Nothing Special   »   [go: up one dir, main page]

JP2009244163A - Device and method for measuring ratio of light signal to noise - Google Patents

Device and method for measuring ratio of light signal to noise Download PDF

Info

Publication number
JP2009244163A
JP2009244163A JP2008092335A JP2008092335A JP2009244163A JP 2009244163 A JP2009244163 A JP 2009244163A JP 2008092335 A JP2008092335 A JP 2008092335A JP 2008092335 A JP2008092335 A JP 2008092335A JP 2009244163 A JP2009244163 A JP 2009244163A
Authority
JP
Japan
Prior art keywords
light
signal
optical
wavelength
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008092335A
Other languages
Japanese (ja)
Inventor
Hirotaka Ono
浩孝 小野
Takaharu Oyama
貴晴 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008092335A priority Critical patent/JP2009244163A/en
Publication of JP2009244163A publication Critical patent/JP2009244163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a ratio of light signal to noise (light SNR) of signal light amplified by an optical amplifier without performing light spectrum measurement. <P>SOLUTION: A device is provided for measuring the light SNR. The device includes an light power detecting means for converting light into an electric signal and detecting light power, a signal light power detecting means for detecting the signal light power from the electric signal corresponding to signal light included in the light, a subtracting means for subtracting the signal light power from the light power and determining noise light power included in the light, and a dividing means for dividing the signal light power and the noise light power. The output of the dividing means corresponds to the light SNR, so that the light SNR can be measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、信号光の信号対雑音比を測定する装置および方法に関する。   The present invention relates to an apparatus and method for measuring a signal-to-noise ratio of signal light.

長距離光伝送システムでは、伝送路である光ファイバの損失を補償するために、数十kmおきに光増幅器を配置し、減衰した信号光を増幅する。信号光が光増幅器によって増幅される際には、同時に自然放出光も発生し、この自然放出光が光増幅器内で増幅された、増幅自然放出(ASE:Amplified Spontaneous Emission)光が信号光に重畳する。このASE光は伝送路に多段に接続された各光増幅器で重畳されるため、信号光が光増幅器で増幅されるたびにASE光は累積的に増加することになる。   In a long-distance optical transmission system, in order to compensate for a loss of an optical fiber that is a transmission path, optical amplifiers are arranged every several tens of kilometers to amplify attenuated signal light. When the signal light is amplified by the optical amplifier, spontaneous emission light is also generated at the same time, and amplified spontaneous emission (ASE) light, which is amplified in the optical amplifier, is superimposed on the signal light. To do. Since this ASE light is superimposed by each optical amplifier connected to the transmission line in multiple stages, the ASE light increases cumulatively every time the signal light is amplified by the optical amplifier.

ASE光は信号光に対して雑音成分となるため、信号光とASE光の比により光信号対雑音比(光SNR)が決まる。一方で、光伝送システムにおいて必要な伝送特性(例えば、ビット誤り率10-12以下など)を得るためには、一定値以上の光SNRが必要になる。そのため、光伝送システム運用上において、光SNRを監視し、十分な光SNRが得られるように光伝送システムに組み込まれている個々のデバイスを制御する必要がある。 Since the ASE light becomes a noise component with respect to the signal light, the ratio of the signal light to the ASE light determines the optical signal-to-noise ratio (optical SNR). On the other hand, in order to obtain transmission characteristics required in an optical transmission system (for example, a bit error rate of 10 −12 or less), an optical SNR of a certain value or more is required. Therefore, in the operation of the optical transmission system, it is necessary to monitor the optical SNR and control individual devices incorporated in the optical transmission system so as to obtain a sufficient optical SNR.

図7に、光増幅器で増幅された信号光のスペクトルを示す。この図は、波長多重された11波の信号光を増幅したときの光スペクトルを示している。信号光には光増幅器で増幅された際にASE光が重畳されている。図8は、このようにASE光が重畳された信号光の光SNR測定方法を説明するための図であり、図7に示した光スペクトルの1548nm近傍を拡大したものである。   FIG. 7 shows the spectrum of the signal light amplified by the optical amplifier. This figure shows the optical spectrum when 11 wavelength signal lights multiplexed in wavelength are amplified. ASE light is superimposed on the signal light when amplified by an optical amplifier. FIG. 8 is a diagram for explaining the optical SNR measurement method of the signal light on which the ASE light is superimposed as described above, in which the vicinity of 1548 nm of the optical spectrum shown in FIG. 7 is enlarged.

図8において矢印で示した信号光パワーとASEレベルの比がこの信号光の光SNRとなる。従って、光SNRを測定するためには、信号光パワーとその信号光波長近傍のASEレベルが必要となる。このため、光SNR測定には光スペクトルを測定する光スペクトルアナライザが必要となる(特許文献1)。   The ratio between the signal light power and the ASE level indicated by the arrow in FIG. 8 is the optical SNR of this signal light. Therefore, in order to measure the optical SNR, the signal light power and the ASE level near the signal light wavelength are required. For this reason, the optical SNR measurement requires an optical spectrum analyzer that measures the optical spectrum (Patent Document 1).

特許第3569217号公報(例えば、〔従来の技術〕欄)Japanese Patent No. 3569217 (for example, [Prior Art] column) 神徳、他、「高次モードを利用したAWGの透過特性の平坦化法」、2002年電子情報通信学会総合大会、C−3−66、pp.198Shintoku, et al., “Method for flattening transmission characteristics of AWG using higher-order modes”, 2002 IEICE General Conference, C-3-66, pp. 11-29. 198

しかしながら、光SNR測定装置に光スペクトルアナライザを装備する場合、装置の小型化および低価格化の点で問題となる。すなわち、信号光パワーとその近傍のASEレベルを測定するためには、波長分解能の良い光スペクトルアナライザが要求される。そのため、従来技術では、このような光スペクトルアナライザを小型かつ低コストで実現するのに限界がある。   However, when an optical spectrum analyzer is provided in an optical SNR measurement apparatus, there is a problem in terms of downsizing and cost reduction of the apparatus. That is, in order to measure the signal light power and the ASE level in the vicinity thereof, an optical spectrum analyzer with good wavelength resolution is required. Therefore, the prior art has a limit to realize such an optical spectrum analyzer in a small size and at a low cost.

小型で低コストタイプの光スペクトルアナライザでは、高密度で波長多重化された信号光を、信号光の光パワー測定のために各波長ごとに分波するには十分な波長分解能はあっても、各波長近傍のASEレベルを測定するには不十分な場合がある。反対に、ASEレベルを測定するのに十分な波長分解能をもつ光スペクトルアナライザでは、サイズおよびコストが増大し、光SNR測定装置に装備する上で問題となる。   In a small and low-cost optical spectrum analyzer, even though there is sufficient wavelength resolution to demultiplex the wavelength-multiplexed signal light for each wavelength to measure the optical power of the signal light, It may be insufficient to measure the ASE level near each wavelength. On the other hand, an optical spectrum analyzer having sufficient wavelength resolution to measure the ASE level increases the size and cost, which is a problem in mounting on an optical SNR measurement apparatus.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、光スペクトル測定を行うことなく、光増幅器で増幅された信号光の光SNR測定を行う技術を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a technique for performing optical SNR measurement of signal light amplified by an optical amplifier without performing optical spectrum measurement. It is in.

本発明は、このような目的を達成するために、請求項1に記載の発明は、光信号対雑音比を測定する装置であって、光を電気信号に変換して検出する第1の検出手段と、前記光に含まれる信号光に対応する電気信号を検出する第2の検出手段と、前記第1の検出手段での検出値から前記第2の検出手段での検出値を減算する減算手段と、前記第1の検出手段での検出値と前記減算手段での減算値を除算する除算手段とを備えたことを特徴とする。   In order to achieve the above object, the present invention provides an apparatus for measuring an optical signal-to-noise ratio, wherein the first detection is performed by converting light into an electric signal. Means, a second detection means for detecting an electrical signal corresponding to the signal light included in the light, and a subtraction for subtracting the detection value at the second detection means from the detection value at the first detection means Means, and a dividing means for dividing the detected value of the first detecting means and the subtracted value of the subtracting means.

また、請求項2に記載の発明は、波長多重光の光信号対雑音比を測定する装置であって、前記波長多重光を各波長の光に分波する分波手段と、前記分波された光を電気信号に変換して検出する第1の検出手段と、前記分波された光に含まれる信号光に対応する電気信号を検出する第2の検出手段と、前記第1の検出手段での検出値から前記第2の検出手段での検出値を減算する減算手段と、前記第1の検出手段での検出値と前記減算手段での減算値を除算する除算手段とを備えたことを特徴とする。   The invention according to claim 2 is an apparatus for measuring an optical signal-to-noise ratio of wavelength division multiplexed light, wherein the wavelength division multiplexed light is demultiplexed into light of each wavelength, and the demultiplexed. First detection means for converting the detected light into an electrical signal and detecting it, second detection means for detecting an electrical signal corresponding to the signal light contained in the demultiplexed light, and the first detection means Subtracting means for subtracting the detection value at the second detection means from the detection value at the time, and dividing means for dividing the detection value at the first detection means and the subtraction value at the subtraction means. It is characterized by.

また、請求項3に記載の発明は、請求項2に記載の装置であって、前記分波手段は、フラットな透過スペクトル特性を有することを特徴とする。   The invention described in claim 3 is the apparatus described in claim 2, characterized in that the demultiplexing means has a flat transmission spectrum characteristic.

また、請求項4に記載の発明は、請求項1から3のいずれかに記載の装置であって、前記信号光に対応する電気信号を透過するフィルタ手段をさらに備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided the apparatus according to any one of the first to third aspects, further comprising a filter unit that transmits an electric signal corresponding to the signal light.

また、請求項5に記載の発明は、光信号対雑音比を測定するための方法であって、光を電気信号に変換して検出することと、前記光に含まれる信号光に対応する電気信号を検出することと、前記光を電気信号に変換して検出した値から前記信号光に対応する電気信号を検出した値を減算することと、前記光を電気信号に変換して検出した値と前記減算した値を除算することとを備えることを特徴とする。   The invention according to claim 5 is a method for measuring an optical signal-to-noise ratio, wherein the light is converted into an electric signal and detected, and an electric signal corresponding to the signal light included in the light is detected. Detecting a signal, subtracting a value obtained by detecting an electric signal corresponding to the signal light from a value detected by converting the light into an electric signal, and a value detected by converting the light into an electric signal. And dividing the subtracted value.

また、請求項6に記載の発明は、波長多重光の光信号対雑音比を測定するための方法であって、前記波長多重光を各波長の光に分波することと、前記分波された光を電気信号に変換して検出することと、前記分波された光に含まれる信号光に対応する電気信号を検出することと、前記分波された光を電気信号に変換して検出した値から前記信号光に対応する電気信号を検出した値を減算することと、前記分波された光を電気信号に変換して検出した値と前記減算した値を除算することとを備えることを特徴とする。   The invention according to claim 6 is a method for measuring an optical signal-to-noise ratio of wavelength multiplexed light, wherein the wavelength multiplexed light is demultiplexed into light of each wavelength, and the demultiplexed. Detecting the converted light into an electrical signal, detecting an electrical signal corresponding to the signal light included in the demultiplexed light, and detecting the converted light into an electrical signal Subtracting the detected value of the electrical signal corresponding to the signal light from the measured value, and dividing the detected value by converting the demultiplexed light into an electrical signal. It is characterized by.

また、請求項7に記載の発明は、請求項5または6に記載の方法であって、前記信号光に対応する電気信号を選択的に透過することをさらに備えることを特徴とする。   The invention according to claim 7 is the method according to claim 5 or 6, further comprising selectively transmitting an electric signal corresponding to the signal light.

本発明による光SNR測定装置は、光スペクトルアナライザを用いることなく、光増幅器で増幅され信号光の光SNR測定を行うことができる。そのため、光SNR測定を小型および低コストで実現することができる。   The optical SNR measurement apparatus according to the present invention can perform optical SNR measurement of signal light amplified by an optical amplifier without using an optical spectrum analyzer. Therefore, the optical SNR measurement can be realized with small size and low cost.

(第1の実施形態)
図1は、本発明の第1の実施形態による光SNR測定装置の一例を示すブロック図である。この光SNR測定装置100は、ASE光が重畳された信号光を受光するフォトダイオード(PD)102と、受光した電気信号を分配する分配器104と、分配した電気信号の一方を増幅する高周波増幅器106と、増幅した電気信号をフィルタするバンドパスフィルタ(BPF)108と、フィルタした電気信号を検出する検出器110とを備えている。また、光SNR測定装置100は、検出器110で検出した信号を分配する分配器112と、分配した検出信号の一方から分配器104で分配した電気信号の他方を減算する減算回路114と、減算した信号を分配器112で分配した検出信号の他方で除算する除算回路116とをさらに備えている。
(First embodiment)
FIG. 1 is a block diagram showing an example of an optical SNR measurement apparatus according to the first embodiment of the present invention. The optical SNR measuring apparatus 100 includes a photodiode (PD) 102 that receives signal light superimposed with ASE light, a distributor 104 that distributes the received electric signal, and a high-frequency amplifier that amplifies one of the distributed electric signals. 106, a band pass filter (BPF) 108 for filtering the amplified electric signal, and a detector 110 for detecting the filtered electric signal. The optical SNR measurement apparatus 100 also includes a distributor 112 that distributes the signal detected by the detector 110, a subtractor circuit 114 that subtracts the other of the electrical signals distributed by the distributor 104 from one of the distributed detection signals, and a subtraction. And a division circuit 116 that divides the detected signal by the other of the detection signals distributed by the distributor 112.

ASE光が重畳された信号光がフォトダイオード102に入射すると、信号光パワーとASE光パワーの合計に相当する電流が発生する。この電流は電圧に変換された後、分配器104で2方向に分配される。その一方は、必要に応じて増幅器(図示せず)により増幅された後、減算回路114に入力される。この減算回路114への入力は、信号光とASE光の合計の光パワー値に相当するものである。   When the signal light on which the ASE light is superimposed enters the photodiode 102, a current corresponding to the sum of the signal light power and the ASE light power is generated. This current is converted into a voltage and then distributed in two directions by the distributor 104. One of the signals is amplified by an amplifier (not shown) as necessary, and then input to the subtraction circuit 114. The input to the subtracting circuit 114 corresponds to the total optical power value of the signal light and the ASE light.

他方、分配器104で分配されたもう一方の信号は高周波増幅器106で増幅される。この高周波増幅器106は、信号光の変調ビットレート値の周波数成分を十分増幅できる増幅帯域を有する。高周波増幅器106の出力はバンドパスフィルタ108で信号光のビットレート値と同じ周波数成分を透過させ、RFパワー検出器110でその周波数成分のパワーが検出される。このバンドパスフィルタ108は、信号光のビットレート値と同じ周波数成分を透過させるハイパスフィルタ(高域透過フィルタ)に置き換えても良い。ハイパスフィルタを使用した場合は、信号光のビットレート値の整数倍の周波数成分を主に透過させることになる。ここで検出されるRFパワーは信号光パワーに対して一意に決まる値であり、適切な係数をかけることにより信号光パワー値となる。   On the other hand, the other signal distributed by the distributor 104 is amplified by the high frequency amplifier 106. The high-frequency amplifier 106 has an amplification band that can sufficiently amplify the frequency component of the modulation bit rate value of the signal light. The output of the high frequency amplifier 106 transmits the same frequency component as the bit rate value of the signal light by the band pass filter 108, and the power of the frequency component is detected by the RF power detector 110. The band pass filter 108 may be replaced with a high pass filter (high pass filter) that transmits the same frequency component as the bit rate value of the signal light. When a high-pass filter is used, a frequency component that is an integral multiple of the bit rate value of the signal light is mainly transmitted. The RF power detected here is a value uniquely determined with respect to the signal light power, and becomes a signal light power value by applying an appropriate coefficient.

RFパワー検出器110の出力信号は分配器112で分配され、一方が前述の減算回路114のもう一方の入力端子へ入力される。減算回路114への2入力はそれぞれ、信号光とASE光の合計の光パワー値および信号光パワー値に相当するものである。そのため、減算回路114の出力はASE光パワーに相当するものである。従って、減算回路114の出力と、分配器112のもう一方の出力との比を除算回路116で演算することにより、光SNR値に相当する電圧を出力として得ることができる。なお、本発明は、信号光のビットレート値と同じ周波数成分の電気信号を利用して信号光のパワーを検出し、これにより光SNRを測定するものであれば、本実施形態の構成に限定されない。   The output signal of the RF power detector 110 is distributed by the distributor 112, and one is input to the other input terminal of the subtracting circuit 114 described above. The two inputs to the subtracting circuit 114 correspond to the total optical power value and signal optical power value of the signal light and the ASE light, respectively. For this reason, the output of the subtracting circuit 114 corresponds to the ASE optical power. Therefore, by calculating the ratio between the output of the subtracting circuit 114 and the other output of the distributor 112 by the dividing circuit 116, a voltage corresponding to the optical SNR value can be obtained as an output. Note that the present invention is limited to the configuration of the present embodiment as long as the power of the signal light is detected by using an electric signal having the same frequency component as the bit rate value of the signal light and the optical SNR is measured by this. Not.

(第2の実施形態)
図2は、本発明の第2の実施形態による光SNR測定装置の構成例を示すブロック図である。この構成例では、本発明の第1の実施形態による複数の光SNR測定装置を用いて、波長多重された複数の信号光の光SNRを各波長ごとに測定することができる。この構成例では、伝送用の光ファイバ202と、光ファイバ202から信号光を分岐する光カプラ204と、分岐した信号光を分波する光分波器206と、分波された各波長の信号光の光SNR測定を行うN個の光SNR測定装置100−1〜100−Nとで構成されている。
(Second Embodiment)
FIG. 2 is a block diagram showing a configuration example of an optical SNR measurement apparatus according to the second embodiment of the present invention. In this configuration example, the optical SNRs of a plurality of wavelength-multiplexed signal lights can be measured for each wavelength by using the plurality of optical SNR measurement apparatuses according to the first embodiment of the present invention. In this configuration example, an optical fiber for transmission 202, an optical coupler 204 that branches signal light from the optical fiber 202, an optical demultiplexer 206 that demultiplexes the branched signal light, and a signal of each wavelength that has been demultiplexed. It comprises N optical SNR measuring devices 100-1 to 100-N that perform optical SNR measurement of light.

本実施形態において、光ファイバ202を伝搬する波長多重された信号光が光カプラ204でパワー分岐される。分岐された信号光は、分波器206で波長多重された信号光を波長ごとにN個の信号光に分波する。例えば、40波の波長多重された信号光が光分波器206の入力ポートに入力され、40波の信号光がそれぞれ分波されて出力ポートから出力される。   In the present embodiment, the wavelength-multiplexed signal light propagating through the optical fiber 202 is branched by the optical coupler 204. The branched signal light demultiplexes the signal light wavelength-multiplexed by the demultiplexer 206 into N signal lights for each wavelength. For example, 40-wavelength wavelength-multiplexed signal light is input to the input port of the optical demultiplexer 206, and 40-wave signal light is demultiplexed and output from the output port.

図3は、光分波器206の1つの出力ポート(中心波長1550nm)での透過スペクトル形状を示している。この透過スペクトルの中心波長は、このポートを透過する信号光の中心波長と一致しており、この透過スペクトルの3dB帯域幅は、約0.45nmである。このときASE光が重畳された信号光が入射すると、波長1550nmの信号光およびその近傍約0.45nmの帯域幅にあるASE光がこの分波器のポートを透過し、光SNR測定装置に入射する。なお、その他の波長の出力ポートも同様の透過スペクトル形状を有している。   FIG. 3 shows the transmission spectrum shape at one output port (center wavelength 1550 nm) of the optical demultiplexer 206. The center wavelength of the transmission spectrum matches the center wavelength of the signal light transmitted through the port, and the 3 dB bandwidth of the transmission spectrum is about 0.45 nm. At this time, when the signal light on which the ASE light is superimposed is incident, the signal light having a wavelength of 1550 nm and the ASE light having a bandwidth of about 0.45 nm in the vicinity thereof pass through the port of the demultiplexer and enter the optical SNR measuring device. To do. Note that output ports of other wavelengths have similar transmission spectrum shapes.

図4に、異なる光SNRを有する波長1550nmの信号光について、本発明の光SNR測定装置を用いて光SNRを測定した結果を示す。波長1550nmの信号光の光SNRは、光SNR測定装置に入力する前に光スペクトルアナライザで測定しており、その値を図4の横軸に、本発明の光SNR測定装置によって測定した光SNRを縦軸に示している。光スペクトルアナライザで測定した光SNRと本発明の光SNR測定装置で測定した光SNRが一致した場合、測定点が図4に示した直線上にあることになる。   FIG. 4 shows the result of measuring the optical SNR of the signal light having a different optical SNR and having a wavelength of 1550 nm using the optical SNR measurement apparatus of the present invention. The optical SNR of the signal light having a wavelength of 1550 nm is measured by an optical spectrum analyzer before being input to the optical SNR measuring apparatus, and the value is plotted on the horizontal axis of FIG. 4 with the optical SNR measured by the optical SNR measuring apparatus of the present invention. Is shown on the vertical axis. When the optical SNR measured by the optical spectrum analyzer matches the optical SNR measured by the optical SNR measuring apparatus of the present invention, the measurement point is on the straight line shown in FIG.

図4から、本発明の光SNR測定装置によって測定した光SNRは、入力信号光の光SNRとほぼ一致していることがわかる。また、本発明の光SNR測定装置によって光SNRは0.7dB以下の誤差で測定できていることがわかる。同様に、その他の波長の出力ポートにおいても、本発明の光SNR測定装置によって光SNRが0.7dB以下の誤差で測定できていることを確認した。   From FIG. 4, it can be seen that the optical SNR measured by the optical SNR measuring apparatus of the present invention substantially matches the optical SNR of the input signal light. It can also be seen that the optical SNR can be measured with an error of 0.7 dB or less by the optical SNR measuring apparatus of the present invention. Similarly, it was confirmed that the optical SNR measurement apparatus of the present invention was able to measure the optical SNR with an error of 0.7 dB or less at the output ports of other wavelengths.

このように、本発明による光SNR測定装置は、光スペクトル測定を行うことなく、ASE光が重畳された信号光の光SNRを測定することができる。   As described above, the optical SNR measurement apparatus according to the present invention can measure the optical SNR of the signal light on which the ASE light is superimposed without performing optical spectrum measurement.

(第3の実施形態)
本発明の第3の実施形態による光SNR測定装置の構成例は、図2に示した第2の実施形態と同様であるが、分波器206の透過スペクトル形状が異なる。図5に、本実施形態での分波器の1つの出力ポート(中心波長1550nm)での透過スペクトル形状を示す。この透過スペクトル形状は、第2の実施形態で使用した分波器とは異なり、透過率ピーク近傍での波長依存性が小さく、フラットなものとなっている。このような分波器としては、入射導波路形状を変形する手法、AWGとMZIを縦続接続する手法、高次モードを利用した手法などによるものが知られている(非特許文献1参照)。
(Third embodiment)
The configuration example of the optical SNR measurement apparatus according to the third embodiment of the present invention is the same as that of the second embodiment shown in FIG. 2, but the transmission spectrum shape of the duplexer 206 is different. FIG. 5 shows a transmission spectrum shape at one output port (center wavelength 1550 nm) of the duplexer in the present embodiment. Unlike the duplexer used in the second embodiment, this transmission spectrum shape has a small wavelength dependency near the transmittance peak and is flat. As such a duplexer, a method using a method of deforming the incident waveguide shape, a method of cascading AWG and MZI, a method using a higher-order mode, or the like is known (see Non-Patent Document 1).

第2の実施形態の光SNR測定装置では、分波器の透過スペクトル形状がガウシアンに近く透過率ピーク波長から少しでも信号光波長がずれると、過剰な透過損失が付加される。そのため、信号光パワーの検出値が小さくなり、その結果、光SNR測定に誤差を生じる。一方、本実施形態の光SNR測定装置で使用されている分波器は透過スペクトル形状がピーク近傍で約±0.2nm(0.4nm)にわたりフラットになっている。そのため、信号光波長が約±0.2nm程度中心波長からずれても光SNR測定に過剰な誤差は生じない。   In the optical SNR measurement apparatus according to the second embodiment, if the transmission spectrum shape of the duplexer is close to Gaussian and the signal light wavelength is slightly deviated from the transmittance peak wavelength, excessive transmission loss is added. For this reason, the detected value of the signal light power becomes small, and as a result, an error occurs in the optical SNR measurement. On the other hand, the duplexer used in the optical SNR measurement apparatus of the present embodiment has a transmission spectrum shape that is flat in the vicinity of the peak over approximately ± 0.2 nm (0.4 nm). Therefore, even if the signal light wavelength is deviated from the center wavelength by about ± 0.2 nm, an excessive error does not occur in the optical SNR measurement.

図6に、信号光の波長ずれ(中心波長より長波長側にずれた場合)に対する光SNR測定誤差変化について、本実施形態による光SNR測定装置と第2の実施形態による光SNR測定装置を用いた場合の結果を示す。第2の実施形態による光SNR測定装置では、信号光の波長ずれに対して急激に光SNR測定誤差が増加したが、本実施形態による光SNR測定装置では、信号光波長ずれ0.2nmまでほぼ一定の光SNR測定誤差が得られた。なお、信号光波長ずれによる光SNR測定誤差は、信号光波長が短波長側へずれた場合も同様の結果が得られた。   FIG. 6 shows the optical SNR measurement apparatus according to the present embodiment and the optical SNR measurement apparatus according to the second embodiment for the change in the optical SNR measurement error with respect to the wavelength shift of the signal light (when shifted to the longer wavelength side from the center wavelength). The result is shown. In the optical SNR measurement apparatus according to the second embodiment, the optical SNR measurement error suddenly increased with respect to the wavelength shift of the signal light. However, in the optical SNR measurement apparatus according to the present embodiment, the signal light wavelength shift is almost 0.2 nm. A constant optical SNR measurement error was obtained. The optical SNR measurement error due to the signal light wavelength shift was the same when the signal light wavelength shifted to the short wavelength side.

さらに本実施形態による光SNR測定装置では、分波器の透過スペクトル形状がピーク近傍でフラットになっているため、信号光波長近傍のASE光もより多く検出することになり、その結果、光SNR測定可能範囲を第2の実施形態光SNR測定装置と比較して約2dB程度拡大することができた。   Furthermore, in the optical SNR measurement apparatus according to the present embodiment, since the transmission spectrum shape of the duplexer is flat near the peak, more ASE light near the signal light wavelength is detected, and as a result, the optical SNR The measurable range could be expanded by about 2 dB compared with the optical SNR measurement apparatus of the second embodiment.

以上、本発明について、具体的にいくつかの実施形態について説明したが、本発明の原理を適用できる多くの実施可能な形態に鑑みて、ここに記載した実施形態は、単に例示に過ぎず、本発明の範囲を限定するものではない。ここに例示した実施形態は、本発明の趣旨から逸脱することなくその構成と詳細を変更することができる。さらに、説明のための構成要素および手順は、本発明の趣旨から逸脱することなく変更、補足、またはその順序を変えてもよい。   The present invention has been described above with respect to several embodiments. However, in view of the many possible embodiments to which the principles of the present invention can be applied, the embodiments described herein are merely illustrative, It is not intended to limit the scope of the invention. The configuration and details of the embodiment exemplified here can be changed without departing from the spirit of the present invention. Further, the illustrative components and procedures may be changed, supplemented, or changed in order without departing from the spirit of the invention.

本発明の第1の実施形態による光SNR測定装置の一例を示すブロック図である。It is a block diagram which shows an example of the optical SNR measuring apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による光SNR測定装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the optical SNR measuring apparatus by the 2nd Embodiment of this invention. 本発明の第2の実施形態による光分波器の1つの出力ポートでの透過スペクトル形状を示す図である。It is a figure which shows the transmission spectrum shape in one output port of the optical demultiplexer by the 2nd Embodiment of this invention. 本発明の第2の実施形態による光SNR測定装置を用いて、光SNRを測定した結果を示す図である。It is a figure which shows the result of having measured optical SNR using the optical SNR measuring apparatus by the 2nd Embodiment of this invention. 本発明の第3の実施形態による光分波器の1つの出力ポートでの透過スペクトル形状を示す図である。It is a figure which shows the transmission spectrum shape in one output port of the optical demultiplexer by the 3rd Embodiment of this invention. 本発明の第2の実施形態による光SNR測定装置と第3の実施形態による光SNR測定装置を用いた場合の信号光の波長ずれに対する光SNR測定誤差を示す図である。It is a figure which shows the optical SNR measurement error with respect to the wavelength shift of the signal light at the time of using the optical SNR measurement apparatus by the 2nd Embodiment of this invention, and the optical SNR measurement apparatus by 3rd Embodiment. 光増幅器で増幅され、ASE光が重畳された信号光のスペクトルを示す。The spectrum of the signal light amplified by the optical amplifier and superimposed with the ASE light is shown. ASE光が重畳された信号光の光SNRを測定する方法を説明するための図である。It is a figure for demonstrating the method to measure the optical SNR of the signal light on which the ASE light was superimposed.

符号の説明Explanation of symbols

100,100−1〜100−N 光SNR測定装置
102 フォトダイオード
104 分配器
106 増幅器
108 バンドパスフィルタ
110 検出器
112 分配器
114 減算回路
116 除算回路
202 光ファイバ
204 光カプラ
206 光分波器
DESCRIPTION OF SYMBOLS 100,100-1-100-N Optical SNR measuring apparatus 102 Photodiode 104 Divider 106 Amplifier 108 Band pass filter 110 Detector 112 Divider 114 Subtraction circuit 116 Dividing circuit 202 Optical fiber 204 Optical coupler 206 Optical demultiplexer

Claims (7)

光信号対雑音比を測定する装置であって、
光を電気信号に変換して検出する第1の検出手段と、
前記光に含まれる信号光に対応する電気信号を検出する第2の検出手段と、
前記第1の検出手段での検出値から前記第2の検出手段での検出値を減算する減算手段と、
前記第1の検出手段での検出値と前記減算手段での減算値を除算する除算手段と
を備えたことを特徴とする装置。
An apparatus for measuring an optical signal-to-noise ratio,
First detection means for detecting light by converting it into an electrical signal;
Second detection means for detecting an electrical signal corresponding to the signal light included in the light;
Subtracting means for subtracting the detection value at the second detection means from the detection value at the first detection means;
An apparatus comprising: a division unit that divides a detection value obtained by the first detection unit and a subtraction value obtained by the subtraction unit.
波長多重光の光信号対雑音比を測定する装置であって、
前記波長多重光を各波長の光に分波する分波手段と、
前記分波された光を電気信号に変換して検出する第1の検出手段と、
前記分波された光に含まれる信号光に対応する電気信号を検出する第2の検出手段と、
前記第1の検出手段での検出値から前記第2の検出手段での検出値を減算する減算手段と、
前記第1の検出手段での検出値と前記減算手段での減算値を除算する除算手段と
を備えたことを特徴とする装置。
An apparatus for measuring an optical signal-to-noise ratio of wavelength multiplexed light,
Demultiplexing means for demultiplexing the wavelength-multiplexed light into light of each wavelength;
First detecting means for detecting the converted light by converting it into an electrical signal;
Second detection means for detecting an electrical signal corresponding to the signal light included in the demultiplexed light;
Subtracting means for subtracting the detection value at the second detection means from the detection value at the first detection means;
An apparatus comprising: a division unit that divides a detection value obtained by the first detection unit and a subtraction value obtained by the subtraction unit.
請求項2に記載の装置であって、
前記分波手段は、フラットな透過スペクトル特性を有することを特徴とする装置。
The apparatus of claim 2, comprising:
The demultiplexing means has a flat transmission spectrum characteristic.
請求項1から3のいずれかに記載の装置であって、
前記信号光に対応する電気信号を透過するフィルタ手段をさらに備えたことを特徴とする装置。
The apparatus according to any one of claims 1 to 3,
The apparatus further comprises filter means for transmitting an electrical signal corresponding to the signal light.
光信号対雑音比を測定するための方法であって、
光を電気信号に変換して検出することと、
前記光に含まれる信号光に対応する電気信号を検出することと、
前記光を電気信号に変換して検出した値から前記信号光に対応する電気信号を検出した値を減算することと、
前記光を電気信号に変換して検出した値と前記減算した値を除算することと
を備えることを特徴とする方法。
A method for measuring an optical signal to noise ratio comprising:
Detecting light by converting it into an electrical signal;
Detecting an electrical signal corresponding to the signal light included in the light;
Subtracting a value obtained by detecting an electric signal corresponding to the signal light from a value detected by converting the light into an electric signal;
Dividing the detected value by converting the light into an electrical signal and the subtracted value.
波長多重光の光信号対雑音比を測定するための方法であって、
前記波長多重光を各波長の光に分波することと、
前記分波された光を電気信号に変換して検出することと、
前記分波された光に含まれる信号光に対応する電気信号を検出することと、
前記分波された光を電気信号に変換して検出した値から前記信号光に対応する電気信号を検出した値を減算することと、
前記分波された光を電気信号に変換して検出した値と前記減算した値を除算することと
を備えることを特徴とする装置。
A method for measuring an optical signal-to-noise ratio of wavelength multiplexed light, comprising:
Demultiplexing the wavelength-multiplexed light into light of each wavelength;
Detecting the demultiplexed light by converting it into an electrical signal;
Detecting an electrical signal corresponding to the signal light included in the demultiplexed light;
Subtracting the detected value of the electrical signal corresponding to the signal light from the value detected by converting the demultiplexed light into an electrical signal;
Dividing the value detected by converting the demultiplexed light into an electrical signal and the subtracted value.
請求項5または6に記載の方法であって、
前記信号光に対応する電気信号を選択的に透過することをさらに備えることを特徴とする方法。
The method according to claim 5 or 6, comprising:
The method further comprises selectively transmitting an electrical signal corresponding to the signal light.
JP2008092335A 2008-03-31 2008-03-31 Device and method for measuring ratio of light signal to noise Pending JP2009244163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092335A JP2009244163A (en) 2008-03-31 2008-03-31 Device and method for measuring ratio of light signal to noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092335A JP2009244163A (en) 2008-03-31 2008-03-31 Device and method for measuring ratio of light signal to noise

Publications (1)

Publication Number Publication Date
JP2009244163A true JP2009244163A (en) 2009-10-22

Family

ID=41306211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092335A Pending JP2009244163A (en) 2008-03-31 2008-03-31 Device and method for measuring ratio of light signal to noise

Country Status (1)

Country Link
JP (1) JP2009244163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093719A (en) * 2008-10-10 2010-04-22 Nec Commun Syst Ltd Optical signal receiver, optical transmission apparatus, and method of detecting abnormal condition in optical signal
JP2011108850A (en) * 2009-11-17 2011-06-02 Fujitsu Ltd Optical amplifier, control circuit, and optical amplifier control method
JP2015106905A (en) * 2013-12-03 2015-06-08 富士通株式会社 Device and method for generating calibration coefficient for monitoring optical signal-to-noise ratio
US9917639B2 (en) 2015-01-30 2018-03-13 Fujitsu Limited Optical signal quality monitoring apparatus, optical signal quality monitoring method and optical repeater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415575A (en) * 1990-05-09 1992-01-20 Nec Corp S/n detecting device
JP2002057624A (en) * 2000-08-08 2002-02-22 Fujitsu Ltd System and method for wavelength multiplexing optical communication
JP2002116341A (en) * 2000-10-05 2002-04-19 Sun Tec Kk Wavelength multiplexer/demultiplexer
JP2005134481A (en) * 2003-10-28 2005-05-26 Nippon Telegr & Teleph Corp <Ntt> Arrayed waveguide type wavelength multiplexer/demultiplexer and optical wavelength division mutiplexing device
JP2007286077A (en) * 2004-05-20 2007-11-01 Nec Corp Optical multiplexer/demultiplexer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415575A (en) * 1990-05-09 1992-01-20 Nec Corp S/n detecting device
JP2002057624A (en) * 2000-08-08 2002-02-22 Fujitsu Ltd System and method for wavelength multiplexing optical communication
JP2002116341A (en) * 2000-10-05 2002-04-19 Sun Tec Kk Wavelength multiplexer/demultiplexer
JP2005134481A (en) * 2003-10-28 2005-05-26 Nippon Telegr & Teleph Corp <Ntt> Arrayed waveguide type wavelength multiplexer/demultiplexer and optical wavelength division mutiplexing device
JP2007286077A (en) * 2004-05-20 2007-11-01 Nec Corp Optical multiplexer/demultiplexer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093719A (en) * 2008-10-10 2010-04-22 Nec Commun Syst Ltd Optical signal receiver, optical transmission apparatus, and method of detecting abnormal condition in optical signal
JP2011108850A (en) * 2009-11-17 2011-06-02 Fujitsu Ltd Optical amplifier, control circuit, and optical amplifier control method
US8564878B2 (en) 2009-11-17 2013-10-22 Fujitsu Limited Optical amplifier, control circuit, and optical amplifier control method
JP2015106905A (en) * 2013-12-03 2015-06-08 富士通株式会社 Device and method for generating calibration coefficient for monitoring optical signal-to-noise ratio
EP2882116A1 (en) 2013-12-03 2015-06-10 Fujitsu Limited Apparatus and method for creating calibration coefficient used to monitor optical signal-to-noise ratio
US9413455B2 (en) 2013-12-03 2016-08-09 Fujitsu Limited Apparatus and method for creating calibration coefficient used to monitor optical signal-to-noise ratio
US9917639B2 (en) 2015-01-30 2018-03-13 Fujitsu Limited Optical signal quality monitoring apparatus, optical signal quality monitoring method and optical repeater

Similar Documents

Publication Publication Date Title
US8655170B2 (en) OSNR monitor device and OSNR measurement device
JP5700050B2 (en) Coherent light receiving apparatus and coherent light receiving method
JP5691255B2 (en) OSNR measuring apparatus and optical communication system
CA2775673C (en) Reference-based in-band osnr measurement on polarization-multiplexed signals
US7756369B2 (en) OSNR monitoring apparatus and method using polarization splitting
JP5236074B2 (en) Apparatus and method for improving the tolerance of tone-based optical channel monitoring to stimulated Raman diffusion
EP1432150A2 (en) Method for monitoring optical signal-to-noise ratio
KR20150143559A (en) Equalization method and device for optical power
US10256901B2 (en) Systems and methods for optical signal-to-noise ratio monitoring
WO2010150241A1 (en) Optical signal to noise ratio monitoring technique and system
JP3391341B2 (en) Optical transmission line monitoring system, its monitoring device and its monitoring method
US20160056891A1 (en) Optical signal-to-noise ratio measuring method
JP5516698B2 (en) Coherent receiver
JP2008521304A (en) Optical signal monitoring apparatus and method
JP2009244163A (en) Device and method for measuring ratio of light signal to noise
US20120002962A1 (en) Wdm signal light monitoring apparatus, wdm system and wdm signal light monitoring method
JP4172547B2 (en) System and method for supervisory signal modulation scheme using variable optical attenuator
WO2002001684A1 (en) Optical amplifier device
JP4048368B2 (en) Noise suppression method and apparatus
US20040247319A1 (en) Characterization of a transmission path of an optical signal having an optical communication signal
US10205520B2 (en) Method and device for measuring optical signal-to-noise ratio
JP2006074791A (en) Method of modulation with low cross-talk in optical transmission
JP4319695B2 (en) Light system
Anderson et al. Robust, low cost, in-band optical signal to noise monitoring using polarization diversity
JP2011198978A (en) Optical amplifying device, method of controlling gain, optical transmission device, and gain control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827