Nothing Special   »   [go: up one dir, main page]

JP2009129917A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2009129917A
JP2009129917A JP2007299563A JP2007299563A JP2009129917A JP 2009129917 A JP2009129917 A JP 2009129917A JP 2007299563 A JP2007299563 A JP 2007299563A JP 2007299563 A JP2007299563 A JP 2007299563A JP 2009129917 A JP2009129917 A JP 2009129917A
Authority
JP
Japan
Prior art keywords
positive electrode
outer peripheral
negative electrode
peripheral edge
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007299563A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
靖生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007299563A priority Critical patent/JP2009129917A/en
Publication of JP2009129917A publication Critical patent/JP2009129917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage device using an electrolyte containing lithium salt, which can prevent lithium metal precipitation in each of negative electrodes, thereby unfailingly preventing short-circuit between each of positive electrodes and each of the negative electrodes from being caused by lithium metal precipitation. <P>SOLUTION: The power storage device has a configuration in which the planar positive electrode plates 10 each having an positive electrode 14 formed on the surface of a current corrector 13 and planar negative electrode plates 12 each having a negative electrode 16 made of a substance capable of absorbing and discharging lithium ions on the surface of a current corrector 15 are stacked via a separator 11 and an electrolyte containing lithium salt is filled therebetween, wherein the negative electrode 16 is doped with lithium in advance and formed to have an outer dimension larger than that of the positive electrode 14, and the plurality of positive electrodes 14 are disposed so that some of the outer peripheral edges are not coincident with the outer peripheral edges of the positive electrodes 14 of an adjacent layer in a stacking direction and the outer peripheral edges are positioned inside the outer peripheral edges of the negative electrodes 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セパレータを介して対向配置された複数層の正極板と負極板との間に、リチウム塩を含む電解液が注液されたリチウムイオンキャパシタやリチウムイオン二次電池等の蓄電デバイスに関するものである。   The present invention relates to an electricity storage device such as a lithium ion capacitor or a lithium ion secondary battery in which an electrolyte containing a lithium salt is injected between a plurality of positive and negative electrode plates arranged opposite to each other with a separator interposed therebetween. Is.

近年、リチウム塩を含む電解液を用いた蓄電デバイスの一種であるリチウムイオンキャパシタは、従来のバッテリと比較して小型・軽量であるにも拘わらず、エネルギー容量が極めて大きく、しかも急速な充放電が可能であることから、風力発電の負荷平準化装置、電圧の瞬低対策装置、ハイブリッド電気自動車や燃料電池車等におけるバックアップ用電源装置等の広い分野において使用されつつある。   In recent years, lithium-ion capacitors, a type of electricity storage device that uses an electrolyte containing lithium salt, have extremely large energy capacity and rapid charge / discharge despite being smaller and lighter than conventional batteries. Therefore, it is being used in a wide range of fields such as a load leveling device for wind power generation, a voltage sag countermeasure device, a backup power supply device in a hybrid electric vehicle, a fuel cell vehicle, and the like.

一方、この種のリチウムイオンキャパシタにおいては、例えば下記特許文献1に見られるように、予め負極にリチウムをドープさせておくことにより、従来の単に電気二重層機能を利用して蓄電するリチウムイオンキャパシタを、より高電圧化させるとともに、エネルギー密度を高めて、一層の小型・軽量化を可能としたものが提案されている。
特許第3485935号公報
On the other hand, in this type of lithium ion capacitor, for example, as can be seen in Patent Document 1 below, a lithium ion capacitor that stores electricity using a conventional electric double layer function by previously doping lithium into the negative electrode In addition to increasing the voltage, the energy density has been increased to enable further reduction in size and weight.
Japanese Patent No. 3485935

ところで、このようなリチウムイオンキャパシタは、一般に、集電体の両面に正極を形成した複数の平板状の正極板と、集電体の両面にリチウムイオンの吸蔵および放出が可能な物質からなる負極を形成した複数の平板状の負極板とを、セパレータを間に介して交互に積層し、得られた積層体の両端部間に圧縮方向の荷重を付与して一体化するとともに、これらの間にリチウム塩を含む電解液を注液することにより構成されている。   By the way, such a lithium ion capacitor generally includes a plurality of plate-like positive electrode plates in which positive electrodes are formed on both sides of a current collector, and a negative electrode made of a material capable of inserting and extracting lithium ions on both sides of the current collector. A plurality of flat plate-like negative electrode plates formed with a separator are alternately laminated with a separator interposed therebetween, and a load in the compression direction is applied between both end portions of the obtained laminated body to integrate them. And an electrolyte containing a lithium salt is injected.

この際に、上記正極と負極とを同寸法形状に形成すると、当該正極の外周縁と負極の外周縁とによってセパレータが挟まれた状態になるために、集電板の加工時に発生する外周縁部のバリや歪みに起因して、セパレータ側に凸状となる外周縁に上記圧縮力による応力が集中し、この結果当該外周縁がセパレータを突き抜けて他方に接触することにより、両者間の短絡が発生するおそれがある。そして、このような弊害は、組立精度が高まって正極および負極の外周縁が積層方向に正確に一致する程、また装置の小型化に伴ってセパレータの厚さが薄くなる程、発生する可能性が高くなる。   At this time, if the positive electrode and the negative electrode are formed to have the same size and shape, the separator is sandwiched between the outer peripheral edge of the positive electrode and the outer peripheral edge of the negative electrode. Due to the burr and distortion of the part, stress due to the compressive force concentrates on the outer peripheral edge that is convex on the separator side, and as a result, the outer peripheral edge penetrates the separator and contacts the other, thereby causing a short circuit between them. May occur. Such an adverse effect may occur as the assembly accuracy increases and the outer peripheral edges of the positive electrode and the negative electrode exactly coincide with the stacking direction, or as the separator becomes thinner as the device is downsized. Becomes higher.

このため、上記セパレータに直接当接する正極および負極の一方の外形寸法を、他方よりも小さくすることにより、上記応力集中を緩和する対策が考えられるが、例えば図6に示すように、集電体1の両面に正極2を形成した方形板状の正極板3と、集電体4の両面に負極5を形成した方形板状の負極板6とを、セパレータ7を間に介して積層するに際して、負極5の外形寸法を正極2の外形寸法よりも小さくすると、図中点線で示すように、負極5の外周縁に電流が過度に集中し、この結果、特に負極5に予めリチウムをドープしたものにあっては、容易にリチウム金属が析出してしまうという問題点が生じる。   For this reason, a measure to alleviate the stress concentration can be considered by making one of the positive and negative electrodes in direct contact with the separator smaller in size than the other. For example, as shown in FIG. When laminating a rectangular plate-like positive electrode plate 3 in which a positive electrode 2 is formed on both sides of 1 and a square plate-like negative electrode plate 6 in which a negative electrode 5 is formed on both sides of a current collector 4 with a separator 7 interposed therebetween When the external dimensions of the negative electrode 5 are made smaller than the external dimensions of the positive electrode 2, current is excessively concentrated on the outer periphery of the negative electrode 5, as shown by a dotted line in the figure. As a result, the negative electrode 5 is doped with lithium in advance. In such a case, there arises a problem that lithium metal easily deposits.

そこで、図7に示すように、負極5の外形寸法を正極2の外形寸法よりも大きくすれば、上述した負極5の外周縁における過度の電流集中の発生を防止することができる。   Therefore, as shown in FIG. 7, if the outer dimensions of the negative electrode 5 are made larger than the outer dimensions of the positive electrode 2, it is possible to prevent the occurrence of excessive current concentration at the outer peripheral edge of the negative electrode 5 described above.

ところが、上記構成においては、図8に示すように、多数の正極板3および負極板6を積層した場合に、全ての正極2の外周縁が、積層方向に同じ位置Pとなる。このため、正極2の外周縁に上記圧縮方向の荷重による応力集中が生じ、この結果、負極板6の厚さが薄いと、正極2の外周縁と対向する部分に凹状の撓みが生じて電流集中が起き、当該箇所に同様にリチウム金属が析出してしまうという問題点を生じる。   However, in the above configuration, as shown in FIG. 8, when a large number of positive plates 3 and negative plates 6 are stacked, the outer peripheral edges of all the positive electrodes 2 are at the same position P in the stacking direction. For this reason, stress concentration due to the load in the compression direction occurs on the outer peripheral edge of the positive electrode 2, and as a result, when the thickness of the negative electrode plate 6 is thin, a concave bend occurs in the portion facing the outer peripheral edge of the positive electrode 2. Concentration occurs, causing a problem that lithium metal is deposited in the same manner.

本発明は、かかる事情に鑑みてなされたもので、負極におけるリチウム金属の析出を防止することができ、よって上記リチウム金属の析出に起因する正極板および負極板間の短絡を確実に防いで、構成部材のより一層の薄肉化を可能とするリチウム塩を含む電解液を用いた蓄電デバイスを提供することを課題とするものである。   The present invention was made in view of such circumstances, can prevent the deposition of lithium metal in the negative electrode, thus reliably preventing a short circuit between the positive electrode plate and the negative electrode plate due to the lithium metal deposition, It is an object of the present invention to provide an electricity storage device using an electrolytic solution containing a lithium salt that enables further thinning of the constituent members.

上記課題を解決するために、請求項1に記載の発明は、集電体の表面に正極が形成された平板状の正極板と、集電体の表面にリチウムイオンの吸蔵および放出が可能な物質からなる負極が形成された平板状の負極板とが、セパレータを間に介して複数積層されるとともに、これらの間にリチウム塩を含む電解液が注液されてなる蓄電デバイスにおいて、上記負極は、予めリチウムがドープされ、かつ外形寸法が上記正極よりも大きく形成されるとともに、上記積層された複数の上記正極板の正極は、その外周縁の少なくとも一部が、隣接する層の上記正極の外周縁と積層方向に一致せず、かつ上記外周縁が上記負極の外周縁の内側に位置するように配置されていることを特徴とするものである。   In order to solve the above-mentioned problems, the invention according to claim 1 is capable of inserting and extracting lithium ions on the surface of the current collector and a plate-like positive electrode plate having a positive electrode formed on the surface of the current collector. In a power storage device in which a plurality of flat plate-like negative electrode plates each having a negative electrode made of a material are stacked with a separator interposed therebetween, and an electrolyte containing a lithium salt is injected therebetween, the negative electrode Is pre-doped with lithium and has an outer dimension larger than that of the positive electrode, and the positive electrodes of the plurality of stacked positive plates are such that at least a part of the outer periphery of the positive electrode of the adjacent layer The outer peripheral edge of the negative electrode is not aligned with the stacking direction, and the outer peripheral edge is located inside the outer peripheral edge of the negative electrode.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記正極の外周縁が、全周にわたって隣接する層の上記正極の外周縁と上記積層方向に一致しないように配置されていることを特徴とするものである。   The invention described in claim 2 is arranged such that in the invention described in claim 1, the outer peripheral edge of the positive electrode does not coincide with the outer peripheral edge of the positive electrode of the layer adjacent to the entire circumference in the stacking direction. It is characterized by that.

ここで、正極の外周縁が全周にわたって隣接する層の正極の外周縁と一致しないとは、両者の外周縁が積層方向において同一線上に一致しないことを意味するものであり、両者の外周縁が積層方向において交差する点は、上記一致に含まれない。   Here, the fact that the outer peripheral edge of the positive electrode does not coincide with the outer peripheral edge of the positive electrode of the layer adjacent to the entire circumference means that the outer peripheral edges of the two do not coincide on the same line in the stacking direction. Are not included in the coincidence.

さらに、請求項3に記載の発明は、請求項1または2に記載の発明において、上記複数の正極板が、互いに同形状に形成されるとともに、上記複数の負極板が、互いに同形状に形成されていることを特徴とするものである。   Furthermore, the invention described in claim 3 is the invention described in claim 1 or 2, wherein the plurality of positive plates are formed in the same shape, and the plurality of negative plates are formed in the same shape. It is characterized by being.

また、請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、上記蓄電デバイスが、リチウムイオンキャパシタであることを特徴とするものである。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the power storage device is a lithium ion capacitor.

請求項1〜4のいずかに記載の発明においては、負極の外形寸法を正極の外形寸法よりも大きく形成するとともに、正極の外周縁が負極の外周縁の内側に位置するように配置しているために、負極の外周縁に電流が過度に集中して当該部分にリチウム金属が析出することを防ぐことができる。   In the invention according to any one of claims 1 to 4, the outer dimension of the negative electrode is formed larger than the outer dimension of the positive electrode, and the outer peripheral edge of the positive electrode is disposed inside the outer peripheral edge of the negative electrode. Therefore, it is possible to prevent current from being excessively concentrated on the outer peripheral edge of the negative electrode and depositing lithium metal on the portion.

加えて、複数の正極板を積層するに際して、各々の正極板における正極の外周縁の少なくとも一部を、これと隣接する層の正極の外周縁と積層方向に一致しないように配置しているために、全ての正極の外周縁が積層方向に同じ位置になることがなく、よって積層方向に作用する圧縮荷重によって正極の外周縁に応力集中を生じることがない。   In addition, when laminating a plurality of positive electrode plates, at least a part of the outer peripheral edge of the positive electrode in each positive electrode plate is arranged so as not to coincide with the outer peripheral edge of the positive electrode of the layer adjacent thereto. In addition, the outer peripheral edge of all the positive electrodes does not become the same position in the stacking direction, and therefore, stress concentration does not occur on the outer peripheral edge of the positive electrode due to the compressive load acting in the stacking direction.

このため、上記正極板の外周縁の近傍に対向する負極板に、上記応力集中による局部的な凹状の撓みが生じることがなく、よって当該撓みに起因する電流集中によって当該箇所の負極表面にリチウム金属が析出することも防止することができる。この結果、負極におけるリチウム金属の析出を防止することができ、よって上記リチウム金属の析出に起因する正極板および負極板間の短絡を確実に防ぐことができるために、正極板、負極板およびセパレータといった構成部材のより一層の薄肉化を図ることもできる。   For this reason, local concave bending due to the stress concentration does not occur in the negative electrode plate facing the vicinity of the outer peripheral edge of the positive electrode plate. Precipitation of metal can also be prevented. As a result, precipitation of lithium metal in the negative electrode can be prevented, and therefore, a short circuit between the positive electrode plate and the negative electrode plate due to the lithium metal precipitation can be reliably prevented. Such a structural member can be made thinner.

ここで、上記圧縮荷重による正極の外周縁への応力集中を確実に回避するためには、請求項2に記載の発明のように、正極を、その外周縁が全周にわたって隣接する層の正極の外周縁と積層方向に一致しないように配置することが好ましい。   Here, in order to reliably avoid stress concentration on the outer peripheral edge of the positive electrode due to the compressive load, the positive electrode of the layer whose outer peripheral edge is adjacent to the entire periphery as in the invention of claim 2 is used. It is preferable to arrange so as not to coincide with the outer peripheral edge of the film in the stacking direction.

また、請求項1または2に記載の発明においては、積層方向の上下に位置する複数の正極板における正極の外形寸法を、互いに違えることにより対応することも可能であるが、請求項3に記載の発明のように、複数の上記正極板を互いに同形状に形成し、かつ複数の上記負極板を互いに同形状に形成すれば、負極板間に配置される正極板を、積層方向に隣接する層の正極板に対して、上記積層方向と直交する方向に幾分ずらして配置することにより、容易に対応することができる。加えて、装置全体として一種類の形状の正極板および負極板を準備すればよいために、製造コストの増加を招くことが無く、かつ安定した蓄電性能を担保することもできる。   Further, in the invention described in claim 1 or 2, it is possible to cope by changing the external dimensions of the positive electrodes in the plurality of positive electrodes located above and below in the stacking direction. If the plurality of positive plates are formed in the same shape and the plurality of negative plates are formed in the same shape as in the invention, the positive plates arranged between the negative plates are adjacent to each other in the stacking direction. It is possible to easily cope with the problem by arranging the layer positive electrode plate somewhat shifted in the direction perpendicular to the stacking direction. In addition, since it is only necessary to prepare a positive electrode plate and a negative electrode plate having a single shape as the entire apparatus, the manufacturing cost is not increased, and stable power storage performance can be ensured.

したがって、請求項1〜3に記載の発明は、特に請求項4に記載の発明のように、より一層の高電圧および高エネルギー密度が要請されるリチウムイオンキャパシタに適用した場合に、顕著な効果を奏する。   Therefore, the invention described in claims 1 to 3 is particularly effective when applied to a lithium ion capacitor that is required to have a higher voltage and a higher energy density, as in the invention described in claim 4. Play.

図1〜図5は、本発明に係る蓄電デバイスをリチウムイオンキャパシタに適用した実施形態を示すものである。
このリチウムイオンキャパシタは、正極板10、セパレータ11および負極板12によって1組の蓄電ユニットが形成され、複数の上記蓄電ユニットが積層されるとともに、これら正極板10、セパレータ11および負極板12間に、リチウム塩を含む電解液が注液されることにより概略構成されたものである。
1 to 5 show an embodiment in which an electricity storage device according to the present invention is applied to a lithium ion capacitor.
The lithium ion capacitor includes a positive electrode plate 10, a separator 11, and a negative electrode plate 12 that form a set of power storage units, and a plurality of the above power storage units are stacked, and between the positive electrode plate 10, the separator 11, and the negative electrode plate 12. The electrolyte is roughly configured by injecting an electrolyte containing a lithium salt.

ここで、正極板10は、ニッケル箔やアルミニウム箔等の耐酸化性を有して化学的に溶出しない金属箔からなる集電体13の両面に、それぞれ炭素材料からなる正極14が形成されたものであり、集電体13の1辺には接続用舌部13aが一体に形成されている。   Here, in the positive electrode plate 10, positive electrodes 14 made of a carbon material were formed on both surfaces of a current collector 13 made of a metal foil having oxidation resistance and not chemically eluting, such as nickel foil or aluminum foil. A connecting tongue 13 a is integrally formed on one side of the current collector 13.

より具体的に説明すると、この正極板10は、25μm〜35μmの厚さ寸法の上記集電体13の両面に、活性炭YP−17(クラレケミカル株式会社製)、アセチレンブラックHS−100(電気化学工業株式会社製)、PTFE(ポリテトラフルオロエチレン)の水性デイスバージョン(三井デュポンフルオロケミカル30J)およびCMC(第1製薬株式会社セロゲン4H)の2重量%水溶液を、重量比で88:8:2:2となるように混合し、蒸留水を加えてペースト状に混練することによって正極合剤スラリーを作製し、得られた当該正極合剤スラリーを圧延して、70μm〜90μmの厚さ寸法の正極14を形成した後に、金型を用いて図1に示す形状に打ち抜くことによって作成されたものである。なお、上記PTFEの水性デイスバージョン(三井デュポンフルオロケミカル30J)およびCMC(第1製薬株式会社セロゲン4H)の比率は、固形分の割合である。これにより、この正極板10およびその表面の正極14は、(50mm〜150mm)×(50mm〜150mm)の方形(図では正方形)に形成されている。   More specifically, this positive electrode plate 10 has activated carbon YP-17 (manufactured by Kuraray Chemical Co., Ltd.), acetylene black HS-100 (electrochemical) on both surfaces of the current collector 13 having a thickness of 25 μm to 35 μm. Manufactured by Kogyo Co., Ltd.), an aqueous dice version of PTFE (polytetrafluoroethylene) (Mitsui DuPont Fluorochemical 30J), and a 2 wt% aqueous solution of CMC (Serogen 4H, 1st Pharmaceutical Co., Ltd.) in a weight ratio of 88: 8: 2. : Mixing so as to be 2, and adding distilled water to knead into a paste to prepare a positive electrode mixture slurry, rolling the obtained positive electrode mixture slurry, the thickness of 70μm ~ 90μm After forming the positive electrode 14, it was created by punching into the shape shown in FIG. 1 using a mold. The ratio of the aqueous PTFE (Mitsui DuPont Fluorochemical 30J) and CMC (Serogen 4H, Daiichi Pharmaceutical Co., Ltd.) is a solid content ratio. Thereby, this positive electrode plate 10 and the positive electrode 14 on the surface thereof are formed in a square shape (square in the drawing) of (50 mm to 150 mm) × (50 mm to 150 mm).

また、負極板12は、負極材料である難黒鉛化性炭素材料(呉羽化学株式会社製のPIC)とポリフッ化ビニリデン樹脂(呉羽化学株式会社製のKF#1100)を重量比で95:5に混合し、溶剤としてのN−メチル−2−ピロリジノンを加えてペースト状に混練した後、厚さ14μmの銅箔の両面に塗布し、乾燥および圧延操作を行って負極16を形成し、金型を用いて図1に示す形状に打ち抜くことによって作成されたものであり、集電体15の1辺には接続用舌部15aが一体に形成されている。   Further, the negative electrode plate 12 is made of a non-graphitizable carbon material (PIC manufactured by Kureha Chemical Co., Ltd.), which is a negative electrode material, and polyvinylidene fluoride resin (KF # 1100 manufactured by Kureha Chemical Co., Ltd.) at a weight ratio of 95: 5. After mixing, adding N-methyl-2-pyrrolidinone as a solvent and kneading into a paste, it was applied to both sides of a copper foil having a thickness of 14 μm, dried and rolled to form the negative electrode 16, 1 is formed by punching into the shape shown in FIG. 1, and a connecting tongue 15 a is integrally formed on one side of the current collector 15.

ちなみに、この負極板12における集電体15の厚さ寸法は、12〜16μmであり、負極16は、36〜40μmの厚さ寸法に形成されている。また、この負極板12における負極16は、(50mm〜150mm)×(50mm〜150mm)の方形(図では長方形)であって、かつ正極14よりも大きな寸法に形成されている。なお、集電体15は、一対の対向辺間の寸法が負極16の形成寸法よりも大きい寸法に形成されており、これにより集電体15一対の対向辺と負極16との間には、集電体の露出部15bが形成されている。   Incidentally, the thickness dimension of the current collector 15 in the negative electrode plate 12 is 12 to 16 μm, and the negative electrode 16 is formed to have a thickness dimension of 36 to 40 μm. Further, the negative electrode 16 in the negative electrode plate 12 is a (50 mm to 150 mm) × (50 mm to 150 mm) square (rectangular in the drawing) and is formed to have a size larger than that of the positive electrode 14. Note that the current collector 15 is formed such that the dimension between the pair of opposing sides is larger than the formation dimension of the negative electrode 16, whereby the current collector 15 has a pair of opposing sides and the negative electrode 16. An exposed portion 15b of the current collector is formed.

さらに、セパレータ11は、ポリエチレン、ポリプロピレン等の合成樹脂やガラス繊維等からなる通液性および非電子伝導性を有するシート材からなるもので、負極板12の集電体15と等しい外形寸法の方形(図では長方形)に形成されている。   Further, the separator 11 is made of a sheet material having liquid permeability and non-electron conductivity made of a synthetic resin such as polyethylene or polypropylene, glass fiber, or the like, and is a square having the same outer dimensions as the current collector 15 of the negative electrode plate 12. (Rectangular in the figure).

そして、このリチウムイオンキャパシタは、図5に示すように、複数の同一形状の正極板10と複数の同一形状の負極板12とが、セパレータ11を間に挟んで交互に積層され、正極板10および負極板12の集電体13、15に形成された接続用舌部13a、15aに、それぞれ図1に示すように外部端子17、18が溶接されるとともに、得られた積層体の両端部間に圧縮方向の荷重が付与されることにより一体化され、さらにラミネートフィルム等からなる外装に収納されて、内部にLiI、LiClO4、LiAsF6等のリチウム塩を含む電解液が注液された後に、内部が真空引きされて封止されることにより構成されている。この際に、負極15には、拡散したリチウムイオンがプレドープされている。   In the lithium ion capacitor, as shown in FIG. 5, a plurality of positive electrode plates 10 having the same shape and a plurality of negative electrode plates 12 having the same shape are alternately stacked with the separator 11 interposed therebetween. As shown in FIG. 1, external terminals 17 and 18 are welded to the connecting tongues 13a and 15a formed on the current collectors 13 and 15 of the negative electrode plate 12, respectively, and both end portions of the obtained laminate are obtained. It is integrated by applying a load in the compression direction between them, and further housed in an exterior made of a laminate film, etc., and after an electrolyte containing a lithium salt such as LiI, LiClO4, LiAsF6 is injected therein, The interior is configured by being evacuated and sealed. At this time, the negative electrode 15 is pre-doped with diffused lithium ions.

ここで、上記リチウムイオンキャパシタにおいては、複数の正極板10が、正極14の外周縁の少なくとも一部が、直下に位置する正極板10の正極14の外周縁と積層方向に一致しないように、順次積層方向と直交する方向にずらした状態で配置されている。なお、この場合においても、全ての正極板10は、それぞれの正極14の外周縁が、負極板12の負極16の外周縁よりも内側に位置するように配置されている。   Here, in the lithium ion capacitor, the plurality of positive electrode plates 10 are arranged such that at least a part of the outer peripheral edge of the positive electrode 14 does not coincide with the outer peripheral edge of the positive electrode 14 of the positive electrode plate 10 positioned immediately below in the stacking direction. They are arranged in a state where they are sequentially shifted in a direction perpendicular to the stacking direction. Even in this case, all the positive plates 10 are arranged such that the outer peripheral edges of the respective positive electrodes 14 are located on the inner side of the outer peripheral edge of the negative electrode 16 of the negative electrode plate 12.

すなわち、図2に示すように、積層方向の最上段に位置する正極板10aに対して、その直下に位置する正極板10bは僅かに図中右方向にずれた位置に配置され、この正極板10bの直下に位置する正極板10cは、正極板10bに対して僅かに図中下方にずれた位置に配置され、この正極板10cの直下に位置する正極板10dは、正極板10cに対して僅かに図中左方にずれた位置に配置されるとともに、正極板10dの下方に位置する正極板10についても、同様にして順次積層方向と直交する方向に僅かにずれた位置に配置されている。   That is, as shown in FIG. 2, the positive electrode plate 10b positioned immediately below the positive electrode plate 10a positioned at the uppermost stage in the stacking direction is disposed at a position slightly shifted to the right in the figure. The positive electrode plate 10c positioned immediately below the positive electrode plate 10b is disposed at a position slightly shifted downward in the figure relative to the positive electrode plate 10b. The positive electrode plate 10d positioned directly below the positive electrode plate 10c is The positive electrode plate 10 located below the positive electrode plate 10d is also arranged at a position slightly shifted in the direction perpendicular to the stacking direction in the same manner as described above. Yes.

また、図4に示す他の正極板10の配置例においては、正極板10の直下に位置する正極板10は、直上の正極板10の正極14と4つの角部がすべて一致しないように、すなわち外周縁が全周にわたって直上に位置する正極14の外周縁と積層方向に一致しないように配置されている。   Moreover, in the example of arrangement | positioning of the other positive electrode plate 10 shown in FIG. 4, as for the positive electrode plate 10 located immediately under the positive electrode plate 10, the positive electrode 14 of the positive electrode plate 10 immediately above and all four corner | angular parts do not correspond. In other words, the outer peripheral edge is arranged so as not to coincide with the outer peripheral edge of the positive electrode 14 positioned immediately above the entire periphery in the stacking direction.

以上の構成からなるリチウムイオンキャパシタによれば、負極16の外形寸法を正極14の外形寸法よりも大きく形成するとともに、正極板10を、正極14の外周縁が負極16の外周縁の内側に位置するように配置しているために、負極16の外周縁に電流が過度に集中して当該部分にリチウム金属が析出することを防ぐことができる。   According to the lithium ion capacitor having the above configuration, the outer dimensions of the negative electrode 16 are formed larger than the outer dimensions of the positive electrode 14, and the positive electrode 10 is positioned so that the outer peripheral edge of the positive electrode 14 is inside the outer peripheral edge of the negative electrode 16. Therefore, it is possible to prevent current from being excessively concentrated on the outer peripheral edge of the negative electrode 16 and depositing lithium metal on the portion.

これに加えて、複数の正極板10を積層するに際して、各々の正極板10における正極14の外周縁の少なくとも一部(図2)または全部(図4)を、その直下に位置する正極板10の正極14の外周縁と積層方向に一致しないように配置しているために、図3および図5に示すように、任意の正極14の外周縁の位置Pに対して、その直下の正極14の外周縁が積層方向と直交する方向にずれた位置になる。   In addition to this, when laminating the plurality of positive plates 10, at least a part (FIG. 2) or all (FIG. 4) of the outer peripheral edge of the positive electrode 14 in each positive plate 10 is positioned immediately below the positive plate 10. 3 and FIG. 5, the positive electrode 14 immediately below the position P of the outer peripheral edge of any positive electrode 14 is arranged. The outer peripheral edge of the sheet is shifted in a direction perpendicular to the stacking direction.

このため、積層方向に作用する圧縮荷重によって、正極14の外周縁に応力集中を生じることがなく、よって正極14の外周縁に対向する負極16の部分に、上記応力集中による局部的な凹状の撓みが生じることがないために、当該撓みに起因する電流集中によって負極16の表面にリチウム金属が析出することも防止することができる。   For this reason, stress concentration does not occur on the outer peripheral edge of the positive electrode 14 due to the compressive load acting in the stacking direction. Therefore, the portion of the negative electrode 16 facing the outer peripheral edge of the positive electrode 14 has a local concave shape due to the stress concentration. Since bending does not occur, it is possible to prevent lithium metal from being deposited on the surface of the negative electrode 16 due to current concentration caused by the bending.

ここで、上記圧縮荷重による正極の外周縁への応力集中を確実に回避するためには、請求項2に記載の発明のように、正極を、その外周縁が全周にわたって直下に位置する上記正極の外周縁と積層方向に一致しないように配置することが好ましい。   Here, in order to reliably avoid stress concentration on the outer peripheral edge of the positive electrode due to the compressive load, as in the invention according to claim 2, the outer peripheral edge of the positive electrode is positioned directly below the entire periphery. It is preferable to arrange the positive electrode so as not to coincide with the outer peripheral edge of the positive electrode.

したがって、上記リチウムイオンキャパシタによれば、負極16におけるリチウム金属の析出を防止することができ、よって上記リチウム金属の析出に起因する正極板10および負極板12間の短絡を確実に防ぐことができるために、正極板10、負極板12およびセパレータ11といった構成部材のより一層の薄肉化を図ることもできる。   Therefore, according to the lithium ion capacitor, it is possible to prevent lithium metal from being deposited on the negative electrode 16, and thus it is possible to reliably prevent a short circuit between the positive electrode plate 10 and the negative electrode plate 12 due to the lithium metal deposition. Therefore, it is possible to further reduce the thickness of the constituent members such as the positive electrode plate 10, the negative electrode plate 12, and the separator 11.

さらに、複数の正極板10として互いに同一形状のものを用い、かつ複数の負極板12としても互いに同一形状のものを用いているために、負極板12間に配置される正極板10を、その積層方向の直下に位置する正極板10に対して、上記積層方向と直交する方向に幾分ずらして配置することにより、容易に対応することができる。   Further, since the plurality of positive electrode plates 10 having the same shape as each other and the plurality of negative electrode plates 12 having the same shape as each other are used, the positive electrode plates 10 arranged between the negative electrode plates 12 are The positive electrode plate 10 positioned immediately below the stacking direction can be easily accommodated by being shifted somewhat in the direction orthogonal to the stacking direction.

しかも、装置全体として一種類の形状の正極板10、セパレータ11および負極板12を準備すればよいために、製造コストの増加を招くことが無く、かつ安定した蓄電性能を担保することもできる。   In addition, since the positive electrode plate 10, the separator 11, and the negative electrode plate 12 having one type of shape are prepared as the entire apparatus, the manufacturing cost is not increased, and stable power storage performance can be ensured.

なお、上記実施の形態においては、本発明に係る蓄電デバイスを、リチウムイオンキャパシタに適用した場合についてのみ説明したが、これに限るものではなく、セパレータを介して対向配置された複数層の正極板と負極板との間に、リチウム塩を含む電解液が注液されたリチウムイオン二次電池等の蓄電デバイスに対しても、同様に適用することができる。   In the above embodiment, the case where the electricity storage device according to the present invention is applied only to a lithium ion capacitor has been described. However, the present invention is not limited to this, and a plurality of positive electrode plates arranged opposite to each other with a separator interposed therebetween. The present invention can be similarly applied to an electricity storage device such as a lithium ion secondary battery in which an electrolyte containing a lithium salt is injected between the electrode and the negative electrode plate.

本発明の一実施形態における正極板、セパレータおよび負極板の形状を示す平面図である。It is a top view which shows the shape of the positive electrode plate, separator, and negative electrode plate in one Embodiment of this invention. 上記実施形態における複数の正極板の積層方向の位置関係を示す平面図である。It is a top view which shows the positional relationship of the lamination direction of the some positive electrode plate in the said embodiment. 図1の正極板、セパレータおよび負極板の積層状態を分解して示す正面図である。It is a front view which decomposes | disassembles and shows the lamination | stacking state of the positive electrode plate of FIG. 1, a separator, and a negative electrode plate. 図2の正極板の積層方向における位置関係の他の例を示す斜視図である。It is a perspective view which shows the other example of the positional relationship in the lamination direction of the positive electrode plate of FIG. 図1の正極板、セパレータおよび負極板の積層体を示す正面図である。It is a front view which shows the laminated body of the positive electrode plate of FIG. 1, a separator, and a negative electrode plate. リチウムイオンキャパシタにおいて負極を正極より小さく形成した場合の状態を示す正面図である。It is a front view which shows the state at the time of forming a negative electrode smaller than a positive electrode in a lithium ion capacitor. リチウムイオンキャパシタにおいて負極を正極より大きく形成した場合の状態を示す正面図である。It is a front view which shows the state at the time of forming a negative electrode larger than a positive electrode in a lithium ion capacitor. 図7のリチウムイオンキャパシタを示す正面図である。It is a front view which shows the lithium ion capacitor of FIG.

符号の説明Explanation of symbols

10、10a、10b、10c、10d 正極板
11 セパレータ
12 負極板
13、15 導電体
14 正極
16 負極
10, 10a, 10b, 10c, 10d Positive electrode plate 11 Separator 12 Negative electrode plate 13, 15 Conductor 14 Positive electrode 16 Negative electrode

Claims (4)

集電体の表面に正極が形成された平板状の正極板と、集電体の表面にリチウムイオンの吸蔵および放出が可能な物質からなる負極が形成された平板状の負極板とが、セパレータを間に介して複数積層されるとともに、これらの間にリチウム塩を含む電解液が注液されてなる蓄電デバイスにおいて、
上記負極は、予めリチウムがドープされ、かつ外形寸法が上記正極よりも大きく形成されるとともに、
上記積層された複数の上記正極板の正極は、その外周縁の少なくとも一部が、隣接する層の上記正極の外周縁と積層方向に一致せず、かつ上記外周縁が上記負極の外周縁の内側に位置するように配置されていることを特徴とする蓄電デバイス。
A plate-like positive electrode plate in which a positive electrode is formed on the surface of the current collector, and a plate-like negative electrode plate in which a negative electrode made of a material capable of occluding and releasing lithium ions is formed on the surface of the current collector. In an electricity storage device in which a plurality of layers are stacked with an electrolyte solution containing a lithium salt interposed therebetween,
The negative electrode is previously doped with lithium and has an outer dimension larger than that of the positive electrode,
The positive electrodes of the plurality of stacked positive electrode plates have at least a part of the outer peripheral edge thereof not aligned with the outer peripheral edge of the positive electrode of the adjacent layer in the stacking direction, and the outer peripheral edge is the outer peripheral edge of the negative electrode. An electrical storage device, wherein the electrical storage device is disposed so as to be located inside.
上記正極は、その外周縁が全周にわたって隣接する層の上記正極の外周縁と上記積層方向に一致しないように配置されていることを特徴とする請求項1に記載の蓄電デバイス。   2. The electric storage device according to claim 1, wherein the positive electrode is arranged so that an outer peripheral edge thereof does not coincide with the outer peripheral edge of the positive electrode of the layer adjacent to the entire circumference in the stacking direction. 上記複数の正極板は、互いに同形状に形成されるとともに、上記複数の負極板は、互いに同形状に形成されていることを特徴とする請求項1または2に記載の蓄電デバイス。   The power storage device according to claim 1 or 2, wherein the plurality of positive plates are formed in the same shape, and the plurality of negative plates are formed in the same shape. 上記蓄電デバイスは、リチウムイオンキャパシタであることを特徴とする請求項1ないし3のいずれかに記載の蓄電デバイス。   The power storage device according to any one of claims 1 to 3, wherein the power storage device is a lithium ion capacitor.
JP2007299563A 2007-11-19 2007-11-19 Power storage device Pending JP2009129917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299563A JP2009129917A (en) 2007-11-19 2007-11-19 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299563A JP2009129917A (en) 2007-11-19 2007-11-19 Power storage device

Publications (1)

Publication Number Publication Date
JP2009129917A true JP2009129917A (en) 2009-06-11

Family

ID=40820597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299563A Pending JP2009129917A (en) 2007-11-19 2007-11-19 Power storage device

Country Status (1)

Country Link
JP (1) JP2009129917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2012054003A (en) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Lithium ion battery
CN107636882A (en) * 2015-09-07 2018-01-26 松下知识产权经营株式会社 Rechargeable nonaqueous electrolytic battery
JP2019121427A (en) * 2017-12-28 2019-07-22 株式会社Gsユアサ Power storage element
WO2020059805A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
JP2020092048A (en) * 2018-12-07 2020-06-11 トヨタ紡織株式会社 Secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2012054003A (en) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The Lithium ion battery
CN107636882A (en) * 2015-09-07 2018-01-26 松下知识产权经营株式会社 Rechargeable nonaqueous electrolytic battery
JP2019121427A (en) * 2017-12-28 2019-07-22 株式会社Gsユアサ Power storage element
JP7303994B2 (en) 2017-12-28 2023-07-06 株式会社Gsユアサ Storage element
WO2020059805A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
CN112640183A (en) * 2018-09-19 2021-04-09 株式会社村田制作所 Secondary battery
JPWO2020059805A1 (en) * 2018-09-19 2021-06-03 株式会社村田製作所 Secondary battery
JP2020092048A (en) * 2018-12-07 2020-06-11 トヨタ紡織株式会社 Secondary battery
JP7205710B2 (en) 2018-12-07 2023-01-17 トヨタ紡織株式会社 secondary battery

Similar Documents

Publication Publication Date Title
KR101395016B1 (en) A Stepwise Electrode Assembly, and Battery Cell, Battery Pack and Device Comprising the Same
KR101379957B1 (en) A Stepwise Electrode Assembly, and a Battery Cell, Battery Pack and Device Comprising the Same
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
US10056577B2 (en) Battery cell of novel structure
JP4293501B2 (en) Electrochemical devices
US8232004B2 (en) Power storage device, and method for manufacturing power storage device
US11121439B2 (en) Secondary battery
KR20130118716A (en) Electrode assembly, battery cell and device comprising the same
KR20130133640A (en) A stepwise electrode assembly having corner of various shape and a battery cell, battery pack and device comprising the same
KR20130119457A (en) Lithium secondary battery having multi-directional lead-tab structure
KR101590259B1 (en) Electrode assembly, battery and device comprising the same
US20060269840A1 (en) Secondary battery
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
JP2007273349A (en) Stacked battery and manufacturing method therefor
JP2009129917A (en) Power storage device
KR20180126534A (en) Multi-joint battery module
KR20100135382A (en) Lithium secondary battery having multi-directional lead-tab structure
JP2019192493A (en) Power storage device
JP2005243455A (en) Electrochemical device
US10991985B2 (en) Secondary battery
JP2017059538A (en) Laminated battery
KR101580086B1 (en) Electrode Assembly of Combination Structure
KR102278443B1 (en) Rechargeable battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
KR20170025772A (en) Electrode Assembly Comprising Separator Having Folded Edge