Nothing Special   »   [go: up one dir, main page]

JP2009269008A - Continuous separation method and device for nanoparticle by ac dielectrophoresis - Google Patents

Continuous separation method and device for nanoparticle by ac dielectrophoresis Download PDF

Info

Publication number
JP2009269008A
JP2009269008A JP2008124433A JP2008124433A JP2009269008A JP 2009269008 A JP2009269008 A JP 2009269008A JP 2008124433 A JP2008124433 A JP 2008124433A JP 2008124433 A JP2008124433 A JP 2008124433A JP 2009269008 A JP2009269008 A JP 2009269008A
Authority
JP
Japan
Prior art keywords
dielectrophoresis
electric field
flow path
substance
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008124433A
Other languages
Japanese (ja)
Inventor
Yohei Sato
洋平 佐藤
Yutaka Kazoe
裕 嘉副
Mitsuaki Fushimi
光明 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2008124433A priority Critical patent/JP2009269008A/en
Publication of JP2009269008A publication Critical patent/JP2009269008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Electrostatic Separation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously separate and extract metal nanoparticles present in a waste liquid or the like at high efficiency in a flow by a simple method. <P>SOLUTION: Ununiform electric field strength is generated by a flow passage obtained by combining a tapered trapezoidal structure 10 and a branched structure (such as a cross structure 12 and a T-shaped structure 18) arranged at the chip part thereof, and, with dielectrophoretic force in branching as the maximum, substances (gold nanoparticles 6) generating positive dielectrophoresis to a circumferential fluid are separated into a flow passage outlet 3 in a rectilinear propagation direction and substances (polystyrene particles 8) generating negative dielectrophoresis are separated into flow passage outlets 1, 2 in directions other than the rectilinear propagation direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、交流誘電泳動によるナノ粒子連続分離方法及び装置に係り、特に、排水処理等に用いて、金等の金属ナノ粒子を回収する際に用いるのに好適な、交流誘電泳動によるナノ粒子連続分離方法及び装置に関する。   The present invention relates to a nanoparticle continuous separation method and apparatus using alternating current dielectrophoresis, and particularly suitable for use in recovering metal nanoparticles such as gold for use in wastewater treatment and the like, and nanoparticles using alternating current dielectrophoresis. The present invention relates to a continuous separation method and apparatus.

近年、急速に発展している半導体微細加工技術(MEMS: Micro Electro Mechanical Systems)を基盤として、手のひらサイズのチップ上にマイクロチャネルと呼ばれる、幅数百μm 程度の流路を設置し,微量液体試料および試薬の輸送・混合・反応・分離・抽出機能を集積化したLab-on-a-chip,μTAS(Micro Total Analysis Systems)といったマイクロ熱流体デバイスの研究が盛んに行われている。   On the basis of micro electro mechanical systems (MEMS), which has been developing rapidly in recent years, a microchannel, called a microchannel, is installed on a palm-sized chip, and a trace liquid sample is installed. In addition, research on micro thermo-fluid devices such as Lab-on-a-chip and μTAS (Micro Total Analysis Systems), which integrates the transport, mixing, reaction, separation, and extraction functions of reagents, has been actively conducted.

一般に、マイクロ熱流体デバイス内では2種以上の試料・試薬を混合し、反応・分析を行う。従来、デバイス内で操作する試料はDNA、タンパク質、細胞といった生体物質が主であったが、触媒効果、ガン細胞染色、蛍光増強作用(非特許文献1)およびマイクロ電極の作成(非特許文献2、3)といった研究が行われている金属ナノ粒子、特に貴金属ナノ粒子を操作対象とした手法開発の必要性が高まっている。これら試料の操作がデバイスの根幹を成しており、更なる発展には、試料の任意の反応地点への輸送、生成物質や不要物質の分離・抽出といった技術の確立が必要不可欠である。実用的な物質操作技術の実現には、物質を流れの中で連続的に、物性の違いに基づいて任意に操作する必要があり、これまでも多くの研究がなされてきた。導電率が大きく異なる二種類の溶液を用いて流動場に非対称な電場を発生させ、粒子の帯電量の違いに基づいて電気泳動によって分離する技術(非特許文献4)や、音響放射圧を用いた粒子の径の差異により分離する技術(非特許文献5)、磁性の違いにより粒子を分離する技術(非特許文献6、7)、レーザ放射圧を用いた屈折率の違いにより粒子に力を作用させる技術(非特許文献8、9)も提案されている。   In general, in a micro thermal fluid device, two or more kinds of samples and reagents are mixed to perform reaction and analysis. Conventionally, biological materials such as DNA, proteins, and cells have been mainly manipulated in devices, but catalytic effects, cancer cell staining, fluorescence enhancement (Non-Patent Document 1), and microelectrode preparation (Non-Patent Document 2). 3) There is a growing need for the development of a technique for manipulating metal nanoparticles, especially precious metal nanoparticles, for which research has been conducted. The operation of these samples forms the basis of the device, and for further development, it is indispensable to establish technologies for transporting the sample to an arbitrary reaction point and separating / extracting generated substances and unnecessary substances. In order to realize a practical material manipulation technique, it is necessary to manipulate the material arbitrarily in the flow based on the difference in physical properties, and many studies have been made so far. A technique (Non-Patent Document 4) that generates an asymmetric electric field in the flow field using two types of solutions having greatly different electrical conductivity and separates by electrophoresis based on the difference in the charge amount of the particles, or acoustic radiation pressure is used. Separation technology based on the difference in particle diameter (Non-patent Document 5), separation technology based on the difference in magnetism (Non-Patent Documents 6 and 7), and difference in refractive index using laser radiation pressure. Techniques (Non-Patent Documents 8 and 9) to be operated are also proposed.

以上の手法は微小空間における有効な試料の操作手法であるが、一つの手法のみで複数種の試料を自在に操作することは困難であり、いくつかの分離手法を複合して用いらなければならない。したがって、物性の違いに基づいて操作・分離・抽出を行う更なる手法を開発する必要がある。近年、注目を集めているのは、物性として誘電率に着目し、誘電率に基づいた現象である誘電泳動を用いた試料の操作手法である。   The above method is an effective sample manipulation method in a minute space, but it is difficult to manipulate multiple types of samples freely with only one method, and several separation methods must be used in combination. Don't be. Therefore, it is necessary to develop a further method for performing operation, separation, and extraction based on the difference in physical properties. In recent years, attention has been focused on a sample manipulation technique using dielectrophoresis, which is a phenomenon based on the dielectric constant, focusing on the dielectric constant as a physical property.

誘電泳動とは、物質の分極と非一様な電界の相互作用によって物質に力を作用させる現象である。物質の誘電率の違いで力が作用する方向を変えることができる点、電極間距離が微小なマイクロデバイス内では低電圧でも強力な誘電泳動力が発生する点が、大きな利点である。誘電泳動を用いた粒子分離の研究として一般的なものは、流路途中に電極を配置し、非一様な電界を印加して粒子を分離する手法(非特許文献10、11)である。   Dielectrophoresis is a phenomenon in which force is applied to a substance by the interaction between the polarization of the substance and a non-uniform electric field. The great advantage is that the direction in which the force acts can be changed by the difference in the dielectric constant of the substance, and that a strong dielectrophoretic force is generated even at a low voltage in a microdevice having a very small distance between electrodes. As a general study of particle separation using dielectrophoresis, there is a method (Non-Patent Documents 10 and 11) in which electrodes are arranged in the middle of a flow path and particles are separated by applying a non-uniform electric field.

一方、障害物を配置した流路中に電界を印加し、空間的に非一様な電界を発生させて粒子を分離する手法の研究(非特許文献12)もなされている。   On the other hand, research on a method for separating particles by applying an electric field in a channel in which an obstacle is arranged to generate a spatially non-uniform electric field (Non-patent Document 12) has also been made.

誘電泳動を用いたデバイス内での物質操作は、城壁形の電極や四重電極を用いたラテックス粒子の分離(非特許文献10、11)、城壁形電極による大腸菌の生死分離(非特許文献13)、電極間に金ナノ粒子架橋構造の形成(非特許文献2)といった手法が研究されている。   Material manipulation in the device using dielectrophoresis includes separation of latex particles using a wall-shaped electrode or quadruple electrode (Non-patent Documents 10 and 11), and life and death separation of Escherichia coli using a wall-shaped electrode (Non-Patent Document 13). ), A method of forming a gold nanoparticle crosslinked structure between electrodes (Non-patent Document 2) has been studied.

誘電泳動による力は、粒子と液体の誘電率に応じて、電界強度の強い方向(正の誘電泳動)又は弱い方向(負の誘電泳動)へと粒子に作用する。交流電界印加時は、誘電率が交流周波数の関数となるため、周波数に応じて力を作用させる方向を変えることも可能となる。   The force due to dielectrophoresis acts on the particles in the direction of strong electric field strength (positive dielectrophoresis) or weak direction (negative dielectrophoresis) depending on the dielectric constant of the particles and liquid. When an AC electric field is applied, since the dielectric constant is a function of the AC frequency, the direction in which force is applied can be changed according to the frequency.

マイクロ熱流体デバイス内で誘電泳動を発生させる手法としては、流路途中に直接電極を設置することで流路内に非一様電界を発生させる方法(特許文献1、2)が大勢を占めるが、流路の形状を利用して、一様でない電界を発生させる方法も存在する(特許文献3乃至6)。実際の応用例は、流路内の別々の場所に導体・誘電体を集約する技術、大腸菌の生死分離技術、粒径の大小により連続的に分離する技術(特許文献7)等がある。   As a technique for generating dielectrophoresis in a micro thermofluidic device, there are many methods (Patent Documents 1 and 2) in which a non-uniform electric field is generated in a flow path by installing an electrode directly in the flow path. There are also methods for generating a non-uniform electric field using the shape of the flow path (Patent Documents 3 to 6). Actual application examples include a technique for concentrating conductors and dielectrics at different locations in the flow path, a life-and-death separation technique for Escherichia coli, and a technique for continuous separation according to the particle size (Patent Document 7).

特開2003−200081号公報JP 2003-200081 A 特開2000−61472号公報JP 2000-61472 A 特開2006−205092号公報JP 2006-205092 A 特開2003−287519号公報JP 2003-287519 A 特開2003−107099号公報JP 2003-107099 A 特開2005−205408号公報Japanese Patent Laying-Open No. 2005-205408 特開2007−21465号公報JP 2007-21465 A K.H.Bhatt,O.D.Velev,“Control and Modeling of the Dielectrophoretic Assembly of On−Chip Nanoparticle Wires”,Langmuir,20,467−476,2004.K. H. Bhatt, O .; D. Velev, “Control and Modulating of the Dielectrophoretic Assembly of On-Chip Nanoparticles,” Langmuir, 20, 467-476, 2004. G.R.Souza,D.R.Christianson,F.I.Staquicini,M.G.Ozawa,E.Y.Snyder,R.L.Sidman,J.H.Miller,W.Arap, R.Pasqualini,“Networks of gold nanoparticles andbacteriophage as biological sensors and cell-targeting agents”,Proceedings of the National Academy of Sciences, 103,1215-1220,2006.G.R.Souza, D.R.Christianson, FI Staquicini, M.G.Ozawa, E.Y.Snyder, R.L.Sidman, J.H. Miller, W.Arap, R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents”, Proceedings of the National Academy of Sciences, 103, 1215-1220, 2006. S.H.Ko,I.Park,H.Pan,C.P.Grigoropoulos,A.P.Pisano,C.K.Luscombe,J.M.J.Frechet “Direct Nanoimprinting of Metal Nanoparticles for Nanoscale ElectronicsFabrication”,Nano letters, 7, No.7, 1869-1877,2007.S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C.K. Nano letters, 7, No. 7, 1869-1877, 2007. 山本尊博,S.Devasenathipathy,佐藤洋平,菱田公一,“界面動電現象によるサブミクロン粒子分離技術”,日本機械学会論文集(B),70-697,2378-2385,2004.Takahiro Yamamoto, S. Devasenathipathy, Yohei Sato, Koichi Hishida, “Submicron Particle Separation Technology by Electrokinetic Phenomenon”, Transactions of the Japan Society of Mechanical Engineers (B), 70-697, 2378-2385, 2004. F.Petersson,“Separation of liquids from blood utilizing ultrasonic standing waves inmicrofluidic channels”, Analyst,129, 938-943, 2004.F. Petersson, “Separation of liquids from blood utilizing ultrasonic standing waves in microfluidic channels”, Analyst, 129, 938-943, 2004. O.Hansen,H.Bruus,M.F.Hansen,“Magnetic separation in microfluidic systemsusing microfabricated electromagnets-experiments and simulations”,Journal of Magnetism and Magnetic Materials,293,597-604,2005.O. Hansen, H. Bruus, M. F. Hansen, “Magnetic separation in microfluidic systems using microfabricated electromagnets-experiments and simulations”, Journal of Magnetism and Magnetic Materials, 293, 597-604, 2005. K.Smistrup,P.T.Tang,O.Hansen,M.F.Hansen,“Microelectromagnet formagnetic manipulation in lab-on-a-chip systems”,Journal of Magnetism and Magnetic Materials,300,418-426,2006.K. Smistrup, PT. Tang, O. Hansen, MF Hansen, “Microelectromagnet for magnetic manipulation in lab-on-a-chip systems”, Journal of Magnetism and Magnetic Materials, 300, 418-426, 2006. A.Ashkin,J.M.Dziedzic,J.E.Bjorkholm,S.Chu,”Observation of single-beam gradient force optical trap for dielectric particles”,Optical letters, 1,288-290,1986.A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles”, Optical letters, 1,288-290, 1986. T.Moriya,Y.Sato,“Micro optical stirrer for mixing in microchannel flow”, Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences,1,1507-1509,2007.T. Moriya, Y. Sato, “Micro optical stirrer for mixing in microchannel flow”, Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences, 1, 1507-1509, 2007. A.Ramos,H.Morgan,N.G.Green,A.Castellanos,“Ac electrokinetics:a review of forces in microelectrode structures”,J.Phys.D:Appl.Phys.,31,2338−2353,1998.A. Ramos, H.C. Morgan, N.M. G. Green, A.M. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures”, J. Am. Phys. D: Appl. Phys. , 31, 2338-2353, 1998. N.G.Green,A.Ramos,H.Morgan,“Ac electrokinetics:a survey of sub−micrometre particle dynamics”,J.Phys.D:Appl.Phys.,33,632−641,2000.N. G. Green, A.M. Ramos, H.C. Morgan, “Ac electrokinetics: a survey of sub-micrometer particle dynamics”, J. Am. Phys. D: Appl. Phys. 33, 632-641, 2000. K.H.Kang,Y.Kang,X.Xuan,D.Li,“Continuous separation of microparticles bysize with Direct current−dielectrophoresis”,Electrophoresis,27,694−702,2006.K. H. Kang, Y .; Kang, X .; Xuan, D.C. Li, “Continuous separation of microparticles by size with Dielectric current-dielectrophoresis”, Electrophorphoresis, 27, 694-702, 2006. 鈴木雅登,安川智之,珠玖仁,末永智一,“誘電泳動を用いた大腸菌の生死分離”,分析化学,54,No.12,1189−1195,2005.Masato Suzuki, Tomoyuki Yasukawa, Jin Jin, and Tomokazu Suenaga, “Life-and-death separation of Escherichia coli using dielectrophoresis”, Analytical Chemistry, 54, No. 12, 1189-1195, 2005.

金属を含む廃水(めっき廃水等)は大変有害であり、金属を除去する必要がある。従来は、化学処理を加えることで金属を沈殿させて廃棄、またはスラッジとして再利用するという手法が主に採られてきたが、金属資源の有効活用のためには、金属のまま再利用する必要がある。   Waste water containing metal (plating waste water, etc.) is very harmful and needs to be removed. Conventionally, the method of precipitating metal by adding chemical treatment and discarding it or reusing it as sludge has been mainly adopted. However, in order to effectively use metal resources, it is necessary to reuse the metal as it is. There is.

しかしながら前記の誘電泳動の研究は、流路内の特定の場所に物質を留め置くことは可能であるが、取り出すという観点での研究ではないものが多いのが現状であり、産業上利用する際に重要な、流れの中で連続的に分離抽出することは考えられていなかった。   However, although the dielectrophoresis research described above can keep a substance at a specific location in the flow path, there are many researches that are not from the viewpoint of taking it out. Importantly, it was not considered to continuously separate and extract in the flow.

なお、流路の形状による連続誘電泳動分離として、直流誘電泳動を用いた粒径の大小を利用した分離手法があるが、直流下において、流体である水は電気浸透流と呼ばれる現象により、粒子は電気泳動という現象により、それぞれ電界方向に駆動されることから、複雑に電圧を組み合わせる必要があった。   In addition, as a continuous dielectrophoretic separation based on the shape of the flow path, there is a separation method using the size of the particle size using DC dielectrophoresis, but under direct current, the fluid water is a particle due to a phenomenon called electroosmotic flow. Since each is driven in the direction of an electric field by a phenomenon called electrophoresis, it is necessary to combine voltages in a complicated manner.

又、マイクロ熱流体デバイス内で扱う物質としては、細胞や蛋白質等の生化学物質が主であり、導体として炭素や導電性物質を塗布したラテックス粒子を用いた研究はあるが、実際に金属粒子をデバイス内で分離する研究は行なわれていなかった。   In addition, biochemical substances such as cells and proteins are the main substances handled in micro thermofluid devices, and there are studies using latex particles coated with carbon or conductive substances as conductors. There has been no research to separate them in devices.

本発明は、前記従来の問題点を解消するべくなされたもので、廃液等の使用後の液体中に含まれる金等の金属ナノ粒子を、単純な方法により、流れの中で効率良く連続的に分離抽出することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems. Metal nanoparticles such as gold contained in a liquid after use such as a waste liquid can be efficiently and continuously produced in a flow by a simple method. It is an object to separate and extract them.

発明者らは、表面プラズモン、触媒効果、マイクロ電極の作成、細胞染色効果といった様々な特性を有している金属ナノ粒子、特に貴金属ナノ粒子をマイクロ熱流体デバイスにより分離する方法を試みた。金属の誘電率は無限と考えられるため、他物質との誘電率差による分離が好ましいと考えられる。   The inventors tried a method of separating metal nanoparticles having various characteristics such as surface plasmon, catalytic effect, creation of microelectrodes, cell staining effect, particularly noble metal nanoparticles, using a micro thermofluidic device. Since the dielectric constant of a metal is considered infinite, it is considered that separation based on a dielectric constant difference from other substances is preferable.

又、流れの中で分離するために、電界印加時に電界強度分布が非一様になる形状を持つ流路による誘電泳動を選択した。誘電泳動の研究の大多数は、流路途中に設置した数十ナノメートルから数マイクロメートル間隔の電極間に電界を印加し非一様な電界を発生させるものであるが、発明者が提案する流路形状による手法と電極による分離を併用することで、更なる効率化が図られる。   Moreover, in order to separate in the flow, dielectrophoresis by a flow path having a shape in which the electric field intensity distribution becomes non-uniform when an electric field is applied was selected. The majority of research on dielectrophoresis involves applying an electric field between electrodes at intervals of several tens of nanometers to several micrometers installed in the middle of a flow path to generate a non-uniform electric field. Further efficiency can be achieved by using both the method based on the flow path shape and the separation based on the electrodes.

マイクロ熱流体デバイスの主たる材質であるガラス、PDMS(ポリジメチルシロキサン)は、不導体であり、流路に電界を印加した際、電界は全て流路内に分布する。図1に、台形構造の流路10の例を示す。図において、6は金ナノ粒子、8は不純物としてのポリスチレン粒子、14、16は電極、20は交流電源である。   Glass, PDMS (polydimethylsiloxane), which is the main material of the micro thermofluidic device, is a non-conductor, and when an electric field is applied to the flow path, all the electric field is distributed in the flow path. FIG. 1 shows an example of a trapezoidal flow path 10. In the figure, 6 is a gold nanoparticle, 8 is a polystyrene particle as an impurity, 14 and 16 are electrodes, and 20 is an AC power source.

流路形状によって非一様電界を形成する場合、流路全体に亘って非一様な電界を形成する一方、数十マイクロメートルから数マイクロメートル間隔の電極による手法では電極付近、特に端点において電界強度が極大値となり、流路内の誘電泳動力に局所的な違いが生じる。従って、流路形状による非一様電界は、流路全体に亘って誘電泳動力を作用させられる長所を有する。台形形状においては、幅が狭くなるに連れて電界強度が増す。   When a non-uniform electric field is formed depending on the shape of the flow path, a non-uniform electric field is formed over the entire flow path, while in the technique using electrodes with a distance of several tens of micrometers to several micrometers, the electric field near the electrodes, particularly at the end points The intensity becomes a maximum value, and a local difference occurs in the dielectrophoretic force in the flow path. Therefore, the non-uniform electric field due to the channel shape has an advantage that the dielectrophoretic force can be applied to the entire channel. In the trapezoidal shape, the electric field strength increases as the width becomes narrower.

一方、図2に示すような十字形状の分岐流路12の左右方向にのみ電界を印加すると、分岐において上下方向に電界が拡がるため、電界分布が非一様になる。この現象は、流路形状によってのみ発生させられる現象である。分岐部分から、図で言う左右方向へは電界強度が強く、上下方向へは弱くなっている。   On the other hand, if an electric field is applied only in the left-right direction of the cross-shaped branch flow path 12 as shown in FIG. 2, the electric field spreads in the vertical direction at the branch, resulting in non-uniform electric field distribution. This phenomenon is a phenomenon that is generated only by the flow path shape. From the branch portion, the electric field strength is strong in the left-right direction as shown in the figure, and weak in the up-down direction.

本発明は、このような点に着目してなされたもので、図3に例示する如く、先細りの台形構造と、その先端部分に配設された、例えば十字形上の分岐構造を組み合わせた流路によって、非一様な電界強度を発生させ、分岐における誘電泳動力を最大として、周囲流体に対して正の誘電泳動が発生する物質は直進方向の流路出口、負の誘電泳動が発生する物質は直進以外の方向の流路出口に分離するようにしたものである。   The present invention has been made paying attention to such points, and as illustrated in FIG. 3, the flow is a combination of a tapered trapezoidal structure and, for example, a cruciform branching structure disposed at the tip thereof. Depending on the path, non-uniform electric field strength is generated, and the dielectrophoretic force at the branch is maximized, and the substance that generates positive dielectrophoresis with respect to the surrounding fluid is generated in the straight channel outlet and negative dielectrophoresis occurs. The substance is separated at the channel outlet in a direction other than straight travel.

ここで、周囲流体が水の場合に、1から2000Hzまでの交流電界周波数において前記正の誘電泳動が発生する物質を金属ナノ粒子(例えば金ナノ粒子)、前記負の誘電泳動が発生する物質を絶縁体粒子(例えばポリスチレン粒子)とすることができる。   Here, when the surrounding fluid is water, the substance that generates the positive dielectrophoresis at an alternating electric field frequency of 1 to 2000 Hz is a metal nanoparticle (for example, gold nanoparticle), and the substance that generates the negative dielectrophoresis is Insulator particles (for example, polystyrene particles) can be used.

本発明は、又、先細りの台形構造、及び、その先端部分に配設された分岐構造を組み合わせた流路と、流路に電界を印加して、非一様な電界強度を発生させ、分岐における誘電泳動力を最大として、周囲流体に対して正の誘電泳動が発生する物質は直進方向の流路出口、負の誘電泳動が発生する物質は直進以外の方向の流路出口に分離する手段と、を備えたことを特徴とする交流誘電泳動によるナノ粒子連続分離装置を提供するものである。   The present invention also provides a flow path combining a tapered trapezoidal structure and a branch structure disposed at the tip thereof, and an electric field is applied to the flow path to generate a non-uniform electric field strength, thereby branching. Means to separate the substance that generates positive dielectrophoresis with respect to the surrounding fluid into the channel outlet in the straight direction and the substance that generates negative dielectrophoresis into the channel outlet in a direction other than the straight direction. And a nanoparticle continuous separation apparatus using alternating current dielectrophoresis, characterized in that

ここで、前記分岐構造を十字形状とすることができる。   Here, the branch structure may be a cross shape.

本発明によれば、廃液等の使用済みの液体から、金属ナノ粒子、特に貴金属ナノ粒子を、効率良く連続的に分離して回収することが可能となる。特に金属の場合、化学処理等を加えないため、そのまま再利用することが可能である。又、複雑な電極や電圧操作が必要無いため、従来装置に簡便に付加することが可能であり、大変に有用である。工業的な実用化も、廃水処理といった場面での活躍が期待される。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to isolate | separate and collect | recover efficiently a metal nanoparticle, especially a noble metal nanoparticle from used liquids, such as a waste liquid. In particular, in the case of metal, no chemical treatment or the like is added, so that it can be reused as it is. Further, since complicated electrodes and voltage operations are not required, it can be easily added to a conventional apparatus and is very useful. Industrial practical application is also expected to play an active role in wastewater treatment.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図3に示すような、先細りの台形構造10と十字形状の分岐構造(以下、十字構造と称する)12を組み合わせた形状の流路によって、非一様強度分布を発生させたものである。台形形状先端の一番細くなっている部分、即ち、電界強度が最大となっている部分が流路分岐に来るように設計することで、分岐における誘電泳動力を最大とした。台形構造10において、正の誘電泳動が発生する物質は、直進方向にある出口3方向、負の誘電泳動が発生する物質は、出口3を避ける方向に誘電泳動力を受ける。更に、十字構造12において、正の誘電泳動物質は、分岐部分から直進方向にある出口3方向、負の誘電泳動物質は、側方にある出口1又は2方向へ誘電泳動力を受ける。この際、十字構造12の4本のうち左の1本の幅を太くすることで、分岐から出口3方向へかけてのみ電界強度が増す構造となっている。   As shown in FIG. 3, the first embodiment of the present invention has a non-uniform intensity distribution by a flow path having a shape in which a tapered trapezoidal structure 10 and a cross-shaped branch structure (hereinafter referred to as a cross structure) 12 are combined. Is generated. The dielectrophoretic force at the branch is maximized by designing the thinnest part of the trapezoidal tip, that is, the part where the electric field strength is maximum, to come to the flow path branch. In the trapezoidal structure 10, a substance that generates positive dielectrophoresis receives a dielectrophoretic force in the direction of the exit 3 in the straight direction, and a substance that generates negative dielectrophoresis receives a dielectrophoretic force in a direction that avoids the outlet 3. Further, in the cross structure 12, the positive dielectrophoretic material is subjected to dielectrophoretic force in the direction of the exit 3 in the straight direction from the branch portion, and the negative dielectrophoretic material is subjected to the exit 1 or 2 direction in the side. At this time, by increasing the width of the left one of the four cross structures 12, the electric field strength increases only from the branch to the exit 3 direction.

入口及び出口3に700Vの交流電圧印加時の流路分岐における電気力線分布を図4に示す。   FIG. 4 shows the distribution of electric lines of force in the flow path branch when an AC voltage of 700 V is applied to the inlet and outlet 3.

図5に示すような実験装置を用いて、実際に実流動場に本発明を適用した。   The present invention was actually applied to an actual flow field using an experimental apparatus as shown in FIG.

図5において、ステージ32上の実験流路30は、ソフトリソグラフィ法によりPDMSとガラスから製作し、倒立顕微鏡を用いた装置によって計測を行なった。水銀ランプ40を励起光源として用い、水(比誘電率78)中の金ナノ粒子(直径350〜400nm、比誘電率:無限)の散乱光及びポリスチレン蛍光粒子(直径1μm、比誘電率2.5)からの蛍光をCCDカメラ48によって撮像した。この実験には、体積濃度0.05%のポリスチレン粒子懸濁液(粒径1マイクロメートル)および0.01%の塩化金酸水溶液50mlを1%のクエン酸三ナトリウム水溶液で還元した金ナノ粒子懸濁液(粒径350〜400ナノメートル)を用いた。圧力駆動により粒子混合懸濁液を送液し、700V(24Hz)の電界印加前後で300枚の画像を37ms間隔でそれぞれ撮像し、粒子速度を、画像から個々の粒子を抽出し、各粒子の移動量を算出する粒子追跡法(PTV:Particle Tracking Velocimetry)で計測した。図において、22は関数発生器、42はフィルタ、44は対物レンズ、46はミラー、50はパソコン(PC)である。   In FIG. 5, the experimental flow path 30 on the stage 32 was manufactured from PDMS and glass by a soft lithography method, and was measured by an apparatus using an inverted microscope. Using mercury lamp 40 as an excitation light source, scattered light of gold nanoparticles (diameter 350 to 400 nm, relative permittivity: infinite) in water (relative permittivity 78) and polystyrene fluorescent particles (diameter 1 μm, relative permittivity 2.5) ) Was imaged by a CCD camera 48. In this experiment, a gold nanoparticle obtained by reducing a volume of 0.05% polystyrene particle suspension (particle size: 1 micrometer) and a 0.01% aqueous solution of chloroauric acid with 1% trisodium citrate aqueous solution. A suspension (particle size 350-400 nanometers) was used. The particle suspension is fed by pressure driving, and 300 images are taken at 37 ms intervals before and after applying an electric field of 700 V (24 Hz), the particle velocity is extracted from the image, and individual particles are extracted from the image. It measured by the particle | grain tracking method (PTV: Particle Tracking Velocimetry) which calculates the movement amount. In the figure, 22 is a function generator, 42 is a filter, 44 is an objective lens, 46 is a mirror, and 50 is a personal computer (PC).

図5に示す実験装置を用いて、700V24Hzの電界を印加した時に、金ナノ粒子は、図6及び表1に示す如く出口3方向、ポリスチレン粒子は、図7及び表2に示す如く出口1又は2方向に、それぞれ分離される効果が確認された。   When an electric field of 700 V 24 Hz is applied using the experimental apparatus shown in FIG. 5, the gold nanoparticles are in the direction of the outlet 3 as shown in FIG. 6 and Table 1, and the polystyrene particles are in the outlet 1 or as shown in FIGS. The effect of being separated in two directions was confirmed.

なお、上記データは、金ナノ粒子とポリスチレン粒子を別々に流して得られたものであるが、同時に流した場合にも、図8及び表3に示す如く、800V24Hzの電界印加によって、出口3に向かう金ナノ粒子が20%程度増加することが確認できた。   The above data was obtained by flowing gold nanoparticles and polystyrene particles separately. However, even when flowing simultaneously, as shown in FIG. 8 and Table 3, by applying an electric field of 800 V 24 Hz to the outlet 3, It was confirmed that the gold nanoparticles heading increased by about 20%.

この実験には、体積濃度0.1%のポリスチレン粒子懸濁液(粒径0.5マイクロメートル)2.5mlと、図6と同じ金ナノ粒子懸濁液2.5ml(0.01%の塩化金酸水溶液50mlを1%のクエン酸三ナトリウム水溶液0.21mlによって還元した溶液)の両者を混合した5mlの混合懸濁液を用いた。   In this experiment, 2.5 ml of a 0.1% volume concentration polystyrene particle suspension (particle size 0.5 micrometer) and 2.5 ml of gold nanoparticle suspension same as FIG. A 5 ml mixed suspension in which 50 ml of a chloroauric acid aqueous solution was reduced with 0.21 ml of a 1% trisodium citrate aqueous solution was used.

前記実施形態においては、液溜の大きさによる制約(液溜りの内径が1.2cmであるので、並べて付ける際に最も接近させた状態でも1cm程度が必要)から、流路長が1cm程度になり、電圧が700Vという高電圧を要求したが、流路長を短くすることで、低電圧でも同様の効果が得られる。例えば、流路長を半分にすれば、必要電圧は350Vになる。   In the above embodiment, the flow path length is about 1 cm because of the restriction due to the size of the liquid reservoir (because the inner diameter of the liquid reservoir is 1.2 cm, about 1 cm is necessary even in the closest state when mounting them side by side). Thus, a high voltage of 700 V is required, but the same effect can be obtained even at a low voltage by shortening the flow path length. For example, if the flow path length is halved, the required voltage is 350V.

又、前記実施形態では、光学顕微鏡による観察が容易なことから、金ナノ粒子6とポリスチレン蛍光粒子8を分離し、周囲流体として水を用いたが、物質の誘電率及び交流周波数を適切に決定すれば、誘電泳動の正負を任意に調整可能であるので、他の物質にも応用可能である。具体的には、誘電泳動力を決定する(1)式で表わされるClausius−Mossotti項の実部の正負によって、誘電泳動力の作用する向きが決定する。   In the embodiment, since observation with an optical microscope is easy, the gold nanoparticles 6 and the polystyrene fluorescent particles 8 are separated and water is used as the surrounding fluid, but the dielectric constant and AC frequency of the substance are appropriately determined. In this case, the polarity of the dielectrophoresis can be adjusted arbitrarily, so that it can be applied to other substances. Specifically, the direction in which the dielectrophoretic force acts is determined by the sign of the real part of the Clausius-Mossotti term expressed by the equation (1) that determines the dielectrophoretic force.

K=(ε−ε)/(ε+2ε) …(1)
ここでεは粒子の誘電率、εは周囲流体の誘電率である。
K = (ε p −ε m ) / (ε p + 2ε m ) (1)
Here, ε p is the dielectric constant of the particle, and ε m is the dielectric constant of the surrounding fluid.

なお、交流電界中では、誘電率は交流周波数ωの関数となり(2)式で表わされる。   In an alternating electric field, the dielectric constant is a function of the alternating frequency ω and is expressed by equation (2).

ε=ε−(σ/ω)・j …(2)
ここでσは導電率である。
ε * = ε− (σ / ω) · j (2)
Here, σ is conductivity.

本実施形態により、マイクロ熱流体デバイス内において、流れの中で連続的に金属粒子とポリスチレン粒子を分離することが可能になった。実験は、顕微鏡による観察の容易な金ナノ粒子とポリスチレン蛍光粒子で行なったが、物質の誘電率や交流周波数を適切に定めれば、今回実験で用いなかった物質まで拡張可能である。流路の材質も、PDMSとガラスの組合せに限定されない。   According to the present embodiment, it is possible to continuously separate metal particles and polystyrene particles in a flow in a micro thermofluidic device. The experiment was performed with gold nanoparticles and polystyrene fluorescent particles, which can be easily observed with a microscope. However, if the dielectric constant and AC frequency of the substance are appropriately determined, the experiment can be extended to a substance not used in this experiment. The material of the flow path is not limited to the combination of PDMS and glass.

又、複雑な電極構造を流路に設置することなく、流路中の2点間に交流電界を印加するのみで、誘電泳動を作用させることができ、従来技術に簡単に付加可能である。   Further, it is possible to cause dielectrophoresis by simply applying an alternating electric field between two points in the flow path without installing a complicated electrode structure in the flow path, and it can be easily added to the prior art.

又、正の誘電泳動においては、1000Hz以下の交流周波数において力が増大する(本実験においては10〜100倍であった)。従って、正の誘電泳動による分離は、理論で必要な電圧値よりも低い電圧で分離を行なうことができる。   Further, in positive dielectrophoresis, the force increases at an AC frequency of 1000 Hz or less (in this experiment, it was 10 to 100 times). Therefore, separation by positive dielectrophoresis can be performed at a voltage lower than the voltage value required in theory.

なお前記実施形態においては、本発明の流路構造が1段とされていたが、図9に示す第2実施形態の如く、2段としたり、図10に示す第3実施形態の如く、直列/並列に複数段適用すれば、分離効率を向上することができる。ここで、図9に詳細に示すように、分離区間よりも接続区間をなだらかに幅変化させることで、接続区間における流れ逆方向の誘電泳動力を抑制できる。   In the above-described embodiment, the flow path structure of the present invention is a single stage. However, as shown in the second embodiment shown in FIG. 9, the flow path structure has two stages, or in series as in the third embodiment shown in FIG. / Separation efficiency can be improved by applying multiple stages in parallel. Here, as shown in detail in FIG. 9, the dielectrophoretic force in the reverse direction of the flow in the connection section can be suppressed by changing the width of the connection section more gently than the separation section.

又、前記実施形態においては、分岐構造として十字形状を用いていたが、図11に例示する第4実施形態のように側方への分岐流路が1本のT字構造18であっても良い。なお、十字構造12の方が、電界がきれいにできて、粒子の抜けが良い。又、交差/分岐角度も90°に限定されない。   In the above embodiment, the cross shape is used as the branch structure. However, as in the fourth embodiment illustrated in FIG. good. In the cross structure 12, the electric field can be made clearer and the particles can be easily removed. Also, the intersection / branch angle is not limited to 90 °.

本発明で用いる台形構造流路に電界印加時の電気力線分布を示す図The figure which shows the electric force line distribution at the time of an electric field application to the trapezoid structure flow path used by this invention 同じく十字構造流路に電界印加時の電気力線分布を示す図Similarly, a diagram showing the distribution of lines of electric force when an electric field is applied to the cross-shaped channel 本発明の第1実施形態の流路形状を示す平面図The top view which shows the flow-path shape of 1st Embodiment of this invention. 前記実施形態で入口及び出口3へ700Vの交流電界を印加した際の流路分岐における電気力線分布Distribution of electric lines of force at the branch of the flow path when an AC electric field of 700 V is applied to the inlet and outlet 3 in the embodiment. 実験装置の構成を示す図Diagram showing the configuration of the experimental apparatus 金ナノ粒子の分離結果を示す図Diagram showing separation results of gold nanoparticles ポリスチレン粒子の分離結果を示す図Diagram showing the separation results of polystyrene particles 金ナノ粒子とポリスチレン粒子を同時に流した時の金ナノ粒子分離結果を示す図Diagram showing gold nanoparticle separation results when gold nanoparticles and polystyrene particles flow simultaneously 本発明の第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment of this invention. 同じく第3実施形態の構成を示す図The figure which similarly shows the structure of 3rd Embodiment 同じく第4実施形態の構成を示す図The figure which similarly shows the structure of 4th Embodiment

符号の説明Explanation of symbols

6…金ナノ粒子
8…ポリスチレン粒子
10…台形構造流路
12…十字(形状分岐)構造流路
14、16…電極
18…T字(形状分岐)構造流路
20…交流電源
6 ... Gold nanoparticles 8 ... Polystyrene particles 10 ... Trapezoidal structure channel 12 ... Cross (shape branch) structure channel 14, 16 ... Electrode 18 ... T-shaped (shape branch) structure channel 20 ... AC power supply

Claims (5)

先細りの台形構造と、その先端部分に配設された分岐構造を組み合わせた流路によって、
非一様な電界強度を発生させ、分岐における誘電泳動力を最大として、周囲流体に対して正の誘電泳動が発生する物質は直進方向の流路出口、負の誘電泳動が発生する物質は直進以外の方向の流路出口に分離することを特徴とする交流誘電泳動によるナノ粒子連続分離方法。
With a flow path that combines a tapered trapezoidal structure and a branched structure arranged at the tip,
A non-uniform electric field strength is generated and the dielectrophoretic force at the branch is maximized. A substance that generates positive dielectrophoresis with respect to the surrounding fluid is a straight channel outlet, and a substance that generates negative dielectrophoresis is straight. A method for continuously separating nanoparticles by alternating current dielectrophoresis, wherein the separation is performed at the outlet of the flow path in a direction other than the above.
前記周囲流体が水、前記正の誘電泳動が発生する物質が金属ナノ粒子、前記負の誘電泳動が発生する物質が絶縁体粒子であることを特徴とする請求項1に記載の交流誘電泳動によるナノ粒子連続分離方法。   2. The AC dielectrophoresis according to claim 1, wherein the surrounding fluid is water, the substance generating the positive dielectrophoresis is a metal nanoparticle, and the substance generating the negative dielectrophoresis is an insulator particle. Nanoparticle continuous separation method. 前記金属ナノ粒子が金ナノ粒子、前記絶縁体粒子がポリスチレン粒子であることを特徴とする請求項2に記載の交流誘電泳動によるナノ粒子連続分離方法。   The method for continuously separating nanoparticles according to claim 2, wherein the metal nanoparticles are gold nanoparticles, and the insulator particles are polystyrene particles. 先細りの台形構造、及び、その先端部分に配設された分岐構造を組み合わせた流路と、
流路に電界を印加して、非一様な電界強度を発生させ、分岐における誘電泳動力を最大として、周囲流体に対して正の誘電泳動が発生する物質は直進方向の流路出口、負の誘電泳動が発生する物質は直進以外の方向の流路出口に分離する手段と、
を備えたことを特徴とする交流誘電泳動によるナノ粒子連続分離装置。
A flow path that combines a tapered trapezoidal structure and a branched structure disposed at the tip portion thereof, and
Applying an electric field to the flow path to generate a non-uniform electric field strength, maximizing the dielectrophoretic force at the branch, the substance that generates positive dielectrophoresis with respect to the surrounding fluid is Means for separating the substance in which dielectrophoresis occurs in a channel outlet in a direction other than straight travel;
An apparatus for continuous separation of nanoparticles by alternating current dielectrophoresis, comprising:
前記分岐構造が十字形状であることを特徴とする請求項4に記載の交流誘電泳動によるナノ粒子連続分離装置。   The apparatus for continuously separating nanoparticles according to claim 4, wherein the branched structure has a cross shape.
JP2008124433A 2008-05-12 2008-05-12 Continuous separation method and device for nanoparticle by ac dielectrophoresis Pending JP2009269008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124433A JP2009269008A (en) 2008-05-12 2008-05-12 Continuous separation method and device for nanoparticle by ac dielectrophoresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124433A JP2009269008A (en) 2008-05-12 2008-05-12 Continuous separation method and device for nanoparticle by ac dielectrophoresis

Publications (1)

Publication Number Publication Date
JP2009269008A true JP2009269008A (en) 2009-11-19

Family

ID=41436026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124433A Pending JP2009269008A (en) 2008-05-12 2008-05-12 Continuous separation method and device for nanoparticle by ac dielectrophoresis

Country Status (1)

Country Link
JP (1) JP2009269008A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019446A1 (en) * 2010-08-09 2012-02-16 天津富金环境技术研究有限公司 Method for continuously recycling valuable metal by dielectrophoresis without pollution
EP2420478A1 (en) * 2010-08-17 2012-02-22 Koninklijke Philips Electronics N.V. Method and device for purifying water
WO2012032802A1 (en) * 2010-09-07 2012-03-15 学校法人東京理科大学 Apparatus for concentrating particles and apparatus for concentrating and extracting particles
KR101583633B1 (en) * 2015-01-12 2016-01-08 한국항공대학교산학협력단 Negative dielectrophoresis force(n-dep) based cell sorting platform and cell sorting method using the same
CN105858985A (en) * 2016-06-06 2016-08-17 北京师范大学 Method for recovering metal oxide nano-particles from water
CN109433284A (en) * 2018-12-23 2019-03-08 海南大学 A kind of nano particle collator based on dielectrophoretic force driving
CN115569677A (en) * 2022-10-12 2023-01-06 燕山大学 Forward osmosis and electroosmotic flow integrated chip based on dual pump effect

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019446A1 (en) * 2010-08-09 2012-02-16 天津富金环境技术研究有限公司 Method for continuously recycling valuable metal by dielectrophoresis without pollution
CN103052600B (en) * 2010-08-17 2014-08-06 皇家飞利浦电子股份有限公司 Method and device for purifying water
WO2012023064A1 (en) * 2010-08-17 2012-02-23 Koninklijke Philips Electronics N.V. Method and device for purifying water
WO2012023068A1 (en) * 2010-08-17 2012-02-23 Koninklijke Philips Electronics N.V. Method and device for purifying water
CN103052600A (en) * 2010-08-17 2013-04-17 皇家飞利浦电子股份有限公司 Method and device for purifying water
EP2420478A1 (en) * 2010-08-17 2012-02-22 Koninklijke Philips Electronics N.V. Method and device for purifying water
US9643864B2 (en) 2010-08-17 2017-05-09 Koninklijke Philips N.V. Method and device for purifying water
WO2012032802A1 (en) * 2010-09-07 2012-03-15 学校法人東京理科大学 Apparatus for concentrating particles and apparatus for concentrating and extracting particles
KR101583633B1 (en) * 2015-01-12 2016-01-08 한국항공대학교산학협력단 Negative dielectrophoresis force(n-dep) based cell sorting platform and cell sorting method using the same
CN105858985A (en) * 2016-06-06 2016-08-17 北京师范大学 Method for recovering metal oxide nano-particles from water
CN105858985B (en) * 2016-06-06 2018-05-08 北京师范大学 A kind of method of metal oxide nanoparticles thing in recycle-water
CN109433284A (en) * 2018-12-23 2019-03-08 海南大学 A kind of nano particle collator based on dielectrophoretic force driving
CN115569677A (en) * 2022-10-12 2023-01-06 燕山大学 Forward osmosis and electroosmotic flow integrated chip based on dual pump effect

Similar Documents

Publication Publication Date Title
Barbulovic-Nad et al. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle
Zhao et al. Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow
Lapizco-Encinas et al. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields
Kang et al. Electrokinetic motion of particles and cells in microchannels
Tsutsui et al. Cell separation by non-inertial force fields in microfluidic systems
Srivastava et al. A continuous DC-insulator dielectrophoretic sorter of microparticles
US8137523B2 (en) Apparatus for and method of separating polarizable analyte using dielectrophoresis
JP2009269008A (en) Continuous separation method and device for nanoparticle by ac dielectrophoresis
Luo et al. Picoliter‐volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation
Jeon et al. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)
Chen et al. A microfluidic device for rapid concentration of particles in continuous flow by DC dielectrophoresis
Zhao et al. Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow
Sonker et al. Separation phenomena in tailored micro-and nanofluidic environments
Lewpiriyawong et al. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes
Thwar et al. Electrodeless direct current dielectrophoresis using reconfigurable field‐shaping oil barriers
Lee et al. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter
Weirauch et al. Material-selective separation of mixed microparticles via insulator-based dielectrophoresis
KR101511569B1 (en) Particle separation apparatus
Ramirez‐Murillo et al. Toward low‐voltage dielectrophoresis‐based microfluidic systems: A review
Yokokawa et al. Individual evaluation of DEP, EP and AC-EOF effects on λDNA molecules in a DNA concentrator
US20240149275A1 (en) Hyper Efficient Separations Device
Rashed et al. Advances and applications of isomotive dielectrophoresis for cell analysis
Zhang et al. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration
Almeida et al. Trapping of Au nanoparticles in a microfluidic device using dielectrophoresis for surface enhanced Raman spectroscopy
Li et al. Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip