Nothing Special   »   [go: up one dir, main page]

JP2009122379A - Optical device, control method thereof, imaging device and program - Google Patents

Optical device, control method thereof, imaging device and program Download PDF

Info

Publication number
JP2009122379A
JP2009122379A JP2007295862A JP2007295862A JP2009122379A JP 2009122379 A JP2009122379 A JP 2009122379A JP 2007295862 A JP2007295862 A JP 2007295862A JP 2007295862 A JP2007295862 A JP 2007295862A JP 2009122379 A JP2009122379 A JP 2009122379A
Authority
JP
Japan
Prior art keywords
optical system
optical
objective optical
objective
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007295862A
Other languages
Japanese (ja)
Inventor
Teruhiro Nishio
彰宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007295862A priority Critical patent/JP2009122379A/en
Publication of JP2009122379A publication Critical patent/JP2009122379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and inexpensive optical system quickly switching a plurality of subject directions and subject images only by one optical device and available for both wide-angle and telescopic imaging. <P>SOLUTION: A movable reflecting member is disposed in an imaging optical system having a plurality of objective lens groups for capturing subject light. An optional objective lens group for guiding the subject light to a pickup device can be selected from the plurality of objective lens groups by moving the reflecting member. At least one objective lens is formed of an optical system capturing a substantially 360°-subject image around an optical axis. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、監視用のデジタルカメラやビデオカメラ等に適した撮影光学系を実現する場合に適用される光学装置及びその制御方法、前記光学装置を搭載した撮像装置、並びに前記制御方法を実現するためのコンピュータで読み取り可能なプログラムに関する。   The present invention realizes an optical device and a control method thereof, an imaging device equipped with the optical device, and a control method applied when realizing a photographing optical system suitable for a digital camera or a video camera for monitoring. The invention relates to a computer readable program.

従来、例えば、監視用のデジタルカメラやビデオカメラ等の撮影装置において、目的(撮影対象)となる被写体を探索しその詳細画像を得るためには、まず、超広角レンズもしくは魚眼レンズを用いて広域な画界を撮影する。そして、その中から目的の被写体を判別した後に詳細画像を得る方法が一般的である。   2. Description of the Related Art Conventionally, for example, in a photographing apparatus such as a digital camera or a video camera for monitoring, in order to search for a target object (photographing target) and obtain a detailed image thereof, first, a wide area using a super wide angle lens or a fisheye lens Shoot the world. A method of obtaining a detailed image after discriminating a target subject from among them is generally used.

上記のような、被写体の画像の取得方法としては、次のような方法が考えられる。
(1)電子ズームにより目的被写体の拡大画像を得る方法
(2)光学系をズームレンズとして構成し、望遠側に光学系(ズームレンズ)を変倍させることで目的被写体の画像を得る方法
(3)複数の撮影系を用いると共に一方を広角撮影系とし他方を望遠撮影系として、目的被写体の取得画像を切替える方法
また、光学系に配置した反射部材を駆動することで、撮像素子に導かれる被写体光を切替える方法が提案されている(例えば、特許文献1、特許文献2、特許文献3参照)。また、凸面形状の反射部材の周辺部における反射像を利用して被写体の全周を観察し、中心部を透過構造として別の光学系にて他の被写体像を観察するような方法が提案されている(例えば、特許文献4参照)。
特開平9−297350号公報 特開2003−9104号公報 特開2006−81089号公報 特開2006−139234号公報
As a method for acquiring the subject image as described above, the following method can be considered.
(1) Method for obtaining an enlarged image of a target subject by electronic zoom (2) Method for obtaining an image of a target subject by configuring the optical system as a zoom lens and changing the magnification of the optical system (zoom lens) on the telephoto side (3 ) A method of switching a captured image of a target subject by using a plurality of photographing systems and one of which is a wide-angle photographing system and the other of which is a telephoto photographing system. Also, a subject guided to an imaging device by driving a reflecting member disposed in the optical system. Methods for switching light have been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). In addition, a method has been proposed in which the entire circumference of a subject is observed using a reflection image at the periphery of a convex reflecting member, and another subject image is observed with another optical system with the central portion as a transmission structure. (For example, see Patent Document 4).
JP-A-9-297350 JP 2003-9104 A JP 2006-81089 A JP 2006-139234 A

しかしながら、上述した従来の画像の取得方法には以下のような問題点があった。   However, the above-described conventional image acquisition method has the following problems.

上記(1)の方法では、画像の一部を取り出して目的被写体の拡大画像を得るため、高繊細な画像を得るためには高画素を有する撮像素子を用いる必要があり、同時に撮影光学系の性能要求が厳しくなる。その結果、コスト高になる。   In the above method (1), in order to obtain a magnified image of the target subject by extracting a part of the image, it is necessary to use an image sensor having high pixels in order to obtain a high-definition image. Performance requirements become stricter. As a result, the cost increases.

上記(2)の方法では、目的被写体が動体であった場合で撮影者がズーミング中に被写体を見てしまった場合には、再び広角方向にズーミングを行う必要が生じる。そのため、素早い被写体観察を行うことができない。また、広角から望遠を包括するような光学系の実現は困難となってくる。   In the method (2), when the target subject is a moving object and the photographer views the subject during zooming, it is necessary to perform zooming again in the wide-angle direction. Therefore, quick subject observation cannot be performed. In addition, it is difficult to realize an optical system that covers a wide angle and a telephoto range.

上記(3)の方法では、複数の撮影系を用いるため、複数のカメラユニットを使用しなくてはならない。そのため、撮影に用いる装置が大型化すると同時に、コスト高になる。また、上記(3)の方法では、1つの撮像素子を用いて撮影光学系の一部を切替えて、あたかも複数の撮影光学系で撮影したような特性を得るためには、撮影光学系中において撮影光学系の一部を挿入/退避させる機構が一般的である。従来は、撮影光学系の一部を入れ替える機構は2焦点方式の銀塩コンパクトカメラで多く使用されていた。しかし、撮影光学系の一部を入れ替える機構は大掛かりな構造になってしまうという問題がある。   In the method (3), since a plurality of photographing systems are used, a plurality of camera units must be used. This increases the size of the apparatus used for photographing and increases the cost. In the method (3), in order to obtain a characteristic as if a plurality of photographing optical systems were photographed by switching a part of the photographing optical system using one image sensor, A mechanism for inserting / withdrawing a part of the photographing optical system is generally used. Conventionally, a mechanism for replacing a part of the photographing optical system is often used in a two-focal type silver salt compact camera. However, there is a problem that a mechanism for replacing a part of the photographing optical system has a large structure.

また、上記特許文献1〜3に記載された技術は、大きな撮影画角変化を得にくい構成であり、撮影対象となる目的被写体の方向が大きく変化してしまうものである。そのため、目的被写体を検知することと詳細情報を短時間に取得することが困難になる。   In addition, the techniques described in Patent Documents 1 to 3 have a configuration in which it is difficult to obtain a large change in the shooting angle of view, and the direction of the target subject to be shot changes greatly. Therefore, it becomes difficult to detect the target subject and acquire detailed information in a short time.

また、上記特許文献4に記載された技術は、対物光学系に反射光学系と広角な屈折光系を同軸上に配置して、反射光学系で得られない光軸方向の被写体像を屈折系の広角な光学系で得ようとするものである。このような構成では、素早く被写体を検知して、その被写体の詳細像を得ることはできない。また、面精度のよい大型の反射部材の製造は困難でありコストがかかるという問題がある。   Further, the technique described in the above-mentioned Patent Document 4 has a reflection optical system and a wide-angle refracting light system coaxially arranged in an objective optical system, and a subject image in the optical axis direction that cannot be obtained by the reflecting optical system is refracted. It is intended to be obtained with a wide-angle optical system. With such a configuration, it is impossible to quickly detect a subject and obtain a detailed image of the subject. In addition, there is a problem that it is difficult and costly to produce a large reflective member with good surface accuracy.

本発明は上記従来の問題点に鑑み、次のような光学装置及びその制御方法、撮像装置、並びにプログラムを提供することを目的とする。即ち、一つの光学装置だけで複数の被写体方向と被写体像を素早く切替えて撮影することができ、しかも広角から望遠を包括するような光学系を小型且つ低コストで実現する。   In view of the above-described conventional problems, an object of the present invention is to provide the following optical device, control method thereof, imaging device, and program. That is, it is possible to realize a compact and low-cost optical system that can quickly switch and shoot a plurality of subject directions and subject images with only one optical device, and that covers the telephoto from a wide angle.

上記目的を達成するため、本発明の光学装置は、被写体光を取り込むための複数の対物光学系と、各対物光学系を通過した光線が共通に通過する共通光学系とを有し、前記対物光学系と前記共通光学系により生成された被写体像を結像する光学装置であって、前記複数の対物光学系により取り込まれる被写体光の何れかを選択的に前記共通光学系へ導くための選択光学部材を備え、前記複数の対物光学系のうちの少なくとも一つは、光軸周りの全方位の被写体像を取り込む広角の対物光学系、または他方の対物光学系よりも広角な被写体像を結像するための対物光学系で構成したことを特徴とする。   In order to achieve the above object, an optical apparatus of the present invention includes a plurality of objective optical systems for capturing subject light and a common optical system through which light beams that have passed through each objective optical system pass in common. An optical apparatus for forming an object image generated by an optical system and the common optical system, wherein selection is performed for selectively guiding any of the object light captured by the plurality of objective optical systems to the common optical system. An optical member, and at least one of the plurality of objective optical systems forms a wide-angle objective optical system that captures an omnidirectional subject image around the optical axis or a wider-angle subject image than the other objective optical system. It is characterized by comprising an objective optical system for imaging.

また、本発明の撮像装置は、上記光学装置が搭載される撮像装置であって、前記光学装置により結像された被写体像を電気信号に光電変換する撮像手段と、前記光学装置をパン方向に駆動するパン駆動機構または、前記光学装置をチルト方向に駆動するチルト駆動機構の何れかを備えたことを特徴とする。   The image pickup apparatus of the present invention is an image pickup apparatus on which the above-described optical device is mounted, and an image pickup unit that photoelectrically converts a subject image formed by the optical device into an electric signal; and the optical device in the pan direction. A pan driving mechanism for driving or a tilt driving mechanism for driving the optical device in a tilt direction is provided.

また、本発明の光学装置の制御方法は、被写体光を取り込むための複数の対物光学系と、各対物光学系を通過した光線が共通に通過する共通光学系と、前記複数の対物光学系により取り込まれる被写体光の何れかを選択的に前記共通光学系へ導くための選択光学部材とを備え、前記複数の対物光学系のうちの少なくとも一つは光軸周りの全方位の被写体像、または他方の対物光学系よりも広角な被写体像を取り込む対物光学系で構成し、前記複数の対物光学系のうちの何れか一つの対物光学系と前記共通光学系により生成された被写体像を結像すると共に、パン方向、チルト方向の何れかの駆動が可能な光学装置の制御方法であって、前記光軸周りの全方位の被写体像、または他方の対物光学系よりも広角な被写体像を取り込む対物光学系の画像範囲から目的被写体を認識し、該対物光学系とは別の対物光学系の撮影方向と目的被写体方向との相対的な位置関係を検出する検出ステップと、前記検出された前記相対的な位置に基づき、パン方向及びチルト方向の何れかの必要駆動角度を算出する算出ステップと、前記算出された必要駆動角度が規定値以上の場合に前記別の対物光学系をパン方向及びチルト方向の何れかの方向に駆動する駆動ステップとを備えたことを特徴とする。   Further, the control method of the optical device according to the present invention includes a plurality of objective optical systems for capturing subject light, a common optical system through which rays that have passed through each objective optical system pass in common, and the plurality of objective optical systems. A selection optical member for selectively guiding any of the captured subject light to the common optical system, wherein at least one of the plurality of objective optical systems is an omnidirectional subject image around the optical axis, or Consists of an objective optical system that captures a wider-angle subject image than the other objective optical system, and forms a subject image generated by any one of the plurality of objective optical systems and the common optical system And an optical device control method capable of driving in either the pan direction or the tilt direction, which captures an omnidirectional subject image around the optical axis or a wider-angle subject image than the other objective optical system. Objective optical system A detection step of recognizing a target object from an image range and detecting a relative positional relationship between a shooting direction of an objective optical system different from the objective optical system and a direction of the target object; and the detected relative position And calculating the required drive angle in either the pan direction or the tilt direction based on the above, and if the calculated required drive angle is equal to or greater than a specified value, the other objective optical system is set in either the pan direction or the tilt direction. And a driving step for driving in that direction.

また、本発明のプログラムは、上記光学装置の制御方法をコンピュータに実行させるためのプログラムであることを特徴とする。   A program according to the present invention is a program for causing a computer to execute the method for controlling the optical device.

本発明によれば、一つの光学装置だけで複数の被写体方向と被写体像を素早く切替えて撮影することが可能になる。これにより、広角から望遠を包括するような光学系を小型且つ低コストで実現することができ、動体撮影時でも素早い被写体観察を行うことができる。   According to the present invention, it is possible to quickly switch and photograph a plurality of subject directions and subject images with only one optical device. This makes it possible to realize an optical system that covers a wide angle and a telephoto at a small size and at a low cost, and allows a quick subject observation even during moving body shooting.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
第1の実施の形態では、広角な画角を得る対物光学系に屈折光学系を用いた構成の光学装置について説明する。
[First Embodiment]
In the first embodiment, an optical device having a configuration in which a refractive optical system is used as an objective optical system for obtaining a wide angle of view will be described.

<光学装置の概略構成>
図1は、本発明の第1の実施の形態に係わる光学装置の概略構成を示す断面図である。
<Schematic configuration of optical device>
FIG. 1 is a cross-sectional view showing a schematic configuration of an optical device according to a first embodiment of the present invention.

図1に示すように、この光学装置は、被写体像を電気信号に光電変換する撮像素子IPを有し、その光軸方向に赤外吸収フィルターやローパスフィルター等のフィルター群10を介して、共通光学系11、共通反射部材(選択光学部材)12が配置されている。さらに、共通反射部材12を介して、広角な画角を得るために屈折光学系で構成した第1対物光学系15と、狭角な画角を得るための第2対物光学系13とが配置されている。   As shown in FIG. 1, this optical apparatus has an image sensor IP that photoelectrically converts a subject image into an electric signal, and is shared in the optical axis direction via a filter group 10 such as an infrared absorption filter or a low-pass filter. An optical system 11 and a common reflecting member (selective optical member) 12 are arranged. Furthermore, a first objective optical system 15 configured with a refractive optical system for obtaining a wide angle of view and a second objective optical system 13 for obtaining a narrow angle of view are disposed via the common reflecting member 12. Has been.

具体的には、第1対物光学系15は、広角な被写体像を取り込むための光学系であり、第2対物光学系13は、第1対物光学系15よりも望遠な被写体像を取り込むための光学系である。共通反射部材12は、第1対物光学系15と第2対物光学系13の結像面側(被写体像の結像面側)に配置されている。そして、共通反射部材12は、前記の2つの対物光学系15,13からの双方の入射光に対し、一方の入射光を反射させて光路の偏向を行わせ、他方の入射光は遮光を行う作用を有する反射部材である。つまり、共通反射部材12は、複数の対物光学系15,13からの入射光を選択的に偏向もしくは遮光するような作用を有している(後で詳述する)。   Specifically, the first objective optical system 15 is an optical system for capturing a wide-angle subject image, and the second objective optical system 13 is for capturing a subject image farther than the first objective optical system 15. It is an optical system. The common reflecting member 12 is disposed on the imaging plane side (the imaging plane side of the subject image) of the first objective optical system 15 and the second objective optical system 13. The common reflecting member 12 reflects one of the incident lights from the two objective optical systems 15 and 13 to deflect the optical path, and shields the other incident light. It is a reflecting member having an action. That is, the common reflecting member 12 has an action of selectively deflecting or shielding incident light from the plurality of objective optical systems 15 and 13 (described in detail later).

なお、第1対物光学系15により得られる広角な被写体像の画角W1は90°以上の範囲を包括していることが望ましく、更には第1対物光学系15を強い負の歪曲収差特性を有した魚眼もしくはそれに準じた光学タイプとして超広角な画角特性を持たせるのが良い。   Note that it is desirable that the angle of view W1 of the wide-angle subject image obtained by the first objective optical system 15 includes a range of 90 ° or more, and further, the first objective optical system 15 has strong negative distortion characteristics. It is preferable to provide a super wide angle of view characteristic as a fisheye or an optical type equivalent to it.

そして、共通反射部材12の結像面側には、共通反射部材12側からの入射光を結像させる作用を有する共通光学系11が配置され、その結像面上に撮像素子IPが配置されている。   A common optical system 11 having an effect of imaging incident light from the common reflecting member 12 is disposed on the image forming surface side of the common reflecting member 12, and an image sensor IP is disposed on the image forming surface. ing.

このように、上記光学装置は、対物光学系と共通光学系により生成された被写体像を結像するように作用する。   As described above, the optical device acts to form a subject image generated by the objective optical system and the common optical system.

<共通反射部材の構成例>
次に、上述したように、複数の対物光学系15,13からの入射光に対して選択的に偏向もしくは遮光を行う作用を有する共通反射部材12の構成例について、図2〜図5を参照して説明する。
<Configuration example of common reflecting member>
Next, as described above, refer to FIGS. 2 to 5 for a configuration example of the common reflection member 12 having an action of selectively deflecting or shielding the incident light from the plurality of objective optical systems 15 and 13. To explain.

(a)回転駆動機構を備えた反射鏡を用いた例
図2は、共通反射部材12として、回転駆動機構を備えた反射鏡を用いた例を示す断面模式図である。
(A) Example Using a Reflecting Mirror with a Rotation Driving Mechanism FIG. 2 is a schematic cross-sectional view showing an example using a reflecting mirror with a rotation driving mechanism as the common reflecting member 12.

本例においては、共通反射部材12として回転駆動機構を備えた反射鏡12−1を用いている。第1対物光学系15及び第2対物光学系13側からの反射鏡12−1への入射光は、一方が図2中の上方向(入射方向1)から、他方が左方向(入射方向2)から入射されている状態を想定している。   In this example, a reflecting mirror 12-1 having a rotation drive mechanism is used as the common reflecting member 12. As for the incident light from the first objective optical system 15 and the second objective optical system 13 to the reflecting mirror 12-1, one is from the upward direction (incident direction 1) in FIG. 2, and the other is the left direction (incident direction 2). ) Is assumed to be incident.

反射鏡12−1が、図2中のK1の位置にある状態では、入射方向2からの入射光は反射面12−1aにより偏向されて図2中の下方へ射出され、また、入射方向1からの入射光は反射鏡12−1の遮光面12−1aにより遮光が行われている。   In a state where the reflecting mirror 12-1 is at the position K1 in FIG. 2, incident light from the incident direction 2 is deflected by the reflecting surface 12-1a and emitted downward in FIG. The incident light from is shielded by the light shielding surface 12-1a of the reflecting mirror 12-1.

他方、反射鏡12−1を図2中の支点Pを中心として、K2の位置(破線)に回転駆動を行えば、入射方向2からの入射光は遮光され、入射方向1からの入射光は下方へ射出されることとなる。   On the other hand, if the reflecting mirror 12-1 is rotationally driven around the fulcrum P in FIG. 2 to the position K2 (broken line), the incident light from the incident direction 2 is blocked and the incident light from the incident direction 1 is It will be injected downward.

なお、反射鏡12−1の回転駆動により反射鏡12−1が他の光学部材に干渉してしまう場合には、反射鏡12−1の支点Pを上下方向(図2のH参照)に移動させるように駆動を行っても良い。   When the reflecting mirror 12-1 interferes with other optical members due to the rotation of the reflecting mirror 12-1, the fulcrum P of the reflecting mirror 12-1 is moved in the vertical direction (see H in FIG. 2). You may drive so that it may.

(b)プリズムを用いた例
図3、図4及び図5は、共通反射部材12として、2つの直角三角プリズムを接合したプリズムを用いた例を示す断面模式図である。
(B) Example Using Prism FIGS. 3, 4, and 5 are cross-sectional schematic diagrams illustrating examples in which a prism formed by joining two right-angled triangular prisms is used as the common reflecting member 12.

本例においては、共通反射部材12として、2つの直角三角プリズムを接合したプリズム12−2を用いている。2つの直角三角プリズムの接合面には半透過特性膜12−2aが形成されている。   In this example, a prism 12-2 in which two right triangular prisms are joined is used as the common reflecting member 12. A semi-transmissive characteristic film 12-2a is formed on the joint surface of the two right triangle prisms.

図3に示す例では、プリズム12−2の2つの入射面(入射方向1、入射方向2)の前方に、任意に遮光と退避が行える遮光板12−3を配置している。そして、一方の入射面が遮光されている時に他方の入射面は遮光板12−3を退避して光線の通過を可能にしている。   In the example shown in FIG. 3, a light shielding plate 12-3 capable of arbitrarily shielding and retracting is disposed in front of two incident surfaces (incident direction 1 and incident direction 2) of the prism 12-2. When one incident surface is shielded from light, the other incident surface retracts the light shielding plate 12-3 to allow light to pass therethrough.

図4に示す例では、図3の説明で述べた移動可能な遮光板12−3の代わりに、プリズム12−2の2つの入射面の前方に濃度可変部材10−4を配置したものである。濃度可変部材10−4は、例えば液晶等の濃度を任意に可変にする作用を有して遮光と透過作用を選択的に操作する部材である。   In the example shown in FIG. 4, the density variable member 10-4 is arranged in front of the two incident surfaces of the prism 12-2 instead of the movable light shielding plate 12-3 described in the explanation of FIG. . The density variable member 10-4 is a member that selectively operates the light shielding and transmission functions, for example, by having the function of arbitrarily varying the density of liquid crystal or the like.

図5(a),(b),(c)に示す例では、プリズム12−2の2つの入射面の前方に直線偏光板12−5を配置したものである。同図(a)は、その側面図、同図(b)は透過時の上面図、同図(c)は遮光時の上面図である。   In the example shown in FIGS. 5A, 5B, and 5C, the linearly polarizing plate 12-5 is disposed in front of the two incident surfaces of the prism 12-2. FIG. 4A is a side view thereof, FIG. 4B is a top view when transmitting, and FIG. 4C is a top view when shielding light.

この図5に示す例では、射出方向側より直線偏光板12−5を見たときに、入射方向1に配置した直線偏光板12−5の直線偏光方向と、入射方向2に配置された直線偏光板12−5の直線偏光方向とが直交するように互いの偏光方向の設定を行っている。ここで、入射方向1の光線は、プリズム12−2内を透過して来る光線であり、入射方向2の光線は、プリズム12−2の接合面での反射で偏向される光線である。   In the example shown in FIG. 5, when the linearly polarizing plate 12-5 is viewed from the emission direction side, the linearly polarizing direction of the linearly polarizing plate 12-5 arranged in the incident direction 1 and the straight line arranged in the incident direction 2. The polarization directions of the polarizing plates 12-5 are set so that the linear polarization directions of the polarizing plates 12-5 are orthogonal to each other. Here, the light beam in the incident direction 1 is a light beam that passes through the prism 12-2, and the light beam in the incident direction 2 is a light beam that is deflected by reflection at the joint surface of the prism 12-2.

そして、射出方向のプリズム面の前方に可動な直線偏光板12−6を配置して、直線偏光方向を変化させることができるようになっている。この直線偏光板12−6の動作により、2つの入射面の前方それぞれに配置された直線偏光板12−5と偏光方向を同一方向にするか、或いは直交方向にするかを選択する。これによって、遮光又は透過作用の切替えを行うことが出来るようになる。   A movable linearly polarizing plate 12-6 is arranged in front of the prism surface in the emission direction so that the linearly polarized light direction can be changed. By the operation of this linearly polarizing plate 12-6, it is selected whether the polarization direction is the same or orthogonal to that of the linearly polarizing plate 12-5 disposed in front of the two incident surfaces. As a result, it is possible to switch between light-shielding and transmission functions.

可動な直線偏光板12−6は、図5(b),(c)に示すように円盤形状から光線通過有効部のみを切り出した形状にして円盤の中心点12−6aを回転中心として回転駆動をさせる。これによって、各入射方向1,2からの光線の遮光と透過を選択することができるようにしている。   As shown in FIGS. 5B and 5C, the movable linearly polarizing plate 12-6 has a shape obtained by cutting out only the light passage effective portion from the disk shape, and is driven to rotate about the center point 12-6a of the disk as a rotation center. Let This makes it possible to select light shielding and transmission from the incident directions 1 and 2.

なお、直線偏光板12−6の駆動方法はこれに限定したものではなく、直線偏光方向を変化できさえすれば良い。また、偏光方向の異なる偏光板を切替えるようにしても行っても良い。   Note that the driving method of the linearly polarizing plate 12-6 is not limited to this, as long as the linearly polarizing direction can be changed. Alternatively, polarizing plates having different polarization directions may be switched.

また、上記図3、図4及び図5に示した構成において、共通反射部材12として使用が可能な反射部材はプリズムに限定されるものではなく、板厚が薄い半透過反射鏡を用いることも可能である。   In the configurations shown in FIGS. 3, 4 and 5, the reflecting member that can be used as the common reflecting member 12 is not limited to a prism, and a semi-transmissive reflecting mirror having a thin plate thickness may be used. Is possible.

<光学装置の具象例>
図6(a),(b)は、図1に示した光学装置の第1の具象例を示す光路図である。
<Concrete examples of optical devices>
FIGS. 6A and 6B are optical path diagrams showing a first concrete example of the optical device shown in FIG.

この光学装置においては、第1対物光学系15−1に強い負の屈折作用を与えて大きな負の像面歪曲作用を起こしている。他方、第2対物光学系13−1は正レンズ群と負レンズ群を組み合わせて配置することにより歪曲収差を補正しており、第1対物光学系15−1より長焦点になるように構成されている。第1対物光学系15−1及び第2対物光学系13−1は共に、共通光学系11−1を通過してほぼ光軸上同一の位置に結像を行うように設定されている。   In this optical apparatus, a strong negative refraction action is given to the first objective optical system 15-1 to cause a large negative image surface distortion action. On the other hand, the second objective optical system 13-1 corrects distortion by arranging a combination of a positive lens group and a negative lens group, and is configured to have a longer focal point than the first objective optical system 15-1. ing. Both the first objective optical system 15-1 and the second objective optical system 13-1 are set so as to pass through the common optical system 11-1 and form images at substantially the same position on the optical axis.

また、望遠系の第2対物光学系13−1によって得られる画界範囲が、広角な第2対物光学系15−1により得られる画界範囲の一部分を効率良く取り込むような構成を採っている。即ち、光軸の偏向角度が鈍角となるように、共通反射部材12−1の配置角度と、第1対物光学系15−1及び第2対物光学系13−1の光軸方向が設定されている。   Further, the field range obtained by the second objective optical system 13-1 of the telephoto system is configured to efficiently capture a part of the field range obtained by the second objective optical system 15-1 having a wide angle. . That is, the arrangement angle of the common reflecting member 12-1 and the optical axis directions of the first objective optical system 15-1 and the second objective optical system 13-1 are set so that the deflection angle of the optical axis becomes an obtuse angle. Yes.

さらには、図6(b)に示すように第2対物光学系13−1及び共通反射部材12−1を回転駆動することにより異なる被写体方向を観察することが可能となる。次に、その詳細を図7を用いて説明する。   Further, as shown in FIG. 6B, different object directions can be observed by rotationally driving the second objective optical system 13-1 and the common reflecting member 12-1. Next, the details will be described with reference to FIG.

図7は、第2対物光学系及び共通反射部材の回転駆動機構を示す概略断面図である。   FIG. 7 is a schematic cross-sectional view showing a rotation driving mechanism of the second objective optical system and the common reflecting member.

図7に示すように、仮に観察すべき被写体が、第2対物光学系13の光軸方向(図7では左方向)から下方向に移動を行った場合を想定する。この場合、第2対物光学系13は、回転中心点12aを中心として角度α分移動する。ここで、回転中心12aは共通反射部材12と光軸とが交わる位置であり、角度αは第2対物光学系13の被写体方向の角度変化である。   As shown in FIG. 7, it is assumed that a subject to be observed moves downward from the optical axis direction (left direction in FIG. 7) of the second objective optical system 13. In this case, the second objective optical system 13 moves by an angle α about the rotation center point 12a. Here, the rotation center 12 a is a position where the common reflection member 12 and the optical axis intersect, and the angle α is a change in the angle of the second objective optical system 13 in the subject direction.

そして、共通反射部材12が、第2対物光学系13の光軸入射角変化に対応して偏向方向を第2対物光学系13の移動前の状態に保つためには、その反射面に対して、前記回転中心点12aを中心として回転角度(α/2)分の変化を与えれば良いこととなる。   In order for the common reflecting member 12 to keep the deflection direction in a state before the movement of the second objective optical system 13 corresponding to the change in the optical axis incident angle of the second objective optical system 13, Thus, a change corresponding to the rotation angle (α / 2) about the rotation center point 12a may be given.

このように、第2対物光学系13−1及び共通反射部材12−1を回転駆動する機構を備えることにより、例えば図9の例で示すような垂直方向(チルト方向)の被写体位置変化が生じても、その追従を素早く行うことが可能な光学装置を実現することができる。   As described above, by providing a mechanism for rotationally driving the second objective optical system 13-1 and the common reflection member 12-1, for example, a subject position change in the vertical direction (tilt direction) as shown in the example of FIG. 9 occurs. However, it is possible to realize an optical device capable of quickly following the operation.

さらに水平方向(パンニング方向)の被写体位置変化に際しては、少なくとも反射部材12と第2対物光学系13を共通光学系11の光軸周りに回転移動を行えば良いが、光学系全体を回転させることを行っても良い。   Further, when the subject position changes in the horizontal direction (panning direction), at least the reflecting member 12 and the second objective optical system 13 may be rotated around the optical axis of the common optical system 11, but the entire optical system is rotated. May be performed.

また、同一な被写体を複数の対物光学系にて撮影を行い同時に観察を行うに際して、形成される複数像の光軸上における最良結像位置のズレは、画像入力媒体を撮像素子とした場合は以下の関係を満たすと良い。

ΔIP≧10・L/2・N
L:撮像素子の画素ピッチ
N:NA値が大きい方の光学系のNA値
ΔIP:許容差分幅

この条件は、複数形成像を同時に撮像素子に鮮明に取り込むための条件であり、この条件式を外れると各形成像の取り込みごとにピント調整を行わなければならなくなる。そのため、複数形成像を共に尖鋭に取り込むためには各形成画像域を分割して取り込まなければならなくなるため、処理時間がかかる恐れがある。
In addition, when the same subject is photographed with a plurality of objective optical systems and observed simultaneously, the deviation of the best image formation position on the optical axis of the formed multiple images is different when the image input medium is an image sensor. The following relationship should be satisfied.

ΔIP ≧ 10 · L / 2 · N
L: Pixel pitch of the image sensor N: NA value of the optical system having a larger NA value ΔIP: Allowable difference width

This condition is a condition for clearly capturing a plurality of formed images simultaneously in the image sensor. If this conditional expression is not satisfied, it is necessary to adjust the focus every time each formed image is captured. For this reason, in order to capture a plurality of formed images together sharply, it is necessary to divide and capture each formed image area, which may require processing time.

また、各々の対物光学系15,13が互いに異なる物体距離の被写体を撮影する状態では、共通光学系11内に、光軸方向へ移動を行うフォーカスレンズ群を配置する方法がある。即ち、複数光学系のうち、目的とする形成像が最良になるように前記フォーカスレンズ群の駆動を行う方法である。また、複数光学系の形成像を同時に最良にするために、それぞれの対物光学系15,13中にフォーカスレンズ群を配置してその駆動を行っても良い。   Further, in a state where the objective optical systems 15 and 13 photograph subjects having different object distances, there is a method of disposing a focus lens group that moves in the optical axis direction in the common optical system 11. In other words, this is a method of driving the focus lens group so that a target formed image is the best among a plurality of optical systems. Further, in order to simultaneously optimize the formed images of a plurality of optical systems, a focus lens group may be disposed in each of the objective optical systems 15 and 13 and driven.

また、ピント調整を自動的に行うためには、撮像素子上に結像される形成像のコントラスト評価を用いたオートフォーカス方式や各対物光学系の撮影軸に合わせたアクティブ方式の外部オートフォーカス機構をそれぞれの光学系に独立して用いても良い。   In addition, in order to automatically adjust the focus, an autofocus method using the contrast evaluation of the formed image formed on the image sensor and an active external autofocus mechanism that matches the shooting axis of each objective optical system May be used independently for each optical system.

図8は、後述する数値実施例1に示す数値が適用される上記第1の具象例に係る広角光学系の構成図であり、図9は、後述する数値実施例2に示す数値が適用される上記第1の具象例に係る望遠光学系の構成図である。   FIG. 8 is a configuration diagram of the wide-angle optical system according to the first concrete example to which the numerical value shown in numerical example 1 described later is applied, and FIG. 9 shows the numerical value shown in numerical example 2 described later. FIG. 2 is a configuration diagram of a telephoto optical system according to the first concrete example.

図8及び図9において、共通反射部材12−1が共通光学系11−1の光入射側の空気間隔中に配置されている。また、図8に示すように、第1対物光学系15−1は、結像面側に強い凹面を向けた2枚の負レンズで構成され、これによって強い負の歪曲収差を与えて画角が90°以上となる魚眼光学作用を得ている。一方、図9に示すように、第2対物光学系13−1は、光入射側から正レンズと負レンズで構成され、歪曲収差を補正して全体として弱い負の屈折力とすることで図8の光学系に対し望遠である光学特性を得ている。   8 and 9, the common reflecting member 12-1 is disposed in the air interval on the light incident side of the common optical system 11-1. As shown in FIG. 8, the first objective optical system 15-1 is composed of two negative lenses having a strong concave surface directed toward the image plane, thereby giving a strong negative distortion and an angle of view. Has a fisheye optical action of 90 ° or more. On the other hand, as shown in FIG. 9, the second objective optical system 13-1 is composed of a positive lens and a negative lens from the light incident side, and corrects distortion to give a weak negative refractive power as a whole. Optical characteristics that are telephoto with respect to the optical system 8 are obtained.

図10(a),(b),(c)は、図1に示した光学装置の第2の具象例を示す光路図である。   FIGS. 10A, 10B, and 10C are optical path diagrams showing a second concrete example of the optical device shown in FIG.

この光学装置は、ズームレンズ構成時の変倍光学系には5群構成のものを使用し、広角系の第1対物光学系15−2として後述する数値実施例6に示す数値が適用される魚眼光学系を用いている。そして、望遠系の第2対物光学系13−2には、後述する数値実施例7に示す数値が適用される光学系を用いたものである。また、本光学装置の構成では、共通反射部材12−1にプリズムの替わりに薄型ミラーを用いている。そして、共通反射部材12−1が、第1対物光学系15−2からの被写体光を選択したときは、変倍光学系を規定の変倍状態に設定するようになっている。   This optical apparatus uses a five-group configuration as the variable magnification optical system when the zoom lens is configured, and the numerical values shown in Numerical Example 6 to be described later are applied as the first objective optical system 15-2 having a wide angle system. A fisheye optical system is used. The telephoto second objective optical system 13-2 uses an optical system to which the numerical values shown in Numerical Example 7 to be described later are applied. In the configuration of this optical apparatus, a thin mirror is used instead of the prism for the common reflecting member 12-1. When the common reflecting member 12-1 selects the subject light from the first objective optical system 15-2, the variable magnification optical system is set to a prescribed variable magnification state.

図11は、後述する数値実施例6に示す数値が適用される上記第2の具象例(図10)に係る広角光学系の構成図であり、図12は、後述する数値実施例7に示す数値が適用される上記第2の具象例(図10)に係る望遠光学系の構成図である。   FIG. 11 is a configuration diagram of a wide-angle optical system according to the second concrete example (FIG. 10) to which the numerical value shown in numerical example 6 described later is applied, and FIG. 12 is shown in numerical example 7 described later. It is a block diagram of the telephoto optical system which concerns on the said 2nd concrete example (FIG. 10) to which a numerical value is applied.

本例において配置されている広角光学系(第1対物光学系15−2を含む光学系)は、変倍光学系の広角端で用いる仕様になっており、望遠側に変倍を行うと、第1対物光学系15−2に配置された遮光部材16によって形成像が徐々に遮光されるものである。   The wide-angle optical system (an optical system including the first objective optical system 15-2) arranged in this example is a specification used at the wide-angle end of the zoom optical system, and when zooming is performed on the telephoto side, The formed image is gradually shielded by the light shielding member 16 disposed in the first objective optical system 15-2.

図13(a)〜(d)は、図1に示した光学装置の第3の具象例を示す光路図である。また、図14は、数値実施例8に示す数値が適用される図13に係る広角光学系の構成図であり、図15は、数値実施例9に示す数値が適用される図13における望遠光学系の構成図である。   13A to 13D are optical path diagrams showing a third concrete example of the optical device shown in FIG. 14 is a configuration diagram of the wide-angle optical system according to FIG. 13 to which the numerical value shown in Numerical Example 8 is applied, and FIG. 15 is the telephoto optical system in FIG. 13 to which the numerical value shown in Numerical Example 9 is applied. It is a block diagram of a system.

本例において配置されている望遠光学系(第2対物光学系13−2を含む光学系)は、図15に示すように、全体として光入射側より負の第1レンズ群B1と正の第2レンズ群B2を有している。該第1レンズ群B1を光軸上固定として、広角から望遠側への変倍時には該第2レンズ群B2を該第1レンズ群B1との空気間隔が狭くなるように光軸移動を行う。そして、それに伴う像面移動を補正するように撮像媒体を光軸移動させるものである。   As shown in FIG. 15, the telephoto optical system (optical system including the second objective optical system 13-2) arranged in this example has a negative first lens unit B1 and a positive first lens unit as a whole from the light incident side. It has two lens groups B2. The first lens unit B1 is fixed on the optical axis, and the optical axis is moved so that the air space between the second lens unit B2 and the first lens unit B1 is narrowed at the time of zooming from the wide angle to the telephoto side. Then, the image pickup medium is moved along the optical axis so as to correct the accompanying image plane movement.

本例において、広角光学系と望遠変倍光学系の撮影切替え方法は、図13(a)〜(d)に示すように、反射鏡12−1の挿入と退避を選択的に行うことで行っている。また、広角光学系によって得る画像は、該望遠光学系を広角端近傍位置にして反射鏡12−1を退避することを前提としている。   In this example, the photographing switching method between the wide-angle optical system and the telephoto variable magnification optical system is performed by selectively inserting and retracting the reflecting mirror 12-1 as shown in FIGS. ing. The image obtained by the wide-angle optical system is based on the premise that the reflecting mirror 12-1 is retracted with the telephoto optical system positioned near the wide-angle end.

[第2の実施の形態]
第2の実施の形態では、第1対物光学系として、結像面側に凸面形状を有した全方位反射部材(または頂点を結像面側に向けた円錐形状の反射部材でもよい)を配置し、その反射像を形成することにより広角な画角を得る光学装置について説明する。
[Second Embodiment]
In the second embodiment, an omnidirectional reflecting member having a convex shape on the imaging surface side (or a conical reflecting member with the apex facing the imaging surface side) may be disposed as the first objective optical system. An optical device that obtains a wide angle of view by forming the reflected image will be described.

<光学装置の概略構成>
図16は、本発明の第2の実施の形態に係わる光学装置の概略構成を示す断面図であり、図1と共通の要素には同一の符号を付し、その説明を省略する。
<Schematic configuration of optical device>
FIG. 16 is a cross-sectional view showing a schematic configuration of an optical apparatus according to the second embodiment of the present invention. Elements common to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

図16に示すように、この光学装置は、撮像素子IPから、共通光学系11及び共通反射部材12を介して第2対物光学系13までの構成が、図1に示した第1の実施の形態と同様である。即ち、図1と異なる点は、第1対物光学系15Aとして、その光入射側から順次、凸面形状を有した全方位反射部材15A−1、遮光部材16、及びレンズ群15A−2を配置し、その反射像を形成することにより広角な画角を得るようにした点である。   As shown in FIG. 16, this optical apparatus has a configuration from the image sensor IP to the second objective optical system 13 via the common optical system 11 and the common reflecting member 12 in the first embodiment shown in FIG. 1. It is the same as the form. That is, the difference from FIG. 1 is that as the first objective optical system 15A, an omnidirectional reflecting member 15A-1, a light shielding member 16, and a lens group 15A-2 having a convex shape are arranged in order from the light incident side. A wide angle of view is obtained by forming the reflected image.

全方位反射部材15A−1は、入射光の進行方向に凸面を向けた凸面形状の反射部材もしくは入射光の進行方向に頂点を向けた円錐形状の反射部材で構成される。   The omnidirectional reflecting member 15A-1 is configured by a convex reflecting member having a convex surface in the traveling direction of incident light or a conical reflecting member having a vertex directed in the traveling direction of incident light.

ここで、図16中の遮光部材16は、配置しなくても良いが、第1対物光学系15Aによる不要な写りこみを防止するものである。即ち、反射部材15A−1の凸面の頂点周りからの反射光の遮光を行い、それに対応した本来画面中央領域に形成される像に対して遮光領域を設けるものである。   Here, the light shielding member 16 in FIG. 16 need not be arranged, but prevents unnecessary reflection by the first objective optical system 15A. That is, the reflected light from around the apex of the convex surface of the reflecting member 15A-1 is shielded, and a light shielding area is provided for the image originally formed in the central area of the screen.

本実施の形態における共通反射部材12も、第1の実施の形態と同様の作用を有している。即ち、複数の対物光学系15,13からの入射光を選択的に偏向もしくは遮光するような作用を有している。   The common reflecting member 12 in the present embodiment also has the same function as that in the first embodiment. That is, it has an effect of selectively deflecting or shielding incident light from the plurality of objective optical systems 15 and 13.

<光学装置の具象例>
図17は、図16に示した光学装置の第1の具象例を示す光路図であり、図18は、後述する数値実施例3に示す数値が適用される第1の具象例(図16)に係る広角光学系の構成図である。なお、本例で配置されている望遠光学系は、数値実施例2に示す数値が適用される望遠光学系と同様なものである。
<Concrete examples of optical devices>
FIG. 17 is an optical path diagram showing a first concrete example of the optical device shown in FIG. 16, and FIG. 18 is a first concrete example (FIG. 16) to which the numerical values shown in Numerical Example 3 described later are applied. It is a block diagram of the wide angle optical system which concerns on. The telephoto optical system arranged in this example is the same as the telephoto optical system to which the numerical value shown in Numerical Example 2 is applied.

本例の光学装置では、第1対物光学系15Aの最も光入射側に、凸面を結像面方向に向けた双曲面形状の反射部材15A−1aを配置し、その結像面側に反射像を補正して共通光学系11−3に導くための負レンズ群15A−2aが配置された構成となっている。   In the optical apparatus of this example, a hyperboloid-shaped reflecting member 15A-1a having a convex surface in the imaging plane direction is disposed on the most light incident side of the first objective optical system 15A, and a reflected image is formed on the imaging plane side. In this configuration, a negative lens group 15A-2a for correcting and guiding the light to the common optical system 11-3 is arranged.

このような反射光学系の構成とすることにより、光軸に対する360°周りの被写体を水平方向の画像範囲とすると、垂直方向の被写体像は光軸と直交する角度方向をまたがった被写体像を取り込める。そのため、前記した魚眼光学系においては設計が困難である被写体画界域を撮影することが容易となる。   By adopting such a reflection optical system configuration, when a subject around 360 ° with respect to the optical axis is set as an image range in the horizontal direction, the subject image in the vertical direction can capture a subject image extending across the angular direction orthogonal to the optical axis. . Therefore, it becomes easy to photograph the subject field area that is difficult to design in the fish-eye optical system described above.

図19(a),(b)(c)は、図16に示した光学装置の第2の具象例を示す光路図である。   19A, 19B, and 19C are optical path diagrams showing a second concrete example of the optical device shown in FIG.

この光学装置は、広角光学系を前記反射部材15A−1aを有する反射光学系として、共通光学系11−3を変倍構成にしている。また、望遠光学系(第2対物光学系13−2を含む光学系)をより望遠側へ変倍させる変倍光学系とすることにより更なる詳細像の形成を行えるようにしたものである。   In this optical apparatus, the wide-angle optical system is a reflection optical system having the reflection member 15A-1a, and the common optical system 11-3 has a variable magnification configuration. Further, by forming a telephoto optical system (an optical system including the second objective optical system 13-2) as a zooming optical system that zooms further to the telephoto side, further detailed images can be formed.

そして、共通反射部材12として、ビーム・スプリットプリズム12−2を用い、2面方向からの光線を1方向へ導光するように配置を行っている。そのために使用されるプリズムは、前記の図3〜図5で説明を行ったような、透過方向と反射方向特性を任意に選択することができるものを用いると良い。   Then, a beam split prism 12-2 is used as the common reflecting member 12, and the arrangement is performed so as to guide light rays from two directions in one direction. As the prism used for this purpose, it is preferable to use a prism capable of arbitrarily selecting the transmission direction and the reflection direction characteristics as described with reference to FIGS.

図20は、数値実施例4に示す数値が適用される図19における広角光学系の構成図であり、図21は、数値実施例5に示す数値が適用される第2の具象例(図19)に係る望遠光学系の構成図である。   20 is a configuration diagram of the wide-angle optical system in FIG. 19 to which the numerical value shown in Numerical Example 4 is applied, and FIG. 21 is a second concrete example to which the numerical value shown in Numerical Example 5 is applied (FIG. 19). 2 is a configuration diagram of a telephoto optical system according to FIG.

本例の変倍光学系は、光入射側より屈折力が正の第1レンズ群B1、負の第2レンズ群B2、正の第3レンズ群B3、正の第4レンズ群B4、及び負の第5レンズ群B5で構成されるものである。そして、広角から望遠への変倍に際しては、前記第2レンズ群B2を結像面側への移動を行い、第4レンズ群B4で結像面位置の補正を行うようにそれぞれ光軸移動を行っている。またフォーカスは、第4レンズB4を光軸移動させるのが好ましい。さらに防振機能が必要な際は第3レンズ群B3全体もしくは第3レンズ群B3中の一部のレンズ群を光軸と垂直な方向に移動させて像ブレを補正するように像面変位を与えると良い。   In the variable power optical system of this example, the first lens unit B1, the negative second lens unit B2, the positive third lens unit B3, the positive fourth lens unit B4, and the negative lens unit having positive refractive power from the light incident side. The fifth lens unit B5. When zooming from wide angle to telephoto, the second lens group B2 is moved toward the image plane, and the optical axis is moved so that the image plane position is corrected by the fourth lens group B4. Is going. Further, focusing is preferably performed by moving the fourth lens B4 along the optical axis. Further, when the image stabilization function is required, the image plane displacement is corrected so as to correct the image blur by moving the entire third lens unit B3 or a part of the third lens unit B3 in the direction perpendicular to the optical axis. Good to give.

ここで、広角光学系(第1対物光学系15Aを含む光学系)は、前記変倍光学系の広角端で用いる仕様になっており、望遠側に変倍を行うと、第1対物光学系15Aに配置された遮光部材16によって形成像が徐々に遮光されるものである。   Here, the wide-angle optical system (an optical system including the first objective optical system 15A) has a specification used at the wide-angle end of the zoom optical system. When zooming is performed on the telephoto side, the first objective optical system is used. The formed image is gradually shielded by the light shielding member 16 arranged at 15A.

[第3の実施の形態]
第3の実施の形態では、第2対物光学系と共通光学系を合成した光学系が2次結像光学系の作用を有している光学装置について説明する。
[Third Embodiment]
In the third embodiment, an optical apparatus in which an optical system that combines a second objective optical system and a common optical system has the function of a secondary imaging optical system will be described.

<光学装置の概略構成>
図22は、本発明の第3の実施の形態に係わる光学装置の概略構成を示す断面図であり、図1と共通の要素には同一の符号を付し、その説明を省略する。
<Schematic configuration of optical device>
FIG. 22 is a cross-sectional view showing a schematic configuration of an optical device according to the third embodiment of the present invention. Elements common to those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態に係る望遠光学系は、光入射側に全体が正の屈折作用を有する第2対物光学系13Aと、その1次結像位置R1近傍に配置される正の屈折力を有する第2対物光学系13Bとで構成される。そして、第1対物光学系15Bと第2対物光学系13A,13Bとのそれぞれの被写体光を共に介するような位置に共通反射部材12が配置されている。共通反射部材12は、広角な画角を得るための第1対物光学系15からの被写体光とそれよりも望遠である第2対物光学系13A,13Bの被写体光とに対して、選択的に一方を偏向、他方を遮光するような作用を有している。   The telephoto optical system according to the present embodiment has a second objective optical system 13A having a positive refractive action as a whole on the light incident side, and a first refractive power having a positive refractive power disposed in the vicinity of the primary imaging position R1. 2 objective optical system 13B. Then, the common reflecting member 12 is disposed at a position through which the subject lights of the first objective optical system 15B and the second objective optical systems 13A and 13B are passed. The common reflecting member 12 selectively selects the subject light from the first objective optical system 15 for obtaining a wide angle of view and the subject light of the second objective optical systems 13A and 13B that are more telephoto than that. It has the effect of deflecting one and shielding the other.

<光学装置の具象例>
図23は、図22に示した光学装置の第1の具象例を示す光路図であり、図24は、後述する数値実施例10に示す数値が適用される第1の具象例(図23)に係る望遠光学系の構成図である。
<Concrete examples of optical devices>
23 is an optical path diagram showing a first concrete example of the optical device shown in FIG. 22, and FIG. 24 is a first concrete example (FIG. 23) to which the numerical values shown in Numerical Example 10 described later are applied. 1 is a configuration diagram of a telephoto optical system according to FIG.

本例における望遠光学系(第2対物光学系13A−1,13B−1を含む光学系)には、数値実施例10に示す数値が適用される2次結像形式の光学系を配置する構成としている。また、広角光学系に前述した数値実施例1に示される魚眼光学系を用いている。そして、広角系の第1対物光学系15−1には共通反射部材12−1の反射特性を用い、望遠系の第2対物光学系13A−1,13B−1には共通反射部材12−1の透過特性を用いて、それぞれの被写体光を共通光学系11−3へ導光するものである。   In the telephoto optical system (optical system including the second objective optical systems 13A-1 and 13B-1) in this example, a configuration in which a secondary imaging type optical system to which the numerical value shown in Numerical Example 10 is applied is arranged. It is said. Further, the fish-eye optical system shown in Numerical Example 1 described above is used as the wide-angle optical system. The wide-angle first objective optical system 15-1 uses the reflection characteristics of the common reflecting member 12-1, and the telescopic second objective optical systems 13A-1 and 13B-1 use the common reflecting member 12-1. Each of the subject lights is guided to the common optical system 11-3 by using the transmission characteristics of.

図23の例では、2次結像光学系における1次結像光学系(第2対物光学系)13A−1と、フィールドレンズ群13B−1との間に反射部材17Aを配置し、望遠側の第2対物光学系13A−1の被写体光を偏向させている。   In the example of FIG. 23, a reflecting member 17A is disposed between the primary imaging optical system (second objective optical system) 13A-1 in the secondary imaging optical system and the field lens group 13B-1, and the telephoto side. The object light of the second objective optical system 13A-1 is deflected.

また、光学装置を小型にするために、この第1具象例では、共通反射部材12−1の結像面側に配置されている厚い肉厚の正レンズ11−3aを、90°の偏向作用を持たせたプリズム形状とすることにより、光学系を畳んだような構成にしている。   Further, in order to reduce the size of the optical device, in this first concrete example, a thick positive lens 11-3a disposed on the image plane side of the common reflecting member 12-1 is deflected by 90 °. By adopting a prism shape with the, the optical system is folded.

さらに、前記反射部材17Aと第2対物光学系13A−1(1次結像光学系)を回転駆動(チルト駆動)することと光学装置全体を回転駆動(パン駆動)することを行うと、様々な方向の被写体を望遠光学系で捉えることが出来るようになる。   Further, when the reflecting member 17A and the second objective optical system 13A-1 (primary imaging optical system) are rotationally driven (tilt driving) and the entire optical device is rotationally driven (pan driving), various operations are performed. A subject in any direction can be captured with a telephoto optical system.

この際に、前述したチルト駆動は、前記反射部材17Aと光軸とが交わる点を回転中心(図23の17A−1)として、前記第2対物光学系13A−1の撮影軸を目的被写体方向になるように回転駆動を行わせる。それに伴う結像位置の変位は、前記反射部材17Aを回転中心17A−1と等価な回転中心位置を基準として回転駆動を行わせることで補正する。   At this time, the tilt drive described above uses the point of intersection of the reflecting member 17A and the optical axis as the rotation center (17A-1 in FIG. 23), and the imaging axis of the second objective optical system 13A-1 as the target subject direction. Rotation drive is performed so that The resulting displacement of the imaging position is corrected by rotating the reflecting member 17A with reference to the rotation center position equivalent to the rotation center 17A-1.

この場合、反射部材17Aと第2対物光学系13A−1それぞれの駆動角度は、反射部材17Aの反射面を平面としたとき、その反射部材17Aの駆動角度の変位に対して偏向角変位は2倍の関係になる。このことから、第2対物光学系13A−1の回転角をA、反射部材17Aの回転角をBとした時に、
A=2・B
の関係にするのが望ましく、この関係を満足することにより第2対物光学系の位置変化による結像位置変位と結像性能変化を防止することが出来る。
In this case, the driving angle of each of the reflecting member 17A and the second objective optical system 13A-1 is 2 with respect to the displacement of the driving angle of the reflecting member 17A when the reflecting surface of the reflecting member 17A is a plane. It becomes a double relationship. From this, when the rotation angle of the second objective optical system 13A-1 is A and the rotation angle of the reflecting member 17A is B,
A = 2 ・ B
It is desirable to satisfy this relationship, and by satisfying this relationship, it is possible to prevent the displacement of the image formation position and the change in image formation performance due to the position change of the second objective optical system.

なお、上記した反射部材17Aと第2対物光学系13A−1(1次結像光学系)の回転駆動関係は、共通反射部材12−1と、それにより入射光が偏向される対物光学系においても同様な効果が得られるものである。   The rotational drive relationship between the reflecting member 17A and the second objective optical system 13A-1 (primary imaging optical system) is the same in the common reflecting member 12-1 and the objective optical system in which incident light is deflected thereby. The same effect can be obtained.

図25は、図22に示した光学装置の第2の具象例を示す光路図である。   25 is an optical path diagram showing a second concrete example of the optical device shown in FIG.

この光学装置は、図23の光学装置と同様な光学部材を用いたものであり、前述した反射部材17Aを省いてチルト駆動を無くす代わりに、広角光学系の撮影画界の一部を望遠光学系で観察できるように、共通反射部材12の配置角度を偏向させている。そして、それに伴って、望遠側の第2対物光学系13A−1,13B−1と共通光学系11−3に、広角側の第1対物光学系15−1に相対した傾きを与えたものである。   This optical device uses the same optical member as that of the optical device of FIG. 23. Instead of eliminating the above-described reflecting member 17A and eliminating the tilt drive, a part of the photographing field of the wide-angle optical system is telephoto optical. The arrangement angle of the common reflecting member 12 is deflected so that it can be observed with the system. Accordingly, the second objective optical systems 13A-1 and 13B-1 on the telephoto side and the common optical system 11-3 are given an inclination relative to the first objective optical system 15-1 on the wide angle side. is there.

[第4の実施の形態]
第4の実施の形態は、上記した第3の実施の形態と同様に、第2対物光学系と共通光学系を合成した光学系が2次結像光学系の作用をもつ光学装置の他の例である。
[Fourth Embodiment]
In the fourth embodiment, as in the third embodiment described above, the optical system in which the second objective optical system and the common optical system are combined has the function of a secondary imaging optical system. It is an example.

<光学装置の概略構成>
図26は、本発明の第4の実施の形態に係わる光学装置の概略構成を示す断面図であり、図22と共通の要素には同一の符号を付し、その説明を省略する。
<Schematic configuration of optical device>
FIG. 26 is a cross-sectional view showing a schematic configuration of an optical apparatus according to the fourth embodiment of the present invention. Elements common to those in FIG.

この光学装置の特徴は、上記した第3の実施の形態と同様の作用を持ち、第1対物光学系15Aに、結像面側に凸面形状を有した全方位反射部材15A−1を配置し、その反射像を形成することにより広角な画角を得るように構成されている点である。   This optical device has the same function as that of the third embodiment described above, and an omnidirectional reflecting member 15A-1 having a convex shape on the image forming surface side is arranged in the first objective optical system 15A. In other words, a wide angle of view is obtained by forming the reflected image.

そして、第1対物光学系15Aにおける反射部材15A−1とレンズ15A−2との間には、遮光部材16が配置されている。ここで、遮光部材16は、図16で説明したと同様に、第1対物光学系15Aによる不要な光学系の写りこみを防止するためのものである。   A light shielding member 16 is disposed between the reflecting member 15A-1 and the lens 15A-2 in the first objective optical system 15A. Here, the light shielding member 16 is to prevent unnecessary reflection of the optical system by the first objective optical system 15A, as described with reference to FIG.

<光学装置の具象例>
図27は、図26に示した光学装置の具象例を示す光路図である。
<Concrete examples of optical devices>
FIG. 27 is an optical path diagram showing a concrete example of the optical device shown in FIG.

望遠光学系(第2対物光学系13A−1,13B−1を含む光学系)には、前述した図25と同様な光学要素を用い、第1対物光学系15Aには、光入射側に凸面を結像面方向に向けた双曲面形状の反射部材15A−1aを用いたものである。即ち、広角光学系には、数値実施例3と同様の光学要素を用いている。   The telephoto optical system (the optical system including the second objective optical systems 13A-1 and 13B-1) uses the same optical elements as in FIG. 25 described above, and the first objective optical system 15A has a convex surface on the light incident side. Using a hyperboloidal reflecting member 15A-1a in the direction of the image plane. That is, the same optical element as in Numerical Example 3 is used in the wide-angle optical system.

[光学装置の変形例]
(1)上述した図23、図25及び図27の光学装置のパン駆動は、装置全体を広角系の第1対物光学系の光軸を中心に回転させれば良いが、広角系の第1対物光学系は固定して、その他の光学系を回転させるようにしても良い。
[Modification of optical device]
(1) The pan driving of the optical device shown in FIGS. 23, 25, and 27 described above may be performed by rotating the entire device around the optical axis of the first wide-angle objective optical system. The objective optical system may be fixed and other optical systems may be rotated.

(2)上記した各実施の形態における光学装置の構成は、上述した例に限らず、例えば、前記した反射と遮光の関係が逆になるように、第1対物光学系と第2対物光学系の配置を構成しても良い。   (2) The configuration of the optical device in each of the above embodiments is not limited to the above-described example. For example, the first objective optical system and the second objective optical system so that the relationship between reflection and light shielding described above is reversed. The arrangement may be configured as follows.

(3)像形成媒体は撮像素子に限ったものではなく、必要に応じては銀塩フィルムやピント板を配置してその投影像の観察や、形成像を空中像としてその像をフィールドスコープにて観察を行うようにしても良い。   (3) The image forming medium is not limited to the image pickup device. If necessary, a silver salt film or a focusing plate is arranged to observe the projected image, or the formed image is an aerial image and the image is used as a field scope. You may make it observe.

なお、各実施の形態における各光路図は、第1対物光学系と第2対物光学系からの入射光が共に共通光学系11を通過して結像する様子を示している。   Each optical path diagram in each embodiment shows how incident light from the first objective optical system and the second objective optical system passes through the common optical system 11 to form an image.

[第5の実施の形態]
次に、上記第1〜第4実施の形態に係る光学装置の適用例について、図28〜図32を参照して説明する。
[Fifth Embodiment]
Next, application examples of the optical device according to the first to fourth embodiments will be described with reference to FIGS. 28 to 32.

図28は、上記第1〜第4実施の形態の何れに係る光学装置を搭載した撮像装置の設置例を示す概念図である。   FIG. 28 is a conceptual diagram showing an installation example of an imaging device equipped with the optical device according to any of the first to fourth embodiments.

図28において、上述した光学装置40を搭載した撮像装置41は、撮像装置内の撮像素子IPが下向きとなるように天井面42に設置することで、斜め下方向の被写体(人物)43を観察できるように構成されている。   In FIG. 28, an imaging device 41 equipped with the above-described optical device 40 is installed on the ceiling surface 42 so that the imaging element IP in the imaging device faces downward, thereby observing a subject (person) 43 in a diagonally downward direction. It is configured to be able to.

また、図28中の符号44と符号45は、前述したように遮光、透過、偏向特性を変化させる共通反射部材12により2つの対物光学系から入射されるそれぞれの被写体光線を任意に選択して結像を行わせたものである。   In addition, reference numerals 44 and 45 in FIG. 28 are used to arbitrarily select subject light rays incident from the two objective optical systems by the common reflecting member 12 that changes the light shielding, transmission, and deflection characteristics as described above. The image is formed.

符号44で示す画像は、光学装置40における広角系の第1対物光学系15と共通光学系11の合成光学系で取り込まれた画像であり、符号45で示す画像は、望遠系の第2対物光学系13と共通光学系11の合成光学系で取り込まれた画像である。また、図中のW1,W2は画角範囲を示し、図29で後述する。また、図示のωは被写体方向角度を概略的に表したものであり、図30及び図32で後述する。   The image denoted by reference numeral 44 is an image captured by the combined optical system of the wide-angle first objective optical system 15 and the common optical system 11 in the optical device 40, and the image denoted by reference numeral 45 is the telescopic second objective. It is an image captured by the combining optical system of the optical system 13 and the common optical system 11. W1 and W2 in the figure indicate the field angle range, which will be described later with reference to FIG. In addition, ω shown schematically represents an object direction angle, which will be described later with reference to FIGS. 30 and 32.

図29は、図28中の撮像装置の機構の概略構成を示す断面図である。   29 is a cross-sectional view showing a schematic configuration of the mechanism of the imaging apparatus in FIG.

図29において、撮像装置41は、筐体内部に光学装置40と撮像素子を備えると共に、パン駆動機構41a、チルト駆動機構41b、及び保護ドーム41cを備える。パン駆動機構41aは、図中矢印Ya方向(パンニング方向)に駆動し、チルト駆動機構41bは図中矢印Yb方向(チルト方向)に駆動する。   In FIG. 29, an imaging device 41 includes an optical device 40 and an imaging element inside a casing, and also includes a pan driving mechanism 41a, a tilt driving mechanism 41b, and a protective dome 41c. The pan driving mechanism 41a is driven in the arrow Ya direction (panning direction) in the drawing, and the tilt driving mechanism 41b is driven in the arrow Yb direction (tilting direction) in the drawing.

また、符号W1で示す範囲は、光学装置40の第1対物光学系15と共通光学系11を合成した合成光学系による画角範囲であり、符号W2で示す範囲は光学装置の第2対物光学系13と共通光学系11を合成した合成光学系による画角範囲である。   The range indicated by reference sign W1 is a field angle range by a composite optical system in which the first objective optical system 15 of the optical device 40 and the common optical system 11 are combined, and the range indicated by reference sign W2 is the second objective optical of the optical device. This is an angle of view range by a composite optical system in which the system 13 and the common optical system 11 are combined.

撮像装置41においては、光学装置40における第2対物光学系13中の反射部材(図示省略)もしくは第1対物光学系15及び第2対物光学系13がともに介する共通反射部材12を回転駆動することで、これら反射部材を任意の偏向角度に設定する。つまり、チルト駆動を行う。これにより、被写体の距離に合わせて第2対物光学系13による撮影軸調整を行う。さらに、少なくとも第2対物光学系13中の光入射側に配置される光学系を含むように、光軸を回転軸として回転駆動する。つまり、パンニング駆動を行う。これにより、被写体の方向に合わせて第2対物光学系13の撮影方向を変化させる。   In the imaging device 41, the reflection member (not shown) in the second objective optical system 13 in the optical device 40 or the common reflection member 12 through which the first objective optical system 15 and the second objective optical system 13 are interposed is rotationally driven. Then, these reflecting members are set to an arbitrary deflection angle. That is, tilt drive is performed. Thereby, the photographing axis is adjusted by the second objective optical system 13 in accordance with the distance of the subject. Further, the optical axis is rotated and driven so as to include at least the optical system arranged on the light incident side in the second objective optical system 13. That is, panning drive is performed. Thereby, the photographing direction of the second objective optical system 13 is changed in accordance with the direction of the subject.

尚、図29に示す構成では、撮像素子を含む光学系全体を光軸周りに回転可能とする構成としているが、これに限定されるものではない。少なくとも、第2対物光学系13からの入射光を偏向させる共通反射部材12による光偏向後の光軸を回転中心として回転駆動させればよい。   In the configuration shown in FIG. 29, the entire optical system including the image sensor is configured to be rotatable around the optical axis, but is not limited thereto. What is necessary is just to rotate about the optical axis after the light deflection | deviation by the common reflection member 12 which deflects the incident light from the 2nd objective optical system 13 as a rotation center at least.

また、図28に示すように、撮像装置41で歩行中の被写体(人物)43の上半身像を撮影するためには、先ず第1対物光学系15で取り込まれる画像から被写体方向を識別し、パンニング駆動により第2対物光学系13の水平方向への撮影軸を合わせる。その後、被写体43の距離に合わせてチルト駆動を行い、前述したように共通反射部材12の透過、遮光作用を変化させることで、第2対物光学系13により被写体43の上半身の撮影を行う。その後、被写体を見失った際は、この動作を繰り返し行うことで、動体(歩行中の被写体43)の追尾を精度良く行うことが可能となる。   Further, as shown in FIG. 28, in order to capture an upper body image of a walking subject (person) 43 with the imaging device 41, first, the subject direction is identified from the image captured by the first objective optical system 15, and panning is performed. The imaging axis in the horizontal direction of the second objective optical system 13 is adjusted by driving. Thereafter, tilt driving is performed in accordance with the distance of the subject 43, and as described above, the transmission and shading action of the common reflecting member 12 is changed, and the upper half of the subject 43 is photographed by the second objective optical system 13. Thereafter, when the subject is lost sight, the moving object (subject 43 during walking) can be accurately tracked by repeating this operation.

以上のような動作は、被写体追尾の目的に限ったものではなく、広範囲の観察において素早く目的被写体を検知して例えば静止画の詳細像を撮影するような用途にも用いることができる。   The operation as described above is not limited to the purpose of subject tracking, but can be used for applications such as capturing a detailed image of a still image by quickly detecting a target subject in a wide range of observations.

ここで、被写体43の方向検知及び補正移動を行う方法の例について説明する。   Here, an example of a method for performing direction detection and correction movement of the subject 43 will be described.

まず、光学装置において現在設定されている光学系の撮影軸のチルト方向及びパン方向の位置検知を行う。次に、第1対物光学系15により捉えられて形状認識部(不図示)等で判別される目的被写体が、イメージサークル(像範囲)中での同心円方向にて補正移動を行うパンニング回転角を算出する。同時に、イメージサークル中心から放射状方向への目的被写体までの距離により、チルト補正駆動量を算出する。そして、算出結果に応じてパン駆動機構及びチルト駆動機構を駆動する。   First, position detection in the tilt direction and pan direction of the imaging axis of the optical system currently set in the optical device is performed. Next, the panning rotation angle at which the target object captured by the first objective optical system 15 and discriminated by a shape recognition unit (not shown) or the like performs correction movement in the concentric direction in the image circle (image range) is set. calculate. At the same time, the tilt correction driving amount is calculated from the distance from the center of the image circle to the target subject in the radial direction. Then, the pan driving mechanism and the tilt driving mechanism are driven according to the calculation result.

図30は、本実施の形態に係る撮像装置による被写体認識時の初期画像状態を示す概念図である。   FIG. 30 is a conceptual diagram showing an initial image state during subject recognition by the imaging apparatus according to the present embodiment.

図30において、光学装置の制御部(図31参照)は、目的被写体61を認識(検知)し、第2対物光学系13で目的被写体61の詳細画像を取り込むために必要なパン方向及びチルト方向の駆動量を算出する。尚、本実施の形態に係る光学装置を搭載した撮像装置の制御部を含む電気的構成については、図31により後述する。   In FIG. 30, the control unit (see FIG. 31) of the optical device recognizes (detects) the target subject 61, and the pan direction and the tilt direction necessary for capturing the detailed image of the target subject 61 with the second objective optical system 13. Is calculated. The electrical configuration including the control unit of the imaging apparatus equipped with the optical device according to the present embodiment will be described later with reference to FIG.

今、光学装置における第2対物光学系13のパン(水平)方向が図示の(P)方向を向いていると想定する。まず、(P)方向を基準として、そこからの第1対物光学系15で撮影したイメージサークルの外周側領域の画像を基に、目的被写体61の同心円方向の角度θを判別する。次に、第1対物光学系15に入射する光線の角度ωとその光線が撮像素子IPの結像面に結像する像高Yとの関係を、例えば、
ω=A・Y+B・Y+C・Y+・・・
但しA,B,C,・・・は、使用される光学系に固有となる係数
と表すような多項次式を、駆動アルゴリズム中に取り入れる。
Now, it is assumed that the pan (horizontal) direction of the second objective optical system 13 in the optical apparatus is directed to the illustrated (P) direction. First, on the basis of the (P) direction, the angle θ of the target subject 61 in the concentric direction is determined based on the image of the outer peripheral side area of the image circle imaged by the first objective optical system 15 therefrom. Next, the relationship between the angle ω of the light beam incident on the first objective optical system 15 and the image height Y at which the light beam forms an image on the imaging surface of the image sensor IP, for example,
ω = A · Y + B · Y 2 + C · Y 3 + ...
However, A, B, C,... Incorporate a polynomial expression such as a coefficient that is specific to the optical system used in the drive algorithm.

次に、イメージサークル中心(画面中心)から目的被写体中心までの距離(画面像高)Yを算出し、距離Yから上記したような多項次式を用いて被写体方向角度ωを算出する。これにより、第2対物光学系13におけるチルト移動群(反射部材を含む被写体側の光学構成)の必要チルト駆動角度を得ることができる。   Next, the distance (screen image height) Y from the center of the image circle (center of the screen) to the center of the target subject is calculated, and the subject direction angle ω is calculated from the distance Y using the above-described polynomial expression. Thereby, the necessary tilt driving angle of the tilt movement group (optical configuration on the subject side including the reflecting member) in the second objective optical system 13 can be obtained.

この際、前述したパンニングとチルト駆動は必ずしも双方の駆動を行う必要は無く、例えば廊下の奥行き、手前方向のみを移動する人物を監視するような場合においてはチルト駆動のみを行えば良い。また、光学装置の周りをあまり距離を変化させずに移動を行う人物等の撮影においては、詳細画像を取り込む第2対物光学系13は必要チルト角に固定しておいてパンニング駆動のみを行えば良いこととなる。   At this time, it is not always necessary to perform both of the panning and tilt driving described above. For example, in the case of monitoring a person who moves only in the hallway depth and the front direction, only the tilt driving may be performed. Further, in photographing a person or the like who moves around the optical apparatus without changing much distance, the second objective optical system 13 for capturing a detailed image is fixed at a necessary tilt angle and only panning driving is performed. It will be good.

以上が、本実施の形態に係る光学装置の適用例において、動体の追尾動作や高視野観察による目標被写体判別と高速な詳細像取りこみに関する説明である。なお、第2対物光学系13のチルト角を第1対物光学系15の画角範囲外を取り込むように設定することで、異方向の被写体を同時に観察することも可能である。   This completes the description of target object discrimination and high-speed detailed image capture by tracking of a moving object or high-field observation in an application example of the optical device according to the present embodiment. Note that by setting the tilt angle of the second objective optical system 13 to be outside the range of the angle of view of the first objective optical system 15, it is possible to simultaneously observe subjects in different directions.

次に、本実施の形態に係る撮像装置の電気的構成例と制御例を、図31及び図32を参照して説明する。   Next, an electrical configuration example and a control example of the imaging apparatus according to the present embodiment will be described with reference to FIGS. 31 and 32. FIG.

図31は、本実施の形態に係る撮像装置の電気的構成例を示すブロック図である。   FIG. 31 is a block diagram illustrating an electrical configuration example of the imaging apparatus according to the present embodiment.

図31において、この撮像装置は、上述した第1〜第4の実施の形態に係る光学装置の何れで構成される光学装置101を有している。さらに、撮像素子IP、信号処理部103、記憶部104、操作部105、制御部106、格納部107、表示部108、パン駆動機構109、チルト駆動機構110、及び透過・遮光切替え機構111を備えている。   In FIG. 31, the imaging apparatus includes an optical device 101 configured by any of the optical devices according to the first to fourth embodiments described above. Furthermore, the image sensor IP, the signal processing unit 103, the storage unit 104, the operation unit 105, the control unit 106, the storage unit 107, the display unit 108, the pan driving mechanism 109, the tilt driving mechanism 110, and the transmission / shading switching mechanism 111 are provided. ing.

撮像素子IPは、光学装置101により結像された被写体像を電気信号に光電変換する。信号処理部103は、撮像素子IPから出力される電気信号に信号処理を施し、画像データとして記憶部104に記憶する。記憶部104は、画像データの記憶領域の他に、制御部106の作業領域やデータ一時記憶領域を有する。操作部105は、光学装置101に対する各種指示の入力に使用される。   The image sensor IP photoelectrically converts the subject image formed by the optical device 101 into an electric signal. The signal processing unit 103 performs signal processing on the electrical signal output from the image sensor IP and stores the signal in the storage unit 104 as image data. The storage unit 104 includes a work area and a temporary data storage area for the control unit 106 in addition to the image data storage area. The operation unit 105 is used for inputting various instructions to the optical device 101.

制御部106は、光学装置101を含む撮像装置全体の制御を司ると共に、信号処理部103の出力画像信号から被写体形状等の特徴を検出する機能を備え、パン駆動機構109、チルト駆動機構110を駆動制御する。パン駆動機構109は、制御部106の制御に基づきパンニング動作を行う。チルト駆動機構110は、制御部106の制御に基づきチルト動作を行う。透過・遮光切替え機構111は、制御部106の制御に基づき、第1対物光学系15及び第2対物光学系13からの入射光の透過又は遮光の規制を行う。   The control unit 106 controls the entire imaging apparatus including the optical device 101 and has a function of detecting features such as a subject shape from the output image signal of the signal processing unit 103. The control unit 106 includes a pan driving mechanism 109 and a tilt driving mechanism 110. Drive control. The pan driving mechanism 109 performs a panning operation based on the control of the control unit 106. The tilt drive mechanism 110 performs a tilt operation based on the control of the control unit 106. The transmission / light shielding switching mechanism 111 controls transmission or shielding of incident light from the first objective optical system 15 and the second objective optical system 13 based on the control of the control unit 106.

また、制御部106は、格納部107に格納された制御プログラムに基づき図32のフローチャートに示す処理を実行する。表示部108は、撮影画像を表示するものであり、撮像装置本体の設置箇所から離間した場所(撮像装置を監視用カメラとして使用する場合は監視センター等)に設置可能である。   Further, the control unit 106 executes the process shown in the flowchart of FIG. 32 based on the control program stored in the storage unit 107. The display unit 108 displays a captured image, and can be installed at a location away from the installation location of the imaging device body (a monitoring center or the like when the imaging device is used as a monitoring camera).

図32は、光学装置101を搭載した撮像装置による被写体認識を行った後の動体追尾動作の流れを示すフローチャートである。   FIG. 32 is a flowchart showing the flow of the moving object tracking operation after subject recognition by the imaging apparatus equipped with the optical device 101.

図32において、撮像装置の制御部106は、操作部105を介して光学装置101の第2対物光学系13に設定されているパン角度(パン方向に駆動する角度)、チルト角度(チルト方向に駆動する角度)を検出し、記憶部104に記憶する(ステップS1)。   In FIG. 32, the control unit 106 of the imaging apparatus has a pan angle (an angle driven in the pan direction) and a tilt angle (in the tilt direction) set in the second objective optical system 13 of the optical device 101 via the operation unit 105. The driving angle is detected and stored in the storage unit 104 (step S1).

次に制御部106は、透過・遮光切替え機構111を制御し、広角系の第1対物光学系15からの被写体光が共通光学系11へ導光されるように共通反射部材12を動作させる(ステップS2)。次に制御部106は、光学装置101の第1対物光学系15により得られる第1の画像範囲(図28中の44に示されるイメージサークル領域)から目的被写体を認識する(ステップS3)。そして、第1の画像範囲から目的被写体の同心円方向の角度θ(図30)を判定する(ステップS4)。   Next, the control unit 106 controls the transmission / shading switching mechanism 111 to operate the common reflection member 12 so that the subject light from the wide-angle first objective optical system 15 is guided to the common optical system 11 ( Step S2). Next, the control unit 106 recognizes the target subject from the first image range (image circle area indicated by 44 in FIG. 28) obtained by the first objective optical system 15 of the optical device 101 (step S3). Then, a concentric angle θ (FIG. 30) of the target subject is determined from the first image range (step S4).

次に制御部106は、前記第1の画像範囲から、目的被写体の画像中心からの放射状方向の長さY(図30参照)を検出し(ステップS5)、長さYを基に被写体方向角度ωを算出する(ステップS6)。つまり、撮影方向と目的被写体方向との相対的な位置関係を検出する。   Next, the control unit 106 detects the length Y (see FIG. 30) in the radial direction from the image center of the target subject from the first image range (step S5), and the subject direction angle based on the length Y. ω is calculated (step S6). That is, the relative positional relationship between the shooting direction and the target subject direction is detected.

次に制御部106は、現在設定されているパン角度及びチルト角度と、目的被写体の同心円方向の角度θと被写体方向角度ωから、必要駆動角度を算出する(ステップS7)。そして、必要駆動角度が予め設定された規定値以上か否かを判定する(ステップS8)。ここで、必要駆動角度とは、目的被写体(動体)の追尾に必要なパン方向及びチルト方向の駆動角度である。   Next, the control unit 106 calculates a necessary drive angle from the currently set pan angle and tilt angle, the concentric angle θ of the target subject, and the subject direction angle ω (step S7). Then, it is determined whether or not the required drive angle is equal to or greater than a preset specified value (step S8). Here, the necessary drive angle is a drive angle in the pan direction and the tilt direction necessary for tracking the target subject (moving body).

上記算出した必要駆動角度が予め設定された規定値未満の場合は、ステップS2へ戻る。他方、上記算出した必要駆動角度が予め設定された規定値以上の場合は、制御部106は、パン駆動機構109によるパン方向の駆動とチルト駆動機構110によるチルト方向の駆動を行う(ステップS9)。この後、制御部106は、前記パン方向の駆動に伴うパン角度と前記チルト方向の駆動に伴うチルト角度を記憶部104に記憶する(ステップS10)。   If the calculated required drive angle is less than the preset specified value, the process returns to step S2. On the other hand, when the calculated required drive angle is equal to or greater than a predetermined value set in advance, the control unit 106 performs driving in the pan direction by the pan driving mechanism 109 and driving in the tilt direction by the tilt driving mechanism 110 (step S9). . Thereafter, the control unit 106 stores the pan angle associated with the driving in the pan direction and the tilt angle associated with the driving in the tilt direction in the storage unit 104 (step S10).

次に制御部106は、透過・遮光切替え機構111を制御し、望遠系の第2対物光学系13からの被写体光が共通光学系11へ導光されるように共通反射部材12を動作させる。これによって、第2対物光学系13により得られる第2の画像範囲(図28中の45に示されるイメージサークル領域)を拾得する。   Next, the control unit 106 controls the transmission / shading switching mechanism 111 to operate the common reflection member 12 so that the subject light from the telephoto second objective optical system 13 is guided to the common optical system 11. As a result, a second image range (image circle region indicated by 45 in FIG. 28) obtained by the second objective optical system 13 is picked up.

その後、信号処理部103からの画像信号により、目的とする被写体を捉えているか否かの解析と判断を行い(ステップS12)、もし目的被写体を見失って再認識が必要と判断した場合には、ステップS2へ戻る。   Thereafter, the image signal from the signal processing unit 103 analyzes and determines whether or not the target subject is captured (step S12). If it is determined that the target subject is lost and re-recognition is necessary, Return to step S2.

以上、本実施の形態に係る撮像装置による動体追尾動作のフローを説明したが、上記した動作ステップは、パン方向とチルト方向の2方向の駆動を共に行う必要はなく、必要に応じてどちらか一方向のみの駆動でも良いものである。   The flow of the moving object tracking operation by the imaging apparatus according to the present embodiment has been described above. However, the above-described operation steps do not need to be performed in both the pan direction and the tilt direction, and either one is required as necessary. It can be driven in only one direction.

従来では、例えば、任意の位置にいる被写体を認識してその詳細像の取り込みや、動体の追尾撮影に際して素早く正確に行うには複数台の撮像装置を使用するのが一般的であった。この点について、本実施の形態の撮像装置においては、1台の撮像装置で上記のような撮影が可能となり、その結果、小型で且つ低コストの光学装置を実現することが可能となる。   Conventionally, for example, in order to recognize a subject at an arbitrary position and capture a detailed image thereof or to perform tracking and shooting of a moving object quickly and accurately, a plurality of imaging devices are generally used. With respect to this point, in the imaging apparatus according to the present embodiment, the above-described imaging can be performed with a single imaging apparatus, and as a result, a compact and low-cost optical apparatus can be realized.

[数値実施例]
次に、数値実施例1乃至10における光学装置の収差図を図33乃至図48に示す。
[Numerical example]
Next, aberration diagrams of the optical device according to Numerical Examples 1 to 10 are shown in FIGS.

図33は、数値実施例1の魚眼光学系の縦収差を示す図である。   FIG. 33 is a diagram illustrating longitudinal aberrations of the fish-eye optical system according to Numerical Example 1.

図34は、数値実施例2の望遠光学系の縦収差を示す図である。   FIG. 34 is a diagram showing longitudinal aberrations of the telephoto optical system in the numerical value example 2. FIG.

図35は、数値実施例3の広角反射光学系の横収差を示す図である。   FIG. 35 is a diagram illustrating lateral aberration of the wide-angle reflective optical system according to Numerical Example 3.

図36は、数値実施例4の広角反射光学系の広角端における横収差を示す図である。   FIG. 36 is a diagram showing transverse aberration at the wide-angle end of the wide-angle reflective optical system in Numerical Example 4.

図37は、数値実施例5の望遠変倍光学系の広角端における縦収差を示す図である。   FIG. 37 is a diagram illustrating longitudinal aberrations at the wide-angle end of the telephoto variable magnification optical system according to Numerical Example 5.

図38は、数値実施例5の望遠変倍光学系の中間における縦収差を示す図である。   FIG. 38 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 5.

図39は、数値実施例5の望遠変倍光学系の望遠端における縦収差を示す図である。   FIG. 39 is a diagram showing longitudinal aberrations at the telephoto end of the telephoto variable magnification optical system in the numerical value example 5.

図40は、数値実施例6の魚眼光学系の広角端における縦収差を示す図である。   FIG. 40 is a diagram illustrating longitudinal aberrations at the wide-angle end of the fish-eye optical system according to Numerical Example 6.

図41は、数値実施例7の望遠変倍光学系の広角端における縦収差を示す図である。   FIG. 41 is a diagram showing longitudinal aberrations at the wide-angle end of the telephoto variable magnification optical system in the numerical value example 7.

図42は、数値実施例7の望遠変倍光学系の中間における縦収差を示す図である。   FIG. 42 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 7.

図43は、数値実施例7の望遠変倍光学系の望遠端における縦収差を示す図である。   FIG. 43 is a diagram showing longitudinal aberrations at the telephoto end of the telephoto variable magnification optical system in the numerical value example 7.

図44は、数値実施例8の魚眼光学系の広角端における縦収差を示す図である。   FIG. 44 is a diagram showing longitudinal aberrations at the wide-angle end of the fish-eye optical system in the numerical value example 8.

図45は、数値実施例9の望遠変倍光学系の広角端における縦収差を示す図である。   FIG. 45 is a diagram showing longitudinal aberrations at the wide-angle end of the telephoto variable magnification optical system in the numerical value example 9.

図46は、数値実施例9の望遠変倍光学系の中間における縦収差を示す図である。   FIG. 46 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 9.

図47は、数値実施例9の望遠変倍光学系の望遠端における縦収差を示す図である。   FIG. 47 is a diagram showing longitudinal aberrations at the telephoto end of the telephoto variable magnification optical system in the numerical value example 9.

図48は、数値実施例10の望遠2次結像光学系の縦収差を示す図である。   FIG. 48 is a diagram showing longitudinal aberrations of the telephoto secondary imaging optical system in the numerical value example 10.

なお、図33乃至図48において、ΔSはサジタル像面であることを示し、ΔMはメリディオナル像面であることを示す。   33 to 48, ΔS indicates a sagittal image plane, and ΔM indicates a meridional image plane.

各数値実施例において、Riは光入射側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々光入射側より順に第i番目のレンズのガラスの屈折率とアッベ数である。
また非球面係数K,A,B,C,D、Eは、図49に示す式(1)で与えるものとする。
但し、Xはレンズ頂点から光軸方向への変位量、Hは光軸からの距離、Rは曲率半径である。
In each numerical example, Ri is the i-th lens thickness and air spacing in order from the light incident side, and Ni and νi are the refractive index and Abbe number of the glass of the i-th lens in order from the light incident side.
The aspherical coefficients K, A, B, C, D, and E are given by the equation (1) shown in FIG.
Where X is the amount of displacement from the lens apex in the optical axis direction, H is the distance from the optical axis, and R is the radius of curvature.

<数値実施例1>
f= 1.08 Fno=1.48 NA=0.34 2ω=168.3°
R 1= 18.885 D 1= 1.20 N 1= 1.83481 ν 1= 42.7
R 2= 6.573 D 2= 3.63
R 3= 466.090 D 3= 1.80 N 2= 1.88300 ν 2= 40.8
R 4= 4.664 D 4= 12.85
R 5= 64.434 D 5= 8.09 N 3= 1.84666 ν 3= 23.9
R 6= -15.593 D 6= 4.55
R 7= 27.039 D 7= 1.80 N 4= 1.77250 ν 4= 49.6
R 8= -78.220 D 8= 1.00
R 9= 絞り D 9= 1.50
R10= -6.568 D10= 2.20 N 5= 1.84666 ν 5= 23.9
R11= 6.366 D11= 2.00 N 6= 1.77250 ν 6= 49.6
R12= -14.479 D12= 0.10
R13= 12.093 D13= 1.82 N 7= 1.60311 ν 7= 60.6
R14= -12.636 D14= 0.10
R15= 7.498 D15= 1.50 N 8= 1.83481 ν 8= 42.7
R16= 21.068 D16= 1.50
R17= ∞ D17= 4.00 N 9= 1.51633 ν 9= 64.1
<数値実施例2>
f= 2.51 Fno= 1.5 NA=0.33 2ω=35.4°
R 1= 59.690 D 1= 1.70 N 1= 1.77250 ν 1= 49.6
R 2= -35.198 D 2= 0.15
* R 3= -114.351 D 3= 1.00 N 2= 1.80610 ν 2= 40.9
* R 4= 4.627 D 4= 10.00
R 5= 64.434 D 5= 8.09 N 3= 1.84666 ν 3= 23.9
R 6= -15.593 D 6= 4.46
R 7= 27.039 D 7= 1.80 N 4= 1.77250 ν 4= 49.6
R 8= -78.220 D 8= 1.00
R 9= 絞り D 9= 1.50
R10= -6.568 D10= 2.20 N 5= 1.84666 ν 5= 23.9
R11= 6.366 D11= 2.00 N 6= 1.77250 ν 6= 49.6
R12= -14.479 D12= 0.10
R13= 12.093 D13= 1.82 N 7= 1.60311 ν 7= 60.6
R14= -12.636 D14= 0.10
R15= 7.498 D15= 1.50 N 8= 1.83481 ν 8= 42.7
R16= 21.068 D16= 1.50
R17= ∞ D17= 4.00 N 9= 1.51633 ν 9= 64.1
R18= ∞
・非球面係数
第3面 : K=-3.05503e+002 A= 0.00000e+000 B=-4.12397e-004
C= 1.97036e-005 D=-1.79480e-007 E= 0.00000e+000
第4面 : K= 1.10373e-001 A= 0.00000e+000 B=-7.40181e-004
C=-5.07705e-005 D= 3.38928e-006 E= 0.00000e+000
<数値実施例3>
Fno= 2.1 NA=0.24
* R 1= -12.000 D 1= 20.00
R 2= 72.840 D 2= 1.80 N 1= 1.77250 ν 1= 49.6
R 3=-2228.821 D 3= 0.12
R 4= 27.317 D 4= 1.60 N 2= 1.77250 ν 2= 49.6
R 5= 88.452 D 5= 0.30
* R 6= 96.287 D 6= 0.80 N 3= 1.80518 ν 3= 25.4
* R 7= 5.285 D 7= 10.00
R 8= 64.434 D 8= 8.09 N 4= 1.84666 ν 4= 23.9
R 9= -15.593 D 9= 4.46
R10= 27.039 D10= 1.80 N 5= 1.77250 ν 5= 49.6
R11= -78.220 D11= 1.00
R12= 絞り D12= 1.50
R13= -6.568 D13= 2.20 N 6= 1.84666 ν 6= 23.9
R14= 6.366 D14= 2.00 N 7= 1.77250 ν 7= 49.6
R15= -14.479 D15= 0.10
R16= 12.093 D16= 1.82 N 8= 1.60311 ν 8= 60.6
R17= -12.636 D17= 0.10
R18= 7.498 D18= 1.50 N 9= 1.83481 ν 9= 42.7
R19= 21.068 D19= 1.50
R20= ∞ D20= 4.00 N10= 1.51633 ν10= 64.1
R21= ∞
・非球面係数
第1面 : K=-2.00000e+000 A= 0.00000e+000 B= 0.00000e+000
C= 0.00000e+000 D= 0.00000e+000 E= 0.00000e+000
第6面 : K=-3.05503e+002 A= 0.00000e+000 B=-1.12677e-003
C=-3.27765e-005 D=-2.22188e-006 E= 0.00000e+000
第7面 : K= 1.15723e-001 A= 0.00000e+000 B=-1.16248e-003
C=-1.50088e-004 D=-3.68542e-006 E= 0.00000e+000
<数値実施例4>
Fno= 2.5 NA= 0.19
* R 1= -12.000 D 1= 19.77
R 2= 21.137 D 2= 3.60 N 1= 1.77250 ν 1= 49.6
R 3= 787.493 D 3= 0.80
* R 4= -132.870 D 4= 1.00 N 2= 1.84666 ν 2= 23.9
* R 5= 17.021 D 5= 6.11
R 6= ∞ D 6= 13.50 N 3= 1.83400 ν 3= 37.2
R 7= ∞ D 7= 0.15
* R 8= 17.745 D 8= 3.20 N 4= 1.58913 ν 4= 61.2
* R 9= -21.515 D 9= 0.00
R10= -189.656 D10= 0.60 N 5= 1.72916 ν 5= 54.7
R11= 9.663 D11= 1.28
R12= -10.856 D12= 0.50 N 6= 1.60311 ν 6= 60.6
R13= 13.442 D13= 1.50 N 7= 1.84666 ν 7= 23.9
R14= 108.847 D14= 0.00
R15= 絞り D15= 0.60
* R16= 13.949 D16= 2.00 N 8= 1.69350 ν 8= 53.2
* R17= -55.208 D17= 0.00
R18= -92.686 D18= 0.60 N 9= 1.64769 ν 9= 33.8
R19= 9.042 D19= 1.60 N10= 1.80518 ν10= 25.4
R20= 22.476 D20= 0.00
R21= 13.130 D21= 0.60 N11= 1.84666 ν11= 23.9
R22= 7.714 D22= 3.50 N12= 1.48749 ν12= 70.2
R23= -15.054 D23= 0.15
* R24= 11.585 D24= 1.80 N13= 1.52280 ν13= 62.3
R25= 16.756 D25= 0.00
R26= 23.806 D26= 1.25 N14= 1.88300 ν14= 40.8
R27= 6.466 D27= 3.77 N15= 1.48749 ν15= 70.2
R28= 258.606 D28= 0.00
R29= ∞ D29= 2.00 N16= 1.51633 ν16= 64.1
R30= ∞
・非球面係数
第1面 : K=-2.20000e+000 A= 0.00000e+000 B= 0.00000e+000
C= 0.00000e+000 D= 0.00000e+000 E= 0.00000e+000
第4面 : K= 7.30117e-004 A= 0.00000e+000 B=-1.63313e-004
C= 1.09260e-006 D= 0.00000e+000 E= 0.00000e+000
第5面 : K=-3.12547e-002 A= 0.00000e+000 B=-2.45102e-004
C= 2.00934e-006 D= 0.00000e+000 E= 0.00000e+000
第8面 : K= 2.89732e+000 A= 0.00000e+000 B=-9.11558e-005
C= 2.46766e-006 D=-8.04498e-008 E= 1.50874e-009
第9面 : K= 2.27135e+000 A= 0.00000e+000 B= 4.75217e-005
C= 3.52674e-006 D=-9.84940e-008 E= 2.04550e-009
第16面 : K= 2.61714e+000 A= 0.00000e+000 B= 5.08672e-005
C=-2.05979e-005 D= 3.83826e-006 E=-1.84585e-007
第17面 : K=-1.25046e+002 A= 0.00000e+000 B= 2.53545e-004
C=-2.29193e-005 D= 4.38482e-006 E=-1.97983e-007
<数値実施例5>
f= 6.35 〜 29.98 Fno= 3.55 〜 4.47 NA=0.14〜0.11
2ω=31.6°〜 6.9°
R 1= 27.233 D 1= 1.00 N 1= 1.84666 ν 1= 23.9
R 2= 12.108 D 2= 3.37
R 3= ∞ D 3= 13.50 N 2= 1.83400 ν 2= 37.2
R 4= ∞ D 4= 0.15
* R 5= 17.745 D 5= 3.20 N 3= 1.58913 ν 3= 61.2
* R 6= -21.515 D 6= 可変
R 7= -189.656 D 7= 0.60 N 4= 1.72916 ν 4= 54.7
R 8= 9.663 D 8= 1.28
R 9= -10.856 D 9= 0.50 N 5= 1.60311 ν 5= 60.6
R10= 13.442 D10= 1.50 N 6= 1.84666 ν 6= 23.9
R11= 108.847 D11= 可変
R12= 絞り D12= 0.60
* R13= 13.949 D13= 2.00 N 7= 1.69350 ν 7= 53.2
* R14= -55.208 D14= 可変
R15= -92.686 D15= 0.60 N 8= 1.64769 ν8= 33.8
R16= 9.042 D16= 1.60 N 9= 1.80518 ν 9= 25.4
R17= 22.476 D17= 可変
R18= 13.130 D18= 0.60 N10= 1.84666 ν10= 23.9
R19= 7.714 D19= 3.50 N11= 1.48749 ν11= 70.2
R20= -15.054 D20= 0.15
* R21= 11.585 D21= 1.80 N12= 1.52280 ν12= 62.3
R22= 16.756 D22= 可変
R23= 23.806 D23= 1.25 N13= 1.88300 ν13= 40.8
R24= 6.466 D24= 3.77 N14= 1.48749 ν14= 70.2
R25= 258.606 D25= 可変
R26= ∞ D26= 2.00 N15= 1.51633 ν15= 64.1
R27= ∞

\焦点距離 6.35 12.39 29.98
可変間隔\
D 6 0.50 7.04 13.59
D11 13.69 7.14 0.60
D14 0.45 0.45 0.45
D17 6.76 4.23 1.62
D22 0.75 3.28 5.89
D25 6.00 6.00 6.00
・非球面係数
第5面 : K= 2.89732e+000 A= 0.00000e+000 B=-9.11558e-005
C= 2.46766e-006 D=-8.04498e-008 E= 1.50874e-009
第6面 : K= 2.27135e+000 A= 0.00000e+000 B= 4.75217e-005
C= 3.52674e-006 D=-9.84940e-008 E= 2.04550e-009

第13面 : K= 2.61714e+000 A= 0.00000e+000 B= 5.08672e-005
C=-2.05979e-005 D= 3.83826e-006 E=-1.84585e-007

第14面 : K=-1.25046e+002 A= 0.00000e+000 B= 2.53545e-004
C=-2.29193e-005 D= 4.38482e-006 E=-1.97983e-007

第21面 : K= 2.54164e+000 A= 0.00000e+000 B=-1.85457e-004
C=-7.88873e-006 D= 3.08221e-007 E=-9.96643e-009
<数値実施例6>
f= 2.19 Fno= 3.26 NA=0.15 2ω=171.0°
R 1= 36.775 D 1= 2.50 N 1= 1.77250 ν 1= 49.6
R 2= 18.294 D 2= 16.74
R 3= -97.434 D 3= 2.00 N 2= 1.80610 ν 2= 40.9
R 4= 20.684 D 4= 2.98
R 5= 43.550 D 5= 3.00 N 3= 1.69680 ν 3= 55.5
R 6= 81.881 D 6= 12.22
R 7= -28.470 D 7= 3.00 N 4= 1.84666 ν 4= 23.9
R 8= -25.016 D 8= 21.15
* R 9= 21.335 D 9= 2.50 N 5= 1.61800 ν 5= 63.3
* R10= -49.105 D10= 可変
R11= 77.468 D11= 0.60 N 6= 1.72916 ν 6= 54.7
R12= 9.706 D12= 1.24
R13= -11.629 D13= 0.50 N 7= 1.60311 ν 7= 60.6
R14= 15.020 D14= 1.50 N 8= 1.84666 ν 8= 23.9
R15= 53.093 D15= 可変
R16= 絞り D16= 0.60
* R17= 13.385 D17= 2.00 N 9= 1.69350 ν 9= 53.2
* R18= -56.781 D18= 0.45
R19=-1410.339 D19= 0.60 N10= 1.64769 ν10= 33.8
R20= 8.666 D20= 1.60 N11= 1.80518 ν11= 25.4
R21= 18.656 D21= 可変
R22= 13.719 D22= 0.60 N12= 1.84666 ν12= 23.9
R23= 7.523 D23= 3.50 N13= 1.48749 ν13= 70.2
R24= -19.369 D24= 0.15
* R25= 11.357 D25= 1.80 N14= 1.52280 ν14= 62.3
R26= 19.903 D26= 可変
R27= 16.278 D27= 1.42 N15= 1.88300 ν15= 40.8
R28= 6.564 D28= 3.52 N16= 1.48749 ν16= 70.2
R29= 37.624 D29= 6.00
R30= ∞ D30= 3.00 N17= 1.51633 ν17= 64.1
R31= ∞

\焦点距離 2.19 3.94 10.54
可変間隔\
D10 0.50 7.04 13.59
D15 13.70 7.15 0.61
D21 10.30 6.99 0.61
D26 0.78 4.10 10.48

・非球面係数
第9面 : K= 2.92618e+000 A= 0.00000e+000 B=-5.16439e-005
C= 1.92101e-006 D=-1.05228e-007 E= 9.50325e-010
第10面 : K= 2.21227e+000 A= 0.00000e+000 B= 1.06599e-006
C= 2.05150e-006 D=-1.17857e-007 E= 1.32070e-009
第17面 : K= 1.10143e+000 A= 0.00000e+000 B= 1.00738e-004
C=-1.39131e-005 D= 4.21520e-006 E=-1.57702e-007
第18面 : K=-1.24713e+002 A= 0.00000e+000 B= 2.21519e-004
C=-1.31403e-005 D= 4.80345e-006 E=-1.82939e-007
第25面 : K= 2.15826e+000 A= 0.00000e+000 B=-1.22398e-004
C=-6.06877e-006 D= 4.07232e-007 E=-1.46126e-00

<数値実施例7>
f= 6.35 〜 29.71 Fno=3.30 〜 5.15 NA= 0.15〜0.10
2ω=31.6°〜 6.9°
R 1= 25.467 D 1= 1.00 N 1= 1.80809 ν 1= 22.8
R 2= 15.992 D 2= 21.15
* R 3= 21.335 D 3= 2.50 N 2= 1.61800 ν 2= 63.3
* R 4= -49.105 D 4= 可変
R 5= 77.468 D 5= 0.60 N 3= 1.72916 ν 3= 54.7
R 6= 9.706 D 6= 1.24
R 7= -11.629 D 7= 0.50 N 4= 1.60311 ν 4= 60.6
R 8= 15.020 D 8= 1.50 N 5= 1.84666 ν 5= 23.9
R 9= 53.093 D 9= 可変
R10= 絞り D10= 0.60
* R11= 13.385 D11= 2.00 N 6= 1.69350 ν 6= 53.2
* R12= -56.781 D12= 0.45
R13=-1410.339 D13= 0.60 N 7= 1.64769 ν 7= 33.8
R14= 8.666 D14= 1.60 N 8= 1.80518 ν 8= 25.4
R15= 18.656 D15= 可変
R16= 13.719 D16= 0.60 N 9= 1.84666 ν 9= 23.9
R17= 7.523 D17= 3.50 N10= 1.48749 ν10= 70.2
R18= -19.369 D18= 0.15
* R19= 11.357 D19= 1.80 N11= 1.52280 ν11= 62.3
R20= 19.903 D20= 可変
R21= 16.278 D21= 1.42 N12= 1.88300 ν12= 40.8
R22= 6.564 D22= 3.52 N13= 1.48749 ν13= 70.2
R23= 37.624 D23= 6.00
R24= ∞ D24= 3.00 N14= 1.51633 ν14= 64.1
R25= ∞

\焦点距離 6.35 11.46 29.71
可変間隔\
D 4 0.50 7.04 13.59
D 9 13.70 7.15 0.61
D15 10.30 7.04 0.61
D20 0.78 4.05 10.48

・非球面係数
第3面 : K= 2.92618e+000 A= 0.00000e+000 B=-5.16439e-005
C= 1.92101e-006 D=-1.05228e-007 E= 9.50325e-010
第4面 : K= 2.21227e+000 A= 0.00000e+000 B= 1.06599e-006
C= 2.05150e-006 D=-1.17857e-007 E= 1.32070e-009
第11面 : K= 1.10143e+000 A= 0.00000e+000 B= 1.00738e-004
C=-1.39131e-005 D= 4.21520e-006 E=-1.57702e-007
第12面 : K=-1.24713e+002 A= 0.00000e+000 B= 2.21519e-004
C=-1.31403e-005 D= 4.80345e-006 E=-1.82939e-007
第19面 : K= 2.15826e+000 A= 0.00000e+000 B=-1.22398e-004
C=-6.06877e-006 D= 4.07232e-007 E=-1.46126e-008
<数値実施例8>
f= 1.99 Fno= 4.0 NA=0.13 2ω= 170.0°
R 1= 35.000 D 1= 1.50 N 1= 1.77250 ν 1= 49.6
R 2= 4.995 D 2= 5.20
R 3= -13.672 D 3= 1.20 N 2= 1.88300 ν 2= 40.8
R 4= 62.615 D 4= 3.07
R 5= 16.055 D 5= 2.20 N 3= 1.74400 ν 3= 44.8
R 6= 310.414 D 6= 2.00
R 7= 19.406 D 7= 2.20 N 4= 1.69680 ν 4= 55.5
R 8= 47.737 D 8= 14.08
* R 9= -10.328 D 9= 1.40 N 5= 1.84666 ν 5= 23.9
R10= -8.641 D10= 0.70 N 6= 1.48749 ν 6= 70.2
R11= 42.143 D11= 8.03
R12= 絞り D12= 0.30
* R13= 4.336 D13= 2.20 N 7= 1.74320 ν 7= 49.3
* R14= -13.726 D14= 0.30
R15= -8.403 D15= 0.60 N 8= 1.69895 ν 8= 30.1
R16= 4.277 D16= 0.24
R17= 7.720 D17= 1.70 N 9= 1.60311 ν 9= 60.6
R18= -16.517 D18= 5.00
R19= ∞ D19= 1.25 N10= 1.51633 ν10= 64.1
R20= ∞
・非球面係数
第9面 : K=-6.36822e-001 A= 0.00000e+000 B=-7.06419e-005
C=-6.56359e-006 D= 1.58657e-007 E= 5.20652e-010
第13面 : K=-1.12637e-001 A= 0.00000e+000 B= 3.20201e-004
C= 4.61140e-004 D=-1.25420e-004 E= 1.74047e-005
第14面 : K= 1.18881e+000 A= 0.00000e+000 B= 2.34714e-003
C= 2.10460e-004 D=-4.03980e-005 E= 1.65917e-005
<数値実施例9>
f= 6.54 〜 11.78 Fno=3.54 〜4.78 NA=0.14 〜 0.10
2ω=57.0°〜 33.5°
R 1= -152.692 D 1= 1.00 N 1= 1.69680 ν 1= 55.5
R 2= 46.600 D 2= 14.08
* R 3= -10.328 D 3= 1.40 N 2= 1.84666 ν 2= 23.9
R 4= -8.641 D 4= 0.70 N 3= 1.48749 ν 3= 70.2
R 5= 42.143 D 5= 可変
R 6= 絞り D 6= 0.30
* R 7= 4.336 D 7= 2.20 N 4= 1.74320 ν 4= 49.3
* R 8= -13.726 D 8= 0.30
R 9= -8.245 D 9= 0.60 N 5= 1.69895 ν 5= 30.1
R10= 4.277 D10= 0.24
R11= 7.720 D11= 1.70 N 6= 1.60311 ν 6= 60.6
R12= -16.517 D12= 可変
R13= ∞ D13= 1.25 N 7= 1.51633 ν 7= 64.1
R14= ∞

\焦点距離 6.54 9.81 11.78
可変間隔\
D 5 8.03 2.74 0.98
D12 5.00 7.37 8.79

・非球面係数
第3面 : K=-6.36822e-001 A= 0.00000e+000 B=-7.06419e-005
C=-6.56359e-006 D= 1.58657e-007 E= 5.20652e-010
第7面 : K=-1.12637e-001 A= 0.00000e+000 B= 3.20201e-004
C= 4.61140e-004 D=-1.25420e-004 E= 1.74047e-005
第8面 : K= 1.18881e+000 A= 0.00000e+000 B= 2.34714e-003
C= 2.10460e-004 D=-4.03980e-005 E= 1.65917e-005
<数値実施例10>
f=-2.55 Fno= 2.50 NA=0.20 2ω=34.8°
R 1= -5.590 D 1= 1.10 N 1= 1.88300 ν 1= 40.8
R 2= -12.089 D 2= 0.12
R 3= 3.848 D3= 1.80 N 2= 1.48749 ν 2= 70.2
R 4= 17.036 D 4= 1.00
R 5= 副絞り D 5= 1.00
R 6= 13.806 D 6= 2.00 N 3= 1.84666 ν 3= 23.9
R 7= 3.849 D 7= 1.36
R 8= 21.513 D 8= 1.70 N 4= 1.71300 ν 4= 53.9
R 9= -4.104 D 9= 8.75
R10= 54.980 D10= 1.40 N 5= 1.48749 ν 5= 70.2
R11= -13.136 D11= 0.12
R12= 3.641 D12= 2.80 N 6= 1.48749 ν 6= 70.2
R13= -17.920 D13= 0.36
R14= -5.925 D14= 0.80 N 7= 1.88300 ν 7= 40.8
R15= -90.733 D15= 13.86
R16= 64.434 D16= 8.09 N 8= 1.84666 ν 8= 23.9
R17= -15.593 D17= 4.55
R18= 27.039 D18= 1.80 N 9= 1.77250 ν 9= 49.6
R19= -78.220 D19= 1.00
R20= 絞り D20= 1.50
R21= -6.568 D21= 2.20 N10= 1.84666 ν10= 23.9
R22= 6.366 D22= 2.00 N11= 1.77250 ν11= 49.6
R23= -14.479 D23= 0.10
R24= 12.093 D24= 1.82 N12= 1.60311 ν12= 60.6
R25= -12.636 D25= 0.10
R26= 7.498 D26= 1.50 N13= 1.83481 ν13= 42.7
R27= 21.068 D27= 1.50
R28= ∞ D28= 4.00 N14= 1.51633 ν14= 64.1
R29= ∞
なお、本発明の目的は、以下の処理を実行することによっても達成される。即ち、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)が記憶媒体に格納されたプログラムコードを読み出す処理である。
<Numerical Example 1>
f = 1.08 Fno = 1.48 NA = 0.34 2ω = 168.3 °
R 1 = 18.885 D 1 = 1.20 N 1 = 1.83481 ν 1 = 42.7
R 2 = 6.573 D 2 = 3.63
R 3 = 466.090 D 3 = 1.80 N 2 = 1.88300 ν 2 = 40.8
R 4 = 4.664 D 4 = 12.85
R 5 = 64.434 D 5 = 8.09 N 3 = 1.84666 ν 3 = 23.9
R 6 = -15.593 D 6 = 4.55
R 7 = 27.039 D 7 = 1.80 N 4 = 1.77250 ν 4 = 49.6
R 8 = -78.220 D 8 = 1.00
R 9 = Aperture D 9 = 1.50
R10 = −6.568 D10 = 2.20 N 5 = 1.84666 ν 5 = 23.9
R11 = 6.366 D11 = 2.00 N6 = 1.77250 ν6 = 49.6
R12 = -14.479 D12 = 0.10
R13 = 12.093 D13 = 1.82 N 7 = 1.60311 ν 7 = 60.6
R14 = -12.636 D14 = 0.10
R15 = 7.498 D15 = 1.50 N 8 = 1.83481 ν 8 = 42.7
R16 = 21.068 D16 = 1.50
R17 = ∞ D17 = 4.00 N 9 = 1.51633 ν 9 = 64.1
<Numerical Example 2>
f = 2.51 Fno = 1.5 NA = 0.33 2ω = 35.4 °
R 1 = 59.690 D 1 = 1.70 N 1 = 1.77250 ν 1 = 49.6
R 2 = -35.198 D 2 = 0.15
* R 3 = -114.351 D 3 = 1.00 N 2 = 1.80610 ν 2 = 40.9
* R 4 = 4.627 D 4 = 10.00
R 5 = 64.434 D 5 = 8.09 N 3 = 1.84666 ν 3 = 23.9
R 6 = -15.593 D 6 = 4.46
R 7 = 27.039 D 7 = 1.80 N 4 = 1.77250 ν 4 = 49.6
R 8 = -78.220 D 8 = 1.00
R 9 = Aperture D 9 = 1.50
R10 = −6.568 D10 = 2.20 N 5 = 1.84666 ν 5 = 23.9
R11 = 6.366 D11 = 2.00 N6 = 1.77250 ν6 = 49.6
R12 = -14.479 D12 = 0.10
R13 = 12.093 D13 = 1.82 N 7 = 1.60311 ν 7 = 60.6
R14 = -12.636 D14 = 0.10
R15 = 7.498 D15 = 1.50 N 8 = 1.83481 ν 8 = 42.7
R16 = 21.068 D16 = 1.50
R17 = ∞ D17 = 4.00 N 9 = 1.51633 ν 9 = 64.1
R18 = ∞
・ Aspheric coefficient 3rd surface: K = -3.05503e + 002 A = 0.000000 + 000 B = -4.12397e-004
C = 1.97036e-005 D = -1.79480e-007 E = 0.00000e + 000
4th page: K = 1.10373e-001 A = 0.00000e + 000 B = -7.40181e-004
C = -5.07705e-005 D = 3.38928e-006 E = 0.00000e + 000
<Numerical Example 3>
Fno = 2.1 NA = 0.24
* R 1 = -12.000 D 1 = 20.00
R 2 = 72.840 D 2 = 1.80 N 1 = 1.77250 ν 1 = 49.6
R 3 = -2228.821 D 3 = 0.12
R 4 = 27.317 D 4 = 1.60 N 2 = 1.77250 ν 2 = 49.6
R 5 = 88.452 D 5 = 0.30
* R 6 = 96.287 D 6 = 0.80 N 3 = 1.80518 ν 3 = 25.4
* R 7 = 5.285 D 7 = 10.00
R 8 = 64.434 D 8 = 8.09 N 4 = 1.84666 ν 4 = 23.9
R 9 = -15.593 D 9 = 4.46
R10 = 27.039 D10 = 1.80 N5 = 1.77250 ν5 = 49.6
R11 = -78.220 D11 = 1.00
R12 = Aperture D12 = 1.50
R13 = −6.568 D13 = 2.20 N 6 = 1.84666 ν 6 = 23.9
R14 = 6.366 D14 = 2.00 N 7 = 1.77250 ν 7 = 49.6
R15 = -14.479 D15 = 0.10
R16 = 12.093 D16 = 1.82 N 8 = 1.60311 ν 8 = 60.6
R17 = -12.636 D17 = 0.10
R18 = 7.498 D18 = 1.50 N 9 = 1.83481 ν 9 = 42.7
R19 = 21.068 D19 = 1.50
R20 = ∞ D20 = 4.00 N10 = 1.51633 ν10 = 64.1
R21 = ∞
・ Aspheric coefficient
First side: K = -2.00000e + 000 A = 0.000000 + 000 B = 0.000000 + 000
C = 0.00000e + 000 D = 0.00000e + 000 E = 0.00000e + 000
6th surface: K = -3.05503e + 002 A = 0.000000 + 000 B = -1.12677e-003
C = -3.27765e-005 D = -2.22188e-006 E = 0.00000e + 000
Surface 7: K = 1.15723e-001 A = 0.00000e + 000 B =-1.16248e-003
C = -1.50088e-004 D = -3.68542e-006 E = 0.00000e + 000
<Numerical Example 4>
Fno = 2.5 NA = 0.19
* R 1 = -12.000 D 1 = 19.77
R 2 = 21.137 D 2 = 3.60 N 1 = 1.77250 ν 1 = 49.6
R 3 = 787.493 D 3 = 0.80
* R 4 = -132.870 D 4 = 1.00 N 2 = 1.84666 ν 2 = 23.9
* R 5 = 17.021 D 5 = 6.11
R 6 = ∞ D 6 = 13.50 N 3 = 1.83400 ν 3 = 37.2
R 7 = ∞ D 7 = 0.15
* R 8 = 17.745 D 8 = 3.20 N 4 = 1.58913 ν 4 = 61.2
* R 9 = -21.515 D 9 = 0.00
R10 = −189.656 D10 = 0.60 N 5 = 1.72916 ν 5 = 54.7
R11 = 9.663 D11 = 1.28
R12 = -10.856 D12 = 0.50 N6 = 1.60311 ν6 = 60.6
R13 = 13.442 D13 = 1.50 N 7 = 1.84666 ν 7 = 23.9
R14 = 108.847 D14 = 0.00
R15 = Aperture D15 = 0.60
* R16 = 13.949 D16 = 2.00 N 8 = 1.69350 ν 8 = 53.2
* R17 = -55.208 D17 = 0.00
R18 = −92.686 D18 = 0.60 N 9 = 1.64769 ν 9 = 33.8
R19 = 9.042 D19 = 1.60 N10 = 1.80518 ν10 = 25.4
R20 = 22.476 D20 = 0.00
R21 = 13.130 D21 = 0.60 N11 = 1.84666 ν11 = 23.9
R22 = 7.714 D22 = 3.50 N12 = 1.48749 ν12 = 70.2
R23 = -15.054 D23 = 0.15
* R24 = 11.585 D24 = 1.80 N13 = 1.52280 ν13 = 62.3
R25 = 16.756 D25 = 0.00
R26 = 23.806 D26 = 1.25 N14 = 1.88300 ν14 = 40.8
R27 = 6.466 D27 = 3.77 N15 = 1.48749 ν15 = 70.2
R28 = 258.606 D28 = 0.00
R29 = ∞ D29 = 2.00 N16 = 1.51633 ν16 = 64.1
R30 = ∞
・ Aspheric coefficient
First side: K = -2.20000e + 000 A = 0.00000e + 000 B = 0.00000e + 000
C = 0.00000e + 000 D = 0.00000e + 000 E = 0.00000e + 000
4th page: K = 7.30117e-004 A = 0.000000 + 000 B = -1.63313e-004
C = 1.09260e-006 D = 0.00000e + 000 E = 0.00000e + 000
Fifth side: K = -3.12547e-002 A = 0.000000 + 000 B = -2.45102e-004
C = 2.00934e-006 D = 0.00000e + 000 E = 0.00000e + 000
8th page: K = 2.89732e + 000 A = 0.00000e + 000 B = -9.11558e-005
C = 2.46766e-006 D = -8.04498e-008 E = 1.50874e-009
Surface 9: K = 2.27135e + 000 A = 0.00000e + 000 B = 4.75217e-005
C = 3.52674e-006 D = -9.84940e-008 E = 2.04550e-009
16th surface: K = 2.61714e + 000 A = 0.000000 + 000 B = 5.08672e-005
C = -2.05979e-005 D = 3.83826e-006 E = -1.84585e-007
17th page: K = -1.25046e + 002 A = 0.000000 + 000 B = 2.53545e-004
C = -2.29193e-005 D = 4.38482e-006 E = -1.97983e-007
<Numerical example 5>
f = 6.35 to 29.98 Fno = 3.55 to 4.47 NA = 0.14 to 0.11
2ω = 31.6 ° ~ 6.9 °
R 1 = 27.233 D 1 = 1.00 N 1 = 1.84666 ν 1 = 23.9
R 2 = 12.108 D 2 = 3.37
R 3 = ∞ D 3 = 13.50 N 2 = 1.83400 ν 2 = 37.2
R 4 = ∞ D 4 = 0.15
* R 5 = 17.745 D 5 = 3.20 N 3 = 1.58913 ν 3 = 61.2
* R 6 = -21.515 D 6 = Variable
R 7 = -189.656 D 7 = 0.60 N 4 = 1.72916 ν 4 = 54.7
R 8 = 9.663 D 8 = 1.28
R 9 = -10.856 D 9 = 0.50 N 5 = 1.60311 ν 5 = 60.6
R10 = 13.442 D10 = 1.50 N 6 = 1.84666 ν 6 = 23.9
R11 = 108.847 D11 = variable
R12 = Aperture D12 = 0.60
* R13 = 13.949 D13 = 2.00 N 7 = 1.69350 ν 7 = 53.2
* R14 = -55.208 D14 = variable
R15 = -92.686 D15 = 0.60 N 8 = 1.64769 ν8 = 33.8
R16 = 9.042 D16 = 1.60 N9 = 1.80518 ν9 = 25.4
R17 = 22.476 D17 = Variable
R18 = 13.130 D18 = 0.60 N10 = 1.84666 ν10 = 23.9
R19 = 7.714 D19 = 3.50 N11 = 1.48749 ν11 = 70.2
R20 = -15.054 D20 = 0.15
* R21 = 11.585 D21 = 1.80 N12 = 1.52280 ν12 = 62.3
R22 = 16.756 D22 = Variable
R23 = 23.806 D23 = 1.25 N13 = 1.88300 ν13 = 40.8
R24 = 6.466 D24 = 3.77 N14 = 1.48749 ν14 = 70.2
R25 = 258.606 D25 = variable
R26 = ∞ D26 = 2.00 N15 = 1.51633 ν15 = 64.1
R27 = ∞

\ Focal length 6.35 12.39 29.98
Variable interval \
D 6 0.50 7.04 13.59
D11 13.69 7.14 0.60
D14 0.45 0.45 0.45
D17 6.76 4.23 1.62
D22 0.75 3.28 5.89
D25 6.00 6.00 6.00
・ Aspheric coefficient
Fifth side: K = 2.89732e + 000 A = 0.00000e + 000 B = -9.11558e-005
C = 2.46766e-006 D = -8.04498e-008 E = 1.50874e-009
Side 6: K = 2.27135e + 000 A = 0.00000e + 000 B = 4.75217e-005
C = 3.52674e-006 D = -9.84940e-008 E = 2.04550e-009

Side 13: K = 2.61714e + 000 A = 0.00000e + 000 B = 5.08672e-005
C = -2.05979e-005 D = 3.83826e-006 E = -1.84585e-007

14th: K = -1.25046e + 002 A = 0.000000 + 000 B = 2.53545e-004
C = -2.29193e-005 D = 4.38482e-006 E = -1.97983e-007

21st surface: K = 2.54164e + 000 A = 0.00000e + 000 B = -1.85457e-004
C = -7.88873e-006 D = 3.08221e-007 E = -9.96643e-009
<Numerical Example 6>
f = 2.19 Fno = 3.26 NA = 0.15 2ω = 171.0 °
R 1 = 36.775 D 1 = 2.50 N 1 = 1.77250 ν 1 = 49.6
R 2 = 18.294 D 2 = 16.74
R 3 = -97.434 D 3 = 2.00 N 2 = 1.80610 ν 2 = 40.9
R 4 = 20.684 D 4 = 2.98
R 5 = 43.550 D 5 = 3.00 N 3 = 1.69680 ν 3 = 55.5
R 6 = 81.881 D 6 = 12.22
R 7 = -28.470 D 7 = 3.00 N 4 = 1.84666 ν 4 = 23.9
R 8 = -25.016 D 8 = 21.15
* R 9 = 21.335 D 9 = 2.50 N 5 = 1.61800 ν 5 = 63.3
* R10 = -49.105 D10 = variable
R11 = 77.468 D11 = 0.60 N6 = 1.72916 ν6 = 54.7
R12 = 9.706 D12 = 1.24
R13 = -11.629 D13 = 0.50 N7 = 1.60311 ν7 = 60.6
R14 = 15.020 D14 = 1.50 N 8 = 1.84666 ν 8 = 23.9
R15 = 53.093 D15 = variable
R16 = Aperture D16 = 0.60
* R17 = 13.385 D17 = 2.00 N 9 = 1.69350 ν 9 = 53.2
* R18 = -56.781 D18 = 0.45
R19 = -1410.339 D19 = 0.60 N10 = 1.64769 ν10 = 33.8
R20 = 8.666 D20 = 1.60 N11 = 1.80518 ν11 = 25.4
R21 = 18.656 D21 = Variable
R22 = 13.719 D22 = 0.60 N12 = 1.84666 ν12 = 23.9
R23 = 7.523 D23 = 3.50 N13 = 1.48749 ν13 = 70.2
R24 = -19.369 D24 = 0.15
* R25 = 11.357 D25 = 1.80 N14 = 1.52280 ν14 = 62.3
R26 = 19.903 D26 = Variable
R27 = 16.278 D27 = 1.42 N15 = 1.88300 ν15 = 40.8
R28 = 6.564 D28 = 3.52 N16 = 1.48749 ν16 = 70.2
R29 = 37.624 D29 = 6.00
R30 = ∞ D30 = 3.00 N17 = 1.51633 ν17 = 64.1
R31 = ∞

\ Focal length 2.19 3.94 10.54
Variable interval \
D10 0.50 7.04 13.59
D15 13.70 7.15 0.61
D21 10.30 6.99 0.61
D26 0.78 4.10 10.48

・ Aspheric coefficient
9th: K = 2.92618e + 000 A = 0.000000 + 000 B = -5.16439e-005
C = 1.92101e-006 D = -1.05228e-007 E = 9.550325e-010
10th surface: K = 2.21227e + 000 A = 0.00000e + 000 B = 1.06599e-006
C = 2.05150e-006 D = -1.17857e-007 E = 1.32070e-009
Surface 17: K = 1.10143e + 000 A = 0.00000e + 000 B = 1.00738e-004
C = -1.39131e-005 D = 4.21520e-006 E = -1.57702e-007
18th surface: K = -1.24713e + 002 A = 0.000000 + 000 B = 2.21519e-004
C = -1.31403e-005 D = 4.80345e-006 E = -1.82939e-007
25th surface: K = 2.15826e + 000 A = 0.000000 + 000 B = -1.22398e-004
C = -6.06877e-006 D = 4.07232e-007 E = -1.46126e-00

<Numerical Example 7>
f = 6.35 to 29.71 Fno = 3.30 to 5.15 NA = 0.15 to 0.10
2ω = 31.6 ° ~ 6.9 °
R 1 = 25.467 D 1 = 1.00 N 1 = 1.80809 ν 1 = 22.8
R 2 = 15.992 D 2 = 21.15
* R 3 = 21.335 D 3 = 2.50 N 2 = 1.61800 ν 2 = 63.3
* R 4 = -49.105 D 4 = Variable
R 5 = 77.468 D 5 = 0.60 N 3 = 1.72916 ν 3 = 54.7
R 6 = 9.706 D 6 = 1.24
R 7 = -11.629 D 7 = 0.50 N 4 = 1.60311 ν 4 = 60.6
R 8 = 15.020 D 8 = 1.50 N 5 = 1.84666 ν 5 = 23.9
R 9 = 53.093 D 9 = variable
R10 = Aperture D10 = 0.60
* R11 = 13.385 D11 = 2.00 N 6 = 1.69350 ν 6 = 53.2
* R12 = -56.781 D12 = 0.45
R13 = -1410.339 D13 = 0.60 N 7 = 1.64769 ν 7 = 33.8
R14 = 8.666 D14 = 1.60 N 8 = 1.80518 ν 8 = 25.4
R15 = 18.656 D15 = Variable
R16 = 13.719 D16 = 0.60 N9 = 1.84666 ν9 = 23.9
R17 = 7.523 D17 = 3.50 N10 = 1.48749 ν10 = 70.2
R18 = -19.369 D18 = 0.15
* R19 = 11.357 D19 = 1.80 N11 = 1.52280 ν11 = 62.3
R20 = 19.903 D20 = variable
R21 = 16.278 D21 = 1.42 N12 = 1.88300 ν12 = 40.8
R22 = 6.564 D22 = 3.52 N13 = 1.48749 ν13 = 70.2
R23 = 37.624 D23 = 6.00
R24 = ∞ D24 = 3.00 N14 = 1.51633 ν14 = 64.1
R25 = ∞

\ Focal length 6.35 11.46 29.71
Variable interval \
D 4 0.50 7.04 13.59
D 9 13.70 7.15 0.61
D15 10.30 7.04 0.61
D20 0.78 4.05 10.48

・ Aspheric coefficient
Third side: K = 2.92618e + 000 A = 0.000000 + 000 B = -5.16439e-005
C = 1.92101e-006 D = -1.05228e-007 E = 9.550325e-010
4th page: K = 2.21227e + 000 A = 0.00000e + 000 B = 1.06599e-006
C = 2.05150e-006 D = -1.17857e-007 E = 1.32070e-009
11th surface: K = 1.10143e + 000 A = 0.00000e + 000 B = 1.00738e-004
C = -1.39131e-005 D = 4.21520e-006 E = -1.57702e-007
12th surface: K = -1.24713e + 002 A = 0.000000 + 000 B = 2.21519e-004
C = -1.31403e-005 D = 4.80345e-006 E = -1.82939e-007
19th surface: K = 2.15826e + 000 A = 0.000000 + 000 B = -1.22398e-004
C = -6.06877e-006 D = 4.07232e-007 E = -1.46126e-008
<Numerical Example 8>
f = 1.99 Fno = 4.0 NA = 0.13 2ω = 170.0 °
R 1 = 35.000 D 1 = 1.50 N 1 = 1.77250 ν 1 = 49.6
R 2 = 4.995 D 2 = 5.20
R 3 = -13.672 D 3 = 1.20 N 2 = 1.88300 ν 2 = 40.8
R 4 = 62.615 D 4 = 3.07
R 5 = 16.055 D 5 = 2.20 N 3 = 1.74400 ν 3 = 44.8
R 6 = 310.414 D 6 = 2.00
R 7 = 19.406 D 7 = 2.20 N 4 = 1.69680 ν 4 = 55.5
R 8 = 47.737 D 8 = 14.08
* R 9 = -10.328 D 9 = 1.40 N 5 = 1.84666 ν 5 = 23.9
R10 = −8.641 D10 = 0.70 N 6 = 1.48749 ν 6 = 70.2
R11 = 42.143 D11 = 8.03
R12 = Aperture D12 = 0.30
* R13 = 4.336 D13 = 2.20 N 7 = 1.74320 ν 7 = 49.3
* R14 = -13.726 D14 = 0.30
R15 = −8.403 D15 = 0.60 N 8 = 1.69895 ν 8 = 30.1
R16 = 4.277 D16 = 0.24
R17 = 7.720 D17 = 1.70 N9 = 1.60311 ν9 = 60.6
R18 = -16.517 D18 = 5.00
R19 = ∞ D19 = 1.25 N10 = 1.51633 ν10 = 64.1
R20 = ∞
・ Aspheric coefficient
Surface 9: K = -6.36822e-001 A = 0.000000 + 000 B = -7.06419e-005
C = -6.56359e-006 D = 1.58657e-007 E = 5.20652e-010
Side 13: K = -1.12637e-001 A = 0.00000e + 000 B = 3.20201e-004
C = 4.61140e-004 D = -1.25420e-004 E = 1.74047e-005
14th surface: K = 1.18881e + 000 A = 0.00000e + 000 B = 2.34714e-003
C = 2.10460e-004 D = -4.03980e-005 E = 1.65917e-005
<Numerical Example 9>
f = 6.54 to 11.78 Fno = 3.54 to 4.78 NA = 0.14 to 0.10
2ω = 57.0 ° to 33.5 °
R 1 = -152.692 D 1 = 1.00 N 1 = 1.69680 ν 1 = 55.5
R 2 = 46.600 D 2 = 14.08
* R 3 = -10.328 D 3 = 1.40 N 2 = 1.84666 ν 2 = 23.9
R 4 = -8.641 D 4 = 0.70 N 3 = 1.48749 ν 3 = 70.2
R 5 = 42.143 D 5 = Variable
R 6 = Aperture D 6 = 0.30
* R 7 = 4.336 D 7 = 2.20 N 4 = 1.74320 ν 4 = 49.3
* R 8 = -13.726 D 8 = 0.30
R 9 = -8.245 D 9 = 0.60 N 5 = 1.69895 ν 5 = 30.1
R10 = 4.277 D10 = 0.24
R11 = 7.720 D11 = 1.70 N6 = 1.60311 ν6 = 60.6
R12 = -16.517 D12 = variable
R13 = ∞ D13 = 1.25 N 7 = 1.51633 ν 7 = 64.1
R14 = ∞

\ Focal length 6.54 9.81 11.78
Variable interval \
D 5 8.03 2.74 0.98
D12 5.00 7.37 8.79

・ Aspheric coefficient
Third side: K = -6.36822e-001 A = 0.000000e + 000 B = -7.06419e-005
C = -6.56359e-006 D = 1.58657e-007 E = 5.20652e-010
7th page: K = -1.12637e-001 A = 0.000000 + 000 B = 3.20201e-004
C = 4.61140e-004 D = -1.25420e-004 E = 1.74047e-005
8th page: K = 1.18881e + 000 A = 0.00000e + 000 B = 2.34714e-003
C = 2.10460e-004 D = -4.03980e-005 E = 1.65917e-005
<Numerical Example 10>
f = -2.55 Fno = 2.50 NA = 0.20 2ω = 34.8 °
R 1 = -5.590 D 1 = 1.10 N 1 = 1.88300 ν 1 = 40.8
R 2 = -12.089 D 2 = 0.12
R 3 = 3.848 D 3 = 1.80 N 2 = 1.48749 ν 2 = 70.2
R 4 = 17.036 D 4 = 1.00
R 5 = Sub-aperture D 5 = 1.00
R 6 = 13.806 D 6 = 2.00 N 3 = 1.84666 ν 3 = 23.9
R 7 = 3.849 D 7 = 1.36
R 8 = 21.513 D 8 = 1.70 N 4 = 1.71300 ν 4 = 53.9
R 9 = -4.104 D 9 = 8.75
R10 = 54.980 D10 = 1.40 N 5 = 1.48749 ν 5 = 70.2
R11 = -13.136 D11 = 0.12
R12 = 3.641 D12 = 2.80 N6 = 1.48749 ν6 = 70.2
R13 = -17.920 D13 = 0.36
R14 = -5.925 D14 = 0.80 N 7 = 1.88300 ν 7 = 40.8
R15 = -90.733 D15 = 13.86
R16 = 64.434 D16 = 8.09 N8 = 1.84666 ν8 = 23.9
R17 = -15.593 D17 = 4.55
R18 = 27.039 D18 = 1.80 N 9 = 1.77250 ν 9 = 49.6
R19 = -78.220 D19 = 1.00
R20 = Aperture D20 = 1.50
R21 = −6.568 D21 = 2.20 N10 = 1.84666 ν10 = 23.9
R22 = 6.366 D22 = 2.00 N11 = 1.77250 ν11 = 49.6
R23 = -14.479 D23 = 0.10
R24 = 12.093 D24 = 1.82 N12 = 1.60311 ν12 = 60.6
R25 = -12.636 D25 = 0.10
R26 = 7.498 D26 = 1.50 N13 = 1.83481 ν13 = 42.7
R27 = 21.068 D27 = 1.50
R28 = ∞ D28 = 4.00 N14 = 1.51633 ν14 = 64.1
R29 = ∞
The object of the present invention can also be achieved by executing the following processing. That is, a storage medium that records a program code of software that realizes the functions of the above-described embodiments is supplied to a system or apparatus, and a computer (or CPU, MPU, etc.) of the system or apparatus is stored in the storage medium. This is the process of reading the code.

この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコード及び該プログラムコードを記憶した記憶媒体は本発明を構成することになる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.

また、プログラムコードを供給するための記憶媒体としては、次のものを用いることができる。例えば、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−RAM、DVD−RW、DVD+RW、磁気テープ、不揮発性のメモリカード、ROM等である。または、プログラムコードをネットワークを介してダウンロードしてもよい。   Moreover, the following can be used as a storage medium for supplying the program code. For example, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD + RW, magnetic tape, nonvolatile memory card, ROM or the like. Alternatively, the program code may be downloaded via a network.

また、コンピュータが読み出したプログラムコードを実行することにより、上記実施の形態の機能が実現される場合も本発明に含まれる。加えて、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。   Further, the present invention includes a case where the function of the above-described embodiment is realized by executing the program code read by the computer. In addition, an OS (operating system) running on the computer performs part or all of the actual processing based on an instruction of the program code, and the functions of the above-described embodiments are realized by the processing. Is also included.

さらに、前述した実施形態の機能が以下の処理によって実現される場合も本発明に含まれる。即ち、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれる。その後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行う場合である。   Furthermore, a case where the functions of the above-described embodiment are realized by the following processing is also included in the present invention. That is, the program code read from the storage medium is written in a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer. Thereafter, based on the instruction of the program code, the CPU or the like provided in the function expansion board or function expansion unit performs part or all of the actual processing.

第1の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 1st Embodiment. 回転駆動機構を備えた反射鏡を用いた共通反射部材の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the common reflection member using the reflective mirror provided with the rotation drive mechanism. プリズムを用いた共通反射部材の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the common reflection member using a prism. プリズムを用いた共通反射部材の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the common reflection member using a prism. プリズムを用いた共通反射部材の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the common reflection member using a prism. 図1に示した光学装置の第1の具象例を示す光路図である。FIG. 2 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 1. 第2対物光学系及び共通反射部材の回転駆動機構を示す概略断面図である。It is a schematic sectional drawing which shows the rotation drive mechanism of a 2nd objective optical system and a common reflection member. 数値実施例1に示す数値が適用される第1の具象例に係る広角光学系の構成図である。It is a block diagram of the wide-angle optical system which concerns on the 1st concrete example to which the numerical value shown in Numerical Example 1 is applied. 数値実施例2に示す数値が適用される第1の具象例に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the 1st concrete example to which the numerical value shown in Numerical Example 2 is applied. 図1に示した光学装置の第2の具象例を示す光路図である。FIG. 6 is an optical path diagram illustrating a second concrete example of the optical device illustrated in FIG. 1. 数値実施例6に示す数値が適用される第2の具象例(図10)に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on the 2nd concrete example (FIG. 10) to which the numerical value shown in Numerical Example 6 is applied. 数値実施例7に示す数値が適用される第2の具象例(図10)に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the 2nd concrete example (FIG. 10) to which the numerical value shown in Numerical Example 7 is applied. 図1に示した光学装置の第3の具象例を示す光路図である。FIG. 6 is an optical path diagram illustrating a third concrete example of the optical device illustrated in FIG. 1. 数値実施例8に示す数値が適用される図13に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on FIG. 13 with which the numerical value shown in Numerical Example 8 is applied. 数値実施例9に示す数値が適用される図13における望遠光学系の構成図である。It is a block diagram of the telephoto optical system in FIG. 13 to which the numerical value shown in Numerical Example 9 is applied. 第2の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 2nd Embodiment. 図16に示した光学装置の第1の具象例を示す光路図である。FIG. 17 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 16. 数値実施例3に示す数値が適用される第1の具象例(図16)に係る広角光学系の構成図である。It is a block diagram of the wide angle optical system which concerns on the 1st concrete example (FIG. 16) to which the numerical value shown in Numerical Example 3 is applied. 図16に示した光学装置の第2の具象例を示す光路図である。FIG. 17 is an optical path diagram illustrating a second concrete example of the optical device illustrated in FIG. 16. 数値実施例4に示す数値が適用される図19における広角光学系の構成図である。It is a block diagram of the wide-angle optical system in FIG. 19 to which the numerical value shown in Numerical Example 4 is applied. 数値実施例5に示す数値が適用される第2の具象例(図19)に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the 2nd concrete example (FIG. 19) to which the numerical value shown in Numerical Example 5 is applied. 第3の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 3rd Embodiment. 図22に示した光学装置の第1の具象例を示す光路図である。FIG. 23 is an optical path diagram illustrating a first concrete example of the optical device illustrated in FIG. 22. 数値実施例10に示す数値が適用される第1の具象例(図23)に係る望遠光学系の構成図である。It is a block diagram of the telephoto optical system which concerns on the 1st concrete example (FIG. 23) to which the numerical value shown in Numerical Example 10 is applied. 図22に示した光学装置の第2の具象例を示す光路図である。FIG. 23 is an optical path diagram showing a second concrete example of the optical device shown in FIG. 22. 第4の実施の形態に係わる光学装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the optical apparatus concerning 4th Embodiment. 図26に示した光学装置の具象例を示す光路図である。FIG. 27 is an optical path diagram illustrating a concrete example of the optical device illustrated in FIG. 26. 第1〜第4実施の形態の何れに係る光学装置を搭載した撮像装置の設置例を示す概念図である。It is a conceptual diagram which shows the example of installation of the imaging device carrying the optical device which concerns on any of 1st-4th embodiment. 図28中の撮像装置の機構の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the mechanism of the imaging device in FIG. 撮像装置による被写体認識時の初期画像状態を示す概念図である。It is a conceptual diagram which shows the initial state image at the time of the object recognition by an imaging device. 撮像装置の電気的構成例を示すブロック図である。It is a block diagram which shows the electrical structural example of an imaging device. 撮像装置による被写体認識を行った後の動体追尾動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the moving body tracking operation | movement after performing object recognition by an imaging device. 数値実施例1の魚眼光学系の縦収差を示す図である。It is a figure which shows the longitudinal aberration of the fish-eye optical system of Numerical Example 1. 数値実施例2の望遠光学系の縦収差を示す図である。FIG. 6 is a diagram illustrating longitudinal aberrations of a telephoto optical system according to Numerical Example 2. 数値実施例3の広角反射光学系の横収差を示す図である。FIG. 10 is a diagram illustrating lateral aberration of the wide-angle reflective optical system in Numerical Example 3. 数値実施例4の広角反射光学系の広角端における横収差を示す図である。FIG. 10 is a diagram showing transverse aberration at the wide-angle end of the wide-angle reflective optical system in Numerical Example 4. 数値実施例5の望遠変倍光学系の広角端における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations at the wide-angle end of a telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例5の望遠変倍光学系の中間における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例5の望遠変倍光学系の望遠端における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations at a telephoto end of a telephoto variable magnification optical system according to Numerical Example 5. FIG. 数値実施例6の魚眼光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide-angle end of the fisheye optical system of Numerical Example 6. 数値実施例7の望遠変倍光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide angle end of the telephoto variable magnification optical system of Numerical Example 7. 数値実施例7の望遠変倍光学系の中間における縦収差を示す図である。FIG. 10 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 7. 数値実施例7の望遠変倍光学系の望遠端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the telephoto end of the telephoto variable magnification optical system of Numerical Example 7. 数値実施例8の魚眼光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide-angle end of the fish-eye optical system of Numerical Example 8. 数値実施例9の望遠変倍光学系の広角端における縦収差を示す図である。It is a figure which shows the longitudinal aberration in the wide angle end of the telephoto variable magnification optical system of Numerical Example 9. 数値実施例9の望遠変倍光学系の中間における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations in the middle of the telephoto variable magnification optical system according to Numerical Example 9. FIG. 数値実施例9の望遠変倍光学系の望遠端における縦収差を示す図である。10 is a diagram illustrating longitudinal aberrations at a telephoto end of a telephoto variable magnification optical system according to Numerical Example 9. FIG. 数値実施例10の望遠2次結像光学系の縦収差を示す図である。FIG. 11 is a diagram illustrating longitudinal aberrations of the telephoto secondary imaging optical system in the numerical value example 10. レンズ頂点から光軸方向への変位量を算出する数式を示す図である。It is a figure which shows the numerical formula which calculates the displacement amount to an optical axis direction from a lens vertex.

符号の説明Explanation of symbols

IP 撮像素子
11 共通光学系
12 共通反射部材
12−1 反射部材
12−2 プリズム
12−3 遮光板
12−4 濃度可変部材
12−5 直線偏光板
13 第2対物光学系
15 第1対物光学系
16 遮光部材
15A 第1対物光学系
15A−1 反射部材
13A 第2対物光学系
13B 第2対物光学系
IP imaging device 11 common optical system 12 common reflecting member 12-1 reflecting member 12-2 prism 12-3 light shielding plate 12-4 density variable member 12-5 linear polarizing plate 13 second objective optical system 15 first objective optical system 16 Light shielding member 15A First objective optical system 15A-1 Reflecting member 13A Second objective optical system 13B Second objective optical system

Claims (15)

被写体光を取り込むための複数の対物光学系と、各対物光学系を通過した光線が共通に通過する共通光学系とを有し、前記対物光学系と前記共通光学系により生成された被写体像を結像する光学装置であって、
前記複数の対物光学系により取り込まれる被写体光の何れかを選択的に前記共通光学系へ導くための選択光学部材を備え、
前記複数の対物光学系のうちの少なくとも一つは、光軸周りの全方位の被写体像を取り込む広角の対物光学系、または他方の対物光学系よりも広角な被写体像を結像するための対物光学系で構成したことを特徴とする光学装置。
A plurality of objective optical systems for capturing subject light; and a common optical system through which light beams that have passed through each objective optical system pass in common, and subject images generated by the objective optical system and the common optical system. An optical device for imaging,
A selection optical member for selectively guiding any of subject light captured by the plurality of objective optical systems to the common optical system;
At least one of the plurality of objective optical systems includes a wide-angle objective optical system that captures an omnidirectional subject image around the optical axis, or an object for forming a wider-angle subject image than the other objective optical system. An optical apparatus comprising an optical system.
前記他方の対物光学系よりも広角な被写体像を結像するための対物光学系は、撮影画角が90°以上の屈折光学系で構成したことを特徴とする請求項1に記載の光学装置。   2. The optical apparatus according to claim 1, wherein the objective optical system for forming a subject image having a wider angle than the other objective optical system is constituted by a refractive optical system having a photographing field angle of 90 ° or more. . 前記広角の対物光学系は、入射光の進行方向に凸面を向けた凸面形状の反射部材もしくは入射光の進行方向に頂点を向けた円錐形状の反射部材を有することを特徴とする請求項1に記載の光学装置。   The wide-angle objective optical system includes a convex reflecting member having a convex surface in the traveling direction of incident light or a conical reflecting member having a vertex directed in the traveling direction of incident light. The optical device described. 前記広角の対物光学系は、魚眼光学系で構成したことを特徴とする請求項2に記載の光学装置。   The optical apparatus according to claim 2, wherein the wide-angle objective optical system is a fish-eye optical system. 前記選択光学部材は、前記複数の対物光学系からの入射光に対して選択的に遮光を行う遮光手段を有することを特徴とする請求項1乃至4の何れか一項に記載の光学装置。   5. The optical apparatus according to claim 1, wherein the selection optical member includes a light shielding unit that selectively shields incident light from the plurality of objective optical systems. 6. 前記遮光手段は、移動可能な遮光板を用いて構成したことを特徴とする請求項5に記載の光学装置。   The optical apparatus according to claim 5, wherein the light shielding unit is configured using a movable light shielding plate. 前記遮光手段は、液晶を含む濃度可変部材を用いて構成したことを特徴とする請求項5に記載の光学装置。   The optical apparatus according to claim 5, wherein the light shielding unit is configured by using a density variable member including liquid crystal. 前記遮光手段は、移動可能な偏光板を用いて構成したことを特徴とする請求項5に記載の光学装置。   The optical apparatus according to claim 5, wherein the light shielding unit is configured using a movable polarizing plate. 前記複数の対物光学系のうちの任意の対物光学系と前記共通光学系との合成光学系は、変倍光学系を構成することを特徴とする請求項1乃至4の何れか一項に記載の光学装置。   5. The composite optical system of an arbitrary objective optical system among the plurality of objective optical systems and the common optical system constitutes a variable magnification optical system. 6. Optical device. 前記選択光学部材が、前記広角の対物光学系からの被写体光を選択したときは、前記変倍光学系を規定の変倍状態に設定することを特徴とする請求項9に記載の光学装置。   The optical apparatus according to claim 9, wherein when the selection optical member selects object light from the wide-angle objective optical system, the zoom optical system is set to a specified zoom state. 前記複数の対物光学系から取り込まれるそれぞれの被写体像は、光軸上の同一の位置に結像することを特徴とする請求項1乃至8の何れか一項に記載の光学装置。   9. The optical apparatus according to claim 1, wherein the subject images captured from the plurality of objective optical systems are formed at the same position on the optical axis. 前記複数の対物光学系のうち少なくとも一つの対物光学系は、撮影方向を変化させるための可動手段を有することを特徴とする請求項1乃至11の何れか一項に記載の光学装置。   The optical apparatus according to claim 1, wherein at least one objective optical system of the plurality of objective optical systems includes a movable unit for changing a photographing direction. 請求項1乃至12の何れか一項に記載の光学装置が搭載される撮像装置であって、
前記光学装置により結像された被写体像を電気信号に光電変換する撮像手段と、
前記光学装置をパン方向に駆動するパン駆動機構または、
前記光学装置をチルト方向に駆動するチルト駆動機構の何れかを備えたことを特徴とする撮像装置。
An imaging apparatus in which the optical device according to any one of claims 1 to 12 is mounted,
Imaging means for photoelectrically converting a subject image formed by the optical device into an electrical signal;
A pan driving mechanism for driving the optical device in a pan direction, or
An image pickup apparatus comprising any one of a tilt drive mechanism that drives the optical device in a tilt direction.
被写体光を取り込むための複数の対物光学系と、各対物光学系を通過した光線が共通に通過する共通光学系と、前記複数の対物光学系により取り込まれる被写体光の何れかを選択的に前記共通光学系へ導くための選択光学部材とを備え、前記複数の対物光学系のうちの少なくとも一つは光軸周りの全方位の被写体像、または他方の対物光学系よりも広角な被写体像を取り込む対物光学系で構成し、前記複数の対物光学系のうちの何れか一つの対物光学系と前記共通光学系により生成された被写体像を結像すると共に、パン方向、チルト方向の何れかの駆動が可能な光学装置の制御方法であって、
前記光軸周りの全方位の被写体像、または他方の対物光学系よりも広角な被写体像を取り込む対物光学系の画像範囲から目的被写体を認識し、該対物光学系とは別の対物光学系の撮影方向と目的被写体方向との相対的な位置関係を検出する検出ステップと、
前記検出された前記相対的な位置に基づき、パン方向及びチルト方向の何れかの必要駆動角度を算出する算出ステップと、
前記算出された必要駆動角度が規定値以上の場合に前記別の対物光学系をパン方向及びチルト方向の何れかの方向に駆動する駆動ステップとを備えたことを特徴とする光学装置の制御方法。
A plurality of objective optical systems for capturing subject light, a common optical system through which light beams that have passed through each objective optical system pass in common, and subject light captured by the plurality of objective optical systems are selectively selected. A selection optical member for guiding to a common optical system, and at least one of the plurality of objective optical systems is an omnidirectional subject image around the optical axis, or a subject image having a wider angle than the other objective optical system. The objective optical system is configured to capture a subject image generated by any one of the plurality of objective optical systems and the common optical system, and any one of a pan direction and a tilt direction is formed. A control method of an optical device capable of driving,
A target object is recognized from an image range of an objective optical system that captures an omnidirectional object image around the optical axis or a wider-angle object image than the other objective optical system, and an objective optical system different from the objective optical system. A detection step of detecting a relative positional relationship between the shooting direction and the target subject direction;
A calculation step of calculating a necessary drive angle in either the pan direction or the tilt direction based on the detected relative position;
And a driving step of driving the other objective optical system in any one of a pan direction and a tilt direction when the calculated required driving angle is equal to or greater than a specified value. .
請求項14に記載の光学装置の制御方法をコンピュータに実行させるためのプログラム。   The program for making a computer perform the control method of the optical apparatus of Claim 14.
JP2007295862A 2007-11-14 2007-11-14 Optical device, control method thereof, imaging device and program Pending JP2009122379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295862A JP2009122379A (en) 2007-11-14 2007-11-14 Optical device, control method thereof, imaging device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295862A JP2009122379A (en) 2007-11-14 2007-11-14 Optical device, control method thereof, imaging device and program

Publications (1)

Publication Number Publication Date
JP2009122379A true JP2009122379A (en) 2009-06-04

Family

ID=40814600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295862A Pending JP2009122379A (en) 2007-11-14 2007-11-14 Optical device, control method thereof, imaging device and program

Country Status (1)

Country Link
JP (1) JP2009122379A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065138A (en) * 2009-08-17 2011-03-31 Canon Inc Optical system and optical apparatus having the same
JP2011070123A (en) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd Fish eye camera, system, method, and image processing program
CN103119612A (en) * 2010-09-15 2013-05-22 E-视觉智能光学公司 Systems, devices, and/or methods for managing images
WO2014129216A1 (en) 2013-02-21 2014-08-28 富士フイルム株式会社 Image pickup device
EP2841991A4 (en) * 2012-04-05 2016-02-10 Magic Leap Inc Wide-field of view (fov) imaging devices with active foveation capability
JP2017078770A (en) * 2015-10-20 2017-04-27 キヤノン株式会社 Zoom lens and imaging device having the same
KR101858710B1 (en) * 2011-01-05 2018-05-16 엘지이노텍 주식회사 Camera module having panorama driver
US10295806B2 (en) 2015-10-20 2019-05-21 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN113572940A (en) * 2021-08-13 2021-10-29 江西晶浩光学有限公司 Camera module, use method of camera module and electronic equipment
WO2023090191A1 (en) * 2021-11-16 2023-05-25 京セラ株式会社 Imaging device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9348118B2 (en) 2009-08-17 2016-05-24 Canon Kabushiki Kaisha Optical system and optical apparatus having the same
JP2011065138A (en) * 2009-08-17 2011-03-31 Canon Inc Optical system and optical apparatus having the same
JP2011070123A (en) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd Fish eye camera, system, method, and image processing program
CN103119612A (en) * 2010-09-15 2013-05-22 E-视觉智能光学公司 Systems, devices, and/or methods for managing images
KR20130060298A (en) * 2010-09-15 2013-06-07 이-비전 스마트 옵틱스, 아이엔씨. System, device, and/or methods for managing images
JP2013543302A (en) * 2010-09-15 2013-11-28 イービジョン スマート オプティクス インコーポレイテッド System, device, and / or method for managing images
US8928796B2 (en) 2010-09-15 2015-01-06 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for managing images
KR101617069B1 (en) * 2010-09-15 2016-04-29 이-비전 스마트 옵틱스, 아이엔씨. System, device, and/or methods for managing images
KR101858710B1 (en) * 2011-01-05 2018-05-16 엘지이노텍 주식회사 Camera module having panorama driver
US9874752B2 (en) 2012-04-05 2018-01-23 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10162184B2 (en) 2012-04-05 2018-12-25 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
US11656452B2 (en) 2012-04-05 2023-05-23 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US9726893B2 (en) 2012-04-05 2017-08-08 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US9851563B2 (en) 2012-04-05 2017-12-26 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
EP2841991A4 (en) * 2012-04-05 2016-02-10 Magic Leap Inc Wide-field of view (fov) imaging devices with active foveation capability
US10901221B2 (en) 2012-04-05 2021-01-26 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10048501B2 (en) 2012-04-05 2018-08-14 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10061130B2 (en) 2012-04-05 2018-08-28 Magic Leap, Inc. Wide-field of view (FOV) imaging devices with active foveation capability
EP3608717A1 (en) * 2012-04-05 2020-02-12 Magic Leap, Inc. Wide-field of view (fov) imaging devices with active foveation capability
US10175491B2 (en) 2012-04-05 2019-01-08 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US10451883B2 (en) 2012-04-05 2019-10-22 Magic Leap, Inc. Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
US9470875B2 (en) 2013-02-21 2016-10-18 Fujifilm Corporation Image pickup device
WO2014129216A1 (en) 2013-02-21 2014-08-28 富士フイルム株式会社 Image pickup device
US10295806B2 (en) 2015-10-20 2019-05-21 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2017078770A (en) * 2015-10-20 2017-04-27 キヤノン株式会社 Zoom lens and imaging device having the same
CN113572940A (en) * 2021-08-13 2021-10-29 江西晶浩光学有限公司 Camera module, use method of camera module and electronic equipment
CN113572940B (en) * 2021-08-13 2023-01-06 江西晶浩光学有限公司 Camera module, use method of camera module and electronic equipment
WO2023090191A1 (en) * 2021-11-16 2023-05-25 京セラ株式会社 Imaging device

Similar Documents

Publication Publication Date Title
JP5201957B2 (en) Imaging device
JP2009122379A (en) Optical device, control method thereof, imaging device and program
JP5201809B2 (en) Zoom lens and imaging apparatus having the same
JP4845492B2 (en) Zoom optical system
JP5100411B2 (en) Zoom lens and imaging apparatus having the same
JP5046740B2 (en) Zoom lens and imaging apparatus having the same
JP6150592B2 (en) Zoom lens and imaging apparatus having the same
JP4989152B2 (en) Zoom lens and imaging apparatus having the same
US5771123A (en) Zoom lens having image stabilizing function
JP4750458B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP2988164B2 (en) Rear focus zoom lens
US6496310B2 (en) Optical system and optical apparatus provided with the same
JP2006337745A (en) Zoom lens and image pickup unit having the same
JP2006285019A (en) Zoom lens and imaging apparatus equipped with the same
JP2009175324A5 (en)
JP2006215257A (en) Zoom lens and imaging apparatus having the same
JP2009042270A (en) Zoom lens and imaging apparatus having the same
JP2012252175A (en) Zoom lens and imaging apparatus including the same
JP4545849B2 (en) Variable magnification optical system
JP2007271710A (en) Zoom lens and imaging apparatus having the same
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
JPH0882743A (en) Zoom lens of rear focus type
JP2010141671A (en) Image pickup device
JP2009175509A (en) Zoom lens and image pickup apparatus including the same