642B1 (en) | High-efficiency back-electrode solar cell and its manufacturing method | |
CN110785856B (en) | Method for manufacturing high-efficiency solar cell | |
JP6336139B2 (en) | Solar cell element and manufacturing method thereof | |
JP5316491B2 (en) | Manufacturing method of solar cell | |
JP2011243726A (en) | Solar cell manufacturing method | |
JP2013222794A (en) | Solar cell manufacturing method | |
JP6868957B2 (en) | Photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120924 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |