Nothing Special   »   [go: up one dir, main page]

JP2009281930A - Particle concentration measuring apparatus - Google Patents

Particle concentration measuring apparatus Download PDF

Info

Publication number
JP2009281930A
JP2009281930A JP2008135680A JP2008135680A JP2009281930A JP 2009281930 A JP2009281930 A JP 2009281930A JP 2008135680 A JP2008135680 A JP 2008135680A JP 2008135680 A JP2008135680 A JP 2008135680A JP 2009281930 A JP2009281930 A JP 2009281930A
Authority
JP
Japan
Prior art keywords
light
measurement
particle concentration
light receiving
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008135680A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Kitaoku
清行 北奥
Takeshi Kuwagata
武志 鍬形
Takashi Kitamoto
尚 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008135680A priority Critical patent/JP2009281930A/en
Publication of JP2009281930A publication Critical patent/JP2009281930A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle concentration measuring apparatus adapted to the measurement of a concentration of particles for each component in the case that an object to be measured contains multi-component particles. <P>SOLUTION: The particle concentration measuring apparatus is constituted of a light source for irradiating measuring light having a wide range of an output wavelength to an object to be measured flowing through a transparent measuring cell, a light-receiving part comprising a plurality of optical sensors for measuring the intensity of transmitted light and scattered light generated by irradiation with the measuring light on different wavelengths, and an operation part for computing the concentration of particles in the object to be measured for each component on the basis of measurement results of each optical sensor of the light-receiving part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は粒子濃度測定装置に関し、詳しくは、測定対象中の多成分の粒子濃度を求めることができる粒子濃度測定装置に関するものである。   The present invention relates to a particle concentration measuring apparatus, and more particularly, to a particle concentration measuring apparatus that can determine a multi-component particle concentration in a measurement object.

一般に、浄水や排水などの水処理プロセスでは、水の濁り状態を具体的な数値として定量的に把握して水質を管理するために、濁度を測定することが行われている。   In general, in water treatment processes such as purified water and wastewater, turbidity is measured in order to quantitatively grasp the turbid state of water as a specific numerical value and manage the water quality.

図4は、このような濁度測定に用いられている従来の透過散乱形濁度計の概略構成例を示す構成図である。図4において、光源1の出力光はコリメートレンズよりなる集光レンズ2で平行光に変換され、測定光として測定セル3の一端側に照射される。この光源1としては、たとえば小型のタングステンランプが用いられている。   FIG. 4 is a block diagram showing a schematic configuration example of a conventional transmission scattering turbidimeter used for such turbidity measurement. In FIG. 4, the output light of the light source 1 is converted into parallel light by a condenser lens 2 made of a collimator lens, and is irradiated to one end side of the measurement cell 3 as measurement light. As the light source 1, for example, a small tungsten lamp is used.

測定セル3は、平行な透明ガラス31,32を含む測定流路管であり、この管内には光の軸方向と直交するように一定の方向に測定対象である測定試料Sの液体が流される。   The measurement cell 3 is a measurement flow path tube including parallel transparent glasses 31 and 32, and the liquid of the measurement sample S as a measurement target flows in the tube in a certain direction so as to be orthogonal to the axial direction of light. .

光源1から集光レンズ2を介してこの測定セル3の一端側を密閉する透明ガラス31に照射される測定光は、測定セル3内部を流れる測定試料Sに含まれる粒子によって散乱する散乱光F2および散乱することなく通過する透過光F1として、それぞれ他端側の透明ガラス32から出射される。   The measurement light irradiated from the light source 1 to the transparent glass 31 that seals one end of the measurement cell 3 through the condenser lens 2 is scattered light F2 scattered by particles contained in the measurement sample S flowing inside the measurement cell 3. As the transmitted light F1 that passes without being scattered, it is emitted from the transparent glass 32 on the other end side.

他端側の透明ガラス32から出射される透過光F1は円板状に形成された透過光受光部4aで受光されて電気信号に変換され、散乱光F2は透過光受光部4aの外周に同心状に配置されたリング状の散乱光受光部4bで受光されて電気信号に変換される。   The transmitted light F1 emitted from the transparent glass 32 on the other end side is received by the transmitted light receiving part 4a formed in a disc shape and converted into an electric signal, and the scattered light F2 is concentric with the outer periphery of the transmitted light receiving part 4a. Are received by the ring-shaped scattered light receivers 4b arranged in the shape of the light and converted into electric signals.

これら透過光受光部4aおよび散乱光受光部4bの出力信号は演算装置5に入力されて散乱/透過比が算出され、濁度値に換算される。演算装置5で換算された濁度値は、表示部6に表示される。   Output signals from the transmitted light receiving unit 4a and the scattered light receiving unit 4b are input to the arithmetic unit 5, where the scattering / transmission ratio is calculated and converted into a turbidity value. The turbidity value converted by the arithmetic device 5 is displayed on the display unit 6.

図4の構成によれば、散乱光信号を透過光信号で割ることにより濁度値を求めているので、
1)測定対象の色の影響を受けない
2)電源変動、光量変動の影響を受けない
3)ガラス汚れの影響を受けにくい
などの優れた効果が得られる。
According to the configuration of FIG. 4, the turbidity value is obtained by dividing the scattered light signal by the transmitted light signal.
1) Not affected by the color of the object to be measured 2) Not affected by fluctuations in power supply and light quantity 3) Excellent effects such as being less susceptible to glass stains are obtained.

下記の特許文献1には、このような透過散乱光方式を利用して構成した濁度計が記載されている。   Patent Document 1 below describes a turbidimeter configured using such a transmitted scattered light method.

特開2006−329629JP 2006-329629 A

ところで、水質管理にあたっては、測定対象中に混入している砂、土、粘土、鉄粉などの粒子濃度の測定および管理も重要な項目となっている。また、食品工業をはじめ各種製造業の製造プロセスにおいても、測定対象に含まれている各種の粒子の濃度測定は、プロセスの効率化や品質管理などの面からも重要な項目となっている。   By the way, in water quality management, measurement and management of particle concentrations of sand, soil, clay, iron powder and the like mixed in the measurement object are also important items. In addition, in the manufacturing processes of various manufacturing industries including the food industry, the concentration measurement of various particles contained in the measurement object is an important item from the viewpoint of process efficiency and quality control.

しかし、従来の透過散乱形濁度計は、測定液中の粒子の総濃度は測定できるが、測定液中に多成分の粒子が含まれる場合に成分毎の粒子濃度を測定することはできない。また、可視光域に感度があることから、透明に近い粒子の測定も困難である。   However, the conventional transmission scattering turbidimeter can measure the total concentration of particles in the measurement liquid, but cannot measure the particle concentration of each component when the measurement liquid contains multi-component particles. In addition, since there is sensitivity in the visible light region, it is difficult to measure particles that are nearly transparent.

そこで、必要に応じてたとえばレーザ散乱光方式の粒子濃度測定装置が用いられるが、レーザを利用しているため特定の粒子に対する感度は高いものの、同時に多成分の粒子濃度を測定することはできない。   Thus, for example, a laser scattered light type particle concentration measuring apparatus is used as necessary. However, since a laser is used, the sensitivity to specific particles is high, but the concentration of multicomponent particles cannot be measured simultaneously.

多成分の個々の粒子濃度を測定する手法として吸光(分光)光度法があるが、透過光に相当する吸光度のみを検出して散乱光は検出しない。そのため、測定セルの汚れに弱く、オンライン測定に導入した場合には、頻繁なメンテナンスが必要になる。加えて、機器は大型で高価なものになってしまう。   There is an absorption (spectroscopic) photometric method as a method for measuring individual particle concentrations of multicomponents, but only the absorbance corresponding to the transmitted light is detected and the scattered light is not detected. Therefore, it is vulnerable to contamination of the measurement cell, and frequent maintenance is required when it is introduced to online measurement. In addition, the equipment becomes large and expensive.

本発明は、これらの問題点を解決するものであり、その目的は、測定対象中に多成分の粒子が含まれる場合に、成分ごとの粒子濃度を連続的に測定できる比較的小型で簡潔な構造の粒子濃度測定装置を実現することにある。   The present invention solves these problems, and its object is to provide a relatively small and simple system that can continuously measure the concentration of particles for each component when a multi-component particle is included in the measurement target. The object is to realize a particle concentration measuring apparatus having a structure.

上記のような目的を達成するために、請求項1の発明は、
透明な測定セル内を流れる測定対象に広範囲の出力波長を有する測定光を照射する光源と、
この測定光の照射により発生する透過光および散乱光の強度を異なる波長について測定する複数の光センサよりなる受光部と、
この受光部の各光センサの測定結果に基づいて前記測定対象中の粒子濃度を各成分ごとに算出する演算部、
とで構成されたことを特徴とする粒子濃度測定装置である。
In order to achieve the above object, the invention of claim 1
A light source for irradiating measurement light having a wide range of output wavelengths to a measurement object flowing in a transparent measurement cell;
A light receiving unit comprising a plurality of optical sensors for measuring the intensity of transmitted light and scattered light generated by irradiation of the measurement light for different wavelengths;
An arithmetic unit that calculates, for each component, the particle concentration in the measurement object based on the measurement results of the optical sensors of the light receiving unit,
The particle concentration measuring device is characterized by comprising:

請求項2の発明は、請求項1に記載の粒子濃度測定装置において、
前記受光部は、
前記光源の照射方向に配置され前記測定対象の透過光を受光する透過光受光部と、
前記光源の照射方向から所定の角度で配置され前記測定対象の散乱光を受光する散乱光受光部とからなり、
異なる波長に感度を有する複数の前記光センサは前記透過光受光部および前記散乱光受光部のそれぞれに備えられたことを特徴とする。
The invention of claim 2 is the particle concentration measuring device according to claim 1,
The light receiving unit is
A transmitted light receiving unit disposed in the irradiation direction of the light source and receiving the transmitted light of the measurement object;
A scattered light receiving unit that is arranged at a predetermined angle from the irradiation direction of the light source and receives the scattered light of the measurement object;
A plurality of the optical sensors having sensitivity to different wavelengths are provided in each of the transmitted light receiving unit and the scattered light receiving unit.

請求項3の発明は、請求項2に記載の粒子濃度測定装置において、
前記透過光受光部は円板状に形成され、
前記散乱光受光部はリング状に形成されて前記透過光受光部の外周に同心状に配置されたことを特徴とする。
The invention of claim 3 is the particle concentration measuring device according to claim 2,
The transmitted light receiving part is formed in a disc shape,
The scattered light receiving part is formed in a ring shape and is arranged concentrically on the outer periphery of the transmitted light receiving part.

請求項4の発明は、請求項1〜3のいずれかに記載の粒子濃度測定装置において、
前記測定セルの測定光の照射面は平面状に形成されて測定光の出射面は凸状曲面に形成され、
前記受光部の受光面はこの測定セルの測定光の出射面と対向するように凹状曲面に形成されていることを特徴とする。
The invention of claim 4 is the particle concentration measuring device according to any one of claims 1 to 3,
The measurement light irradiation surface of the measurement cell is formed in a planar shape, and the measurement light emission surface is formed in a convex curved surface,
The light receiving surface of the light receiving portion is formed in a concave curved surface so as to face the light emitting surface of the measurement light of the measurement cell.

請求項5の発明は、請求項1〜4のいずれかに記載の粒子濃度測定装置において、
前記演算部は粒子濃度の算出に際しどの光センサの測定結果を選択するかを決定する解析部を備え、
この解析部は、
各成分の粒子濃度が既知である測定対象の各光センサによる事前測定結果を任意に組合せて所定の演算を行い、演算結果が実際の粒子濃度と最も高い相関を示す光センサの組を各成分ごとに決定することを特徴とする。
The invention of claim 5 is the particle concentration measuring device according to any one of claims 1 to 4,
The calculation unit includes an analysis unit that determines which photosensor measurement result is to be selected when calculating the particle concentration,
This analysis part
Predetermined calculation is performed by arbitrarily combining the pre-measurement results of each optical sensor to be measured whose particle concentration of each component is known, and a set of optical sensors whose calculation result shows the highest correlation with the actual particle concentration It is determined for each.

請求項6の発明は、請求項1〜5のいずれかに記載の粒子濃度測定装置において、
前記演算部は、散乱光の強度と透過光の強度の比を取ることを特徴とする。
The invention of claim 6 is the particle concentration measuring device according to any one of claims 1 to 5,
The arithmetic unit takes a ratio of the intensity of scattered light and the intensity of transmitted light.

請求項7の発明は、請求項1〜6のいずれかに記載の粒子濃度測定装置において、
異なる波長に感度を有する複数の前記光センサは、紫外光センサと可視光センサと近赤外光センサであることを特徴とする。
The invention of claim 7 is the particle concentration measuring device according to any one of claims 1 to 6,
The plurality of photosensors having sensitivity to different wavelengths are an ultraviolet light sensor, a visible light sensor, and a near infrared light sensor.

このような発明によれば、測定対象中に多成分の粒子が含まれる場合に、成分ごとの粒子濃度を連続的に測定でき、オンライン測定にも好適である。   According to such an invention, when multi-component particles are included in the measurement target, the particle concentration for each component can be continuously measured, which is suitable for on-line measurement.

図1は本発明の実施例1の構成図、図2は図1の受光部4および演算装置5の詳細を示す構成図であり、図4と共通する部分には同一の符号を付けている。
光源1は、タングステンランプなど広範囲の出力波長を有する光を出射するものであって、その出力光はコリメートレンズ2で平行光に変換され測定光として測定セル3に照射される。
FIG. 1 is a configuration diagram of the first embodiment of the present invention, and FIG. 2 is a configuration diagram showing details of the light receiving unit 4 and the arithmetic unit 5 of FIG. 1, and the same reference numerals are given to portions common to FIG. .
The light source 1 emits light having a wide range of output wavelengths, such as a tungsten lamp, and the output light is converted into parallel light by the collimator lens 2 and irradiated to the measurement cell 3 as measurement light.

測定セル3は、平行な透明ガラス31,32を含む測定流路管であり、この管内には光の軸方向と直交するように一定の方向に測定対象である測定試料Sの液体が流される。これら透明ガラス31,32はたとえば石英ガラスであり、測定光の照射方向に対し垂直になるように設置されており、測定光を通過させるための窓の役割を果たす。なお、測定液Sには、複数の成分(成分X,成分Y,成分Z)の粒子が分散しているものとする。   The measurement cell 3 is a measurement flow path tube including parallel transparent glasses 31 and 32, and the liquid of the measurement sample S as a measurement target flows in the tube in a certain direction so as to be orthogonal to the axial direction of light. . These transparent glasses 31 and 32 are, for example, quartz glass and are installed so as to be perpendicular to the irradiation direction of the measurement light, and serve as windows for allowing the measurement light to pass through. In the measurement liquid S, it is assumed that particles of a plurality of components (component X, component Y, component Z) are dispersed.

測定セル3に照射された測定光は、透明ガラス31を通過して測定液Sに入射される。測定液Sに入射された測定光は、透過光F1として透明ガラス32から出射されるとともに、一部は測定液Sに含まれる粒子によって散乱されて散乱光F2,F3となり、透明ガラス32から出射される。   The measurement light applied to the measurement cell 3 passes through the transparent glass 31 and enters the measurement liquid S. The measurement light incident on the measurement liquid S is emitted from the transparent glass 32 as transmitted light F1, and a part of the measurement light is scattered by particles contained in the measurement liquid S to become scattered light F2 and F3, and is emitted from the transparent glass 32. Is done.

これら散乱光F2,F3の強度は、粒子の濃度や大きさ、形状、物性、光の波長によって変化する。また、散乱光F2,F3の強度が最も高くなる散乱角も、粒子の大きさやサイズ、形状、物性、光の波長によって変化する。   The intensity of these scattered lights F2 and F3 varies depending on the concentration, size, shape, physical properties, and light wavelength of the particles. In addition, the scattering angle at which the intensity of the scattered light F2 and F3 is the highest also varies depending on the size, size, shape, physical properties, and light wavelength of the particles.

測定セル3の透明ガラス32と対向するように、受光部4が設けられている。受光部4は、透過光F1を受光する透過光受光部40と、散乱光F2,F3を受光する散乱光受光部41,42から構成されている。   The light receiving unit 4 is provided so as to face the transparent glass 32 of the measurement cell 3. The light receiving unit 4 includes a transmitted light receiving unit 40 that receives the transmitted light F1, and scattered light receiving units 41 and 42 that receive the scattered lights F2 and F3.

透過光受光部40は、コリメータレンズ2で平行になった測定光の光束径とほぼ同じ径を有する円板状に構成されている。散乱光受光部41,42は、透過光受光部40の外周に同心状に配置されるものであり、リング状に構成されている。散乱光受光部41の内径は透過光受光部40の外径と一致し、散乱光受光部42の内径は散乱光受光部41の外径と一致するように形成されている。   The transmitted light receiving unit 40 is formed in a disc shape having a diameter substantially the same as the diameter of the measurement light beam that is paralleled by the collimator lens 2. The scattered light receiving portions 41 and 42 are arranged concentrically on the outer periphery of the transmitted light receiving portion 40 and are configured in a ring shape. The inner diameter of the scattered light receiving unit 41 is formed to match the outer diameter of the transmitted light receiving unit 40, and the inner diameter of the scattered light receiving unit 42 is formed to match the outer diameter of the scattered light receiving unit 41.

透過光受光部40は、測定セル3の透明ガラス32の内面から距離d1の位置に、円板の中心を測定光の光束中心と一致させて配置されている。散乱光受光部41,42は、測定セル3の透明ガラス32の内面から距離d2(d2<d1)の位置に、透過光受光部40と同心状に配置されている。透過光受光部40および散乱光受光部41,42は、それぞれ測定光の照射方向に対して垂直になるように配置されている。なお、透過光受光部40と散乱光受光部41,42の相対位置をずらすことで、後述する検量線の直線性を調整することができる。   The transmitted light receiving unit 40 is arranged at a distance d1 from the inner surface of the transparent glass 32 of the measurement cell 3 so that the center of the disk coincides with the light beam center of the measurement light. The scattered light receivers 41 and 42 are disposed concentrically with the transmitted light receiver 40 at a distance d2 (d2 <d1) from the inner surface of the transparent glass 32 of the measurement cell 3. The transmitted light receiving unit 40 and the scattered light receiving units 41 and 42 are arranged so as to be perpendicular to the irradiation direction of the measurement light. Note that the linearity of a calibration curve, which will be described later, can be adjusted by shifting the relative positions of the transmitted light receiving unit 40 and the scattered light receiving units 41 and 42.

図2に示すように、円板状の透過光受光部40は円周方向に沿って等しい角度間隔(120°)でA1〜A3の3つの領域に分割され、リング状の散乱光受光部41は円周方向に沿って等しい角度間隔(120°)で領域A4〜A6の3つに分割され、リング状の散乱光受光部42は円周方向に沿って等しい角度間隔(120°)で領域A7〜A9の3つに分割されている。   As shown in FIG. 2, the disc-shaped transmitted light receiving unit 40 is divided into three regions A <b> 1 to A <b> 3 at equal angular intervals (120 °) along the circumferential direction, and the ring-shaped scattered light receiving unit 41. Is divided into three regions A4 to A6 at equal angular intervals (120 °) along the circumferential direction, and the ring-shaped scattered light receiving part 42 is divided into regions at equal angular intervals (120 °) along the circumferential direction. It is divided into three parts A7 to A9.

領域A1,A4,A7には紫外光センサ素子(Duv)が設けられてそれぞれ紫外光検知領域が形成され、領域A2,A5,A8には可視光センサ素子(Dop)が設けられて敷き詰められてそれぞれ可視光検知領域が形成され、領域A3,A6,A9には近赤外光センサ素子(Dir)が設けられてそれぞれ近赤外光検知領域が形成されている。 The areas A1, A4 and A7 are provided with ultraviolet light sensor elements (D uv ) to form ultraviolet light detection areas, respectively, and the areas A2, A5 and A8 are provided with visible light sensor elements (D op ) and spread. Thus, visible light detection regions are formed, and near-infrared light sensor elements (D ir ) are provided in the regions A3, A6, and A9 to form near-infrared light detection regions, respectively.

測定セル3に照射され測定液Sを通過した測定光は透過光F1および散乱光F2,F3となり、それらの光強度が各検知領域の異なる波長に感度を有する3種類の光センサ素子Duv,Dop,Dirで測定される。各光センサ素子Duv,Dop,Dirの出力は、図示しないA/D変換器でデジタル化された後、演算装置5のメモリ51に格納される。 The measurement light irradiated to the measurement cell 3 and passed through the measurement liquid S becomes transmitted light F1 and scattered light F2 and F3, and the three types of optical sensor elements D uv , whose light intensities are sensitive to different wavelengths in the respective detection regions. It is measured by D op and Dir . Outputs of the respective optical sensor elements D uv , D op and D ir are digitized by an A / D converter (not shown) and then stored in the memory 51 of the arithmetic unit 5.

粒子濃度演算部52は、メモリ51から各光センサ素子Duv,Dop,Dirの出力を読み出し、受光部4の各検知領域A1〜A9ごとに、その領域に含まれる光センサ素子出力の平均値を算出する。これにより、透過光F1、散乱光F2,F3について、紫外光領域、可視光領域、近赤外光領域における光の強度が得られる。算出の結果、以下の値が得られたものとする。
透過光F1:検知領域(A1,A2,A3)=(紫外,可視,近赤外)
=強度(I11,I12,I13
散乱光F2:検知領域(A4,A5,A6)=(紫外,可視,近赤外)
=強度(I21,I22,I23
散乱光F3:検知領域(A7,A8,A9)=(紫外,可視,近赤外)
=強度(I31,I32,I33
The particle concentration calculation unit 52 reads the output of each photosensor element D uv , D op , D ir from the memory 51, and outputs the output of the photosensor element included in each detection region A 1 to A 9 of the light receiving unit 4. The average value is calculated. Thereby, the intensity | strength of the light in an ultraviolet light area | region, a visible light area | region, and a near-infrared light area | region is obtained about the transmitted light F1 and scattered light F2, F3. The following values are obtained as a result of the calculation.
Transmitted light F1: detection area (A1, A2, A3) = (ultraviolet, visible, near infrared)
= Intensity (I 11 , I 12 , I 13 )
Scattered light F2: detection region (A4, A5, A6) = (ultraviolet, visible, near infrared)
= Intensity (I 21 , I 22 , I 23 )
Scattered light F3: detection region (A7, A8, A9) = (ultraviolet, visible, near infrared)
= Intensity (I 31 , I 32 , I 33 )

解析部53は、粒子濃度測定装置の初期設定時やメンテナンス時、検量線作成時に使用され、粒子濃度測定装置の実測定時には使用されない。検量線とは、粒子濃度が既知の測定液を用いて求めた、粒子濃度とそれに関係するたとえば吸光度、電流、電圧、抵抗などの各種物理量の測定値との関係線をいう。   The analysis unit 53 is used at the time of initial setting or maintenance of the particle concentration measuring device and at the time of creating a calibration curve, and is not used at the time of actual measurement of the particle concentration measuring device. The calibration curve refers to a relationship line between a particle concentration and a measured value of various physical quantities such as absorbance, current, voltage, resistance, and the like related to the particle concentration obtained using a measuring solution having a known particle concentration.

粒子濃度測定装置の実測定に先立って、成分Xの粒子濃度が既知の検量用測定液S’の測定を行う。この測定で得られた透過光F1’および散乱光F2’,F3’の検出信号強度が解析部53に入力される。   Prior to the actual measurement by the particle concentration measuring apparatus, the measurement solution S ′ for calibration with a known particle concentration of the component X is measured. The detection signal intensities of the transmitted light F <b> 1 ′ and scattered light F <b> 2 ′ and F <b> 3 ′ obtained by this measurement are input to the analysis unit 53.

解析部53は、透過光受光部40の検知領域A1〜A3と、散乱光受光部41および42の検知領域A4〜A9の中から、それぞれ検知領域をひとつずつ選択して構成されるすべての組合せについて、検出信号強度の比を求める。計算された検出信号強度の比の値を成分Xの粒子濃度に変換する所定の計算式に導入し、成分Xの粒子濃度を計算する。   The analysis unit 53 selects all the detection regions from the detection regions A1 to A3 of the transmitted light receiving unit 40 and the detection regions A4 to A9 of the scattered light receiving units 41 and 42, respectively. The ratio of the detected signal intensity is obtained for. The calculated detection signal intensity ratio value is introduced into a predetermined calculation formula for converting the particle concentration of the component X into the particle concentration of the component X, and the particle concentration of the component X is calculated.

このような成分Xの粒子濃度の計算を、検量用測定液S’中の成分Xの粒子濃度を低濃度から高濃度まで変化させて行う。そして、検出信号強度の比の計算をした領域の組合せごとに、検量用測定液S’を低濃度から高濃度まで手分析した結果との相関係数を計算する。相関係数の計算には、ニューラルネットワークや多変量解析などの手法を用いる。計算の結果、最も高い相関係数を示す検知領域の組合せを、成分X測定用の検知領域の組合せとして決定する。検知領域の組合せとは、すなわちその検知領域の光センサ素子の組合せを意味する。そして、この検知領域の組合せで計算された検出信号強度の比と粒子濃度の計算結果を用いて、成分Xの検量線を作成する。   The calculation of the particle concentration of the component X is performed by changing the particle concentration of the component X in the calibration measuring solution S ′ from a low concentration to a high concentration. Then, for each combination of the areas where the ratio of the detection signal intensity is calculated, a correlation coefficient with the result of the manual analysis of the calibration measuring solution S ′ from a low concentration to a high concentration is calculated. A method such as neural network or multivariate analysis is used to calculate the correlation coefficient. As a result of the calculation, a combination of detection areas showing the highest correlation coefficient is determined as a combination of detection areas for component X measurement. The combination of detection areas means a combination of optical sensor elements in the detection areas. Then, a calibration curve of the component X is created using the detection signal intensity ratio and particle concentration calculation result calculated for this combination of detection regions.

解析部53は、以上のような処理を成分Y、成分Zについても行い、それぞれ手分析の結果と最も高い相関係数を示す検知領域の組合せの決定および検量線の作成を行う。
解析部53による解析の結果、成分X,Y,Z測定用の検知領域の組合せが、
成分X:検知領域A4/検知領域A1
成分Y:検知領域A8/検知領域A3
成分Z:検知領域A9/検知領域A2
に決定されたものとする。
決定された検知領域の組合せおよび検量線は、解析部53から粒子濃度演算部52に出力され、粒子濃度演算部52に記憶される。
The analysis unit 53 performs the above-described processing for the component Y and the component Z, respectively, determines the combination of detection regions showing the highest correlation coefficient with the result of manual analysis and creates a calibration curve.
As a result of the analysis by the analysis unit 53, the combination of detection areas for component X, Y, Z measurement is
Component X: detection area A4 / detection area A1
Component Y: Detection area A8 / Detection area A3
Component Z: detection area A9 / detection area A2
Shall be determined.
The determined combination of detection areas and the calibration curve are output from the analysis unit 53 to the particle concentration calculation unit 52 and stored in the particle concentration calculation unit 52.

粒子濃度演算部52は、成分ごとに、解析部53で決定した組合せの検知領域の検出信号強度を選択し、検出信号強度の比を計算する。
成分X:検知領域A4/検知領域A1=I21/I11
成分Y:検知領域A8/検知領域A3=I32/I13
成分Z:検知領域A9/検知領域A2=I33/I12
For each component, the particle concentration calculation unit 52 selects the detection signal intensity of the combination detection region determined by the analysis unit 53 and calculates the ratio of the detection signal intensity.
Component X: detection area A4 / detection area A1 = I 21 / I 11
Component Y: detection area A8 / detection area A3 = I 32 / I 13
Component Z: detection area A9 / detection area A2 = I 33 / I 12

粒子濃度演算部52は、成分毎に計算した検出信号強度の比の値を検量線と照らし合わせ、粒子濃度を計算する。得られた粒子濃度は、表示部6で表示される。演算装置5は機能ブロックで示してあるが、実際は各演算を行うプログラムがインストールされたコンピュータで行われる。   The particle concentration calculation unit 52 compares the detection signal intensity ratio value calculated for each component with a calibration curve to calculate the particle concentration. The obtained particle concentration is displayed on the display unit 6. Although the arithmetic unit 5 is shown as a functional block, it is actually performed by a computer in which a program for performing each arithmetic operation is installed.

本実施例は以上のように構成され、受光部4に異なる波長に感度を有する複数の光センサを備え、これらの光センサの測定結果を選択的に利用することにより、測定液Sの成分ごとの粒子濃度を測定することができる。   The present embodiment is configured as described above, and the light receiving unit 4 includes a plurality of photosensors having sensitivity to different wavelengths, and by selectively using the measurement results of these photosensors, each component of the measurement liquid S is provided. Particle concentration can be measured.

なお、本実施例で説明した粒子濃度測定装置は、粒子濃度に基づいて測定液Sの濁度を求める濁度計としても利用することができる。   Note that the particle concentration measuring apparatus described in the present embodiment can also be used as a turbidimeter that calculates the turbidity of the measurement liquid S based on the particle concentration.

また、異なる波長に感度を有する光センサが透過光受光部40および散乱光受光部41,42のそれぞれに備えられているため、透過光F1および散乱光F2,F3のそれぞれについて異なる波長で検出信号強度を測定することができる。   In addition, since optical sensors having sensitivity to different wavelengths are provided in the transmitted light receiving unit 40 and the scattered light receiving units 41 and 42, detection signals with different wavelengths for the transmitted light F1 and the scattered light F2 and F3, respectively. The intensity can be measured.

また、透過光受光部40を円板状とし、散乱光受光部41,42を透過光受光部40と同心状に配置されたリング状とし、さらに各受光部の外径と内径を連続させたため、散乱光F2,F3の強度を空間的に連続した複数の微小角ごとに測定することができる。これにより、散乱光の大半を測定することが可能であり、粒子濃度の測定が高精度のものとなる。また、散乱光受光部が41,42の2重になっているため、それぞれ異なる散乱角の散乱光を測定することができる。   In addition, the transmitted light receiving unit 40 has a disk shape, the scattered light receiving units 41 and 42 have a ring shape concentrically arranged with the transmitted light receiving unit 40, and the outer diameter and inner diameter of each light receiving unit are made continuous. The intensity of the scattered light F2 and F3 can be measured for each of a plurality of spatially continuous small angles. As a result, most of the scattered light can be measured, and the particle concentration can be measured with high accuracy. In addition, since the scattered light receiving portions 41 and 42 are double, scattered light having different scattering angles can be measured.

また、粒子濃度の算出にあたり、どの検知領域で測定された光の検出信号強度を用いるか、すなわち、どの光センサの測定結果を選択するかを決定する解析部53を備えているため、測定液Sを手分析した場合に得られるであろう結果と近い結果が得られる。   In addition, in the calculation of the particle concentration, an analysis unit 53 that determines which detection region of the light detection signal intensity measured in which detection region is used, that is, which optical sensor measurement result is selected, is provided. A result close to that which would be obtained if S was manually analyzed is obtained.

また、連続測定にあたっては、測定誤差を許容範囲に抑え、装置の保守周期を長くすることが非常に重要であるが、粒子濃度演算部52は、粒子濃度の算出にあたり、散乱光F2,F3の検出信号強度と透過光F1の検出信号強度の比を求めているため、装置の電源変動や光源の光量変動、測定対象によって生じる測定セルの窓汚れなどの影響を受けにくく、長期にわたってメンテナンスに手間をかけることなくオンラインで連続的に粒子濃度を測定できる。   In continuous measurement, it is very important to limit the measurement error to an allowable range and lengthen the maintenance cycle of the apparatus. However, the particle concentration calculation unit 52 calculates the scattered light F2 and F3 when calculating the particle concentration. Since the ratio of the detection signal intensity and the detection signal intensity of the transmitted light F1 is obtained, it is not easily affected by fluctuations in the power supply of the apparatus, the light quantity of the light source, and the measurement cell window stains caused by the measurement target. It is possible to measure the particle concentration continuously online without applying any.

また、異なる波長に感度を有する複数の光センサ素子として、紫外光センサ素子Duv、可視光センサ素子Dop、近赤外光センサ素子Dirを用いているため、広い波長領域で透過光と散乱光を測定できる。 Moreover, since the ultraviolet light sensor element D uv , the visible light sensor element D op , and the near infrared light sensor element D ir are used as a plurality of light sensor elements having sensitivity to different wavelengths, the transmitted light can be transmitted in a wide wavelength region Scattered light can be measured.

なお、本実施例では、散乱光の検出は散乱光受光部41,42のみであるが、散乱光受光部42の外周にさらにリング状の検出部を増設することにより、さらに大きな角度で散乱された散乱光も測定できる。   In this embodiment, the scattered light is detected only by the scattered light receiving parts 41 and 42. However, by adding a ring-shaped detection part to the outer periphery of the scattered light receiving part 42, the scattered light is scattered at a larger angle. Scattered light can also be measured.

また、本実施例では、異なる波長に感度を有する光センサとして3種類の光センサ素子を用いているが、センサ素子の種類は3種類に限らない。光センサ素子の種類や個数は多いほど精度よく粒子濃度を測定できる。さらに、本実施例では紫外光センサ素子Duv、可視光センサ素子Dop、近赤外光センサ素子Dirを用いているが、光センサ素子の種類はこれに限るものではない。ただし、感度を有する波長が互いに重ならないものを利用するのが望ましい。 In this embodiment, three types of optical sensor elements are used as optical sensors having sensitivity to different wavelengths, but the number of sensor elements is not limited to three. The greater the number and type of photosensor elements, the more accurately the particle concentration can be measured. Furthermore, although the ultraviolet light sensor element D uv , the visible light sensor element D op , and the near infrared light sensor element D ir are used in the present embodiment, the type of the light sensor element is not limited to this. However, it is desirable to use a wavelength in which the wavelengths having sensitivity do not overlap each other.

なお、測定液Sは請求項の測定対象に相当し、粒子濃度演算部52は請求項の演算部に相当する。また、本発明は、液体中の粒子濃度測定だけでなく、気体中の粒子濃度測定にも利用可能である。   Note that the measurement liquid S corresponds to a measurement object in claims, and the particle concentration calculation unit 52 corresponds to a calculation unit in claims. Further, the present invention can be used not only for measuring the concentration of particles in a liquid but also for measuring the concentration of particles in a gas.

前記実施例1では受光部4を平面状に形成したが、受光部4を曲面状に形成することも可能である。図3は、実施例2として、受光部を凹状曲面にした例を示す。図3の(a)は受光部4’の斜視図、図3の(b)は受光部4’の上面図、図3の(c)は受光部4’の展開図である。   In the first embodiment, the light receiving portion 4 is formed in a planar shape. However, the light receiving portion 4 may be formed in a curved shape. FIG. 3 shows an example in which the light receiving part has a concave curved surface as the second embodiment. 3A is a perspective view of the light receiving portion 4 ′, FIG. 3B is a top view of the light receiving portion 4 ′, and FIG. 3C is a development view of the light receiving portion 4 ′.

測定セル3’は、全体がたとえば石英ガラスで構成されていて、内部には測定液Sが流れている。測定光の入射側は平面に形成され、測定光の出射側は凸状曲面に形成されていて、入射側平面が測定光の照射方向に対し垂直になるように設置されている。   The entire measurement cell 3 ′ is made of, for example, quartz glass, and the measurement liquid S flows inside. The incident side of the measurement light is formed in a plane, the emission side of the measurement light is formed in a convex curved surface, and the incident side plane is installed so as to be perpendicular to the irradiation direction of the measurement light.

受光部4’は、測定セル3’の出射面と対向するように凹状曲面に形成されている。受光部4’の垂直をなしている端縁は、測定セル3’の入射側の側壁と同一平面上に位置している。   The light receiving portion 4 ′ is formed in a concave curved surface so as to face the emission surface of the measurement cell 3 ′. The vertical edge of the light receiving portion 4 ′ is located on the same plane as the incident side wall of the measurement cell 3 ′.

受光部4’には、透過光を受光する透過光受光部40’と散乱光を受光する散乱光受光部41’〜45’が設けられている。散乱光受光部41’〜45’は透過光受光部40’と同心状に配置されており、散乱光受光部43’の外径は受光部4’の水平方向の長さ(展開時)と一致している。   The light receiving unit 4 ′ is provided with a transmitted light receiving unit 40 ′ that receives transmitted light and scattered light receiving units 41 ′ to 45 ′ that receive scattered light. The scattered light receiving parts 41 ′ to 45 ′ are arranged concentrically with the transmitted light receiving part 40 ′, and the outer diameter of the scattered light receiving part 43 ′ is the horizontal length (when unfolded) of the light receiving part 4 ′. Match.

透過光受光部40’および散乱光受光部41’〜45’は、それぞれ領域が3分割されており、分割された領域ごとに紫外光センサ素子、可視光センサ素子、近赤外光センサ素子が敷き詰められている。その他の構成は実施例1と同様である。   Each of the transmitted light receiving unit 40 ′ and the scattered light receiving units 41 ′ to 45 ′ is divided into three regions, and an ultraviolet light sensor element, a visible light sensor element, and a near infrared light sensor element are provided for each divided region. It is laid down. Other configurations are the same as those of the first embodiment.

本実施例は以上のように構成したことにより、実施例1と同じ効果を有するとともに、さらに測定セル3’の出射側を凸状曲面にし、受光部4’の測定セル3’との対向面を凹状曲面としたことにより、受光部を平面状とした場合よりも散乱角の大きな散乱光も受光できる。たとえば、測定光の照射方向から水平方向に90度で散乱された散乱光F4も検出できる。   Since the present embodiment is configured as described above, it has the same effect as the first embodiment, and further, the exit side of the measurement cell 3 ′ is formed as a convex curved surface, and the surface of the light receiving portion 4 ′ facing the measurement cell 3 ′. By using a concave curved surface, it is possible to receive scattered light having a larger scattering angle than when the light receiving portion is planar. For example, the scattered light F4 scattered at 90 degrees in the horizontal direction from the measurement light irradiation direction can also be detected.

以上説明したように、本発明によれば、測定対象中に多成分の粒子が含まれる場合に、成分ごとの粒子濃度を連続的に測定できる比較的小型で簡潔な構造の粒子濃度測定装置を実現でき、水処理プロセスや、食品工業など各種製造業の製造プロセスにおける流体中の粒子濃度の測定および管理に好適である。   As described above, according to the present invention, when multi-component particles are included in the measurement target, the particle concentration measuring device having a relatively small and simple structure capable of continuously measuring the particle concentration for each component. It can be realized and is suitable for measuring and managing the concentration of particles in a fluid in a manufacturing process of various manufacturing industries such as a water treatment process and the food industry.

本発明の実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of this invention. 図1の受光部と演算装置を示す図である。It is a figure which shows the light-receiving part and arithmetic unit of FIG. 本発明の実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of this invention. 従来の透過散乱形濁度計の概略構成例を示す構成図である。It is a block diagram which shows the schematic structural example of the conventional transmission scattering type turbidimeter.

符号の説明Explanation of symbols

1 光源
2 コリメータレンズ
3 測定セル
31,32 透明ガラス
4 受光部
40 透過光受光部
41,42 散乱光受光部
5 演算装置
51 メモリ
52 粒子濃度演算部
53 解析部
6 表示部
S 測定液
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3 Measurement cell 31, 32 Transparent glass 4 Light-receiving part 40 Transmitted light light-receiving part 41, 42 Scattered light light-receiving part 5 Arithmetic device 51 Memory 52 Particle concentration calculation part 53 Analysis part 6 Display part S Measurement liquid

Claims (7)

透明な測定セル内を流れる測定対象に広範囲の出力波長を有する測定光を照射する光源と、
この測定光の照射により発生する透過光および散乱光の強度を異なる波長について測定する複数の光センサよりなる受光部と、
この受光部の各光センサの測定結果に基づいて前記測定対象中の粒子濃度を各成分ごとに算出する演算部、
とで構成されたことを特徴とする粒子濃度測定装置。
A light source for irradiating measurement light having a wide range of output wavelengths to a measurement object flowing in a transparent measurement cell;
A light receiving unit comprising a plurality of optical sensors for measuring the intensity of transmitted light and scattered light generated by irradiation of the measurement light for different wavelengths;
An arithmetic unit that calculates, for each component, the particle concentration in the measurement object based on the measurement results of the optical sensors of the light receiving unit,
A particle concentration measuring apparatus comprising:
前記受光部は、
前記光源の照射方向に配置され前記測定対象の透過光を受光する透過光受光部と、
前記光源の照射方向から所定の角度で配置され前記測定対象の散乱光を受光する散乱光受光部とからなり、
異なる波長に感度を有する複数の前記光センサは前記透過光受光部および前記散乱光受光部のそれぞれに備えられたことを特徴とする請求項1に記載の粒子濃度測定装置。
The light receiving unit is
A transmitted light receiving unit disposed in the irradiation direction of the light source and receiving the transmitted light of the measurement object;
A scattered light receiving unit that is arranged at a predetermined angle from the irradiation direction of the light source and receives the scattered light of the measurement object;
The particle concentration measuring device according to claim 1, wherein the plurality of optical sensors having sensitivity to different wavelengths are provided in each of the transmitted light receiving unit and the scattered light receiving unit.
前記透過光受光部は円板状に形成され、
前記散乱光受光部はリング状に形成されて前記透過光受光部の外周に同心状に配置されたことを特徴とする請求項2に記載の粒子濃度測定装置。
The transmitted light receiving part is formed in a disc shape,
3. The particle concentration measuring apparatus according to claim 2, wherein the scattered light receiving unit is formed in a ring shape and arranged concentrically on the outer periphery of the transmitted light receiving unit.
前記測定セルの測定光の照射面は平面状に形成されて測定光の出射面は凸状曲面に形成され、
前記受光部の受光面はこの測定セルの測定光の出射面と対向するように凹状曲面に形成されていることを特徴とする請求項1〜3のいずれかに記載の粒子濃度測定装置。
The measurement light irradiation surface of the measurement cell is formed in a planar shape, and the measurement light emission surface is formed in a convex curved surface,
The particle concentration measuring apparatus according to claim 1, wherein the light receiving surface of the light receiving unit is formed in a concave curved surface so as to face a measurement light emitting surface of the measurement cell.
前記演算部は粒子濃度の算出に際しどの光センサの測定結果を選択するかを決定する解析部を備え、
この解析部は、
各成分の粒子濃度が既知である測定対象の各光センサによる事前測定結果を任意に組合せて所定の演算を行い、演算結果が実際の粒子濃度と最も高い相関を示す光センサの組を各成分ごとに決定することを特徴とする請求項1〜4のいずれかに記載の粒子濃度測定装置。
The calculation unit includes an analysis unit that determines which photosensor measurement result is to be selected when calculating the particle concentration,
This analysis part
Predetermined calculation is performed by arbitrarily combining the pre-measurement results of each optical sensor to be measured whose particle concentration of each component is known, and a set of optical sensors whose calculation result shows the highest correlation with the actual particle concentration The particle concentration measuring device according to claim 1, wherein the particle concentration measuring device is determined every time.
前記演算部は、散乱光の強度と透過光の強度の比を取ることを特徴とする請求項1〜5のいずれかに記載の粒子濃度測定装置。   The particle concentration measuring apparatus according to claim 1, wherein the calculation unit takes a ratio between the intensity of scattered light and the intensity of transmitted light. 異なる波長に感度を有する複数の前記光センサは、紫外光センサと可視光センサと近赤外光センサであることを特徴とする請求項1〜6のいずれかに記載の粒子濃度測定装置。   The particle concentration measurement apparatus according to claim 1, wherein the plurality of optical sensors having sensitivity to different wavelengths are an ultraviolet light sensor, a visible light sensor, and a near infrared light sensor.
JP2008135680A 2008-05-23 2008-05-23 Particle concentration measuring apparatus Pending JP2009281930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135680A JP2009281930A (en) 2008-05-23 2008-05-23 Particle concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135680A JP2009281930A (en) 2008-05-23 2008-05-23 Particle concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JP2009281930A true JP2009281930A (en) 2009-12-03

Family

ID=41452519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135680A Pending JP2009281930A (en) 2008-05-23 2008-05-23 Particle concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP2009281930A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162113A1 (en) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2012141311A (en) * 2010-12-30 2012-07-26 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmissivity of patterned glass substrate
KR101264075B1 (en) 2011-04-26 2013-05-13 김제원 Optical Apparatus for Measuring Particles
JP2013145236A (en) * 2012-01-16 2013-07-25 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmittance of cover glass for photovoltaic cell
US20130294974A1 (en) * 2010-12-08 2013-11-07 Hitachi High-Technologies Corporation Automatic analyzer
US20140140890A1 (en) * 2011-05-13 2014-05-22 Hitachi High-Technologies Corporation Automatic analysis device
KR101417755B1 (en) * 2013-09-16 2014-07-15 연세대학교 산학협력단 A Real-time Particle Number Weighted Distribution Measuring Apparatus Using Mie Scattering Theory, and Method of Measuring
JP2015002683A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Microalgae or metabolite concentration deciding method and system
KR20170086415A (en) * 2016-01-18 2017-07-26 지크 엔지니어링 게엠베하 Optical sensor
JP2017142116A (en) * 2016-02-09 2017-08-17 東芝メモリ株式会社 Particle measurement device
KR101857950B1 (en) 2016-06-21 2018-05-16 한국표준과학연구원 High accuracy real-time particle counter
KR20190123983A (en) * 2018-04-25 2019-11-04 (주)파이버피아 Apparatus and Method for Measuring Concentration of Contamination Factor
KR102226532B1 (en) * 2020-10-20 2021-03-11 코리아스펙트랄프로덕츠(주) Optical system for counting particles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947690B (en) * 2010-06-22 2015-03-11 株式会社日立高新技术 Automatic analysis device
JP2012007896A (en) * 2010-06-22 2012-01-12 Hitachi High-Technologies Corp Automatic analyzer
CN102947690A (en) * 2010-06-22 2013-02-27 株式会社日立高新技术 Automatic analysis device
WO2011162113A1 (en) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ Automatic analysis device
US20130294974A1 (en) * 2010-12-08 2013-11-07 Hitachi High-Technologies Corporation Automatic analyzer
JP2012141311A (en) * 2010-12-30 2012-07-26 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmissivity of patterned glass substrate
US9030664B2 (en) 2010-12-30 2015-05-12 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmissivity of patterned glass substrate
KR101264075B1 (en) 2011-04-26 2013-05-13 김제원 Optical Apparatus for Measuring Particles
US20140140890A1 (en) * 2011-05-13 2014-05-22 Hitachi High-Technologies Corporation Automatic analysis device
US9645160B2 (en) * 2011-05-13 2017-05-09 Hitachi High-Technologies Corporation Automatic analysis device
JP2013145236A (en) * 2012-01-16 2013-07-25 Samsung Corning Precision Materials Co Ltd Apparatus for measuring transmittance of cover glass for photovoltaic cell
JP2015002683A (en) * 2013-06-19 2015-01-08 日本電信電話株式会社 Microalgae or metabolite concentration deciding method and system
KR101417755B1 (en) * 2013-09-16 2014-07-15 연세대학교 산학협력단 A Real-time Particle Number Weighted Distribution Measuring Apparatus Using Mie Scattering Theory, and Method of Measuring
KR20170086415A (en) * 2016-01-18 2017-07-26 지크 엔지니어링 게엠베하 Optical sensor
KR101945709B1 (en) 2016-01-18 2019-02-08 지크 엔지니어링 게엠베하 Optical sensor
JP2017142116A (en) * 2016-02-09 2017-08-17 東芝メモリ株式会社 Particle measurement device
KR101857950B1 (en) 2016-06-21 2018-05-16 한국표준과학연구원 High accuracy real-time particle counter
KR20190123983A (en) * 2018-04-25 2019-11-04 (주)파이버피아 Apparatus and Method for Measuring Concentration of Contamination Factor
KR102065755B1 (en) 2018-04-25 2020-01-13 (주)파이버피아 Apparatus and Method for Measuring Concentration of Contamination Factor
KR102226532B1 (en) * 2020-10-20 2021-03-11 코리아스펙트랄프로덕츠(주) Optical system for counting particles

Similar Documents

Publication Publication Date Title
JP2009281930A (en) Particle concentration measuring apparatus
JP3306079B2 (en) Optical analyzer and calibration method thereof
US10359364B2 (en) Hybrid spectrophotometer with variable optical path length sampling cell and method of using same
JP4928437B2 (en) Ozone concentration sensor
US9194794B2 (en) Optical absorption spectroscopy
US9423346B2 (en) System and method for haze measurement
US20130301051A1 (en) Scattering light source multi-wavelength photometer
JP2000511641A (en) Gas detection and measurement system
JP2009510480A (en) Calibration of two-line gas spectroscopy
US9335308B2 (en) Chromatography system, signal processing apparatus, chromatography data processing apparatus, and program
JP4905798B2 (en) Turbidity meter
US9442064B1 (en) Photometer with LED light source
CN102980871B (en) Optical gas analytical equipment
JP2006047166A (en) Turbidimeter
JP2013120064A (en) Turbidity chromaticity meter
RU157015U1 (en) FLUID OPTICAL DENSITY METER
JP4660266B2 (en) Water quality inspection device
JP4487197B2 (en) Turbidity / colorimeter
JP2012177679A (en) Granularity representative value estimation device and granularity representative value estimation method
Shepelev et al. Measuring the optical density of wastewater by means of a diamond UV photodetector
Nuzula et al. Manufacturing temperature and turbidity sensor based on ATMega 8535 microcontroller
KR20180082233A (en) Method and Apparatus for Predicting Movement of Nanoparticle in Fluid Flow
Han et al. Improved accuracy of on-line heavy water measurement using infrared spectroscopy by investigation of signal-to-noise ratio and temperature influences
Jeong et al. An optical cavity design for an infrared gas detector using an off-axis parabolic mirror
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use