Nothing Special   »   [go: up one dir, main page]

JP2009136652A - Filling material for bone defect part - Google Patents

Filling material for bone defect part Download PDF

Info

Publication number
JP2009136652A
JP2009136652A JP2008017359A JP2008017359A JP2009136652A JP 2009136652 A JP2009136652 A JP 2009136652A JP 2008017359 A JP2008017359 A JP 2008017359A JP 2008017359 A JP2008017359 A JP 2008017359A JP 2009136652 A JP2009136652 A JP 2009136652A
Authority
JP
Japan
Prior art keywords
porous body
bone defect
filling material
shape
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017359A
Other languages
Japanese (ja)
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2008017359A priority Critical patent/JP2009136652A/en
Publication of JP2009136652A publication Critical patent/JP2009136652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filling material for bone defect part, which is filled in the bone defect part without causing a large space, to be early bonded to the inner face of the bone defect part, and quickly decomposed and absorbed to regenerate bone tissue in a comparatively short time. <P>SOLUTION: The filling material for bone defect part is a porous body 100 of biodegradable absorbent polymer with dispersed bioactive bioceramics powder particles. After the porous body 100 having continuous pores inside and exposing a part of bioceramics powder particles from the surface is cutting-worked as the need arises, the porous body 100 is compressed or deformed under heating and then the form is fixed by cooling to obtain the filling material 1 which restores the original form by re-heating. When the filling material 1 restores the original form by re-heating on the inside of the bone defect part 2, the restored porous body 11 is filled along the inner face of the bone defect part without causing a large space to early bond to the inner face of the bone defect part, and finally the bone tissue is totally replaced and regenerated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は骨欠損部への充填材料に関し、更に詳しくは、骨欠損部に隙間なく充填されて比較的短期間で骨組織を再生することができる充填材料に関する。   The present invention relates to a filling material for a bone defect portion, and more particularly to a filling material that is filled in a bone defect portion without a gap and can regenerate a bone tissue in a relatively short period of time.

本出願人は、医療用の新素材として、生体内分解吸収性ポリマー中に生体活性なバイオセラミックス粉粒が均一に分散し、内部に孔径が大略100〜400μmの連続気孔を有し、表面と気孔内面にバイオセラミックス粉粒の一部が露出した、有機−無機複合多孔体を既に提案した(特許文献1)。   The present applicant, as a new medical material, has bioactive bioceramics particles uniformly dispersed in a biodegradable absorbent polymer, and has continuous pores with a pore size of approximately 100 to 400 μm inside, An organic-inorganic composite porous body in which part of the bioceramic powder particles is exposed on the inner surface of the pore has already been proposed (Patent Document 1).

この有機−無機複合多孔体は、生体硬骨あるいは軟骨組織再生用の足場、生体補綴材、ボーンフィラー、海綿骨の代替物、薬物除放用キャリアなど、種々の医療用途が見込まれる画期的な新素材である。
特開2003−159321号公報
This organic-inorganic composite porous material is an epoch-making product that is expected to have various medical uses such as scaffolds for regeneration of living bone or cartilage tissue, bioprosthetic materials, bone fillers, cancellous bone substitutes, and drug release carriers. New material.
JP 2003-159321 A

上記特許文献1の複合多孔体は、これを例えば生体骨の欠損部に充填して骨組織を再生させる場合、骨欠損部の内面と該多孔体との間に大きい隙間が生じないように実質的に密着させて充填することが重要であり、大きい隙間が存在すると、該多孔体が骨欠損部から脱落したり、該多孔体と骨欠損部の内面との結合(該多孔体による骨組織の誘導形成で生じる結合)がすみやかに行われない等の不都合を生じる恐れがある。けれども、手術現場において、大きい隙間が生じないように複合多孔体を骨欠損部の形状に合わせて切削加工する作業は容易でなく、特に、骨欠損部が奥広がりの形状であると、多孔体を骨欠損部の形状に合うように切削加工して充填することは不可能である。   For example, when the composite porous body of Patent Document 1 is filled in a defect portion of a living bone to regenerate a bone tissue, for example, a substantial gap is not generated between the inner surface of the bone defect portion and the porous body. If there is a large gap, the porous body may drop off from the bone defect portion, or the porous body and the inner surface of the bone defect portion (the bone tissue formed by the porous body). There is a risk of inconveniences such as that the coupling that occurs in the formation of the induction is not performed promptly. However, it is not easy to cut the composite porous body according to the shape of the bone defect part so that a large gap does not occur at the operation site. It is impossible to cut and fill the material to match the shape of the bone defect.

本発明は、上記事情の下になされたものであって、その解決しようとする課題は、骨欠損部に隙間なく充填されて早期に骨欠損部の内面と結合し、すみやかに分解吸収されて比較的短期間で骨組織を再生できる骨欠損部への充填材料を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is that the bone defect portion is filled without a gap, and is quickly coupled to the inner surface of the bone defect portion, and promptly decomposed and absorbed. An object of the present invention is to provide a filling material for a bone defect that can regenerate bone tissue in a relatively short period of time.

上記課題を解決するため、本発明に係る骨欠損部への充填材料は、生体活性なバイオセラミックス粉粒を分散させた生体内分解吸収性ポリマーの多孔体で、その内部に連続気孔を有し、その表面と気孔内面にバイオセラミックス粉粒の一部が露出している該多孔体を、加熱下に圧縮もしくは変形して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により該多孔体の形状が復元することを特徴とするものである。ここに「復元」とは、完全に元の形状に戻る「完全な復元」のみならず、元の形状に近い形状まで戻る「不完全な復元」をも包含する広い概念の用語である。   In order to solve the above problems, a filling material for a bone defect according to the present invention is a porous body of biodegradable absorbable polymer in which bioactive bioceramics powder particles are dispersed, and has continuous pores therein. The porous body in which part of the bioceramic powder particles are exposed on the surface and the inner surface of the pores is a filling material formed by compressing or deforming under heating and fixing the shape of the porous body by cooling, The shape of the porous body is restored by reheating. Here, “restoration” is a term of a broad concept including not only “complete restoration” that completely returns to the original shape but also “incomplete restoration” that returns to a shape close to the original shape.

本発明の充填材料は、二つのタイプに分かれる。一つのタイプは、上記多孔体を加熱下に圧縮して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により体積が1.2〜3.5倍に膨張して形状が圧縮前の形状に復元しようとするものであり、もう一つのタイプは、上記多孔体を加熱下に変形して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により体積が変化することなく形状が変形前の形状に復元しようとするものである。ここに、「圧縮」とは、多孔体の形状を変化させるか又は相似形として、体積を減少させることをいい、また、「変形」とは、多孔体の形状のみを変化させ、体積を実質的に変化させないことをいう。   The filling material of the present invention is divided into two types. One type is a filling material obtained by compressing the porous body under heating and fixing the shape of the porous body by cooling, and the volume expands to 1.2 to 3.5 times by reheating. The other type is a filling material in which the porous body is deformed under heating and the shape of the porous body is fixed by cooling. The shape is intended to be restored to the shape before deformation without changing the volume by heating. Here, “compression” means to reduce the volume by changing the shape of the porous body or by analogy, and “deformation” means changing only the shape of the porous body to substantially reduce the volume. It means not changing.

本発明の充填材料においては、多孔体の気孔率が50〜90%であって、連続気孔が気孔全体の50〜100%を占め、連続気孔の孔径が40〜600μmであることが好ましく、多孔体のバイオセラミックス粉粒の含有率は50〜90質量%であることが好ましい。また、多孔体の生体内分解吸収性ポリマーとしては、ポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とp−ジオキサノンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とカプロラクトンの共重合体のいずれか単独、又は、2種以上の混合物が好ましく使用される。   In the filling material of the present invention, the porosity of the porous body is preferably 50 to 90%, the continuous pores account for 50 to 100% of the entire pores, and the pore diameter of the continuous pores is preferably 40 to 600 μm. It is preferable that the content rate of the bioceramics particle | grains of a body is 50-90 mass%. Examples of the porous biodegradable polymer include poly-D, L-lactic acid, L-lactic acid and D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and p-dioxanone. Any one of these copolymers, a copolymer of lactic acid and ethylene glycol, a copolymer of lactic acid and caprolactone, or a mixture of two or more thereof is preferably used.

本発明に係る骨欠損部への充填材料、例えば、多孔体を加熱下に圧縮して冷却により形状を固定した前記圧縮タイプの充填材料は、それよりも内部容積が少し大きい骨欠損部に嵌め込まれ、温水や温風で生体内分解吸収性ポリマーのガラス転移点よりも少し高い温度に再加熱される。このように再加熱すると、圧縮された多孔体よりなる充填材料は、その気孔壁の復元力によって膨張しながら元の形状に復元していくため、骨欠損部の内面に沿って大きい隙間を生じることなく骨欠損部に充填される。従って、圧縮前の多孔体では充填できない奥広がり形状の骨欠損部であっても、大きい隙間を生じることなく充填することが可能となる。また、前記変形タイプの充填材料、例えば、シート状の多孔体を渦巻き状に曲げ加工して渦巻き円柱形状に変形させたものなども、後述するように、開口部の直径が小さく内部の直径が大きい骨欠損部に順次挿入して再加熱により復元させる操作を繰り返すことによって、大きい隙間を生じることなく骨欠損部に充填される。   The filling material for the bone defect according to the present invention, for example, the compression-type filling material in which the porous body is compressed under heating and the shape is fixed by cooling, is fitted into the bone defect having a slightly larger internal volume. Then, it is reheated to a temperature slightly higher than the glass transition point of the biodegradable absorbent polymer with warm water or warm air. When reheated in this way, the filling material composed of the compressed porous body is restored to its original shape while expanding due to the restoring force of the pore walls, so that a large gap is formed along the inner surface of the bone defect portion. Without filling the bone defect. Therefore, it is possible to fill a bone defect portion having a deep shape that cannot be filled with a porous body before compression without causing a large gap. In addition, the deformation type filling material, for example, a sheet-like porous body bent into a spiral shape and deformed into a spiral cylindrical shape has a small opening diameter and an internal diameter as described later. By sequentially inserting the large bone defect portion and restoring it by reheating, the bone defect portion is filled without generating a large gap.

上記のように本発明の圧縮もしくは変形された多孔体よりなる充填材料を復元させて骨欠損部に大きい隙間を生じることなく充填すると、体液が復元した多孔体の表面から連続気孔を通って多孔体内部にすみやかに浸透し、多孔体の表面と内部の双方から生体内分解吸収性ポリマーの加水分解がほとんど同時に進行する。そして、加水分解に伴って、多孔体の表面に露出するバイオセラミックス粉粒により骨組織が多孔体の表層部にすみやかに誘導形成されて、多孔体が骨欠損部の内面と早期に結合し、更に、気孔内面に露出するバイオセラミックス粉粒によって骨組織が多孔体内部まで誘導形成されて最終的には多孔体と全置換し、骨欠損部の骨組織が再生される。このように、本発明の充填材料は骨誘導能を有し、誘導、再生された骨組織と全置換して消失するものである。   As described above, when the filling material composed of the compressed or deformed porous body of the present invention is restored and filled without generating a large gap in the bone defect part, the body fluid is restored from the surface of the restored porous body through the continuous pores. The body rapidly penetrates into the body and hydrolysis of the biodegradable absorbent polymer proceeds almost simultaneously from both the surface and the inside of the porous body. And, along with the hydrolysis, the bone tissue is promptly formed on the surface layer portion of the porous body by the bioceramic powder particles exposed on the surface of the porous body, the porous body is quickly bonded to the inner surface of the bone defect, Furthermore, the bone tissue is induced and formed to the inside of the porous body by the bioceramic powder particles exposed on the inner surface of the pores, and finally is completely replaced with the porous body, thereby regenerating the bone tissue of the bone defect portion. As described above, the filling material of the present invention has an osteoinductive ability, and disappears by completely replacing the induced and regenerated bone tissue.

圧縮もしくは変形前の多孔体は、その気孔率が50〜90%であって、連続気孔が気孔全体の50〜100%を占め、連続気孔の孔径が40〜600μmであることが好ましく、このような多孔体を加熱下に圧縮もしくは変形して冷却により形状を固定した充填材料は、骨欠損部の内部で再加熱して復元させると、実質的に上記と同じ気孔率、連続気孔の占める率、及び、孔径を有する元の多孔体に戻るため、多孔体内部への体液や骨芽細胞の侵入が良好で、加水分解や骨組織の成長がすみやかに行われ、また、充填材料としての多孔体に必要な初期の物理的強度も備えている。   It is preferable that the porous body before compression or deformation has a porosity of 50 to 90%, continuous pores account for 50 to 100% of the total pores, and the pore diameter of the continuous pores is 40 to 600 μm. When a porous material is compressed or deformed under heating and its shape is fixed by cooling, when it is reheated and restored inside the bone defect part, the porosity is substantially the same as above, and the ratio of continuous pores In order to return to the original porous body having a pore size, the intrusion of body fluids and osteoblasts into the porous body is good, the hydrolysis and the growth of bone tissue are performed quickly, and the porous material as a filling material It also has the initial physical strength necessary for the body.

また、圧縮もしくは変形前の多孔体や、圧縮もしくは変形された多孔体よりなる充填材料のバイオセラミックス粉粒の含有率が50〜90質量%であると、骨組織がバイオセラミックス粉粒の骨誘導ないし骨伝導能によって多孔体の内部まですみやかに誘導形成され、比較的短期間で多孔体と全置換するようになる。   In addition, when the content of the bioceramic powder particles of the porous material before compression or deformation or the filling material composed of the compressed or deformed porous material is 50 to 90% by mass, the bone tissue is bone-induced by the bioceramic powder particles. Or it is guided to the inside of the porous body promptly by the bone conduction ability, so that it is completely replaced with the porous body in a relatively short period of time.

圧縮された多孔体よりなる充填材料の膨張倍率は、多孔体を圧縮する度合いによって調整可能であるが、良好な復元性を付与するためには、圧縮された多孔体の体積が1.2〜3.5倍に膨張するように調整することが好ましい。このように膨張倍率を1.2〜3.5倍に調整した充填材料は、再加熱によりすみやかに膨張しながらほぼ元通りの形状に復元し、骨欠損部の内面に沿って大きい隙間を生じることなく詰め込まれる。そして、骨欠損部の内壁に早期に結合し、比較的短期間で骨組織と全置換される。   The expansion ratio of the filling material composed of the compressed porous body can be adjusted depending on the degree of compression of the porous body, but in order to give good restorability, the volume of the compressed porous body is 1.2 to It is preferable to adjust so as to expand 3.5 times. Thus, the filling material whose expansion ratio is adjusted to 1.2 to 3.5 times is restored to its original shape while rapidly expanding by reheating, and a large gap is formed along the inner surface of the bone defect portion. Packed without any problems. And it couple | bonds with the inner wall of a bone defect | deletion part at an early stage, and a bone tissue is completely substituted in a comparatively short period of time.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る圧縮タイプの充填材料の製法例と使用例の説明図である。   FIG. 1 is an explanatory view of a manufacturing method example and a usage example of a compression type filling material according to the present invention.

図1の(c)に例示する本発明の圧縮タイプの充填材料1は、(a)に示す材料の多孔体100、即ち、生体活性なバイオセラミックス粉粒を分散させた生体内分解吸収性ポリマーからなる多孔体であって、その内部に連続気孔を有し、表面と気孔内面にバイオセラミックス粉粒の一部が露出している多孔体100を切削加工することによって、(b)に示すような下広がり形状の多孔体10、即ち、(d)に示す奥広がり形状の骨欠損部2と略相似の立体形状を有し且つ体積が骨欠損部2よりも少し大きい多孔体10を作製し、この多孔体10を生体内分解吸収性ポリマーのガラス転移点よりも少し高い温度に加熱して周囲から圧縮すると共に、冷却により該多孔体の形状を固定して、(c)に示すような直径が骨欠損部2の上端開口径よりも小さく高さが骨欠損部2の深さに略等しい円柱形状の多孔体としたものである。   The compression type filling material 1 of the present invention illustrated in FIG. 1C is a porous body 100 of the material shown in FIG. 1A, that is, a biodegradable absorbent polymer in which bioactive bioceramics particles are dispersed. As shown in (b), by cutting the porous body 100, which has continuous pores inside thereof, and a part of the bioceramic powder particles are exposed on the surface and the inner surface of the pores. A porous body 10 having a downwardly spread shape, that is, a porous body 10 having a three-dimensional shape substantially similar to the bone defect portion 2 having a deep shape shown in (d) and having a slightly larger volume than the bone defect portion 2 is manufactured. The porous body 10 is heated to a temperature slightly higher than the glass transition point of the biodegradable absorbent polymer and compressed from the surroundings, and the shape of the porous body is fixed by cooling, as shown in (c) The diameter is the upper opening diameter of bone defect 2 Even small height is obtained by a porous material having substantially the same cylindrical shape to the depth of the bone defect 2.

上記のように圧縮されて形状が固定された多孔体からなる充填材料1は、以下の要領で、骨欠損部2に隙間なく充填される。即ち、図1の(d)に示すように、上端開口径や内部容積が充填材料1の直径や体積よりも大きい奥広がり形状の骨欠損部2に充填材料1を嵌め込み、例えば温水Wを注ぐことによって充填材料1を生体内分解吸収性ポリマーのガラス転移点よりも少し高い温度に再加熱し、圧縮された多孔体よりなる充填材料1を気孔壁の復元力で膨張させながら、図1の(e)に示すように充填材料1を骨欠損部2の内部で復元させ、骨欠損部2の奥広がり形状に合致した形状の多孔体11にして、骨欠損部2の内面との間に大きい隙間を生じさせることなく骨欠損部2に充填する。このようにすると、切削加工で形状を骨欠損部2に合わせただけの非圧縮の多孔体では充填することができない奥広がり形状の骨欠損部2に対しても、充填材料1を復元させた多孔体11を充填することが可能となり、しかも、充填材料1の復元の状態を目で確かめながら骨欠損部2の内面に沿うまで再加熱を続けることによって、確実に大きい隙間が生じないようにすることができる。   The filling material 1 made of a porous body that is compressed and fixed in shape as described above is filled into the bone defect portion 2 without a gap in the following manner. That is, as shown in FIG. 1 (d), the filling material 1 is fitted into a bone defect 2 having a wide open shape whose upper end opening diameter and internal volume are larger than the diameter and volume of the filling material 1, and hot water W is poured, for example. Thus, the filling material 1 is reheated to a temperature slightly higher than the glass transition point of the biodegradable absorbable polymer, and the filling material 1 made of the compressed porous body is expanded by the restoring force of the pore wall as shown in FIG. As shown in (e), the filling material 1 is restored inside the bone defect portion 2 to form a porous body 11 having a shape that matches the depth of the bone defect portion 2, and between the inner surface of the bone defect portion 2. The bone defect part 2 is filled without causing a large gap. In this way, the filling material 1 is also restored to the bone defect portion 2 having a deep shape that cannot be filled with an uncompressed porous body that is simply shaped to the bone defect portion 2 by cutting. It becomes possible to fill the porous body 11, and by continuing reheating until the inner surface of the bone defect 2 is kept while confirming the restoration state of the filling material 1 with the eye, a large gap is surely not generated. can do.

再加熱手段として、温風を吹きつける等の手段も採用可能であるが、温風を吹きつける場合は、充填材料1の内部まで再加熱するのに多少の時間を要するという不都合があるのに対し、上記のように温水Wを注ぐ場合は、圧縮された多孔体よりなる充填材料1の連続気孔を通って温水Wが速やかに内部まで浸透し、僅かな時間で充填材料1全体を均等に再加熱できる利点があるので、再加熱手段として温水Wを使用することが好ましい。   As a reheating means, means such as blowing warm air can be adopted, but in the case of blowing warm air, there is a disadvantage that it takes some time to reheat to the inside of the filling material 1. On the other hand, when the hot water W is poured as described above, the hot water W quickly penetrates into the inside through the continuous pores of the compressed filling material 1 made of a compressed porous body, and the entire filling material 1 is evenly distributed in a short time. Since there exists an advantage which can be reheated, it is preferable to use the warm water W as a reheating means.

上記のように、圧縮された多孔体よりなる充填材料1を復元させて骨欠損部2に隙間なく充填すると、体液が復元した多孔体11の表面から連続気孔を通って多孔体内部にすみやかに浸透し、多孔体11の表面と内部の双方から生体内分解吸収性ポリマーの加水分解がほとんど同時に進行する。そして、加水分解に伴って、多孔体11の表面に露出するバイオセラミックス粉粒により骨組織が多孔体11の表層部にすみやかに誘導形成されて、多孔体11が骨欠損部2の内面と早期に結合し、更に、気孔内面に露出するバイオセラミックス粉粒によって骨組織が多孔体11内部まで誘導形成されて最終的には多孔体11と全置換し、骨欠損部2の骨組織が再生される。   As described above, when the filling material 1 made of a compressed porous body is restored and filled into the bone defect part 2 without a gap, the body fluid is quickly restored from the surface of the porous body 11 through the continuous pores to the inside of the porous body. It penetrates and hydrolysis of the biodegradable absorbent polymer proceeds almost simultaneously from both the surface and the inside of the porous body 11. Then, along with the hydrolysis, the bone tissue is promptly formed on the surface layer portion of the porous body 11 by the bioceramic powder particles exposed on the surface of the porous body 11, so that the porous body 11 and the inner surface of the bone defect portion 2 are in an early stage. Furthermore, the bone tissue is guided and formed to the inside of the porous body 11 by the bioceramic powder particles exposed to the inner surface of the pores, and finally is completely replaced with the porous body 11, and the bone tissue of the bone defect portion 2 is regenerated. The

材料の多孔体100は、前述したように、生体活性なバイオセラミックス粉粒を分散させた生体内分解吸収性ポリマーからなる多孔体であって、その内部に連続気孔を有すると共に、表面と気孔内面にバイオセラミックス粉粒の一部が露出したものであり、このような多孔体100は、以下の方法で製造することができる。   As described above, the material porous body 100 is a porous body made of a biodegradable absorbable polymer in which bioactive bioceramics particles are dispersed, and has continuous pores therein, and a surface and an inner surface of the pores. A part of the bioceramic powder particles is exposed, and such a porous body 100 can be manufactured by the following method.

まず、揮発性溶媒に生体内分解吸収性ポリマーを溶解すると共にバイオセラミックス粉粒を混合して懸濁液を調製し、この懸濁液をスプレー等の手段で繊維化して繊維の絡み合った繊維集合体を形成する。次いで、この繊維集合体をメタノール、エタノール、イソプロパノール、ジクロロエタン(メタン)、クロロホルムなどの揮発性溶剤に浸漬して膨潤または半溶解状態とし、これを加圧してブロック状などの所定形状を有する多孔質の繊維融着集合体となし、この繊維融着集合体の繊維を収縮、融合させながら実質的に繊維状の形態を消失させてマトリクス化し、繊維間空隙が丸みを有する連続気孔となった多孔体に形態変化させると共に、気孔内面や表面にバイオセラミックス粉粒の一部を露出させて上記多孔体100を製造する。
尚、材料の多孔体100の製造方法については、前記特許文献1に詳しく説明されているので、これ以上の詳細な説明は省略する。
First, the biodegradable absorbent polymer is dissolved in a volatile solvent, and bioceramics particles are mixed to prepare a suspension. The suspension is made into a fiber by means of spraying or the like, and a fiber assembly in which fibers are intertwined Form the body. Next, this fiber assembly is immersed in a volatile solvent such as methanol, ethanol, isopropanol, dichloroethane (methane), chloroform, etc. to swell or semi-dissolve, and this is pressurized to form a porous material having a predetermined shape such as a block shape. The fiber fusion aggregate is made of, and the fibers of the fiber fusion aggregate are shrunk and fused, so that the substantially fibrous form disappears to form a matrix, and the voids between the fibers become round pores. The porous body 100 is manufactured by changing the shape of the body and exposing part of the bioceramic powder particles on the inner surface and surface of the pores.
In addition, since the manufacturing method of the porous body 100 of a material is explained in detail in the above-mentioned patent document 1, further detailed explanation is omitted.

生体内分解吸収性ポリマーとしては、安全で、分解が比較的速く、多孔体となっても脆くない、非晶質または結晶と非晶の混在したポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とp−ジオキサノンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とカプロラクトンの共重合体などが適しており、これらは単独で、又は、二種以上混合して使用される。これらのポリマーは、繊維化による不織布状繊維集合体の形成し易さや、生体内での分解吸収の期間などを考慮すると、5万〜100万程度の粘度平均分子量を有するものが好ましく使用される。   The biodegradable and absorbable polymer is safe, is relatively fast to decompose, is not brittle even when it becomes a porous material, and is amorphous or a mixture of crystalline and amorphous poly-D, L-lactic acid, L-lactic acid, D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and p-dioxanone copolymer, lactic acid and ethylene glycol copolymer, lactic acid and caprolactone copolymer are suitable. These are used alone or in admixture of two or more. As these polymers, those having a viscosity average molecular weight of about 50,000 to 1,000,000 are preferably used in consideration of the ease of forming a non-woven fiber aggregate by fiberization and the period of degradation and absorption in vivo. .

また、バイオセラミックス粉粒としては、生体活性があり、生体内吸収性で骨組織と完全に置換され、良好な骨誘導ないし骨伝導能と良好な生体親和性を有する、未仮焼かつ未焼成のハイドロキシアパタイト、ジカルシウムホスフェート、トリカルシウムホスフェート、テトラカルシウムホスフェート、オクタカルシウムホスフェート、カルサイト、セラバイタル、ジオプサイト、天然珊瑚等の粉粒が好ましく使用される。その中でも、未仮焼かつ未焼成のハイドロキシアパタイト、トリカルシウムホスフェート、オクタカルシウムホスフェートは生体活性が極めて高く、骨誘導ないし骨伝導能に優れ、為害性が低く、短期間で生体に吸収されるので、極めて好ましく使用される。   Bioceramics powder is bioactive, bioresorbable, completely replaced with bone tissue, and has good bone induction or osteoconductivity and good biocompatibility. Hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, serabital, diopsite, smallpox and the like are preferably used. Among them, uncalcined and uncalcined hydroxyapatite, tricalcium phosphate, and octacalcium phosphate have extremely high bioactivity, excellent bone induction or osteoconductivity, low toxicity, and absorption in the living body in a short period of time. Are very preferably used.

上記のバイオセラミックス粉粒は、生体内分解吸収性ポリマーへの分散性や生体への吸収性を考慮すると、30μm以下、好ましくは10μm以下、更に好ましくは0.1〜5μm程度の粒径を有するものが使用される。特に、0.1〜5μm程度の粒径を有するバイオセラミックス粉粒は、生体への吸収性が良好であることに加えて、上記のスプレー法で多孔体100を製造する際に、形成される繊維を短く切断する恐れがないので好ましく使用される。   The bioceramic powder particles have a particle size of about 30 μm or less, preferably about 10 μm or less, more preferably about 0.1 to 5 μm, considering dispersibility in the biodegradable absorbent polymer and absorbability to the living body. Things are used. In particular, bioceramic powder particles having a particle size of about 0.1 to 5 μm are formed when the porous body 100 is produced by the spray method described above in addition to good absorbability to the living body. It is preferably used because there is no fear of cutting the fiber short.

多孔体100におけるバイオセラミックス粉粒の含有率は50〜90質量%であることが好ましく、かかる含有率の多孔体を圧縮した充填材料1を、骨欠損部2の内部で再加熱により復元して充填すると、既述したように、バイオセラミックス粉粒の骨誘導ないし骨伝導能によって、復元された多孔体11の内部まで骨組織がすみやかに誘導形成され、比較的短期間で多孔体と全置換するようになる。バイオセラミックス粉粒の含有率が50質量%を下回ると、復元された多孔体11が骨組織と全置換するのに要する期間が長くなり、90質量%を上回ると、前述したスプレー法で原料の多孔体100を作製する際に、バイオセラミックス粉粒を含んだ生体内分解吸収性ポリマーの繊維が短く切れるという不都合を生じるので、いずれも好ましくない。   The content of the bioceramic powder particles in the porous body 100 is preferably 50 to 90% by mass, and the filling material 1 obtained by compressing the porous body having the content is restored by reheating inside the bone defect 2. When filled, as described above, the bone tissue is promptly formed to the inside of the restored porous body 11 by the bone induction or osteoconductivity of the bioceramics particles, and the whole is replaced with the porous body in a relatively short period of time. To come. If the content of the bioceramic powder particles is less than 50% by mass, the period required for the restored porous body 11 to completely replace the bone tissue becomes longer, and if it exceeds 90% by mass, When producing the porous body 100, the biodegradable absorbent polymer fibers containing the bioceramic powder particles are disadvantageous in that they can be cut short.

材料の多孔体100は、その気孔率が50〜90%であって、連続気孔が気孔全体の50〜100%を占め、連続気孔の孔径が40〜600μmであることが好ましい。また、孔径が40〜600μmと大きい連続気孔の他に、孔径が1μm以下の小気孔を連続気孔の気孔壁に有し、連続気孔の一部と小気孔の一部が連続している多孔体100も好ましく使用される。このような多孔体100を切削加工して骨欠損部2に略相似の立体形状とした多孔体10を加熱下に圧縮し、冷却により該多孔体の形状を固定して得られる充填材料1は、これを骨欠損部2の内部で再加熱により復元させると、実質的に上記と同じ気孔率、連続気孔の占める率、及び、孔径を有する多孔体11となるため、該多孔体11の内部への体液や骨芽細胞の侵入が良好で、加水分解や骨組織の成長がすみやかに行われ、また、脆くなく、充填材料としての多孔体に必要な初期の物理的強度も十分に備えている。特に、孔径が1μm以下の小気孔の一部が大きい連続気孔の一部と連続している多孔体100を圧縮した充填材料1は、再加熱により骨欠損部2の内部で多孔体11に復元すると、侵入する体液によって大きい連続気孔の内面と小気孔の内面との双方から加水分解が速やかに進行し、しかも、連続気孔を通じて侵入した骨芽細胞が小気孔に固定されて活発に増殖、分化が行われるので、骨組織が一層すみやかに再生される。上記小気孔の好ましい孔径の範囲は0.05〜1μm、より好ましい孔径の範囲は0.1〜1μmである。   It is preferable that the porous body 100 of the material has a porosity of 50 to 90%, the continuous pores account for 50 to 100% of the entire pores, and the pore diameter of the continuous pores is 40 to 600 μm. Further, in addition to continuous pores having a large pore diameter of 40 to 600 μm, a porous body having small pores having a pore diameter of 1 μm or less in the pore walls of the continuous pores, and a part of the continuous pores and a part of the small pores are continuous. 100 is also preferably used. The filling material 1 obtained by cutting the porous body 100 and compressing the porous body 10 having a three-dimensional shape substantially similar to the bone defect 2 under heating and fixing the shape of the porous body by cooling is as follows. When this is restored by reheating inside the bone defect portion 2, the porous body 11 has substantially the same porosity, the ratio of continuous pores, and the pore diameter as described above. The body fluids and osteoblasts penetrate well, and hydrolysis and bone tissue growth occur promptly. They are not brittle and have sufficient initial physical strength necessary for the porous material as a filling material. Yes. In particular, the filling material 1 obtained by compressing the porous body 100 in which a part of small pores having a pore diameter of 1 μm or less and a part of continuous pores is continuous is restored to the porous body 11 inside the bone defect 2 by reheating. Then, hydrolysis proceeds rapidly from both the inner surface of the large continuous pores and the inner surface of the small pores due to the invading body fluid, and the osteoblasts that have entered through the continuous pores are fixed to the small pores and actively proliferate and differentiate. Therefore, the bone tissue is regenerated more quickly. The preferable pore diameter range of the small pores is 0.05 to 1 μm, and the more preferable pore diameter range is 0.1 to 1 μm.

材料の多孔体100の気孔率が50%を下回り、連続気孔が気孔全体の50%を下回り、連続気孔の孔径が40μmよりも小さくなると、骨欠損部2の内部で充填材料1から復元した多孔体11への体液や骨芽細胞の侵入が低下するため、多孔体11の加水分解や骨組織の成長が遅くなり、多孔体が骨組織と全置換して骨欠損部2を再生するのに要する期間が長くなるので好ましくない。一方、多孔体100の気孔率が90%を上回り、孔径が600μmよりも大きくなると、骨欠損部2の内部で充填材料1から復元した多孔体11の物理的強度が低下して脆くなるので、詰め物としては不適当である。連続気孔のより好ましい孔径は、100〜400μmである。   When the porosity of the porous material 100 is less than 50%, the continuous pores are less than 50% of the total pores, and the pore diameter of the continuous pores is smaller than 40 μm, the porosity restored from the filling material 1 inside the bone defect 2 Since the invasion of body fluids and osteoblasts into the body 11 decreases, the hydrolysis of the porous body 11 and the growth of the bone tissue are slowed, and the porous body completely replaces the bone tissue to regenerate the bone defect 2. Since the required period becomes long, it is not preferable. On the other hand, when the porosity of the porous body 100 exceeds 90% and the pore diameter is larger than 600 μm, the physical strength of the porous body 11 restored from the filling material 1 inside the bone defect portion 2 is reduced and becomes brittle. It is unsuitable as a filling. The more preferable pore diameter of the continuous pores is 100 to 400 μm.

尚、多孔体100の気孔率、連続気孔の占める率、孔径などの調整は、前述のスプレー法で多孔体100を製作する際に、繊維集合体の繊維密度、繊維の太さ、繊維集合体を加圧して多孔質の繊維融着集合体を形成するときの圧力などをコントロールすることによって行うことができる。   In addition, adjustment of the porosity of the porous body 100, the ratio occupied by the continuous pores, the pore diameter, and the like is performed when the porous body 100 is manufactured by the above-described spraying method, the fiber density of the fiber assembly, the thickness of the fiber, and the fiber assembly. Can be performed by controlling the pressure and the like when forming a porous fiber fusion aggregate.

材料の多孔体100から切削加工される多孔体10は、骨欠損部2より少し大きいものであれば、骨欠損部2の形状と多少形状が異なっていてもよいが、そのような形状の異なる多孔体を圧縮した充填材料1は、骨欠損部2の内部で再加熱により略均等に膨張、復元しないため、部分的な応力歪みや部分的な隙間を生じる恐れがある。これに対し、前記のように多孔体10が骨欠損部2と略相似の立体形状であると、この多孔体10を圧縮した充填材料1は骨欠損部2の内部で略均等に膨張、復元して骨欠損部2の内面に沿うようになり、部分的な応力歪みや部分的な隙間を生じることがないので好ましい。   As long as the porous body 10 cut from the porous body 100 is slightly larger than the bone defect portion 2, the shape may be slightly different from the shape of the bone defect portion 2, but the shape is different. Since the filling material 1 obtained by compressing the porous body does not expand and recover substantially uniformly by reheating inside the bone defect portion 2, there is a possibility that a partial stress strain or a partial gap may occur. On the other hand, when the porous body 10 has a three-dimensional shape that is substantially similar to the bone defect portion 2 as described above, the filling material 1 that compresses the porous body 10 expands and restores substantially uniformly within the bone defect portion 2. Then, it comes along the inner surface of the bone defect portion 2 and is preferable because it does not cause a partial stress distortion or a partial gap.

また、骨欠損部2の形状や、材料の多孔体100の気孔率及び連続気孔の孔径によっては、図1の(b)の多孔体10を作製しないで、材料の多孔体100をそのまま圧縮した充填材料1を用いても、大きい隙間を生じることなく骨欠損部2に充填できる場合がある。即ち、充填材料1が十分な膨張率と共に柔軟性を有する場合で、奥広がり形状の骨欠損部2において上端開口径と下端直径の差異がそれほど大きくない場合には、多孔体10を作製しなくても、多孔体100を圧縮した充填材料1を使用して骨欠損部2に充填することができる。この場合は、充填材料1が膨張して骨欠損部2の内面に沿って大きい隙間を生じることなく充填されたときに、結果的には充填材料1の下端(骨欠損部2の奥端側に対応する部分)と充填材料1の上端(骨欠損部2の上端開口側に対応する部分)とで復元の比率(膨張倍率)が異なるものとなるが、それでも、充填材料1上端での気孔率が40μm以上、好ましくは100μm以上であれば、骨芽細胞が侵入でき、最終的に骨組織との置換が行われる。尚、充填材料1の膨張、復元により、骨欠損部2の上端開口から突出した多孔体11の上端突出部分は、切削等により適宜除去するのがよい。   Further, depending on the shape of the bone defect part 2, the porosity of the porous body 100 of the material, and the pore diameter of the continuous pores, the porous body 100 of the material is compressed as it is without producing the porous body 10 of FIG. Even if the filling material 1 is used, the bone defect portion 2 may be filled without generating a large gap. That is, when the filling material 1 is flexible with a sufficient expansion rate, and the difference between the upper end opening diameter and the lower end diameter is not so large in the bone-shaped defect portion 2 having a deepened shape, the porous body 10 is not manufactured. However, the bone defect 2 can be filled using the filling material 1 obtained by compressing the porous body 100. In this case, when the filling material 1 expands and is filled without generating a large gap along the inner surface of the bone defect portion 2, as a result, the lower end of the filling material 1 (the back end side of the bone defect portion 2) is obtained. ) And the upper end of the filling material 1 (the portion corresponding to the upper end opening side of the bone defect portion 2) have different restoration ratios (expansion ratios), but still the pores at the upper end of the filling material 1 If the rate is 40 μm or more, preferably 100 μm or more, osteoblasts can invade and finally replacement with bone tissue is performed. In addition, it is good to remove suitably the upper end protrusion part of the porous body 11 which protruded from the upper end opening of the bone defect part 2 by cutting etc. by expansion | swelling of the filling material 1, and a decompression | restoration.

また、骨欠損部2の形状が、丸穴状、角穴状、或いは、この実施形態の奥広がりの丸穴状などの単純な形状である場合も、材料の多孔体100を造る時に、これらの骨欠損部2の形状に対応した円柱状、角柱状、或いは、下広がりの円柱状などに成形して、切削加工の工程を削除することができる。   In addition, when the shape of the bone defect portion 2 is a simple shape such as a round hole shape, a square hole shape, or a round hole shape spreading in the back of this embodiment, It is possible to delete the cutting process by forming a cylindrical shape corresponding to the shape of the bone defect portion 2, a prismatic shape, or a downwardly expanding cylindrical shape.

再加熱による充填材料1の膨張倍率は、切削加工した多孔体10を圧縮する度合いによって調整可能であり、上記のように多孔体10の気孔率が50〜90%に調節されているので、気孔率がかなり小さくなるまで大きく圧縮して形状を固定すれば、5倍もしくはそれ以上の高倍率で膨張させて復元することも可能である。しかし、大きく圧縮し過ぎると多孔体10が破壊され、復元が困難になるので、良好な復元性を付与するためには、圧縮の度合いを加減して充填材料1の体積が1.2〜3.5倍に膨張するように調整することが好ましい。この程度の膨張倍率となるように圧縮しても、多孔体100,10は、前述した脆くない非晶質または結晶と非晶の混在した生体内分解吸収性ポリマーからなるので、破壊されたり復元し難くなったりする心配はない。このように膨張倍率が1.2〜3.5倍となるように調整された充填材料1は、再加熱によりすみやかに膨張しながらほぼ元通りの形状の多孔体11に復元して骨欠損部2に大きい隙間を生じることなく充填され、骨欠損部2の内面に早期に結合して比較的短期間で骨組織と全置換される。   The expansion ratio of the filling material 1 due to reheating can be adjusted by the degree of compression of the cut porous body 10, and the porosity of the porous body 10 is adjusted to 50 to 90% as described above. If the shape is compressed and fixed until the rate becomes considerably small, it can be restored by being expanded at a high magnification of 5 times or more. However, if the body is compressed too much, the porous body 10 is destroyed and it becomes difficult to restore. Therefore, in order to give good restoration, the volume of the filling material 1 is adjusted to 1.2 to 3 by adjusting the degree of compression. It is preferable to adjust so that it expands 5 times. Even if the porous bodies 100 and 10 are compressed so as to have an expansion ratio of this level, the porous bodies 100 and 10 are made of the above-mentioned non-brittle amorphous or biodegradable absorbent polymer in which a crystal and an amorphous are mixed. There is no worry about it becoming difficult. Thus, the filling material 1 adjusted so that the expansion ratio becomes 1.2 to 3.5 times is restored to the porous body 11 having the original shape while rapidly expanding by reheating, so that the bone defect portion is restored. 2 is filled without generating a large gap, and is quickly joined to the inner surface of the bone defect 2 to be completely replaced with bone tissue in a relatively short period of time.

膨張倍率が3.5倍より大きくなるように多孔体10を大きく圧縮して形状を固定した充填材料1は、復元率(圧縮前の多孔体10の体積に対する復元後の多孔体11の体積の比率)が低下する場合が増えるので好ましくない。復元率が低下した場合には、復元後の多孔体11の気孔率や孔径が圧縮前の多孔体10の気孔率や孔径に比べてかなり小さくなるので、その分だけ体液や骨芽細胞が侵入し難くなり、多孔体の加水分解や骨組織との置換が遅くなる。また、充填材料1の膨張倍率が1.2倍より小さくなるように多孔体10を少しだけ圧縮してもよいが、その場合は、充填材料1を再加熱によって復元させても、復元した多孔体11が骨欠損部2の内面全体に沿い難くなって大きい隙間を生じることもある。   The filling material 1 in which the porous body 10 is greatly compressed and fixed in shape so that the expansion ratio is larger than 3.5 times has a restoration rate (the volume of the restored porous body 11 relative to the volume of the porous body 10 before compression). Since the number of cases where the ratio) decreases increases, it is not preferable. When the restoration rate is lowered, the porosity and pore diameter of the porous body 11 after restoration are considerably smaller than the porosity and pore diameter of the porous body 10 before compression, so that body fluid and osteoblasts invade accordingly. This makes it difficult to hydrolyze the porous body and replace bone tissue. In addition, the porous body 10 may be slightly compressed so that the expansion ratio of the filling material 1 is smaller than 1.2 times. In that case, even if the filling material 1 is restored by reheating, The body 11 may become difficult to follow along the entire inner surface of the bone defect portion 2 and a large gap may be generated.

多孔体10の圧縮は、圧縮させて得られる充填材料1を骨欠損部2に嵌め込むことができるように、多孔体10の形状を変化させるか又は相似形として、その体積を減少させるものであればよく、例えば、立体の三軸のいずれの方向の寸法も大きくすることなく少なくとも一つの軸方向の寸法を小さくして体積を減少させるようにしてもよいし、一つ又は二つの軸方向の寸法を小さくし残りの軸方向の寸法を大きくして体積を減少させるようにしてもよい。上記実施形態の充填材料1は、多孔体10の三軸のいずれの方向の寸法も大きくすることなく、水平面内の二つの軸方向の寸法を小さくし、垂直の軸方向の寸法を変えないで、多孔体10の形状を円柱状に変化させて体積を減少させたものである。   The compression of the porous body 10 is to change the shape of the porous body 10 or reduce the volume thereof so that the filling material 1 obtained by the compression can be fitted into the bone defect 2. For example, at least one axial dimension may be reduced without increasing the dimension in any of the three directions of the three-dimensional, and the volume may be reduced, or one or two axial directions may be used. The volume may be reduced by reducing the size of the remaining and increasing the size in the remaining axial direction. The filling material 1 of the above embodiment does not increase the dimensions in any of the three axes of the porous body 10, reduces the dimensions in the two axial directions in the horizontal plane, and does not change the dimensions in the vertical axis direction. The volume is reduced by changing the shape of the porous body 10 to a cylindrical shape.

多孔体10を圧縮する際の加熱手段としては温水や温風を採用することが好ましく、加熱温度は生体内分解吸収性ポリマーのガラス転移点より少し高い温度に設定するのがよい。前記の生体内分解吸収性ポリマーのガラス転移点は55℃付近であるから、具体的には加熱温度を55〜70℃程度に設定することが好ましい。   As the heating means for compressing the porous body 10, it is preferable to employ hot water or hot air, and the heating temperature is preferably set to a temperature slightly higher than the glass transition point of the biodegradable absorbent polymer. Since the glass transition point of the biodegradable absorbable polymer is around 55 ° C., specifically, the heating temperature is preferably set to about 55 to 70 ° C.

上記のように加熱下に圧縮された多孔体は、その形状を保持したまま室内温度もしくはそれ以下の温度まで放冷もしくは急冷されて形状が固定され、目的とする充填材料1が得られる。   The porous body compressed under heating as described above is cooled or rapidly cooled to a room temperature or a temperature lower than that while maintaining the shape, and the shape is fixed, and the target filling material 1 is obtained.

このような充填材料1は、人体や愛玩動物の骨欠損部、例えば癌などの異変部が除去された骨欠損部に嵌め込まれ、既述したように再加熱により膨張しながら元の多孔体10に近い形状の多孔体11に復元して、大きい隙間を生じることなく骨欠損部に詰め込まれる。そして、早期に骨欠損部の内面と結合し、最終的には骨組織と置換して、骨欠損部に骨組織が再生される。   Such a filling material 1 is fitted into a bone defect part of a human body or a companion animal, for example, a bone defect part from which an abnormal part such as cancer has been removed, and as described above, the original porous body 10 is expanded while being expanded by reheating. It is restored to the porous body 11 having a shape close to, and packed into the bone defect portion without causing a large gap. And it couple | bonds with the inner surface of a bone defect part at an early stage, and finally replaces with a bone tissue, and a bone tissue is reproduced | regenerated in a bone defect part.

図2は本発明に係る変形タイプの充填材料の製法例と使用例の説明図である。   FIG. 2 is an explanatory view of a manufacturing method example and a usage example of a deformation type filling material according to the present invention.

図2の(b)に例示する変形タイプの充填材料1Aは、(a)に示すシート状(帯状)の多孔体100A、即ち、生体活性なバイオセラミックス粉粒を分散させた生体内分解吸収性ポリマーからなる多孔体であって、その内部に連続気孔を有し、表面と気孔内面にバイオセラミックス粉粒の一部が露出しているシート状の多孔体100Aを、生体内分解吸収性ポリマーのガラス転移点よりも少し高い温度に加熱して、(b)に示すように渦巻き状に曲げ加工し、(c)に示す骨欠損部2Aの小さい開口部21Aより小径の渦巻き円柱(筒)形状に変形させると共に、冷却により該多孔体の形状を固定したものである。この渦巻き円柱(筒)形状の充填材料1Aの高さ寸法は、骨欠損部2Aの深さ寸法と実質的に同一寸法とされている。尚、多孔体100Aそれ自体は、前述した多孔体100と同じものであるので、説明を省略する。   A deformable filling material 1A illustrated in FIG. 2B is a biodegradable absorbable material in which a sheet-like (band-like) porous body 100A shown in FIG. 2A, that is, bioactive bioceramic powder particles are dispersed. A sheet-like porous body 100A which is a porous body made of a polymer and has continuous pores therein, and a part of the bioceramic powder particles are exposed on the surface and the inner surface of the pores, is made of biodegradable absorbent polymer. It is heated to a temperature slightly higher than the glass transition point, bent into a spiral shape as shown in (b), and a spiral cylinder (cylinder) shape having a smaller diameter than the small opening 21A of the bone defect portion 2A shown in (c). And the shape of the porous body is fixed by cooling. The height dimension of the spiral cylindrical (cylindrical) filling material 1A is substantially the same as the depth dimension of the bone defect portion 2A. Since the porous body 100A itself is the same as the porous body 100 described above, description thereof is omitted.

上記の渦巻き円柱(筒)形状の充填材料1Aは、以下の要領で、骨欠損部2Aに隙間なく充填される。即ち、図2の(c)に示すように、骨欠損部2Aの小さな開口部21aから渦巻き円柱(筒)形状の充填材料1を骨欠損部2aに挿入し、温水Wを注ぐことによって充填材料1を生体内分解吸収性ポリマーのガラス転移点よりも少し高い温度に再加熱し、シート状に復元しようとする復元力を利用して渦巻き円柱(筒)形状の充填材料1Aを拡径させながら、(d)に示すように骨欠損部2Aの内周面に沿わせて一重ないし多重に充填する。次いで、図2の(e)に示すように二つ目の渦巻き円柱(筒)形状の充填材料1Aを開口部21Aから挿入して同様に温水Wで再加熱し、復元力を利用して二つ目の充填材料1Aを拡径させながら、最初の充填材料1の内側に一重ないし多重に充填する。そして、この作業を何回か繰り返すことによって、図2の(f)に示すように骨欠損部2Aに中空部が残らないように複数の充填材料1を充填し、最後に、開口部21Aに合致する形状の多孔体12(前記と同様の多孔体)を開口部21Aに詰める。このようにすると、開口部21Aの直径が小さく内部の直径が遥かに大きい骨欠損部2Aに、大きい隙間が生じないように充填材料1Aを確実に充填して骨組織を再生することができる。   The spiral cylindrical (cylindrical) filling material 1A is filled in the bone defect portion 2A without any gap in the following manner. That is, as shown in FIG. 2 (c), a filling material 1 having a spiral cylindrical (cylinder) shape is inserted into the bone defect portion 2a through a small opening 21a of the bone defect portion 2A, and hot water W is poured into the filling material. 1 is reheated to a temperature slightly higher than the glass transition point of the biodegradable absorbent polymer, and the diameter of the filling material 1A in the shape of a spiral cylinder (cylinder) is expanded using the restoring force to restore the sheet shape. As shown in (d), they are filled in a single or multiple manner along the inner peripheral surface of the bone defect portion 2A. Next, as shown in FIG. 2 (e), a second spiral cylindrical (cylinder) -shaped filling material 1A is inserted from the opening 21A and reheated with hot water W in the same manner. While expanding the diameter of the first filling material 1A, the inside of the first filling material 1 is filled in a single or multiple manner. Then, by repeating this work several times, as shown in FIG. 2 (f), a plurality of filling materials 1 are filled so that no hollow portion remains in the bone defect 2A, and finally, the opening 21A is filled. A matching porous body 12 (same porous body as described above) is packed in the opening 21A. In this way, it is possible to regenerate the bone tissue by reliably filling the filling material 1A so that a large gap does not occur in the bone defect 2A in which the diameter of the opening 21A is small and the inner diameter is much larger.

尚、上記の多孔体12を用いないで、骨欠損部2Aの中心部に挿入する最後の渦巻き円柱(筒)形状の充填材料1Aの高さ寸法を開口部21Aの分だけ大きくし、この充填材料1Aで開口部21aを閉塞するようにしてもよい。   In addition, without using the porous body 12 described above, the height of the last spiral cylinder (cylinder) -shaped filling material 1A inserted into the central portion of the bone defect 2A is increased by the opening 21A. The opening 21a may be closed with the material 1A.

本発明の変形タイプの充填材料は、多孔体の体積を実質的に変化させないで加熱下に多孔体の形状を変化させ、冷却により該多孔体の形状を固定したものであって、その代表例は上記の充填材料1Aのように多孔体を曲げ加工したものであるが、その他にも、多孔体の体積を変化させないで、多孔体の三軸のうちの一つ又は二つの軸方向の寸法を大きくし残りの軸方向の寸法を小さくして形状を変化させたもの(例えば延展したもの、細長化したもの)や、多孔体の三軸のうち一つの軸方向の寸法を変えることなく、残りの一つの軸方向の寸法を大きくし残りの他の一つの軸方向の寸法を小さくして形状を変化させたもの(例えば、厚みを一定に保って細長化したもの)が含まれる。   The deformation type filling material of the present invention is a material in which the shape of the porous body is changed by heating without substantially changing the volume of the porous body, and the shape of the porous body is fixed by cooling. Is obtained by bending a porous body like the above-mentioned filling material 1A, but in addition, without changing the volume of the porous body, one or two axial dimensions of the three axes of the porous body. Without changing the size of one of the three axes of the porous body, such as those that have been increased and the remaining axial dimensions are reduced to change the shape (for example, extended, elongated) This includes one in which the remaining dimension in the axial direction is increased and the other dimension in the other axial direction is decreased to change the shape (for example, the thickness is kept constant and the length is reduced).

本発明の一実施形態に係る充填材料の製法例と使用例の説明図である。It is explanatory drawing of the example of a manufacturing method and usage example of the filling material which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る充填材料の製法例と使用例の説明図である。It is explanatory drawing of the example of a manufacturing method and usage example of the filling material which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1,1A 充填材料
2,2A 骨欠損部
10 切削加工した多孔体
11 復元した多孔体
100,100A 原料の多孔体
W 温水
DESCRIPTION OF SYMBOLS 1,1A Filling material 2,2A Bone defect | deletion part 10 The cut porous body 11 The restored porous body 100,100A The raw material porous body W Warm water

Claims (6)

生体活性なバイオセラミックス粉粒を分散させた生体内分解吸収性ポリマーの多孔体で、その内部に連続気孔を有し、その表面と気孔内面にバイオセラミックス粉粒の一部が露出している該多孔体を、加熱下に圧縮もしくは変形して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により該多孔体の形状が復元することを特徴とする骨欠損部への充填材料。   It is a porous body of biodegradable absorbent polymer in which bioactive bioceramics particles are dispersed, and has continuous pores inside, and part of the bioceramics particles are exposed on the surface and the inner surface of the pores. To a bone defect where a porous body is compressed or deformed under heating and the shape of the porous body is fixed by cooling, and the shape of the porous body is restored by reheating. Filling material. 多孔体を加熱下に圧縮して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により体積が1.2〜3.5倍に膨張して形状が復元する請求項1に記載の骨欠損部への充填材料。   A filling material obtained by compressing a porous body under heating and fixing the shape of the porous body by cooling, wherein the volume expands by 1.2 to 3.5 times by reheating to restore the shape. The filling material for the bone defect part according to 1. 多孔体を加熱下に変形して冷却により該多孔体の形状を固定してなる充填材料であって、再加熱により体積が変化することなく形状が復元する請求項1に記載の骨欠損部への充填材料。   The bone defect according to claim 1, wherein the porous material is a filling material obtained by deforming the porous body under heating and fixing the shape of the porous body by cooling, and the shape is restored by reheating without changing the volume. Filling material. 多孔体の気孔率が50〜90%であって、連続気孔が気孔全体の50〜100%を占め、連続気孔の孔径が40〜600μmである請求項1ないし請求項3のいずれかに記載の骨欠損部への充填材料。   The porosity of the porous body is 50 to 90%, the continuous pores occupy 50 to 100% of the entire pores, and the pore diameter of the continuous pores is 40 to 600 µm. Filling material for bone defect. 多孔体のバイオセラミックス粉粒の含有率が50〜90質量%である請求項1ないし請求項4のいずれかに記載の骨欠損部への充填材料。   The material for filling a bone defect according to any one of claims 1 to 4, wherein the content of the bioceramic powder particles of the porous body is 50 to 90 mass%. 多孔体の生体内分解吸収性ポリマーがポリ−D,L−乳酸、L−乳酸とD,L−乳酸の共重合体、乳酸とグリコール酸の共重合体、乳酸とp−ジオキサノンの共重合体、乳酸とエチレングリコールの共重合体、乳酸とカプロラクトンの共重合体のいずれか単独、又は、2種以上の混合物である請求項1ないし請求項5のいずれかに記載の骨欠損部への充填材料。   Porous biodegradable polymer is poly-D, L-lactic acid, L-lactic acid and D, L-lactic acid copolymer, lactic acid and glycolic acid copolymer, lactic acid and p-dioxanone copolymer The filling into a bone defect part according to any one of claims 1 to 5, which is any one of a copolymer of lactic acid and ethylene glycol, a copolymer of lactic acid and caprolactone, or a mixture of two or more thereof. material.
JP2008017359A 2007-11-16 2008-01-29 Filling material for bone defect part Pending JP2009136652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017359A JP2009136652A (en) 2007-11-16 2008-01-29 Filling material for bone defect part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007298101 2007-11-16
JP2008017359A JP2009136652A (en) 2007-11-16 2008-01-29 Filling material for bone defect part

Publications (1)

Publication Number Publication Date
JP2009136652A true JP2009136652A (en) 2009-06-25

Family

ID=40867915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017359A Pending JP2009136652A (en) 2007-11-16 2008-01-29 Filling material for bone defect part

Country Status (1)

Country Link
JP (1) JP2009136652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063872A (en) * 2008-08-12 2010-03-25 Ngk Spark Plug Co Ltd Bioabsorbable implant and method for manufacturing the same
JP2010178958A (en) * 2009-02-06 2010-08-19 Ngk Spark Plug Co Ltd Bio-absorbable implant and method of manufacturing the same
JP2012192105A (en) * 2011-03-17 2012-10-11 Sunstar Inc Cell scaffold material
CN110198746A (en) * 2016-09-19 2019-09-03 坦佩林大学注册基金会 It is composite porous

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309313A (en) * 1997-05-13 1998-11-24 Takiron Co Ltd Shape memory in-vivo decomposition absorptive material
JP2003159321A (en) * 2001-11-27 2003-06-03 Takiron Co Ltd Organic-inorganic compound porous body and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309313A (en) * 1997-05-13 1998-11-24 Takiron Co Ltd Shape memory in-vivo decomposition absorptive material
JP2003159321A (en) * 2001-11-27 2003-06-03 Takiron Co Ltd Organic-inorganic compound porous body and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063872A (en) * 2008-08-12 2010-03-25 Ngk Spark Plug Co Ltd Bioabsorbable implant and method for manufacturing the same
JP2010178958A (en) * 2009-02-06 2010-08-19 Ngk Spark Plug Co Ltd Bio-absorbable implant and method of manufacturing the same
JP2012192105A (en) * 2011-03-17 2012-10-11 Sunstar Inc Cell scaffold material
CN110198746A (en) * 2016-09-19 2019-09-03 坦佩林大学注册基金会 It is composite porous
US11524094B2 (en) * 2016-09-19 2022-12-13 Biomendex Oy Porous composite material

Similar Documents

Publication Publication Date Title
US8119152B2 (en) Implant material and process for producing the same
US20050043585A1 (en) Reticulated elastomeric matrices, their manufacture and use in implantable devices
JPWO2007032390A1 (en) Composite porous body
JP2007521843A (en) Reticulated elastomeric matrix, its manufacture and use in implantable devices
US20100197823A1 (en) Polymeric Resorbable Composites Containing an Amorphous Calcium Phosphate Polymer Ceramic for Bone Repair and Replacement
JP2004531292A (en) Biomedically applied compositions and methods
WO2008106625A2 (en) Porous composite biomaterials and related methods
JP7483782B2 (en) Bone graft substitutes
JP2009136652A (en) Filling material for bone defect part
JP4184652B2 (en) Organic-inorganic composite porous body and method for producing the same
Chen Foaming technology of tissue engineering scaffolds-a review
WO2010116511A1 (en) Self-establishing implant material with reliable affixability
JP5422266B2 (en) Bioabsorbable implant and method for producing the same
JP2009226079A (en) Free standing implant material with fixing reliability
CN110198746B (en) Porous composite material
JP5268140B2 (en) Implant material with reliable fixation to bone defect
DE102004035182B4 (en) Implant material, a process for its preparation and its use
TWI252112B (en) Implant material and process for producing the same
JP2011212105A (en) Granular bone prosthetic material and method of manufacturing the same
JP2010046365A (en) Bioabsorbable implant material and its manufacturing method
JP3698998B2 (en) Long fiber layered body and production method thereof
JP2010178957A (en) Bio-absorbable implant and method of manufacturing the same
AU2007229341A1 (en) Implant material and process for producing the same
JP2010178956A (en) Bio-absorbable implant and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423