Nothing Special   »   [go: up one dir, main page]

JP2009283549A - Method for manufacturing solar cell, and method for manufacturing solar cell module - Google Patents

Method for manufacturing solar cell, and method for manufacturing solar cell module Download PDF

Info

Publication number
JP2009283549A
JP2009283549A JP2008131875A JP2008131875A JP2009283549A JP 2009283549 A JP2009283549 A JP 2009283549A JP 2008131875 A JP2008131875 A JP 2008131875A JP 2008131875 A JP2008131875 A JP 2008131875A JP 2009283549 A JP2009283549 A JP 2009283549A
Authority
JP
Japan
Prior art keywords
surface side
antireflection film
electrode
semiconductor substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131875A
Other languages
Japanese (ja)
Other versions
JP4703687B2 (en
Inventor
Norihisa Matsumoto
紀久 松本
Shigeru Matsuno
繁 松野
Daisuke Niinobe
大介 新延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008131875A priority Critical patent/JP4703687B2/en
Publication of JP2009283549A publication Critical patent/JP2009283549A/en
Application granted granted Critical
Publication of JP4703687B2 publication Critical patent/JP4703687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell for manufacturing a solar cell for increasing a short-circuiting current and photoelectric conversion efficiency by reducing light reflection by an antireflection film formed from a liquid phase and having a high light reflection reduction effect while preventing deterioration of a curvilinear factor, and allowing evaluation of an electric characteristic of the solar cell and soldering onto an electrode even after formation of the antireflection film; and a method for manufacturing a solar cell module. <P>SOLUTION: This method for manufacturing a solar cell having an antireflection film on a semiconductor substrate includes: a first process of forming an electrode on one principal surface side of the semiconductor substrate having a PN junction part; a second process of selectively forming, in a region covering the electrode on the one principal surface side of the semiconductor substrate, a protective layer repelling a coating liquid for forming the antireflection film; and a third process of forming the antireflection film by applying the coating liquid for forming the antireflection film on the semiconductor substrate with the protective layer formed thereon. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池セルの製造方法および太陽電池モジュールの製造方法に関するものである。   The present invention relates to a method for manufacturing a solar battery cell and a method for manufacturing a solar battery module.

結晶系シリコン太陽電池の製造方法としては、次に示すようなプロセスが一般的である。まず、シリコン基板の表面をアリカリ溶液を用いて深さ数μm〜数十μmをエッチングし、洗浄する。次に、数μm〜数十μmの高低差を持つ微少な凹凸または溝を形成する。この凹凸や溝の形成方法としては、例えば、数wt%水酸化ナトリウム水溶液とアルコールとの混合液を用いてエッチングを行って高さ数μmの微少ピラミッド形状を基板表面に形成するテクスチャーエッチング、ダイシング装置またはレーザを用いて基板表面に深さ数十μmの溝を多数平行に形成する方法、ドライエッチングによる方法などがある。これらの凹凸や溝は、完成後の太陽電池の動作時に表面反射を減らして短絡電流を向上させるためのものである。   As a method for producing a crystalline silicon solar cell, the following process is common. First, the surface of the silicon substrate is etched and etched to a depth of several μm to several tens of μm using an ant potassium solution. Next, minute irregularities or grooves having a height difference of several μm to several tens of μm are formed. As a method for forming the irregularities and grooves, for example, texture etching or dicing is performed in which a micro pyramid shape with a height of several μm is formed on the substrate surface by etching using a mixed solution of several wt% sodium hydroxide aqueous solution and alcohol. There are a method of forming a large number of grooves having a depth of several tens of μm on the substrate surface by using an apparatus or a laser, a method by dry etching, and the like. These irregularities and grooves are for reducing the surface reflection during the operation of the completed solar cell and improving the short-circuit current.

次に、約800℃〜1100℃に加熱した石英チューブ内に上記シリコン基板を入れた状態で、この石英チューブ内に、バブラー容器に入れたオキシ塩化リン(POCl)等の液体不純物源を窒素などのキャリアガスによって導入する。このとき、基板表面にはリン酸化物層が形成される。同時に、このリン酸化物層が拡散源となってシリコン基板中にリンが拡散されて、基板表面側部分にpn接合が形成される。この拡散工程後、基板表面にはリンを主成分とする吸湿性を持つ酸化膜が残存するので、この膜をフッ酸で除去する。 Next, in a state where the silicon substrate is placed in a quartz tube heated to about 800 ° C. to 1100 ° C., a liquid impurity source such as phosphorus oxychloride (POCl 3 ) contained in a bubbler container is put into nitrogen in the quartz tube. It introduces by carrier gas. At this time, a phosphor oxide layer is formed on the substrate surface. At the same time, the phosphorus oxide layer serves as a diffusion source to diffuse phosphorus in the silicon substrate, and a pn junction is formed on the substrate surface side portion. After this diffusion step, a hygroscopic oxide film containing phosphorus as a main component remains on the substrate surface, and this film is removed with hydrofluoric acid.

その後、更に表面反射を減らすために、基板表面に反射防止膜を形成する。このときの反射防止膜としては、減圧プラズマCVD(化学気相成長)法を用いて形成されるシリコン窒素化膜(SiN膜)、または常圧CVD法を用いて形成される二酸化チタン膜(TiO膜)等が用いられている。例えば、減圧プラズマCVD法によってSiN膜を形成する場合、シラン、アンモニア、窒素などのキャリアガスを送り込み、プラズマにより分解してから基板表面に運び、基板表面にSiN膜を堆積する。 Thereafter, in order to further reduce surface reflection, an antireflection film is formed on the substrate surface. As an antireflection film at this time, a silicon nitride film (SiN film) formed using a low pressure plasma CVD (chemical vapor deposition) method, or a titanium dioxide film (TiO2) formed using an atmospheric pressure CVD method. 2 films) and the like are used. For example, when a SiN film is formed by a low pressure plasma CVD method, a carrier gas such as silane, ammonia, or nitrogen is sent, decomposed by plasma, then transported to the substrate surface, and a SiN film is deposited on the substrate surface.

次に、基板の受光面側を耐酸性のテープまたはレジストで保護し、上記拡散工程で基板裏面側に形成された不要な接合を硝酸(HNO)−フッ化水素(HF)混合液を用いて除去する。次に、基板裏面側にアルミペーストを印刷し、約700℃〜800℃で焼成して裏面電極とP層を形成する。その後、基板表面(受光面)側に銀ペーストを魚骨型に印刷し、焼成して受光面電極を形成する。 Next, the light-receiving surface side of the substrate is protected with an acid-resistant tape or resist, and an unnecessary joint formed on the back surface side of the substrate in the diffusion step is mixed with nitric acid (HNO 3 ) -hydrogen fluoride (HF). To remove. Next, an aluminum paste is printed on the back side of the substrate and baked at about 700 ° C. to 800 ° C. to form a back electrode and a P + layer. Thereafter, a silver paste is printed in a fishbone shape on the substrate surface (light receiving surface) side and fired to form a light receiving surface electrode.

上記反射防止膜の製造方法として、特開昭58−23486(特許文献1)に開示されたような簡易な方法もある。これは、タンタルアルコオキサイドたとえばタンタリウムエチレート1容とカルボン酸たとえば氷酢酸1容あるいはそれ以下を適当な溶媒たとえばアルコール1容あるいはそれ以上にて混合し、その誘電体であるタンタル酸と溶媒とを塗布体組成物とし、基板に該塗布体組成物を塗布し、さらに200℃〜800℃で加熱することによって酸化タンタル薄膜を得るものである。   As a method for producing the antireflection film, there is a simple method as disclosed in JP-A-58-23486 (Patent Document 1). This is made by mixing one volume of tantalum alkoxide, such as tantalum ethylate, and one volume of carboxylic acid, such as glacial acetic acid, or less in a suitable solvent, such as one volume or more of alcohol, and the dielectric tantalate and solvent. Is applied onto the substrate, and the tantalum oxide thin film is obtained by heating at 200 ° C. to 800 ° C.

また、特開2004−158843(特許文献2)には電気泳動体積プロセスを使用して半導体デバイス上に選択的に材料を堆積させる方法が開示されている。具体的には、半導体デバイス表面の堆積膜を成膜したくない領域に選択的に疎水性マスクを形成しておき、マスクを形成した領域が電気泳動体積プロセスを実施する浴内の薬液に接触しないようにしておくことで、堆積膜を選択的に形成する方法である。   Japanese Patent Laid-Open No. 2004-158843 (Patent Document 2) discloses a method of selectively depositing a material on a semiconductor device using an electrophoretic volume process. Specifically, a hydrophobic mask is selectively formed in a region where the deposited film on the surface of the semiconductor device is not desired to be formed, and the region where the mask is formed contacts the chemical solution in the bath for performing the electrophoresis volume process. This is a method of selectively forming a deposited film by avoiding this.

さらには、特開2005−249982(特許文献3)には、太陽電池表面に無機酸化物微粒子とバインダーの有機物を塗布し、熱硬化させ単層の反射防止膜を形成する方法が開示されている。   Furthermore, Japanese Patent Application Laid-Open No. 2005-249882 (Patent Document 3) discloses a method of forming a single-layer antireflection film by applying inorganic oxide fine particles and an organic material of a binder to the surface of a solar cell and thermosetting them. .

特開昭58−23486号公報JP 58-23486 A 特開2004−158843号公報JP 2004-158843 A 特開2005−249982号公報JP 2005-249982 A

ところで、上記のように太陽電池セルに反射防止膜を作製する際、特に基板表面に電極を形成した後に溶液あるいは分散液を原料とする多孔質膜を塗布することで反射防止膜を形成する場合、反射防止膜を作製する際の太陽電池基材上への溶液などの塗布により電気的特性が低下することを本願発明者は見いだした。   By the way, when producing an antireflection film on a solar cell as described above, particularly when an antireflection film is formed by applying a porous film made of a solution or dispersion as a raw material after forming an electrode on the surface of the substrate. The inventor of the present application has found that the electrical characteristics are lowered by application of a solution or the like on the solar cell substrate when the antireflection film is produced.

そこで、本願発明者は、この原因を究明すべく鋭意研究を重ねた結果、微粒子や分散媒、原料ゾルなどが電極と太陽電池基材との間に侵入することにより太陽電池の長期信頼性、電気的特性が劣化する、という問題の存在が本願発明者の研究により明らかとなった。ここで、曲線因子とは太陽電池の最大出力仕事率を短絡電流と開放電圧との積で除した値である。これに対して、これまで電気的特性の劣化、特に曲線因子の劣化を防ぐ方法は提案されておらず、このような劣化を防止するために本願発明に到達したものである。   Therefore, the inventor of the present application, as a result of earnest research to investigate the cause, the long-term reliability of the solar cell by the entry of fine particles, dispersion medium, raw material sol, etc. between the electrode and the solar cell substrate, The existence of the problem that the electrical characteristics deteriorate is clarified by the study of the present inventor. Here, the curve factor is a value obtained by dividing the maximum output power of the solar cell by the product of the short-circuit current and the open-circuit voltage. On the other hand, no method has been proposed for preventing the deterioration of electrical characteristics, particularly the deterioration of the fill factor, and the present invention has been reached in order to prevent such deterioration.

また、太陽電池セルの基板表面全面に反射防止膜を塗布してしまうと、表面の電極上にも反射防止膜が形成されることとなり、反射防止膜形成後には太陽電池セルの電気特性を評価できなくなる。さらには、電極上にも反射防止膜が形成されている場合、太陽電池のモジュール化工程において太陽電池セルの電極上に半田が付着しにくくなるために、タブ付けを行えなくなる、という問題が発生する。   In addition, if an antireflection film is applied to the entire surface of the solar cell substrate, an antireflection film is also formed on the electrode on the surface. After the antireflection film is formed, the electrical characteristics of the solar cell are evaluated. become unable. Furthermore, when an antireflection film is also formed on the electrodes, there is a problem that tabs cannot be attached because it is difficult for solder to adhere to the electrodes of the solar battery cells in the modularization process of the solar battery. To do.

本発明は、上記に鑑みてなされたものであって、曲線因子の劣化を防ぎながら、液相から製膜される光反射低減効果の高い反射防止膜により光反射を低減させることにより短絡電流と光電変換効率とを増大させるとともに、反射防止膜形成後においても太陽電池セルの電気特性の評価および電極上へのはんだ付けが可能な太陽電池セルを製造可能な太陽電池セルの製造方法および太陽電池モジュールの製造方法を得ることを目的とする。   The present invention has been made in view of the above, and by reducing light reflection by an antireflection film having a high light reflection reduction effect formed from a liquid phase while preventing deterioration of a fill factor, a short circuit current and Solar cell manufacturing method and solar battery capable of increasing the photoelectric conversion efficiency and manufacturing a solar cell capable of evaluating the electrical characteristics of the solar cell and soldering onto the electrode even after the formation of the antireflection film It aims at obtaining the manufacturing method of a module.

上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池セルの製造方法は、半導体基板上に反射防止膜を備えた太陽電池セルの製造方法であって、PN接合部を有する前記半導体基板の一主面側に電極を形成する第1工程と、前記反射防止膜の形成用の塗布液を撥水する保護層を前記半導体基板の一主面側における前記電極を覆う領域に選択的に形成する第2工程と、前記保護層を形成した前記半導体基板上に前記反射防止膜の形成用の塗布液を塗布して前記反射防止膜を塗布形成する第3工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell including an antireflection film on a semiconductor substrate, and a PN junction portion is provided. A first step of forming an electrode on one main surface side of the semiconductor substrate, and a region covering the electrode on the one main surface side of the semiconductor substrate with a protective layer for repelling the coating liquid for forming the antireflection film A second step of selectively forming the anti-reflection film, and a third step of applying the anti-reflection film on the semiconductor substrate on which the protective layer has been formed. It is characterized by including.

この発明によれば、曲線因子の劣化を防ぎながら、液相から製膜される光反射低減効果の高い反射防止膜により光反射が低減させることにより短絡電流と光電変換効率とを増加させることができるとともに反射防止膜形成後においても太陽電池セルの電気特性の評価および電極上へのはんだ付けが可能な太陽電池セルが得られる、という効果を奏する。   According to the present invention, the short circuit current and the photoelectric conversion efficiency can be increased by reducing the light reflection by the antireflection film having a high light reflection reducing effect formed from the liquid phase while preventing the deterioration of the fill factor. In addition, it is possible to obtain a solar cell capable of evaluating the electrical characteristics of the solar cell and soldering on the electrode even after the antireflection film is formed.

以下に、本発明にかかる太陽電池セルの製造方法および太陽電池モジュールの製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。   EMBODIMENT OF THE INVENTION Below, embodiment of the manufacturing method of the photovoltaic cell concerning this invention and the manufacturing method of a solar cell module is described in detail based on drawing. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.

実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池セルの概略構成を示す断面図である。実施の形態1にかかる太陽電池セルは、太陽電池基板であってpn接合を有する半導体基板1と、半導体基板1の受光面側の面(表面)に形成された第一の反射防止膜2と、半導体基板1の受光面と反対側の面(裏面)に形成された裏面電極3と、半導体基板1の受光面側の面(表面)において第一の反射防止膜2に囲まれて形成された受光面側電極4と、第一の反射防止膜2上に形成された第二の反射防止膜6と、を備える。受光面側電極4としては、太陽電池セルのバス電極およびグリッド電極を含み、図1においてはバス電極の長手方向に略直交する方向における断面図を示している。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a schematic configuration of the solar battery cell according to the first embodiment of the present invention. The solar cell according to the first embodiment includes a semiconductor substrate 1 that is a solar battery substrate and has a pn junction, and a first antireflection film 2 formed on a surface (front surface) on the light receiving surface side of the semiconductor substrate 1. The back surface electrode 3 formed on the surface (back surface) opposite to the light receiving surface of the semiconductor substrate 1 and the surface (front surface) on the light receiving surface side of the semiconductor substrate 1 are surrounded by the first antireflection film 2. A light receiving surface side electrode 4 and a second antireflection film 6 formed on the first antireflection film 2. As the light-receiving surface side electrode 4, the bus electrode and grid electrode of a photovoltaic cell are included, In FIG. 1, sectional drawing in the direction substantially orthogonal to the longitudinal direction of a bus electrode is shown.

以上のように形成された実施の形態1にかかる太陽電池セルによれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルが実現されている。   According to the solar cell according to the first embodiment formed as described above, the second antireflection film 6 formed of the antireflection film material made of the liquid phase is provided, and the antireflection film made of the liquid phase is provided. Formation of defect levels due to the penetration of the material and the dispersion liquid to the semiconductor substrate 1 is prevented, and the short circuit current and the photoelectric conversion efficiency are reduced without reducing the fill factor which is one of the output electric characteristics of the solar cell. Excellent solar cells have been realized.

また、実施の形態1にかかる太陽電池セルによれば、受光面側の受光面側電極4上に第二の反射防止膜6が形成されていないため、第二の反射防止膜6の形成後においても受光面側電極4から直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルが実現されている。   Further, according to the solar cell according to the first embodiment, since the second antireflection film 6 is not formed on the light receiving surface side electrode 4 on the light receiving surface side, after the second antireflection film 6 is formed. The solar cell which can take an output directly from the light-receiving surface side electrode 4 and can evaluate the characteristics even after the formation of the second antireflection film 6 is realized.

また、形成された実施の形態1にかかる太陽電池セルによれば、受光面側の受光面側電極4上に第二の反射防止膜6が形成されていないため、第二の反射防止膜6の形成後においても受光面側電極4にタブ電極を容易に且つ確実に半田付けすることができる太陽電池セルが実現されている。これにより、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することができる。   Moreover, according to the formed photovoltaic cell according to the first embodiment, since the second antireflection film 6 is not formed on the light receiving surface side electrode 4 on the light receiving surface side, the second antireflection film 6 is formed. Even after the formation of the solar cell, a solar battery cell capable of easily and reliably soldering the tab electrode to the light receiving surface side electrode 4 is realized. Thereby, a solar cell module can be manufactured by electrically connecting solar cells easily and reliably.

つぎに、以上のように構成された実施の形態1にかかる太陽電池セルの製造方法について図2−1〜図2−6を参照して説明する。図2−1〜図2−6は、実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。まず、体積抵抗率が1〜5Ω・cmのp型多結晶シリコン基板を、加熱したアルカリ溶液中、例えば10wt%程度の水酸化ナトリウム水溶液に浸漬して表面をエッチングすることにより、シリコン基板の切り出し時に発生してp型多結晶シリコン基板表面近くに存在するダメージ領域を取り除くと同時に基板表面洗浄を実施する。   Below, the manufacturing method of the photovoltaic cell concerning Embodiment 1 comprised as mentioned above is demonstrated with reference to FIGS. 2-1-FIGS. 2-6. FIGS. 2-1 to 2-6 are cross-sectional views for explaining the method for manufacturing the solar battery cell according to the first embodiment. First, a p-type polycrystalline silicon substrate having a volume resistivity of 1 to 5 Ω · cm is immersed in a heated alkali solution, for example, about 10 wt% sodium hydroxide aqueous solution to etch the surface, thereby cutting out the silicon substrate. The substrate surface cleaning is performed at the same time as removing the damaged region that is sometimes generated and exists near the surface of the p-type polycrystalline silicon substrate.

つぎに、例えば前記と同じ10wt%程度の水酸化ナトリウム水溶液などのアルカリ溶液と、例えばイソプロピルアルコールなどのアルコール溶液と、を1wt%程度添加して加熱した溶液中でp型多結晶シリコン基板のエッチングを行い、p型多結晶シリコン基板の表面にテクスチャー形状を形成する。そして、このようにしてアルカリ溶液によるエッチングを用いて表面の疎面化を行った後、このp型多結晶シリコン基板をオキシ塩化リン(POCl)ガス雰囲気中、約800〜900℃で加熱することにより、p型多結晶シリコン基板表面に半導体pn接合を形成する。 Next, the p-type polycrystalline silicon substrate is etched in a solution heated by adding about 1 wt% of an alkali solution such as an aqueous solution of sodium hydroxide of about 10 wt% as described above and an alcohol solution such as isopropyl alcohol. To form a texture shape on the surface of the p-type polycrystalline silicon substrate. Then, after the surface is thinned using etching with an alkaline solution in this way, the p-type polycrystalline silicon substrate is heated at about 800 to 900 ° C. in a phosphorus oxychloride (POCl 3 ) gas atmosphere. As a result, a semiconductor pn junction is formed on the surface of the p-type polycrystalline silicon substrate.

つぎに、このp型多結晶シリコン基板を5wt%程度のフッ化水素酸水溶液中に浸漬し、p型多結晶シリコン基板表面に形成されたリンガラスを除去して、pn接合を有する半導体基板1を得る(図2−1)。この半導体基板1上に、プラズマ支援化学蒸気堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法により、シラン、アンモニアと窒素ガスでシリコン窒素化膜を形成し、第一の反射防止膜2を得る(図2−2)。   Next, this p-type polycrystalline silicon substrate is immersed in a hydrofluoric acid aqueous solution of about 5 wt%, and the phosphorous glass formed on the surface of the p-type polycrystalline silicon substrate is removed, so that the semiconductor substrate 1 having a pn junction is obtained. Is obtained (FIG. 2-1). A silicon nitride film is formed on the semiconductor substrate 1 with silane, ammonia and nitrogen gas by a plasma enhanced chemical vapor deposition (PECVD) method to obtain a first antireflection film 2 (FIG. 2-2).

つぎに、半導体基板1の裏面およびその受光面にそれぞれアルミ粉末および銀を含むペーストを印刷したのち、焼成して裏面電極3と受光面側電極4とを形成して、太陽電池セルを作製する(図2−3)。   Next, a paste containing aluminum powder and silver is printed on the back surface and the light receiving surface of the semiconductor substrate 1, respectively, and then baked to form the back electrode 3 and the light receiving surface side electrode 4, thereby producing a solar cell. (FIGS. 2-3).

つぎに、反射防止膜塗布液を撥水する撥水剤を含有した希釈溶液をインクジェット塗布装置を用いて太陽電池セルの受光面側の受光面側電極4上にのみ選択的に塗布する。このとき、希釈溶液は、受光面側電極4を覆って受光面側電極4を封止するように塗布する。そして、100℃程度に加熱したホットプレート上で半導体基板1を加熱することで、撥水剤溶液を乾燥させると同時に撥水効果を伴う撥水膜を形成する。これにより、撥水膜からなる電極部保護層5aが、受光面側電極4を覆って受光面側電極4を封止するように形成される(図2−4)。   Next, a dilute solution containing a water repellent for repelling the antireflection film coating solution is selectively applied only on the light receiving surface side electrode 4 on the light receiving surface side of the solar battery cell using an ink jet coating apparatus. At this time, the diluted solution is applied so as to cover the light receiving surface side electrode 4 and seal the light receiving surface side electrode 4. Then, by heating the semiconductor substrate 1 on a hot plate heated to about 100 ° C., the water repellent solution is dried and at the same time a water repellent film having a water repellent effect is formed. Thereby, the electrode part protective layer 5a which consists of a water repellent film is formed so that the light-receiving surface side electrode 4 may be covered and the light-receiving surface side electrode 4 may be sealed (FIGS. 2-4).

つぎに、2重量部の酸化チタン粒子が分散した水溶液をイソプロピルアルコールで10倍に希釈することにより、酸化チタン粒子が分散した塗布溶液を調製し、これを受光面側の第一の反射防止膜2であるシリコン窒化膜の受光面側電極の上に二流体ノズルを使用して噴霧塗布することにより第二の反射防止膜6を形成する(図2−5)。このとき、撥水膜からなる電極部保護層5aが形成されている受光面側電極4上には、酸化チタン粒子が分散した塗布溶液は堆積しないため、受光面側電極4上には第二の反射防止膜6は形成されない。   Next, an aqueous solution in which 2 parts by weight of titanium oxide particles are dispersed is diluted 10-fold with isopropyl alcohol to prepare a coating solution in which titanium oxide particles are dispersed, and this is used as a first antireflection film on the light receiving surface side. The second antireflection film 6 is formed on the light receiving surface side electrode of the silicon nitride film 2 by spray application using a two-fluid nozzle (FIG. 2-5). At this time, since the coating solution in which the titanium oxide particles are dispersed is not deposited on the light receiving surface side electrode 4 on which the electrode portion protective layer 5a made of the water repellent film is formed, the second surface is formed on the light receiving surface side electrode 4. The antireflection film 6 is not formed.

つぎに、300℃程度に加熱したホットプレート上で基板を加熱することにより、受光面側電極4上に形成した撥水膜からなる電極部保護層5aを除去して、実施の形態1にかかる太陽電池セルが完成する(図2−6)。   Next, by heating the substrate on a hot plate heated to about 300 ° C., the electrode portion protective layer 5a made of the water repellent film formed on the light receiving surface side electrode 4 is removed, and the first embodiment is applied. A solar battery cell is completed (FIGS. 2-6).

以上のような実施の形態1にかかる太陽電池セルの製造方法によれば、撥水膜からなる電極部保護層5aを受光面側電極4上に形成して受光面側電極4を封止することにより、その後の太陽電池セルの製造過程において液相からなる反射防止膜材料や分散液が受光面側電極4と半導体基板1との間に侵入、浸透することに起因した半導体基板1内における欠陥準位の形成を防いで塗布型反射防止膜を形成することができる。これにより、第二の反射防止膜6塗布前後において、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流密度と光電変換効率とを向上させることができる、という従来にない顕著な効果を奏するものであり、太陽電池特性の劣化、特に曲線因子の劣化を防ぎながら光反射が低減することによる短絡電流の増大した太陽電池特性を有する太陽電池セルを作製することができる。   According to the manufacturing method of the solar cell according to the first embodiment as described above, the electrode portion protective layer 5a made of a water repellent film is formed on the light receiving surface side electrode 4 to seal the light receiving surface side electrode 4. As a result, in the subsequent manufacturing process of the solar battery cell, the antireflection film material or dispersion made of a liquid phase enters and penetrates between the light receiving surface side electrode 4 and the semiconductor substrate 1 in the semiconductor substrate 1. A coating-type antireflection film can be formed while preventing formation of defect levels. Thereby, it can be said that the short circuit current density and the photoelectric conversion efficiency can be improved before and after the application of the second antireflection film 6 without reducing the fill factor which is one of the output electrical characteristics of the solar cell. Producing a solar cell having a solar cell characteristic with an increased short-circuit current by reducing light reflection while preventing deterioration of the solar cell characteristic, in particular, deterioration of the fill factor, which has a remarkable effect that has not existed before. Can do.

すなわち、実施の形態1にかかる太陽電池セルの製造方法によれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルを作製することができる。   That is, according to the manufacturing method of the photovoltaic cell concerning Embodiment 1, while providing the 2nd antireflection film 6 formed from the antireflection film material which consists of a liquid phase, antireflection film material which consists of a liquid phase, Formation of defect levels due to penetration of the dispersion into the semiconductor substrate 1 is prevented, and the short circuit current and photoelectric conversion efficiency are excellent without lowering the fill factor which is one of the output electric characteristics of the solar cell. A solar battery cell can be produced.

また、実施の形態1にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4から直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 1, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 by the side of a light reception surface, formation of the 2nd antireflection film 6 is carried out. A solar cell that can take an output directly from the light-receiving surface side electrode 4 and can be evaluated even after the second antireflection film 6 is formed can be manufactured.

また、実施の形態1にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4にタブ電極を容易に且つ確実に半田付けすることが可能な太陽電池セルを作製することができる。すなわち、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することが可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 1, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 by the side of a light reception surface, formation of the 2nd antireflection film 6 is carried out. Even later, it is possible to manufacture a solar battery cell in which the tab electrode can be easily and surely soldered to the light-receiving surface side electrode 4. That is, it is possible to produce a solar battery cell that can easily and reliably electrically connect solar battery cells to manufacture a solar battery module.

実施の形態2.
実施の形態2では、図1に示した太陽電池セルの他の製造方法について図3−1〜図3−5を参照して説明する。図3−1〜図3−5は、実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。まず、実施の形態1において図2−1〜図2−3を用いて説明した工程を実施することにより図3−1に示す太陽電池セル(実施の形態1における図2−3に対応)を作製する。
Embodiment 2. FIG.
Embodiment 2 demonstrates the other manufacturing method of the photovoltaic cell shown in FIG. 1 with reference to FIGS. 3-1-FIGS. 3-5. FIGS. 3-1 to 3-5 are cross-sectional views for explaining the method for manufacturing the solar battery cell according to the second embodiment. First, the solar battery cell shown in FIG. 3-1 (corresponding to FIG. 2-3 in Embodiment 1) is obtained by carrying out the steps described with reference to FIGS. 2-1 to 2-3 in Embodiment 1. Make it.

つぎに、反射防止膜塗布液を撥水する撥水剤を含有した希釈溶液をスピン塗布装置を用いて太陽電池セルの受光面側全面に塗布して、受光面側全面に撥水剤塗布膜5bを形成する(図3−2)。次に、太陽電池セルの受光面側の撥水剤塗布膜5bにおいて、受光面側電極4上のみに選択的にレーザ照射を行って撥水膜からなる電極部保護層5aを形成する。例えば波長1064nm程度のYCOレーザ光を受光面側電極4上に照射して、受光面側電極4に塗布した撥水剤含有溶液を加熱して乾燥固化させることで撥水膜を形成する。このとき、レーザパワーが高すぎると撥水膜が形成される前に撥水剤成分が昇華してしまうため、基板温度が100℃程度となるようにレーザパワーを選択する必要がある。 Next, a dilute solution containing a water repellent for repelling the antireflection film coating solution is applied to the entire light receiving surface side of the solar cell using a spin coating device, and the water repellent coating film is applied to the entire light receiving surface side. 5b is formed (FIG. 3-2). Next, in the water repellent coating film 5b on the light receiving surface side of the solar battery cell, the electrode portion protective layer 5a made of the water repellent film is formed by selectively irradiating the laser only on the light receiving surface side electrode 4. For example, a water repellent film is formed by irradiating the light receiving surface side electrode 4 with YCO 4 laser light having a wavelength of about 1064 nm and heating the water repellent-containing solution applied to the light receiving surface side electrode 4 to dry and solidify. At this time, if the laser power is too high, the water repellent component is sublimated before the water repellent film is formed. Therefore, it is necessary to select the laser power so that the substrate temperature is about 100 ° C.

次に、半導体基板1における受光面側電極4上以外に塗布した撥水剤含有溶液を除去する。例えばトルエン溶液にて半導体基板1の洗浄を行うことで不要な撥水剤含有溶液を除去する。これにより、撥水膜からなる電極部保護層5aが、受光面側電極4を覆って受光面側電極4を封止するように形成される(図3−3、実施の形態1における図2−4に対応)。   Next, the water repellent-containing solution applied to the semiconductor substrate 1 other than on the light receiving surface side electrode 4 is removed. For example, an unnecessary water repellent-containing solution is removed by cleaning the semiconductor substrate 1 with a toluene solution. Thereby, the electrode portion protective layer 5a made of a water repellent film is formed so as to cover the light receiving surface side electrode 4 and seal the light receiving surface side electrode 4 (FIG. 3-3, FIG. 2 in the first embodiment). -4).

つぎに、2重量部の酸化チタン粒子が分散した水溶液をイソプロピルアルコールで10倍に希釈することにより、酸化チタン粒子が分散した塗布溶液を調製し、これを受光面側の第一の反射防止膜2であるシリコン窒化膜の受光面側電極の上に二流体ノズルを使用して噴霧塗布することにより第二の反射防止膜6を形成する(図3−4)。このとき、撥水膜からなる電極部保護層5aが形成されている受光面側電極4上には、酸化チタン粒子が分散した塗布溶液は堆積しないため、受光面側電極4上には第二の反射防止膜6は形成されない。   Next, an aqueous solution in which 2 parts by weight of titanium oxide particles are dispersed is diluted 10-fold with isopropyl alcohol to prepare a coating solution in which titanium oxide particles are dispersed, and this is used as a first antireflection film on the light receiving surface side. The second antireflection film 6 is formed on the light receiving surface side electrode of the silicon nitride film 2 by spray application using a two-fluid nozzle (FIG. 3-4). At this time, since the coating solution in which the titanium oxide particles are dispersed is not deposited on the light receiving surface side electrode 4 on which the electrode portion protective layer 5a made of the water repellent film is formed, the second surface is formed on the light receiving surface side electrode 4. The antireflection film 6 is not formed.

つぎに、300℃程度に加熱したホットプレート上で基板を加熱することにより、受光面側電極4上に形成した撥水膜からなる電極部保護層5aを除去して、実施の形態1にかかる太陽電池セルが完成する(図3−5)。   Next, by heating the substrate on a hot plate heated to about 300 ° C., the electrode portion protective layer 5a made of the water repellent film formed on the light receiving surface side electrode 4 is removed, and the first embodiment is applied. A solar battery cell is completed (FIGS. 3-5).

以上のような実施の形態2にかかる太陽電池セルの製造方法によれば、実施の形態1の場合と同様に撥水膜からなる電極部保護層5aを受光面側電極4上に形成して受光面側電極4を封止することにより、その後の太陽電池セルの製造過程において液相からなる反射防止膜材料や分散液が受光面側電極4と半導体基板1との間に侵入、浸透することに起因した半導体基板1内における欠陥準位の形成を防いで塗布型反射防止膜を形成することができる。これにより、第二の反射防止膜6塗布前後において、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流密度と光電変換効率とを向上させることができる、という従来にない顕著な効果を奏するものであり、太陽電池特性の劣化、特に曲線因子の劣化を防ぎながら光反射が低減することによる短絡電流の増大した太陽電池特性を有する太陽電池セルを作製することができる。   According to the method for manufacturing a solar battery cell according to the second embodiment as described above, the electrode part protective layer 5a made of a water repellent film is formed on the light receiving surface side electrode 4 as in the case of the first embodiment. By sealing the light-receiving surface side electrode 4, a liquid-phase antireflection film material or dispersion enters and penetrates between the light-receiving surface side electrode 4 and the semiconductor substrate 1 in the subsequent manufacturing process of the solar battery cell. Thus, it is possible to prevent the formation of defect levels in the semiconductor substrate 1 and to form a coating type antireflection film. Thereby, it can be said that the short circuit current density and the photoelectric conversion efficiency can be improved before and after the application of the second antireflection film 6 without reducing the fill factor which is one of the output electrical characteristics of the solar cell. Producing a solar cell having a solar cell characteristic with an increased short-circuit current by reducing light reflection while preventing deterioration of the solar cell characteristic, in particular, deterioration of the fill factor, which has a remarkable effect that has not existed before. Can do.

すなわち、実施の形態2にかかる太陽電池セルの製造方法によれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルを作製することができる。   That is, according to the manufacturing method of the solar cell according to the second embodiment, the second antireflection film 6 formed of the liquid phase antireflection film material is provided, and the liquid layer antireflection film material or Formation of defect levels due to penetration of the dispersion into the semiconductor substrate 1 is prevented, and the short circuit current and photoelectric conversion efficiency are excellent without lowering the fill factor which is one of the output electric characteristics of the solar cell. A solar battery cell can be produced.

また、実施の形態2にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4から直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 2, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 by the side of a light reception surface, formation of the 2nd antireflection film 6 is carried out. A solar cell that can take an output directly from the light-receiving surface side electrode 4 and can be evaluated even after the second antireflection film 6 is formed can be manufactured.

また、実施の形態2にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4にタブ電極を容易に且つ確実に半田付けすることが可能な太陽電池セルを作製することができる。すなわち、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することが可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 2, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 by the side of a light reception surface, formation of the 2nd antireflection film 6 is carried out. Even later, it is possible to manufacture a solar battery cell in which the tab electrode can be easily and surely soldered to the light-receiving surface side electrode 4. That is, it is possible to produce a solar battery cell that can easily and reliably electrically connect solar battery cells to manufacture a solar battery module.

実施の形態3.
図4は、本発明の実施の形態3にかかる太陽電池セルの概略構成を示す断面図である。実施の形態3にかかる太陽電池セルは、太陽電池基板であってpn接合を有する半導体基板1と、半導体基板1の受光面側の面(表面)に形成された第一の反射防止膜2と、半導体基板1の受光面と反対側の面(裏面)に形成された裏面電極3と、半導体基板1の受光面側の面(表面)において第一の反射防止膜2に囲まれて形成された受光面側電極4と、第一の反射防止膜2上に形成された第二の反射防止膜6と、を備える。受光面側電極4としては、太陽電池セルのバス電極およびグリッド電極を含み、図1においてはバス電極の長手方向に略直交する方向における断面図を示している。また、受光面側電極4上および該受光面側電極4に隣接する第一の反射防止膜2の一部領域上には、銀(Ag)のナノ粒子により構成された受光面側電極部4aが設けられている。
Embodiment 3 FIG.
FIG. 4 is a cross-sectional view showing a schematic configuration of the solar battery cell according to the third embodiment of the present invention. The solar battery cell according to the third embodiment includes a semiconductor substrate 1 that is a solar battery substrate and has a pn junction, and a first antireflection film 2 formed on the light receiving surface side (surface) of the semiconductor substrate 1. The back surface electrode 3 formed on the surface (back surface) opposite to the light receiving surface of the semiconductor substrate 1 and the surface (front surface) on the light receiving surface side of the semiconductor substrate 1 are surrounded by the first antireflection film 2. A light receiving surface side electrode 4 and a second antireflection film 6 formed on the first antireflection film 2. As the light-receiving surface side electrode 4, the bus electrode and grid electrode of a photovoltaic cell are included, In FIG. 1, sectional drawing in the direction substantially orthogonal to the longitudinal direction of a bus electrode is shown. Further, on the light receiving surface side electrode 4 and on a partial region of the first antireflection film 2 adjacent to the light receiving surface side electrode 4, the light receiving surface side electrode portion 4a made of silver (Ag) nanoparticles. Is provided.

以上のように形成された実施の形態3にかかる太陽電池セルによれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルが実現されている。   According to the solar cell according to the third embodiment formed as described above, the second antireflection film 6 formed of the antireflection film material made of the liquid phase is provided, and the antireflection film made of the liquid phase is provided. Formation of defect levels due to the penetration of the material and the dispersion liquid to the semiconductor substrate 1 is prevented, and the short circuit current and the photoelectric conversion efficiency are reduced without reducing the fill factor which is one of the output electric characteristics of the solar cell. Excellent solar cells have been realized.

また、実施の形態3にかかる太陽電池セルによれば、受光面側の受光面側電極4上に第二の反射防止膜6が形成されずに、銀(Ag)のナノ粒子により形成された受光面側電極部4aが形成されているため、第二の反射防止膜6の形成後においても受光面側電極部4aから直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルが実現されている。   Further, according to the solar cell according to the third embodiment, the second antireflection film 6 is not formed on the light receiving surface side electrode 4 on the light receiving surface side, and is formed of silver (Ag) nanoparticles. Since the light receiving surface side electrode portion 4a is formed, an output can be directly taken from the light receiving surface side electrode portion 4a even after the formation of the second antireflection film 6, and after the second antireflection film 6 is formed. A solar battery cell capable of evaluating characteristics is realized.

また、実施の形態3にかかる太陽電池セルによれば、受光面側の受光面側電極4上に第二の反射防止膜6が形成されずに、銀(Ag)のナノ粒子により形成された受光面側電極部4aが形成されているため、第二の反射防止膜6の形成後においても受光面側電極4(受光面側電極部4a)にタブ電極を容易に且つ確実に半田付けすることができる太陽電池セルが実現されている。これにより、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することができる。   Further, according to the solar cell according to the third embodiment, the second antireflection film 6 is not formed on the light receiving surface side electrode 4 on the light receiving surface side, and is formed of silver (Ag) nanoparticles. Since the light receiving surface side electrode portion 4a is formed, the tab electrode is easily and reliably soldered to the light receiving surface side electrode 4 (light receiving surface side electrode portion 4a) even after the second antireflection film 6 is formed. A solar cell that can be used has been realized. Thereby, a solar cell module can be manufactured by electrically connecting solar cells easily and reliably.

さらに、実施の形態3にかかる太陽電池セルによれば、受光面側電極4上に受光面側電極部4aを設けることにより、受光面側の電極厚が厚くされることにより電極の低抵抗化が図られた太陽電池セルが実現されている。   Furthermore, according to the solar cell according to the third embodiment, by providing the light receiving surface side electrode portion 4a on the light receiving surface side electrode 4, the electrode thickness on the light receiving surface side is increased, thereby reducing the resistance of the electrode. The illustrated solar cell is realized.

つぎに、以上のように構成された実施の形態3にかかる太陽電池セルの製造方法について図5−1〜図5−4を参照して説明する。図5−1〜図5−4は、実施の形態3にかかる太陽電池セルの製造方法を説明するための断面図である。まず、実施の形態1において図2−1〜図2−3を用いて説明した工程を実施することにより図5−1に示す太陽電池セル(実施の形態1における図2−3に対応)を作製する。   Below, the manufacturing method of the photovoltaic cell concerning Embodiment 3 comprised as mentioned above is demonstrated with reference to FIGS. 5-1-FIGS. 5-4. 5A to 5D are cross-sectional views for explaining the method for manufacturing the solar battery cell according to the third embodiment. First, the solar cell shown in FIG. 5A (corresponding to FIG. 2-3 in Embodiment 1) is obtained by carrying out the steps described with reference to FIGS. 2-1 to 2-3 in Embodiment 1. Make it.

つぎに、反射防止膜塗布液を撥水する撥水剤を含有した希釈溶液にナノ粒子金属、例えば銀(Ag)ナノ粒子粉末を分散させた溶液をインクジェット塗布装置を用いて太陽電池セルの受光面側の受光面側電極4上にのみ選択的に塗布する。このとき、希釈溶液は、受光面側電極4を覆って受光面側電極4を封止するように塗布する。そして、100℃程度に加熱したホットプレート上で半導体基板1を加熱することで、撥水剤溶液を乾燥させると同時に撥水効果を伴う撥水膜を形成する。これにより、銀(Ag)ナノ粒子粉末を含有した撥水膜からなる電極部保護層5cが、受光面側電極4を覆って受光面側電極4を封止するように形成される(図5−2)。   Next, a solution obtained by dispersing nanoparticle metal, for example, silver (Ag) nanoparticle powder, in a diluted solution containing a water repellent that repels the antireflection film coating solution is received by a solar battery cell using an inkjet coating apparatus. It is selectively applied only on the light receiving surface side electrode 4 on the surface side. At this time, the diluted solution is applied so as to cover the light receiving surface side electrode 4 and seal the light receiving surface side electrode 4. Then, by heating the semiconductor substrate 1 on a hot plate heated to about 100 ° C., the water repellent solution is dried and at the same time a water repellent film having a water repellent effect is formed. Thereby, the electrode part protective layer 5c made of a water repellent film containing silver (Ag) nanoparticle powder is formed so as to cover the light receiving surface side electrode 4 and seal the light receiving surface side electrode 4 (FIG. 5). -2).

つぎに、2重量部の酸化チタン粒子が分散した水溶液をイソプロピルアルコールで10倍に希釈することにより、酸化チタン粒子が分散した塗布溶液を調製し、これを受光面側の第一の反射防止膜2であるシリコン窒化膜の受光面側電極の上に二流体ノズルを使用して噴霧塗布することにより第二の反射防止膜6を形成する(図5−3)。このとき、銀(Ag)ナノ粒子粉末を含有した撥水膜からなる電極部保護層5cが形成されている受光面側電極4上には、酸化チタン粒子が分散した塗布溶液は堆積しないため、受光面側電極4(バス電極およびグリッド電極)上には第二の反射防止膜6は形成されない。   Next, an aqueous solution in which 2 parts by weight of titanium oxide particles are dispersed is diluted 10-fold with isopropyl alcohol to prepare a coating solution in which titanium oxide particles are dispersed, and this is used as a first antireflection film on the light receiving surface side. The second antireflection film 6 is formed on the light receiving surface side electrode of the silicon nitride film 2 by spray application using a two-fluid nozzle (FIG. 5-3). At this time, since the coating solution in which the titanium oxide particles are dispersed is not deposited on the light receiving surface side electrode 4 on which the electrode part protective layer 5c made of a water repellent film containing silver (Ag) nanoparticle powder is formed, The second antireflection film 6 is not formed on the light receiving surface side electrode 4 (bus electrode and grid electrode).

つぎに、400℃程度に加熱したホットプレート上で基板を加熱することにより、受光面側電極4(バス電極およびグリッド電極)上に形成した銀(Ag)ナノ粒子粉末を含有した撥水膜からなる電極部保護層5cを除去すると同時にAgナノ粒子を電極上に析出させる。これにより、受光面側電極4上に、Agナノ粒子により構成された受光面側電極部4aが形成され、受光面側の電極厚を厚くして受光面側の電極の低抵抗化を図ることができる。以上により、実施の形態3にかかる太陽電池セルが完成する(図5−4)。   Next, from the water repellent film containing silver (Ag) nanoparticle powder formed on the light-receiving surface side electrode 4 (bus electrode and grid electrode) by heating the substrate on a hot plate heated to about 400 ° C. At the same time as removing the electrode part protective layer 5c, Ag nanoparticles are deposited on the electrode. Thereby, the light receiving surface side electrode portion 4a composed of Ag nanoparticles is formed on the light receiving surface side electrode 4, and the electrode thickness on the light receiving surface side is increased to reduce the resistance of the electrode on the light receiving surface side. Can do. The solar cell concerning Embodiment 3 is completed by the above (FIG. 5-4).

太陽電池セルの受光面側の電極をスクリーン印刷を用いて形成する場合には、1回の印刷工程で印刷できる電極厚さは数μm〜数十μm程度である。受光面側の電極が太陽電池セルの受光面において占める面積は、太陽電池の変換効率に大きく影響する、このため、この電極が占める面積を少なくするために、できるだけ電極幅を細くすることが好ましい。   When the electrode on the light receiving surface side of the solar battery cell is formed by screen printing, the electrode thickness that can be printed in one printing process is about several μm to several tens μm. The area that the electrode on the light receiving surface occupies on the light receiving surface of the solar cell greatly affects the conversion efficiency of the solar cell. Therefore, in order to reduce the area occupied by this electrode, it is preferable to make the electrode width as thin as possible. .

ここで、電極幅を細くするだけでは所望の電流を十分に流すだけの電極断面積を確保できない場合も発生するため、電極高さ(厚み)を高く(厚く)して電極の低抵抗化を図る必要がある。すなわち、スクリーン印刷を数回実施することで電極高さ(厚み)を厚くすることが必要となる。しかしながら、スクリーン印刷を数回実施して印刷回数が増大すると、作業工数が増えると同時に各印刷時において印刷位置のずれが発生するなどの問題も生じる。このため、一回分のスクリーン印刷工程分の電極高さ(厚み)をAgナノ粒子により構成された受光面側電極部4aで代用することでスクリーン印刷工程を短縮することができる。   Here, it may occur that the electrode cross-sectional area sufficient to allow a desired current to flow cannot be secured by simply reducing the electrode width, so the electrode height (thickness) is increased (thickened) to reduce the resistance of the electrode. It is necessary to plan. That is, it is necessary to increase the electrode height (thickness) by performing screen printing several times. However, if screen printing is performed several times and the number of times of printing is increased, the number of work steps is increased, and at the same time, there is a problem that a printing position shift occurs at the time of each printing. For this reason, a screen printing process can be shortened by substituting the electrode height (thickness) for one screen printing process with the light-receiving surface side electrode part 4a comprised by Ag nanoparticle.

以上のような実施の形態3にかかる太陽電池セルの製造方法によれば、銀(Ag)ナノ粒子粉末を含有した撥水膜からなる電極部保護層5cを受光面側電極4上に形成して受光面側電極4を封止することにより、その後の太陽電池セルの製造過程において液相からなる反射防止膜材料や分散液が受光面側電極4と半導体基板1との間に侵入、浸透することに起因した半導体基板1内における欠陥準位の形成を防いで塗布型反射防止膜を形成することができる。これにより、第二の反射防止膜6塗布前後において、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流密度と光電変換効率とを向上させることができる、という従来にない顕著な効果を奏するものであり、太陽電池特性の劣化、特に曲線因子の劣化を防ぎながら光反射が低減することによる短絡電流の増大した太陽電池特性を有する太陽電池セルを作製することができる。   According to the method for manufacturing a solar cell according to the third embodiment as described above, the electrode part protective layer 5c made of a water-repellent film containing silver (Ag) nanoparticle powder is formed on the light-receiving surface side electrode 4. By sealing the light-receiving surface side electrode 4, an antireflection film material or dispersion made of a liquid phase enters and penetrates between the light-receiving surface side electrode 4 and the semiconductor substrate 1 in the subsequent manufacturing process of the solar battery cell. It is possible to form a coating type antireflection film while preventing the formation of defect levels in the semiconductor substrate 1 due to the above. Thereby, it can be said that the short circuit current density and the photoelectric conversion efficiency can be improved before and after the application of the second antireflection film 6 without reducing the fill factor which is one of the output electrical characteristics of the solar cell. Producing a solar cell having a solar cell characteristic with an increased short-circuit current by reducing light reflection while preventing deterioration of the solar cell characteristic, in particular, deterioration of the fill factor, which has a remarkable effect that has not existed before. Can do.

すなわち、実施の形態3にかかる太陽電池セルの製造方法によれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルを作製することができる。   That is, according to the method of manufacturing a solar battery cell according to the third embodiment, the second antireflection film 6 formed of the liquid phase antireflection film material is provided, and the liquid layer antireflection film material or Formation of defect levels due to penetration of the dispersion into the semiconductor substrate 1 is prevented, and the short circuit current and photoelectric conversion efficiency are excellent without lowering the fill factor which is one of the output electric characteristics of the solar cell. A solar battery cell can be produced.

また、実施の形態3にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成せずに、銀(Ag)のナノ粒子により構成された受光面側電極部4aを形成しているため、第二の反射防止膜6の形成後においても受光面側電極部4aから直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 3, without forming the second antireflection film 6 on the light receiving surface side electrode 4 on the light receiving surface side, the silver (Ag) nanoparticles are used. Since the configured light receiving surface side electrode portion 4a is formed, an output can be directly taken from the light receiving surface side electrode portion 4a even after the second antireflection film 6 is formed. It is possible to produce a solar battery cell whose characteristics can be evaluated even after the formation.

また、実施の形態3にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成せずに、銀(Ag)のナノ粒子により構成された受光面側電極部4aを形成しているため、第二の反射防止膜6の形成後においても受光面側電極4(受光面側電極部4a)にタブ電極を容易に且つ確実に半田付けすることが可能な太陽電池セルを作製することができる。すなわち、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することが可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 3, without forming the second antireflection film 6 on the light receiving surface side electrode 4 on the light receiving surface side, the silver (Ag) nanoparticles are used. Since the configured light receiving surface side electrode portion 4a is formed, the tab electrode can be easily and reliably attached to the light receiving surface side electrode 4 (light receiving surface side electrode portion 4a) even after the second antireflection film 6 is formed. A solar battery cell that can be soldered can be manufactured. That is, it is possible to produce a solar battery cell that can easily and reliably electrically connect solar battery cells to manufacture a solar battery module.

さらに、実施の形態3にかかる太陽電池セルの製造方法によれば、受光面側電極4上に受光面側電極部4aを形成して電極の厚みを確保しているため、電極形成のためのスクリーン印刷の印刷回数が増大することがなく、作業工数の増加や多層印刷に起因した印刷位置のずれなどの問題がない。したがって、作業工程の短縮を図りながら、受光面側の電極の低抵抗化が図られた太陽電池セルを作製することができる。   Furthermore, according to the method for manufacturing a solar cell according to the third embodiment, the light receiving surface side electrode portion 4a is formed on the light receiving surface side electrode 4 to ensure the thickness of the electrode. There is no increase in the number of screen printings, and there are no problems such as an increase in work man-hours and a shift in printing position due to multilayer printing. Therefore, it is possible to manufacture a solar battery cell in which the resistance of the electrode on the light receiving surface side is reduced while shortening the work process.

実施の形態4.
実施の形態4では、図1に示した実施の形態1で説明した太陽電池セルの他の製造方法について説明する。本実施の形態においては、実施の形態2の説明で用いた図3−1〜図3−5を参照して説明する。まず、実施の形態1において図2−1〜図2−3を用いて説明した工程を実施することにより、実施の形態1と同様に図3−1に示す太陽電池セル(実施の形態1における図2−3に対応)を作製する。
Embodiment 4 FIG.
In the fourth embodiment, another method for manufacturing the solar battery cell described in the first embodiment shown in FIG. 1 will be described. This embodiment will be described with reference to FIGS. 3-1 to 3-5 used in the description of the second embodiment. First, by performing the steps described with reference to FIGS. 2-1 to 2-3 in Embodiment 1, the solar cell shown in FIG. (Corresponding to FIG. 2-3).

つぎに、反射防止膜塗布液を撥水する撥水剤を含有した希釈溶液を、スピン塗布装置を用いて太陽電池セルの受光面側全面に塗布して、受光面側全面に撥水剤塗布膜5bを形成する(図3−2)。次に、基板温度が100℃程度となるように加熱し、太陽電池セルの受光面側の撥水剤塗布膜5bを乾燥固化させ撥水膜としての機能を形成させる。次に、太陽電池セルの受光面側電極4以外の部分のみに選択的にレーザ照射を行って、撥水膜を昇華させることで、受光面側電極4上にのみ選択的に電極部保護層5aを形成する。例えば波長1064nm程度のYCOレーザ光を受光面側電極4以外の部分にのみ選択的に照射することで撥水膜を昇華させて除去する。撥水膜を昇華させる際に炭化物が堆積した場合には、水洗により除去を行うこともできる。これにより、撥水膜からなる電極部保護層5aが、受光面側電極4を覆って受光面側電極4を封止するように形成される(図3−3、実施の形態1における図2−4に対応)。 Next, a dilute solution containing a water repellent for repelling the antireflection film coating solution is applied to the entire light receiving surface side of the solar battery cell using a spin coating device, and the water repellent agent is applied to the entire light receiving surface side. A film 5b is formed (FIG. 3-2). Next, the substrate temperature is heated to about 100 ° C., and the water repellent coating film 5b on the light receiving surface side of the solar battery cell is dried and solidified to form a function as a water repellent film. Next, by selectively irradiating only the portion other than the light receiving surface side electrode 4 of the solar battery cell and sublimating the water repellent film, the electrode portion protective layer is selectively formed only on the light receiving surface side electrode 4. 5a is formed. For example, the water repellent film is sublimated and removed by selectively irradiating only a portion other than the light receiving surface side electrode 4 with YCO 4 laser light having a wavelength of about 1064 nm. When carbide is deposited during sublimation of the water repellent film, it can be removed by washing with water. Thereby, the electrode portion protective layer 5a made of a water repellent film is formed so as to cover the light receiving surface side electrode 4 and seal the light receiving surface side electrode 4 (FIG. 3-3, FIG. 2 in the first embodiment). -4).

つぎに、2重量部の酸化チタン粒子が分散した水溶液をイソプロピルアルコールで10倍に希釈することにより、酸化チタン粒子が分散した塗布溶液を調製し、これを受光面側の第一の反射防止膜2であるシリコン窒化膜の受光面側電極の上に二流体ノズルを使用して噴霧塗布することにより第二の反射防止膜6を形成する(図3−4)。このとき、撥水膜からなる電極部保護層5aが形成されている受光面側電極4上には、酸化チタン粒子が分散した塗布溶液は堆積しないため、受光面側電極4上には第二の反射防止膜6は形成されない。   Next, an aqueous solution in which 2 parts by weight of titanium oxide particles are dispersed is diluted 10-fold with isopropyl alcohol to prepare a coating solution in which titanium oxide particles are dispersed, and this is used as a first antireflection film on the light receiving surface side. The second antireflection film 6 is formed on the light receiving surface side electrode of the silicon nitride film 2 by spray application using a two-fluid nozzle (FIG. 3-4). At this time, since the coating solution in which the titanium oxide particles are dispersed is not deposited on the light receiving surface side electrode 4 on which the electrode portion protective layer 5a made of the water repellent film is formed, the second surface is formed on the light receiving surface side electrode 4. The antireflection film 6 is not formed.

つぎに、300℃程度に加熱したホットプレート上で基板を加熱することにより、受光面側電極4上に形成した撥水膜からなる電極部保護層5aを除去して、実施の形態1にかかる太陽電池セルが完成する(図3−5)。   Next, by heating the substrate on a hot plate heated to about 300 ° C., the electrode portion protective layer 5a made of the water repellent film formed on the light receiving surface side electrode 4 is removed, and the first embodiment is applied. A solar battery cell is completed (FIGS. 3-5).

以上のように、実施の形態4にかかる太陽電池セルの製造方法によれば、実施の形態1の場合と同様に撥水膜からなる電極部保護層5aを受光面側電極4上にのみ選択的に残しておくことで、受光面側電極4を封止することにより、その後の太陽電池セルの製造過程において液相からなる反射防止膜材料や分散液が受光面側電極4と半導体基板1との間に侵入、浸透することに起因した半導体基板1内における欠陥準位の形成を防いで塗布型反射防止膜を形成することができる。これにより、第二の反射防止膜6塗布前後において、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流密度と光電変換効率とを向上させることができる、という従来にない顕著な効果を奏するものであり、太陽電池特性の劣化、特に曲線因子の劣化を防ぎながら光反射が低減することによる短絡電流の増大した太陽電池特性を有する太陽電池セルを作製することができる。   As described above, according to the method for manufacturing a solar battery cell according to the fourth embodiment, the electrode part protective layer 5a made of the water-repellent film is selected only on the light-receiving surface side electrode 4 as in the first embodiment. In other words, by sealing the light receiving surface side electrode 4, the antireflection film material or dispersion composed of a liquid phase is transferred from the light receiving surface side electrode 4 and the semiconductor substrate 1 in the subsequent manufacturing process of the solar battery cell. It is possible to form a coating-type antireflection film by preventing the formation of defect levels in the semiconductor substrate 1 due to penetration and penetration between the two. Thereby, it can be said that the short circuit current density and the photoelectric conversion efficiency can be improved before and after the application of the second antireflection film 6 without reducing the fill factor which is one of the output electrical characteristics of the solar cell. Producing a solar cell having a solar cell characteristic with an increased short-circuit current by reducing light reflection while preventing deterioration of the solar cell characteristic, in particular, deterioration of the fill factor, which has a remarkable effect that has not existed before. Can do.

すなわち、実施の形態4にかかる太陽電池セルの製造方法によれば、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池セルを作製することができる。   That is, according to the method for manufacturing a solar battery cell according to the fourth embodiment, the second antireflection film 6 formed of the liquid phase antireflection film material is provided, and the liquid layer antireflection film material or Formation of defect levels due to penetration of the dispersion into the semiconductor substrate 1 is prevented, and the short circuit current and photoelectric conversion efficiency are excellent without lowering the fill factor which is one of the output electric characteristics of the solar cell. A solar battery cell can be produced.

また、実施の形態4にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4から直接出力を取ることができ、第二の反射防止膜6の形成後においても特性評価が可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 4, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 of the light reception surface side, formation of the 2nd antireflection film 6 is carried out. A solar cell that can take an output directly from the light-receiving surface side electrode 4 and can be evaluated even after the second antireflection film 6 is formed can be manufactured.

また、実施の形態4にかかる太陽電池セルの製造方法によれば、受光面側の受光面側電極4上に第二の反射防止膜6を形成しないため、第二の反射防止膜6の形成後においても受光面側電極4にタブ電極を容易に且つ確実に半田付けすることが可能な太陽電池セルを作製することができる。すなわち、容易に且つ確実に太陽電池セル同士を電気的に接続して太陽電池モジュールを製造することが可能な太陽電池セルを作製することができる。   Moreover, according to the manufacturing method of the photovoltaic cell concerning Embodiment 4, since the 2nd antireflection film 6 is not formed on the light reception surface side electrode 4 of the light reception surface side, formation of the 2nd antireflection film 6 is carried out. Even later, it is possible to manufacture a solar battery cell in which the tab electrode can be easily and surely soldered to the light-receiving surface side electrode 4. That is, it is possible to produce a solar battery cell that can easily and reliably electrically connect solar battery cells to manufacture a solar battery module.

実施の形態5.
上述した実施の形態1〜4にかかる太陽電池セルの受光面側電極4(受光面側電極部4a)にタブ電極をはんだ付けし、該タブ電極を用いて複数の太陽電池セルを電気的に接続し、ガラスや樹脂シートなどの封止材により封止し、封止材上に基板を配置することで太陽電池モジュールを作製することができる。これにより、液相からなる反射防止膜材から形成された第二の反射防止膜6を備えるとともに、液相からなる反射防止膜材料や分散液が半導体基板1まで浸透することによる欠陥準位の形成が防止され、太陽電池の出力電気的特性の一つである曲線因子を低下させること無く、短絡電流と光電変換効率とに優れた太陽電池モジュールを作製することができる。
Embodiment 5 FIG.
A tab electrode is soldered to the light receiving surface side electrode 4 (light receiving surface side electrode portion 4a) of the solar cell according to the first to fourth embodiments described above, and a plurality of solar cells are electrically connected using the tab electrode. A solar cell module can be manufactured by connecting, sealing with sealing materials, such as glass and a resin sheet, and arrange | positioning a board | substrate on a sealing material. Accordingly, the second antireflection film 6 formed of the liquid phase antireflection film material is provided, and the defect level caused by the penetration of the liquid phase antireflection film material or the dispersion liquid to the semiconductor substrate 1 is obtained. Formation is prevented, and a solar cell module excellent in short-circuit current and photoelectric conversion efficiency can be produced without reducing the fill factor that is one of the output electrical characteristics of the solar cell.

図6は、実施の形態1にかかる太陽電池セルを用いて作製した太陽電池モジュールの一例を示す断面図であり、半導体基板1と、第一の反射防止膜2と、裏面電極3と、受光面側電極4と、第一の反射防止膜2上に形成された第二の反射防止膜6と、封止材7と、透明基板8と、保護基板9と、を備える。   FIG. 6 is a cross-sectional view illustrating an example of a solar battery module manufactured using the solar battery cell according to the first embodiment, and includes a semiconductor substrate 1, a first antireflection film 2, a back electrode 3, and light reception. A surface-side electrode 4, a second antireflection film 6 formed on the first antireflection film 2, a sealing material 7, a transparent substrate 8, and a protective substrate 9 are provided.

このような太陽電池モジュールは、実施の形態1にかかる太陽電池セルの完成後、第二の反射防止膜6の形成面上に封止材7としてのエチレンビニル酢酸樹脂フィルムと透明基板8としてのガラス基板とをこの順で積層配置し、また裏面側には封止材7としてのエチレンビニル酢酸樹脂フィルムと保護基板9としてのポリエチレンテレフタラート樹脂とをこの順で積層配置し、表裏両面から圧力を加えながら真空下、100℃〜200℃で加熱することにより作製することができる。   Such a solar cell module has an ethylene vinyl acetate resin film as the sealing material 7 and a transparent substrate 8 on the formation surface of the second antireflection film 6 after the solar cell according to the first embodiment is completed. A glass substrate is laminated in this order, and an ethylene vinyl acetate resin film as a sealing material 7 and a polyethylene terephthalate resin as a protective substrate 9 are laminated in this order on the back side, and pressure is applied from both sides. It can be produced by heating at 100 ° C. to 200 ° C. under vacuum while adding.

以上のように、本発明にかかる太陽電池セルの製造方法は、液相からなる反射防止膜材から形成される反射防止膜により光反射を低減させることにより短絡電流を増大した、太陽電池特性に優れた太陽電池セルを形成する場合に有用である。   As described above, the method for manufacturing a solar cell according to the present invention increases the short-circuit current by reducing the light reflection by the antireflection film formed from the antireflection film material made of a liquid phase. This is useful when forming excellent solar cells.

本発明の実施の形態1にかかる太陽電池セルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる太陽電池セルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the photovoltaic cell concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる太陽電池セルの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photovoltaic cell concerning Embodiment 3 of this invention. 本発明の実施の形態1にかかる太陽電池セルを用いて作製した太陽電池モジュールの一例を示す断面図である。It is sectional drawing which shows an example of the solar cell module produced using the photovoltaic cell concerning Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 半導体基板
2 反射防止膜
3 裏面電極
4 受光面側電極
4a 受光面側電極部
5a 電極部保護層
5b 撥水剤塗布膜
5c 電極部保護層
6 反射防止膜
7 封止材
8 透明基板
9 保護基板
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Antireflection film 3 Back surface electrode 4 Light reception surface side electrode 4a Light reception surface side electrode part 5a Electrode part protective layer 5b Water repellent coating film 5c Electrode part protective layer 6 Antireflection film 7 Sealant 8 Transparent substrate 9 Protection substrate

Claims (7)

半導体基板上に反射防止膜を備えた太陽電池セルの製造方法であって、
PN接合部を有する前記半導体基板の一主面側に電極を形成する第1工程と、
前記反射防止膜の形成用の塗布液を撥水する保護層を前記半導体基板の一主面側における前記電極を覆う領域に選択的に形成する第2工程と、
前記保護層を形成した前記半導体基板上に前記反射防止膜の形成用の塗布液を塗布して前記反射防止膜を塗布形成する第3工程と、
を含むことを特徴とする太陽電池セルの製造方法。
A method for producing a solar battery cell comprising an antireflection film on a semiconductor substrate,
A first step of forming an electrode on one main surface side of the semiconductor substrate having a PN junction;
A second step of selectively forming a protective layer for repelling the coating liquid for forming the antireflection film in a region covering the electrode on one main surface side of the semiconductor substrate;
A third step of coating the antireflection film by applying a coating liquid for forming the antireflection film on the semiconductor substrate on which the protective layer is formed;
The manufacturing method of the photovoltaic cell characterized by including.
前記第2工程は、
前記塗布液を撥水する材料を含有した前記保護膜の形成用の塗布液を、前記半導体基板の一主面側における前記電極を覆う領域に選択的にインクジェット法により塗布する工程と、
前記半導体基板の一主面側に塗布された前記保護膜の形成用の塗布液を乾燥させることにより前記保護層を形成する工程と、
を含むことを特徴とする請求項1に記載の太陽電池セルの製造方法。
The second step includes
A step of selectively applying, by an inkjet method, a coating solution for forming the protective film containing a material that repels the coating solution to a region covering the electrode on one main surface side of the semiconductor substrate;
Forming the protective layer by drying a coating solution for forming the protective film applied to one main surface side of the semiconductor substrate;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by the above-mentioned.
前記第2工程は、
前記塗布液を撥水する材料を含有した前記保護膜の形成用の塗布液を、前記半導体基板の一主面側の全面に塗布する工程と、
前記半導体基板の一主面側における前記電極を覆う領域のみに選択的にレーザを照射して前記保護膜の形成用の塗布液を乾燥固化させることで前記保護層を選択的に形成する工程と、
を含むことを特徴とする請求項1に記載の太陽電池セルの製造方法。
The second step includes
Applying a coating solution for forming the protective film containing a material that repels the coating solution over the entire main surface of the semiconductor substrate;
Selectively forming the protective layer by selectively irradiating a laser on only the region covering the electrode on the one main surface side of the semiconductor substrate to dry and solidify the coating liquid for forming the protective film; ,
The manufacturing method of the photovoltaic cell of Claim 1 characterized by the above-mentioned.
前記第2工程は、
前記塗布液を撥水する材料を含有した前記保護膜の形成用の塗布液を、前記半導体基板の一主面側の全面に塗布する工程と、
前記半導体基板を熱処理することにより、前記半導体基板の一主面側の全面に塗布した撥水する材料を含有した前記保護膜を乾燥固化させる工程と、
前記半導体基板の一主面側における前記電極を覆う領域以外の部分に選択的にレーザを照射して前記保護膜の形成用の塗布液を昇華させることで、前記半導体基板の一主面側における前記電極を覆う領域上に前記保護層を選択的に形成する工程と、
を含むことを特徴とする請求項1に記載の太陽電池セルの製造方法。
The second step includes
Applying a coating solution for forming the protective film containing a material that repels the coating solution over the entire main surface of the semiconductor substrate;
Heat-treating the semiconductor substrate to dry and solidify the protective film containing a water-repellent material applied to the entire main surface of the semiconductor substrate;
By selectively irradiating a portion of the semiconductor substrate other than the region covering the electrode on the one main surface side with a laser to sublimate the coating liquid for forming the protective film, on the one main surface side of the semiconductor substrate Selectively forming the protective layer on a region covering the electrode;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by the above-mentioned.
前記反射防止膜の形成用の塗布液を撥水する保護層が金属ナノ粒子を含有し、
前記第3工程の後に、
前記保護層を熱処理することにより前記電極上に前記金属ナノ粒子のみを析出させる工程を有すること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
The protective layer for repelling the coating liquid for forming the antireflection film contains metal nanoparticles,
After the third step,
Having a step of depositing only the metal nanoparticles on the electrode by heat-treating the protective layer;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
前記第1工程の前に、
前記半導体基板の一主面側における前記電極を形成する領域を除いた受光領域に他の反射防止膜を形成する工程を有すること、
を特徴とする請求項1に記載の太陽電池セルの製造方法。
Before the first step,
Forming another antireflection film in a light receiving region excluding a region where the electrode is formed on one main surface side of the semiconductor substrate;
The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
請求項1乃至6のいずれか1つに記載の太陽電池セルの製造方法を含むことを特徴とする太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module characterized by including the manufacturing method of the photovoltaic cell as described in any one of Claims 1 thru | or 6.
JP2008131875A 2008-05-20 2008-05-20 Method for manufacturing solar cell and method for manufacturing solar cell module Expired - Fee Related JP4703687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131875A JP4703687B2 (en) 2008-05-20 2008-05-20 Method for manufacturing solar cell and method for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131875A JP4703687B2 (en) 2008-05-20 2008-05-20 Method for manufacturing solar cell and method for manufacturing solar cell module

Publications (2)

Publication Number Publication Date
JP2009283549A true JP2009283549A (en) 2009-12-03
JP4703687B2 JP4703687B2 (en) 2011-06-15

Family

ID=41453735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131875A Expired - Fee Related JP4703687B2 (en) 2008-05-20 2008-05-20 Method for manufacturing solar cell and method for manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JP4703687B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and manufacturing method thereof
WO2013103141A1 (en) * 2012-01-06 2013-07-11 日立化成株式会社 Semiconductor substrate provided with passivation film, method for producing same, and solar cell element and method for producing same
WO2013103140A1 (en) * 2012-01-06 2013-07-11 日立化成株式会社 Composition for forming passivation film, semiconductor substrate provided with passivation film and method for producing same, and solar cell element and method for producing same
WO2013112533A1 (en) * 2012-01-23 2013-08-01 Tetrasun, Inc. Selective removal of a coating from a metal layer, and solar cell applications thereof
WO2014203385A1 (en) * 2013-06-21 2014-12-24 株式会社 日立製作所 Substrate for organic electronics and method for manufacturing organic electronics
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818973A (en) * 1981-07-27 1983-02-03 Semiconductor Energy Lab Co Ltd Photoelectric conversion device manufacturing method
JPS5823486A (en) * 1981-08-04 1983-02-12 Toshiba Corp How to manufacture solar cells
JPH03196630A (en) * 1989-12-26 1991-08-28 Fujitsu Ltd Manufacture of semiconductor device
JP2003179239A (en) * 2001-12-10 2003-06-27 Sharp Corp Solar cell manufacturing method and solar cell manufactured by the method
JP2004049087A (en) * 2002-07-18 2004-02-19 Mayekawa Mfg Co Ltd Method and apparatus for automatically transferring dark meat with bone
JP2004158843A (en) * 2002-10-22 2004-06-03 Agilent Technol Inc Electrophoretic process for selectively depositing materials on semiconductor devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818973A (en) * 1981-07-27 1983-02-03 Semiconductor Energy Lab Co Ltd Photoelectric conversion device manufacturing method
JPS5823486A (en) * 1981-08-04 1983-02-12 Toshiba Corp How to manufacture solar cells
JPH03196630A (en) * 1989-12-26 1991-08-28 Fujitsu Ltd Manufacture of semiconductor device
JP2003179239A (en) * 2001-12-10 2003-06-27 Sharp Corp Solar cell manufacturing method and solar cell manufactured by the method
JP2004049087A (en) * 2002-07-18 2004-02-19 Mayekawa Mfg Co Ltd Method and apparatus for automatically transferring dark meat with bone
JP2004158843A (en) * 2002-10-22 2004-06-03 Agilent Technol Inc Electrophoretic process for selectively depositing materials on semiconductor devices

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634179B2 (en) 2009-04-21 2017-04-25 Tetrasun, Inc. Selective removal of a coating from a metal layer, and solar cell applications thereof
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and manufacturing method thereof
WO2012165756A1 (en) * 2011-05-30 2012-12-06 Hanwha Chemical Corporation. Solar cell and method of manufacturing the same
WO2013103141A1 (en) * 2012-01-06 2013-07-11 日立化成株式会社 Semiconductor substrate provided with passivation film, method for producing same, and solar cell element and method for producing same
WO2013103140A1 (en) * 2012-01-06 2013-07-11 日立化成株式会社 Composition for forming passivation film, semiconductor substrate provided with passivation film and method for producing same, and solar cell element and method for producing same
JPWO2013103140A1 (en) * 2012-01-06 2015-05-11 日立化成株式会社 Passivation film forming composition, semiconductor substrate with passivation film and method for producing the same, solar cell element and method for producing the same
JPWO2013103141A1 (en) * 2012-01-06 2015-05-11 日立化成株式会社 Semiconductor substrate with passivation film and method for producing the same, solar cell element and method for producing the same
WO2013112533A1 (en) * 2012-01-23 2013-08-01 Tetrasun, Inc. Selective removal of a coating from a metal layer, and solar cell applications thereof
CN104205360A (en) * 2012-01-23 2014-12-10 泰特拉桑有限公司 Selective removal of a coating from a metal layer, and solar cell applications thereof
WO2014203385A1 (en) * 2013-06-21 2014-12-24 株式会社 日立製作所 Substrate for organic electronics and method for manufacturing organic electronics
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture

Also Published As

Publication number Publication date
JP4703687B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TWI845484B (en) Interdigitated back-contacted solar cell with p-type conductivity and manufacturing thereof and photovoltaic module
EP2485278B1 (en) Solar cell element and solar cell module
JP4703687B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
CN102484148B (en) Solar battery cell and method for manufacturing the solar battery cell
TW201436259A (en) Solar cell and manufacturing method thereof
JP2007266262A (en) Solar cell with interconnector, solar cell module, and method for manufacturing solar cell module
JP5771759B2 (en) SOLAR CELL, SOLAR CELL MODULE, SOLAR CELL MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING METHOD
JP6021392B2 (en) Method for manufacturing photoelectric conversion device
US20100319766A1 (en) Solar cell and method for manufacturing the same
JP2020043255A (en) Method of manufacturing back contact type solar cell
JP2015138959A (en) Photovoltaic device and photovoltaic device manufacturing method
JP2009246214A (en) Method for manufacturing of diffusion layer for photovoltaics and method for manufacturing of solar cell
TWI668880B (en) Solar battery unit and solar battery module
JP4937233B2 (en) Method for roughening substrate for solar cell and method for manufacturing solar cell
JP6164939B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
JP2010232530A (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP6555984B2 (en) Solar cell element and manufacturing method thereof
CN103222064A (en) Back electrode type solar cell
WO2013031751A1 (en) Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
WO2012046306A1 (en) Photovoltaic device and method for manufacturing same
JP2016139762A (en) Method of manufacturing solar cell element
JP2012209316A (en) Solar cell element and solar cell module
WO2010150606A1 (en) Photovoltaic device and method for manufacturing same
US11222991B2 (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees