JP2009112896A - Degassing composite hollow fiber membrane - Google Patents
Degassing composite hollow fiber membrane Download PDFInfo
- Publication number
- JP2009112896A JP2009112896A JP2007286111A JP2007286111A JP2009112896A JP 2009112896 A JP2009112896 A JP 2009112896A JP 2007286111 A JP2007286111 A JP 2007286111A JP 2007286111 A JP2007286111 A JP 2007286111A JP 2009112896 A JP2009112896 A JP 2009112896A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- membrane
- fiber membrane
- degassing
- homogeneous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
本発明は、例えば、水溶液又は有機溶剤を主成分とするインクジェット用インクおよびレジスト液の製造工程やプリンターの流路などにおける異物の析出を抑制しながら溶存ガスを脱気するためのポリオレフィン系脱気用複合中空糸膜に関する。 The present invention is, for example, a polyolefin-based degassing for degassing a dissolved gas while suppressing precipitation of foreign matters in a manufacturing process of an ink-jet ink and a resist solution mainly composed of an aqueous solution or an organic solvent and a printer flow path. The present invention relates to a composite hollow fiber membrane.
液晶やプラズマディスプレーの製造工程では、供給された薬液に気泡が混入すると処理斑等の不都合が生じてしまう。また特に、近年の液晶及びプラズマディスプレーには、大画面化・高精細化が求められている。 In the liquid crystal or plasma display manufacturing process, if bubbles are mixed in the supplied chemical solution, problems such as processing spots occur. In particular, recent liquid crystals and plasma displays are required to have a large screen and high definition.
それらの対策として、インクジェット方式による製造方法が開発されている。インクジェット方式は、微細なノズルからインク組成物を小滴として吐出し、文字や画像(以下、単に「画像」ということもある。)を記録媒体表面に記録する方法である。インクジェット記録方式としては、電歪素子を用いて電気信号を機械信号に変換して、ノズルヘッド部分に貯えたインク組成物を断続的に吐出して記録媒体表面に文字や画像を記録する方法、ノズルヘッド部分に貯えたインク組成物を吐出部分に極近い一部を急速に加熱して泡を発生させて、その泡による体積膨張で断続的に吐出して、記録媒体表面に文字や画像を記録する方法等が実用化されている。 As a countermeasure against them, a manufacturing method using an ink jet method has been developed. The ink jet method is a method of recording characters and images (hereinafter sometimes simply referred to as “images”) on the surface of a recording medium by ejecting ink compositions as small droplets from fine nozzles. As an ink jet recording method, an electric signal is converted into a mechanical signal using an electrostrictive element, and the ink composition stored in the nozzle head part is intermittently ejected to record characters and images on the surface of the recording medium. The ink composition stored in the nozzle head part is rapidly heated at a part very close to the ejection part to generate bubbles, and ejected intermittently by volume expansion due to the bubbles, and characters and images are printed on the surface of the recording medium. A recording method has been put to practical use.
特に、インク液あるいはレジスト液中に気泡が混入したままの状態では、インクジェット方式においてもパターン不良が生じる場合がある。気泡が混入する原因は、窒素ガスにより薬液を吐出ノズルへ圧送する点にあると考えられる。 In particular, in the state where bubbles are mixed in the ink liquid or the resist liquid, pattern defects may occur even in the ink jet system. It is thought that the cause of mixing of bubbles is that the chemical liquid is pumped to the discharge nozzle by nitrogen gas.
すなわち、薬液が吐出ノズルから吐出される際に薬液に加わる圧力が大気圧に戻るので、薬液中の溶存ガスが過飽和となり、その過飽和分が気泡となるのである。そこで、薬液圧送工程において膜式脱気の手法で溶解ガス量を低減し、気泡の発生を抑制する技術が求められる。溶剤中の溶存ガスを脱気する為に使用する中空糸膜として、例えば、特許文献1には、疎水性多孔質膜で両面を被覆したガス選択透過性均質膜よりなる3層構造の中空糸膜が開示されている。 That is, since the pressure applied to the chemical liquid returns to the atmospheric pressure when the chemical liquid is discharged from the discharge nozzle, the dissolved gas in the chemical liquid becomes supersaturated, and the supersaturated portion becomes bubbles. Therefore, there is a demand for a technique for reducing the amount of dissolved gas by a membrane-type degassing method and suppressing the generation of bubbles in the chemical solution pressure feeding process. As a hollow fiber membrane used for degassing a dissolved gas in a solvent, for example, Patent Document 1 discloses a three-layer hollow fiber made of a gas selective permeable homogeneous membrane coated on both sides with a hydrophobic porous membrane. A membrane is disclosed.
特許文献2には、均質膜の素材として線状低密度ポリエチレンが例示されている。また特許文献3には、ポリ4−メチルペンテン−1からなる外表面から深さ約1μmまでを非多孔質層とした中空糸膜が開示されている。 Patent Document 2 exemplifies linear low density polyethylene as a material for the homogeneous film. Patent Document 3 discloses a hollow fiber membrane having a non-porous layer from the outer surface made of poly-4-methylpentene-1 to a depth of about 1 μm.
インク接触部材に、酸化防止剤を多く含有するエラストマ樹脂を用いたとき、インクとの接触で結晶性分子錯体を生成する場合があることが判明している。この結晶性分子錯体は脆く、針状に壊れるために、異物トラップ用のフィルターを通過してノズルヘッドの微小流路に詰まって吐出異常を引き起こす。 It has been found that when an elastomer resin containing a large amount of an antioxidant is used for the ink contact member, a crystalline molecular complex may be formed upon contact with the ink. Since this crystalline molecular complex is brittle and breaks into a needle shape, it passes through a filter for trapping foreign matter and clogs the minute flow path of the nozzle head, causing abnormal discharge.
特許文献4および5には、インクジェット用インク液の充填装置あるいはインクジェットプリンターの構造材について、その含まれる酸化防止剤が反応を起こし、結晶性の分子錯体を形成しインクヘッドの吐出部を詰まらせる現象への対策として酸化防止剤量を規定することについて開示されている。 In Patent Documents 4 and 5, an antioxidant contained in the ink filling device or ink jet printer structural material reacts to form a crystalline molecular complex and clogs the ejection part of the ink head. It is disclosed that the amount of antioxidant is specified as a measure against the phenomenon.
一般に、脱気用中空糸膜はその被表面積を多くすることで実用的な脱気性能を得るようにしている。被表面積が大きくなると脱気性能を向上させることが可能となるが、それだけ樹脂表面からブリードアウトする酸化防止剤量が多くなるので、通常の配管類などよりも厳しい管理が求められている。
インクジェット用インクの脱気用途として良く用いられるポリオレフィン類からなる脱気膜の例として、特許文献2に記載の直鎖状低密度ポリエチレンを用いたものが挙げられる。この樹脂は、気体透過係数が低いので、実用上有効な溶存ガスの透過流量を得るためには、0.3μm以下の極めて薄い膜とする必要がある。そして、このような薄い均質膜を形成すると機械的強度が低下し、さらにはピンホールが発生し易い。 As an example of a degassing film made of polyolefins that is often used for degassing ink jet inks, a film using linear low density polyethylene described in Patent Document 2 can be mentioned. Since this resin has a low gas permeability coefficient, it is necessary to form a very thin film of 0.3 μm or less in order to obtain a practically effective dissolved gas permeation flow rate. When such a thin homogeneous film is formed, the mechanical strength is lowered, and pinholes are easily generated.
また、特許文献3に記載のポリ4−メチルペンテン−1を用いた脱気膜は、気体透過性能が高いが、酸化に弱い為に、酸化防止剤の使用量を多くする必要がある。その結果、インク液中に溶出(ブリードアウト)した酸化防止剤とインク液の成分が反応してインクジェットのヘッドの素子を詰まらせることがある。 Moreover, although the deaeration film | membrane using the poly 4-methylpentene-1 of patent document 3 has high gas permeation | permeation performance, since it is weak to oxidation, it is necessary to increase the usage-amount of antioxidant. As a result, the antioxidant eluted in the ink liquid (bleed out) and the components of the ink liquid may react to clog the elements of the ink jet head.
また、特許文献4および特許文献5に記載の目詰まりを生じないための酸化防止剤の量は、インクジェット用インク液の製造・充填設備あるいは、インクジェットプリンタの配管設備・構造体に関するものであり、脱気膜のような特に大きな被表面積をベースとしてないために必ずしも脱気膜に適用可能なものではない。 Further, the amount of the antioxidant for preventing clogging described in Patent Document 4 and Patent Document 5 relates to the production and filling equipment for ink-jet ink liquid or the piping equipment and structure of an ink-jet printer, Since it is not based on a particularly large surface area such as a degassing membrane, it is not necessarily applicable to a degassing membrane.
本発明の目的は、脱気時に薬液の漏れを生ずることがなく、耐溶剤性や低溶出性に優れ、酸素や窒素等の気体の透過流量が大きいことを維持しながら、インク液との接触する表面積の大きな脱気用複合膜においても結晶性分子錯体等の異物の生成が抑制された脱気用複合中空糸膜を提供することにある。 The object of the present invention is to prevent contact with ink liquid while maintaining the high permeation flow rate of gas such as oxygen and nitrogen without causing leakage of chemical liquid at the time of deaeration, excellent solvent resistance and low elution property. Another object of the present invention is to provide a degassing composite hollow fiber membrane in which the generation of foreign matter such as a crystalline molecular complex is suppressed even in a degassing composite membrane having a large surface area.
本発明は、気体透過能を有する均質膜と、該均質膜を支持する多孔質支持層とを有する脱気用複合中空糸膜において、酸化防止剤量が0.005質量%以下、あるいは酸化防止剤を含まないことを特徴とする脱気用複合中空糸膜である。 The present invention relates to a degassing composite hollow fiber membrane having a homogeneous membrane having gas permeability and a porous support layer for supporting the homogeneous membrane, and the antioxidant amount is 0.005% by mass or less, or antioxidant. A degassing composite hollow fiber membrane characterized by not containing an agent.
本発明によれば、脱気用複合中空糸膜に求められる特性を維持しつつ、結晶性分子錯体等の異物の生成を抑制できる。したがって、例えば、インクジェットプリンタやそのインク液製造装置の配管の中でも特に被表面積の大きな脱気用中空糸膜モジュールにおけるインクの変質や異物の生成を抑制し、その結果プリントヘッドやインク供給部の目詰まりを防止し、安定な印刷が可能になる。 ADVANTAGE OF THE INVENTION According to this invention, the production | generation of foreign materials, such as a crystalline molecular complex, can be suppressed, maintaining the characteristic calculated | required by the composite hollow fiber membrane for deaeration. Therefore, for example, the deterioration of the ink and the generation of foreign matter are suppressed in the degassing hollow fiber membrane module having a large surface area in the piping of the ink jet printer and the ink liquid production apparatus. Prevents clogging and enables stable printing.
一般に、脱気用中空糸膜は、その被表面積を大きくすることで脱気性能が向上する。ただし、被表面積を大きくすると樹脂表面からブリードアウトする成分の量も多くなる。したがって、脱気用複合中空糸膜については、通常の配管類などよりも厳しい管理が必要と考えられる。 Generally, deaeration performance is improved by increasing the surface area of the degassing hollow fiber membrane. However, when the surface area is increased, the amount of components that bleed out from the resin surface also increases. Therefore, it is considered that stricter management is required for the degassing composite hollow fiber membrane than ordinary piping.
本発明においては、均質膜と多孔質支持層を有する複合中空糸膜全体に含まれる酸化防止剤の含有量を0.005質量%以下(中空糸膜全体の質量100質量%基準)にすることにより、前記目的を達成する。さらに、酸化防止剤の含有量は0.001質量%以下が好ましい。 In the present invention, the content of the antioxidant contained in the entire composite hollow fiber membrane having a homogeneous membrane and a porous support layer is 0.005% by mass or less (based on 100% by mass of the entire hollow fiber membrane). Thus, the object is achieved. Furthermore, the content of the antioxidant is preferably 0.001% by mass or less.
また、多孔質支持層を構成するポリオレフィン系樹脂の酸化防止剤量は、0.001質量%以下(多孔質支持層100質量%基準)であることが好ましい。支持層は多孔質化しているので、膜の外表面積だけでなく多孔質内部も含めて被表面積が著しく大きくなっており、酸化防止剤量の影響が比較的大きいからである。 Further, the amount of the antioxidant of the polyolefin resin constituting the porous support layer is preferably 0.001% by mass or less (based on 100% by mass of the porous support layer). This is because since the support layer is made porous, not only the outer surface area of the membrane but also the surface area including the porous interior is remarkably large, and the influence of the amount of antioxidant is relatively large.
一方、均質膜を構成するポリオレフィン系樹脂の酸化防止剤量は、0.02〜0.05質量%(均質膜100質量%基準)が好ましく、0.02〜0.03質量%がより好ましい。均質膜は、多孔質構造をとらないので液と接触する面積が小さく、またその表面が多孔質支持層に被覆されているので実質的な被表面積が小さく、酸化防止剤量の影響が比較的少ない。また、多孔質支持層に一般的に用いられる高密度ポリエチレンと比較して、均質膜に用いられるポリオレフィン系樹脂(ポリエチレン系樹脂等)は耐熱性が低い。したがって、両ポリマーを同温度条件で紡糸する必要がある場合には、均質膜のポリエチレン系樹脂の熱劣化が進み易く、生産性の悪化あるいは性能の低下を招き易い。したがって、均質膜を構成するポリエチレン系樹脂に酸化防止剤を0.02〜0.05質量%(より好ましくは0.02〜0.03質量%)含有させることにより、熱劣化を抑制し、より厳しい温度条件での溶融紡糸に耐えながら、膜全体の酸化防止剤溶出量を著しく低減でき、かつ融点差の大きなポリマーとの複合により気体透過性能の高い脱気用複合中空糸膜を得ることができる。 On the other hand, the amount of the antioxidant of the polyolefin resin constituting the homogeneous film is preferably 0.02 to 0.05% by mass (based on 100% by mass of the homogeneous film), and more preferably 0.02 to 0.03% by mass. Homogeneous membranes do not have a porous structure, so the area in contact with the liquid is small, and since the surface is coated with a porous support layer, the substantial surface area is small, and the influence of the amount of antioxidant is relatively small. Few. In addition, compared to high-density polyethylene generally used for the porous support layer, polyolefin resins (polyethylene resins and the like) used for the homogeneous membrane have low heat resistance. Therefore, when it is necessary to spin both polymers under the same temperature condition, the thermal degradation of the polyethylene-based resin of the homogeneous film tends to proceed, and the productivity is likely to deteriorate or the performance tends to deteriorate. Therefore, by containing 0.02 to 0.05 mass% (more preferably 0.02 to 0.03 mass%) of the antioxidant in the polyethylene resin constituting the homogeneous film, thermal deterioration is suppressed, and more It is possible to obtain a degassing composite hollow fiber membrane with high gas permeation performance by combining with a polymer having a large melting point difference while being able to withstand melt spinning under severe temperature conditions and significantly reducing the amount of antioxidant elution of the entire membrane. it can.
均質膜を構成するポリオレフィン系樹脂に用いる酸化防止剤の種類に関して特に制限はなく、公知のものを使用できる。その具体例としては、ヒンダードフェノール系、ホスファイト系、硫黄系、リン系、あるいはこれらを複合した酸化防止剤が挙げられる。酸化防止剤を含有せしめる方法としては、均一に混合可能であれればいかなる方法でも良い。 There is no restriction | limiting in particular regarding the kind of antioxidant used for polyolefin resin which comprises a homogeneous film, A well-known thing can be used. Specific examples thereof include hindered phenol-based, phosphite-based, sulfur-based, phosphorus-based, and antioxidants that combine these. As a method for adding the antioxidant, any method may be used as long as it can be mixed uniformly.
均質膜を構成するポリオレフィン系樹脂には、必要に応じて、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物を、本発明の目的を損なわない範囲で添加できる。 If necessary, additives such as UV absorbers, lubricants, antiblocking agents, colorants, flame retardants, and the like can be added to the polyolefin resin constituting the homogeneous film as long as the object of the present invention is not impaired. .
均質膜を構成するポリオレフィン系樹脂のメルトフローレート(MFR)は、好ましくは0.1〜5g/10min・190℃、より好ましくは0.3〜2g/10min・190℃である。このMFRの各範囲の上限値は、ポリマーの流動性、支持層側に均質膜用樹脂が流出する事による均質膜の厚さの不均一化を防ぎ、脱気膜としての気体透過性能を十分維持する点で意義がある。また、下限値は、押出成型性の点で意義がある。MFRは、ASTM D1238のE条件に従い、試験温度190℃、試験荷重2.16kgfで測定した値である。 The melt flow rate (MFR) of the polyolefin resin constituting the homogeneous film is preferably 0.1 to 5 g / 10 min · 190 ° C., more preferably 0.3 to 2 g / 10 min · 190 ° C. The upper limit of each range of MFR is sufficient to prevent the fluidity of the polymer and the uniformity of the thickness of the homogeneous membrane due to the flow of the resin for the homogeneous membrane to the support layer. Significant in terms of maintenance. The lower limit is significant in terms of extrusion moldability. MFR is a value measured at a test temperature of 190 ° C. and a test load of 2.16 kgf in accordance with ASTM E1238 E condition.
均質膜を構成するポリオレフィン系樹脂の重量平均分子量と数平均分子量の比率(Mw/Mn)(多分散度)は、好ましくは3.0以下である。これにより、均質膜の成形性を維持しながら耐クレイズ強度が大きくなる。また、分子量分布が比較的狭い樹脂を用いれば、低分子量成分の割合が低くなり、高耐溶剤性、耐エンジンオイル性、耐溶剤抽出性、耐牛脂性等が向上する。 The ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) (polydispersity) of the polyolefin resin constituting the homogeneous film is preferably 3.0 or less. This increases the crazing resistance while maintaining the formability of the homogeneous film. Further, if a resin having a relatively narrow molecular weight distribution is used, the proportion of low molecular weight components is reduced, and high solvent resistance, engine oil resistance, solvent extraction resistance, tallow resistance, and the like are improved.
均質膜を構成するポリオレフィン系樹脂は、メタロセン触媒を使用して得た重合体であることが好ましい。メタロセン触媒を使用すると、他の触媒(チグラーナッター系触媒等)を使用した場合と比較して、基本的には同種のポリオレフィン系樹脂であるにも関わらず分子量分布が狭く、低分子量成分や低結晶成分が少なく、かつ低融点のポリオレフィン系樹脂が得られる。 The polyolefin-based resin constituting the homogeneous film is preferably a polymer obtained using a metallocene catalyst. When using a metallocene catalyst, the molecular weight distribution is basically narrow compared to the case of using other catalysts (such as Ziegler-Natta catalyst), although it is the same type of polyolefin resin, low molecular weight components and A polyolefin resin having a low crystalline component and a low melting point can be obtained.
均質膜を構成するポリオレフィン系樹脂は、オレフィンを主体として得た重合体である。オレフィンのみを用いて得た重合体であってもよいし、オレフィンと他のモノマーの共重合体であってもよいし、それらの変性樹脂であってもよい。その具体例としては、エチレン・α−オレフィン共重合体、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、直鎖状超低密度ポリエチレン(VLDPE)、ポリプロピレン、ポリ4−メチルペンテン−1(PMP)、アイオノマー樹脂、エチレン・酢酸ビニル共重合体(EVA)、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体(EMAA)、エチレン・アクリル酸メチル共重合体、エチレン・メタクリル酸メチル共重合体、変性ポリオレフィン(例えば、オレフィンの単独重合体または共重合体とマレイン酸やフマル酸等の不飽和カルボン酸や酸無水物やエステルもしくは金属塩などとの反応物)等が挙げられる。ポリオレフィン系樹脂の中では、特にポリエチレン系樹脂が好ましい。 The polyolefin resin constituting the homogeneous film is a polymer obtained mainly from olefin. It may be a polymer obtained by using only olefin, a copolymer of olefin and another monomer, or a modified resin thereof. Specific examples thereof include ethylene / α-olefin copolymer, high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), linear ultra low density polyethylene (VLDPE), Polypropylene, poly-4-methylpentene-1 (PMP), ionomer resin, ethylene / vinyl acetate copolymer (EVA), ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer (EMAA), ethylene / acrylic acid Methyl copolymer, ethylene / methyl methacrylate copolymer, modified polyolefin (for example, olefin homopolymer or copolymer and unsaturated carboxylic acid such as maleic acid or fumaric acid, acid anhydride, ester, metal salt, etc. Reaction product) and the like. Among polyolefin resins, polyethylene resins are particularly preferable.
均質膜を構成するポリオレフィン系樹脂としては、特に密度(JISK−7112=ASTM D1505により測定)が0.910g/cm3以下、0.85g/cm3以上の樹脂が好ましい。密度がこの範囲内であれば、均質膜の酸素透過性をより高めることができ、また実用上適した融点又は軟化点となる。このようなポリエチレン系樹脂の具体例としては、上述したHDPE、LDPE、LLDPE、VLDPE、及びメタロセン触媒を使用して得た主としてエチレンからなる(共)重合体が挙げられる。 As the polyolefin resin constituting the homogeneous film, in particular a density (measured by JISK-7112 = ASTM D1505) is 0.910 g / cm 3 or less, 0.85 g / cm 3 or more resins. If the density is within this range, the oxygen permeability of the homogeneous membrane can be further increased, and a practically suitable melting point or softening point is obtained. Specific examples of such polyethylene-based resins include HDPE, LDPE, LLDPE, VLDPE, and (co) polymers mainly composed of ethylene obtained using the metallocene catalyst.
このようなポリエチレン系樹脂は、軟化温度が低く、分子量分布も狭いという特徴がある。密度との相関から、ポリエチレン系樹脂の融点(Tm)は40〜100℃以下が好ましい。Tmは示差走査型熱量計(DSC)で測定した値である。 Such a polyethylene resin is characterized by a low softening temperature and a narrow molecular weight distribution. From the correlation with the density, the melting point (Tm) of the polyethylene resin is preferably 40 to 100 ° C. or less. Tm is a value measured with a differential scanning calorimeter (DSC).
特に、メタロセン触媒系ポリエチレン系樹脂の中で気体透過性部材として有効なものに、エチレン・α−オレフィン共重合体がある。代表的なものとしては、ダウ・ケミカル社が開発したインサイト(シングルサイト)触媒、いわゆるメタロセン触媒の一種である拘束幾何触媒を使用して得たエチレン・α−オレフィン共重合体が挙げられる。 Among the metallocene catalyst-based polyethylene resins, an ethylene / α-olefin copolymer is effective as a gas-permeable member. A typical example is an ethylene / α-olefin copolymer obtained by using an insight (single site) catalyst developed by Dow Chemical Company, a constrained geometric catalyst which is a kind of so-called metallocene catalyst.
エチレン・α−オレフィン共重合体としては、エチレン・C3〜C20α−オレフィン共重合体が好ましい。エチレン・C3〜C20α−オレフィン共重合体とは、エチレンと炭素数3〜20のα−オレフィンの少なくとも一種との共重合体である。C3〜C20α−オレフィンの具体例としては、プロピレン、イソブチレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンが挙げられる。さらに、C4〜C20α−オレフィンが好ましく、C6〜C8α−オレフィンがより好ましく、1−ヘキセン又は1−オクテンが特に好ましい。エチレン・α−オレフィン共重合体としては、C3〜C20α−オレフィンを約10モル%以上(特に好ましくは約20〜約40モル%)の割合で用いて共重合して得たものが好ましい。 The ethylene / α-olefin copolymer is preferably an ethylene / C3-C20 α-olefin copolymer. The ethylene / C3-C20 α-olefin copolymer is a copolymer of ethylene and at least one type of α-olefin having 3 to 20 carbon atoms. Specific examples of the C3-C20 α-olefin include propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-octene. Furthermore, a C4 to C20 α-olefin is preferable, a C6 to C8 α-olefin is more preferable, and 1-hexene or 1-octene is particularly preferable. As the ethylene / α-olefin copolymer, a copolymer obtained by copolymerization using a C3 to C20 α-olefin at a ratio of about 10 mol% or more (particularly preferably about 20 to about 40 mol%) is preferable.
エチレン・C8α−オレフィン共重合体の市販品としては、例えば、ダウ・ケミカル社製のアフィニティー(AFFINITY)(商標)が挙げられる。また、エチレン・C6α−オレフィン共重合体の市販品としては、例えば、プライムポリマー社製のエボリュー(商標)が挙げられる。 Examples of commercially available ethylene / C8α-olefin copolymers include AFFINITY (trademark) manufactured by Dow Chemical Company. Examples of commercially available ethylene / C6α-olefin copolymers include Evolue (trademark) manufactured by Prime Polymer Co., Ltd.
中空糸膜を構成する複合膜は、均質膜と多孔質支持層との二層複合膜であってもよいし、均質膜が多孔質支持層で挟まれた三層複合膜であってもよい。 The composite membrane constituting the hollow fiber membrane may be a two-layer composite membrane of a homogeneous membrane and a porous support layer, or a three-layer composite membrane in which a homogeneous membrane is sandwiched between porous support layers. .
均質膜の厚さは、0.5〜10μmが好ましい。これが0.5μm以上であれば使用時の耐圧性が向上し、10μm以下であれば気体透過性が向上する。 The thickness of the homogeneous film is preferably 0.5 to 10 μm. When this is 0.5 μm or more, pressure resistance during use is improved, and when it is 10 μm or less, gas permeability is improved.
多孔質支持層の厚さについて、二層複合膜の場合の一層の厚さ、三層複合膜の内層又は外層の一層の厚さは、10〜200μmが好ましい。これが10μm以上であれば機械的強度が向上し、200μm以下であれば中空糸膜の糸外径が細くなり、膜モジュールへ内蔵する際の膜の容積効率が向上する。 Regarding the thickness of the porous support layer, the thickness of one layer in the case of the two-layer composite membrane and the thickness of one layer of the inner layer or the outer layer of the three-layer composite membrane are preferably 10 to 200 μm. If this is 10 μm or more, the mechanical strength is improved, and if it is 200 μm or less, the outer diameter of the hollow fiber membrane is reduced, and the volumetric efficiency of the membrane when incorporated in the membrane module is improved.
多孔質支持層は、一般にポリオレフィン系樹脂から構成されるものであり、高密度ポリエチレン等のポリエチレン系樹脂で構成されることが好ましい。また、多孔質支持層と均質膜との質量比は、90/10〜99/1の範囲内にあることが好ましい。 The porous support layer is generally composed of a polyolefin resin, and is preferably composed of a polyethylene resin such as high-density polyethylene. The mass ratio of the porous support layer and the homogeneous membrane is preferably in the range of 90/10 to 99/1.
中空糸膜の太さは、特に限定されない。通常、その外径は100〜2000μm程度が好ましい。外径を100μm以上にすると、中空糸膜間の隙間が比較的広くなりポッティング用材料が浸入し易くなる。また2000μm以下にすると、多数本の中空糸膜を有するモジュール全体のサイズが小さくなり、これに伴いポッティング部の容積が小さくなり、その結果、ポッティング部の成形加工時の収縮による寸法精度の低下を抑制できる。 The thickness of the hollow fiber membrane is not particularly limited. Usually, the outer diameter is preferably about 100 to 2000 μm. When the outer diameter is 100 μm or more, the gap between the hollow fiber membranes is relatively wide and the potting material can easily enter. If it is 2000 μm or less, the overall size of the module having a large number of hollow fiber membranes is reduced, and accordingly the volume of the potting part is reduced. As a result, the dimensional accuracy is reduced due to shrinkage during molding of the potting part. Can be suppressed.
多孔質支持層の空孔率及び細孔の大きさは、特に限定されない。通常、空孔率は30〜80vol%が好ましい。空孔率を30vol%以上にすると、気体透過性が向上し、また80vol%以下にすると、耐圧性等の機械的強度が向上する。 The porosity and pore size of the porous support layer are not particularly limited. Usually, the porosity is preferably 30 to 80 vol%. When the porosity is 30 vol% or more, gas permeability is improved, and when it is 80 vol% or less, mechanical strength such as pressure resistance is improved.
複合中空糸膜は、例えば、多層複合紡糸工程と延伸多孔質化工程を経て製造される。その製造方法の具体例は、以下の通りである。まず、同心円状複合構造ノズル口金の最外層ノズル部及び最内層ノズル部に支持層前駆体(未延伸層)用溶融ポリマー(高密度ポリエチレン等)を供給し、中間層ノズル部に均質膜用溶融ポリマー(ポリエチレン系樹脂)を供給する。そして、同心円状口金から溶融ポリマーを押出してドラフトのかかった状態で冷却固化させ、未延伸中空繊維を得る。次に、この未延伸中空繊維を延伸し、中間層の均質膜を挟んだ内層と外層を多孔質化する。これにより、均質膜とこれを支持する多孔質支持層(内層及び外層)とを有する三層複合中空糸膜が得られる。 The composite hollow fiber membrane is manufactured through, for example, a multilayer composite spinning process and a stretched porous process. The specific example of the manufacturing method is as follows. First, a molten polymer (high-density polyethylene, etc.) for the support layer precursor (unstretched layer) is supplied to the outermost layer nozzle part and innermost layer nozzle part of the concentric composite nozzle nozzle, and the homogeneous film is melted to the intermediate layer nozzle part. Supply polymer (polyethylene resin). Then, a molten polymer is extruded from a concentric die and cooled and solidified in a drafted state to obtain unstretched hollow fibers. Next, this unstretched hollow fiber is stretched to make the inner layer and the outer layer sandwiching the homogeneous membrane of the intermediate layer porous. Thereby, a three-layer composite hollow fiber membrane having a homogeneous membrane and a porous support layer (inner layer and outer layer) that supports the homogeneous membrane is obtained.
支持層の多孔化のための延伸工程において、延伸倍率は用いるポリマーの種類に応じて決定すればよい。通常、延伸倍率は、未延伸繊維の2〜5倍が好ましい。延伸倍率を2倍以上にすれば、多孔質支持層の空孔率が高くなり気体透過性が向上する。また、5倍以下にすれば、複合中空糸膜の破断伸度が向上する。 In the stretching step for making the support layer porous, the stretching ratio may be determined according to the type of polymer used. Usually, the draw ratio is preferably 2 to 5 times that of undrawn fibers. If the draw ratio is 2 times or more, the porosity of the porous support layer is increased, and the gas permeability is improved. Moreover, if it makes it 5 times or less, the breaking elongation of a composite hollow fiber membrane will improve.
支持層の多孔化のための延伸工程において、延伸温度は、均質膜を構成するポリマーの融点(Tm)−20℃以上、(Tm+40℃)以下であり、かつ支持層のビカット軟化点以下であることが好ましい。さらに下限値については、(Tm−10℃)以上が特に好ましい。上記各範囲の上限値は、ポリオレフィン系樹脂の分子の乱れによる欠陥が生じ難くさせながら支持層ポリマーが充分に多孔化することを両立する上で、脱気膜として充分な性能を得る点で意義がある。 In the stretching process for making the support layer porous, the stretching temperature is not lower than the melting point (Tm) of the polymer constituting the homogeneous film, not lower than 20 ° C. and not higher than (Tm + 40 ° C.), and lower than the Vicat softening point of the supporting layer. It is preferable. Furthermore, about a lower limit, (Tm-10 degreeC) or more is especially preferable. The upper limit of each of the above ranges is significant in terms of obtaining sufficient performance as a degassing membrane in order to make the support layer polymer sufficiently porous while making it difficult for defects due to molecular disturbance of the polyolefin resin to occur. There is.
上記複合中空糸膜を製造するための方法であって、支持層の多孔化のための延伸工程を有し、該延伸工程における緩和温度が、均質膜を構成するポリマーの融点(Tm)℃以上、(Tm+60℃)以下であれば、ポリオレフィン系樹脂の分子の乱れによる欠陥が生じ難くなる点で意義がある。 A method for producing the composite hollow fiber membrane, comprising a stretching step for making the support layer porous, and a relaxation temperature in the stretching step is equal to or higher than a melting point (Tm) ° C. of a polymer constituting the homogeneous membrane , (Tm + 60 ° C.) or less is significant in that defects due to disorder of the polyolefin resin molecules are less likely to occur.
また、熱による収縮率を抑えるための緩和倍率が0.2倍以上0.5倍以下であり、さらには0.3倍以上0.45倍以下であると、75℃×8hr後の熱収縮率を5%以下に低減できるため、モジュールの成形安定性の点でより好ましい。 Further, when the relaxation ratio for suppressing the shrinkage rate due to heat is 0.2 times or more and 0.5 times or less, and further 0.3 times or more and 0.45 times or less, the heat shrinkage after 75 ° C. × 8 hours. Since the rate can be reduced to 5% or less, it is more preferable in terms of module molding stability.
以上説明した複合中空糸膜を用いて、薬液の脱気を良好に実施できる。通常、複合中空糸膜を中空糸膜モジュールとして構成したものを脱気に使用する。中空糸膜モジュールは、例えば中空糸膜を数百本束ねて筒状のハウジングに挿入し、封止材を複合中空糸膜の外側多孔質の細孔に浸透させながら隣り合う中空糸膜間を封止材で充填して製造することができる。 Using the composite hollow fiber membrane described above, the chemical solution can be degassed satisfactorily. Usually, a composite hollow fiber membrane configured as a hollow fiber membrane module is used for deaeration. The hollow fiber membrane module, for example, bundles several hundreds of hollow fiber membranes and inserts them into a cylindrical housing, and allows the sealing material to penetrate between the outer porous pores of the composite hollow fiber membranes so that adjacent hollow fiber membranes are inserted. It can be manufactured by filling with a sealing material.
以下、本発明を実施例に基づいてさらに詳しく説明する。なお、各物性は以下の方法より測定した。なお、以下の記載において「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail based on examples. Each physical property was measured by the following method. In the following description, “%” means “% by mass”.
[融点(Tm)]
融点(Tm)の測定には、セイコー電子工業製の示差走査型熱量計(DSC)を用いた。具体的には、約5mgの試料を200℃で5分間融解し、40℃まで10℃/minの速度で降温して結晶化し、その後更に10℃/minで200℃まで昇温して融解した時の融解ピーク温度及び融解終了温度により融点を求めた。
[Melting point (Tm)]
A differential scanning calorimeter (DSC) manufactured by Seiko Denshi Kogyo was used for the measurement of the melting point (Tm). Specifically, about 5 mg of sample was melted at 200 ° C. for 5 minutes, crystallized by cooling to 40 ° C. at a rate of 10 ° C./min, and then further heated to 200 ° C. at 10 ° C./min to melt. The melting point was determined from the melting peak temperature at the time and the melting end temperature.
[重量平均分子量と数平均分子量の比率(Mw/Mn)]
ゲル・パーミエーション・クロマトグラフィー(GPC)により、以下の条件で測定した。
GPC測定装置:WATERS 150−GPC(WATERS社製)
温度:140℃
溶媒:1,2,4−トリクロロベンゼン
濃度:0.05%(インジェクション量:500マイクロリットル)
カラム:Shodex GPC AT−807/S 1本、Tosoh TSK−GEL GMH6−HT 2本
溶解条件:160℃、2.5時間
キャリブレーションカーブ:ポリスチレンの標準試料を測定し、ポリエチレン換算定数(0.48)を使用し、3次で計算。
[Ratio of weight average molecular weight to number average molecular weight (Mw / Mn)]
It measured by the following conditions by gel permeation chromatography (GPC).
GPC measuring device: WATERS 150-GPC (manufactured by WATERS)
Temperature: 140 ° C
Solvent: 1,2,4-trichlorobenzene concentration: 0.05% (injection amount: 500 microliters)
Column: One Shodex GPC AT-807 / S, two Tosoh TSK-GEL GMH6-HT Dissolution conditions: 160 ° C., 2.5 hours Calibration curve: A polystyrene standard sample was measured, and a polyethylene conversion constant (0.48) ) And calculated in the third order.
[メルトフローレート(MFR)]
ASTM D1238のE条件に従い、190℃における2.16kg荷重での10分間にストランド状に押し出される樹脂の質量を測定することによりメルトフローレート(MFR2.16)(g/10min)を求めた。
[Melt flow rate (MFR)]
The melt flow rate (MFR 2.16) (g / 10 min) was determined by measuring the mass of the resin extruded in a strand shape for 10 minutes under a load of 2.16 kg at 190 ° C. according to ASTM D1238 E condition.
[密度]
JIS K7112に準拠して、190℃で2.16kg荷重におけるMFR測定時に得られるストランドを100℃で1時間熱処理し、1時間かけて室温まで徐冷したサンプルを、密度勾配管を用いて測定した。
[density]
In accordance with JIS K7112, a sample obtained by heat-treating a strand obtained at the time of MFR measurement at 190 ° C. under a 2.16 kg load at 100 ° C. for 1 hour and gradually cooling to room temperature over 1 hour was measured using a density gradient tube. .
<実施例1>
均質膜(中間層)の部分に、メタロセン系触媒により製造されたエチレン−オクテン共重合体(商品名 アフィニティー(AFFINITY)EG8100G、ダウケミカル(株)製、MFR1.0g/10min、密度0.870g/cm3、融点55℃、Mw/Mn=2.0、オクテン含有量35%、酸化防止剤(商品名イルガノックス1010)0.02%含有)を用いた。
<Example 1>
An ethylene-octene copolymer produced by a metallocene catalyst (trade name: AFFINITY EG8100G, manufactured by Dow Chemical Co., Ltd., MFR 1.0 g / 10 min, density 0.870 g / cm 3 , melting point 55 ° C., Mw / Mn = 2.0, octene content 35%, antioxidant (trade name Irganox 1010) containing 0.02% were used.
支持層(内層と外層)には、乳等省令に適合した高密度ポリエチレン(商品名サンテックHD B161、MFR1.35g/10min、密度0.963g/cm3、融点140℃、酸化防止剤を含まず)を用いた。 The support layer (inner layer and outer layer) is a high-density polyethylene (trade name Suntech HD B161, MFR 1.35 g / 10 min, density 0.963 g / cm 3 , melting point 140 ° C., not containing antioxidants, conforming to the ordinance of milk and the like. ) Was used.
上記の組み合わせで三層複合ノズルを用いて巻取速度95m/minで紡糸し、三層が同心円状に配された未延伸中空糸を得た。 Spinning was performed at a winding speed of 95 m / min using a three-layer composite nozzle in the above combination to obtain an unstretched hollow fiber in which the three layers were concentrically arranged.
この未延伸中空糸を108℃でアニール処理した。次いで、23±2℃で1.25倍延伸し、引き続き70℃の加熱炉中で4.4倍の延伸を行った上で、100℃の加熱炉中で0.4倍の緩和工程を実施し、最終的に総延伸倍率が4倍になるように成形して総延伸量が4倍になるまで熱延伸を行い、複合中空糸膜を得た。この多層複合中空糸膜は、均質膜(非多孔質薄膜)が二つの多孔質層で挟まれた三層構造であった。 This unstretched hollow fiber was annealed at 108 ° C. Next, the film was stretched 1.25 times at 23 ± 2 ° C., and subsequently stretched 4.4 times in a heating furnace at 70 ° C., followed by a relaxation process of 0.4 times in a heating furnace at 100 ° C. And finally, it shape | molded so that the total draw ratio might be set to 4 times, and it heat-stretched until the total amount of stretch became 4 times, and obtained the composite hollow fiber membrane. This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous membrane (non-porous thin film) was sandwiched between two porous layers.
<実施例2>
均質膜(中間層)の部分に、メタロセン系触媒により製造されたエチレン−ヘキセン共重合体(商品名EVOLUE SP0510、プライムポリマー(株)製、MFR1.2g/10min、密度0.903g/cm3、融点98℃、Mw/Mn=2.0、酸化防止剤(商品名イルガノックス1076)0.03%含有)を用い、巻取速度を90m/minに変更したこと以外は実施例1と同様にして紡糸して、三層が同心円状に配された未延伸中空糸を得た。
<Example 2>
An ethylene-hexene copolymer (trade name EVOLUE SP0510, manufactured by Prime Polymer Co., Ltd., MFR 1.2 g / 10 min, density 0.903 g / cm 3 ) produced by a metallocene catalyst on the homogeneous membrane (intermediate layer) part. A melting point of 98 ° C., Mw / Mn = 2.0, containing an antioxidant (trade name: Irganox 1076) containing 0.03%, and the winding speed was changed to 90 m / min. Thus, an unstretched hollow fiber having three layers arranged concentrically was obtained.
この未延伸中空糸を実施例1と同様にしてアニール処理及び延伸を行ない、複合中空糸膜を得た。この多層複合中空糸膜は、均質膜(非多孔質薄膜)が二つの多孔質層で挟まれた三層構造であった。 This unstretched hollow fiber was annealed and stretched in the same manner as in Example 1 to obtain a composite hollow fiber membrane. This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous membrane (non-porous thin film) was sandwiched between two porous layers.
<比較例1>
均質膜(中間層)の部分に、エチレン−プロピレン共重合体(商品名 VERSIFY2000、ダウケミカル(株)製、MFR2g/10min、密度0.888g/cm3、融点120℃、Mw/Mn=2、酸化防止剤(商品名イルガノックス1010)0.05%含有)を用いた。
<Comparative Example 1>
An ethylene-propylene copolymer (trade name VERSIFY2000, manufactured by Dow Chemical Co., Ltd., MFR 2 g / 10 min, density 0.888 g / cm 3 , melting point 120 ° C., Mw / Mn = 2, An antioxidant (trade name: Irganox 1010) containing 0.05% was used.
支持層(内層と外層)には、ポリプロピレン(商品名 NOVATEC FY6H、日本ポリプロ(株)製、MFR1.9g/10min、密度0.90g/cm3、融点170℃、Mw/Mn=5、酸化防止剤0.06%含有)を用いた。 For the support layer (inner layer and outer layer), polypropylene (trade name NOVATEC FY6H, manufactured by Nippon Polypro Co., Ltd., MFR 1.9 g / 10 min, density 0.90 g / cm 3 , melting point 170 ° C., Mw / Mn = 5, antioxidant) (Containing 0.06% of an agent).
上記の組み合わせで三層複合ノズルを用いて巻取速度90m/minで紡糸し、三層が同心円状に配された未延伸中空糸を得た。 Spinning was performed at a winding speed of 90 m / min using a three-layer composite nozzle in the above combination to obtain an unstretched hollow fiber in which the three layers were concentrically arranged.
この未延伸中空糸を140℃でアニール処理した。次いで、23±2℃下で1.25倍の延伸をし、引き続き120℃の加熱炉中で総延伸量が3.3倍になるまで熱延伸を行い、130℃の加熱炉中で0.3倍の緩和工程を実施し、最終的に総延伸倍率が3倍になるような成形を行った。この多層複合中空糸膜は、均質膜(非多孔質薄膜)が二つの多孔質層で挟まれた三層構造であった。 This unstretched hollow fiber was annealed at 140 ° C. Next, the film was stretched by 1.25 times at 23 ± 2 ° C., and subsequently heat-stretched in a 120 ° C. heating furnace until the total stretching amount became 3.3 times. The relaxation process of 3 times was implemented, and it shape | molded so that the total draw ratio might finally become 3 times. This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous membrane (non-porous thin film) was sandwiched between two porous layers.
<比較例2>
均質膜(中間層)の部分に、ポリ4−メチルペンテン−1(商品名 TPX MX002、三井化学(株)製、MFR21g/10min、密度0.835g/cm3、融点222℃、Mw/Mn=10、酸化防止剤(商品名イルガノックス1010)0.18%含有)を用いた。
<Comparative example 2>
In the part of the homogeneous membrane (intermediate layer), poly-4-methylpentene-1 (trade name TPX MX002, manufactured by Mitsui Chemicals, MFR 21 g / 10 min, density 0.835 g / cm 3 , melting point 222 ° C., Mw / Mn = 10. Antioxidant (trade name: Irganox 1010) containing 0.18% was used.
支持層(内層と外層)には、ポリ4−メチルペンテン−1(商品名 TPX RT31、三井化学 (株)製、MFR26g/10min、密度0.833g/cm3、融点237℃、Mw/Mn=10、酸化防止剤0.18%含有)を用いた。 For the support layer (inner layer and outer layer), poly-4-methylpentene-1 (trade name TPX RT31, manufactured by Mitsui Chemicals, MFR 26 g / 10 min, density 0.833 g / cm 3 , melting point 237 ° C., Mw / Mn = 10 and 0.18% antioxidant).
上記の組み合わせで三層複合ノズルを用いて巻取速度45m/minで紡糸し、三層が同心円状に配された未延伸中空糸を得た。 Spinning was performed at a winding speed of 45 m / min using a three-layer composite nozzle in the above combination to obtain an unstretched hollow fiber in which the three layers were concentrically arranged.
この未延伸中空糸を200℃でアニール処理した。次いで、23±2℃で1.25倍延伸し、引き続き200℃の加熱炉中で総延伸量が2.2倍になるまで熱延伸を行い、220℃の加熱炉中で0.2倍の緩和工程を実施し、最終的に総延伸倍率が2倍になるような成形を行った。この多層複合中空糸膜は、均質膜(非多孔質薄膜)が二つの多孔質層で挟まれた三層構造であった。 This unstretched hollow fiber was annealed at 200 ° C. Next, the film was stretched by 1.25 times at 23 ± 2 ° C., and subsequently heat-stretched in a heating furnace at 200 ° C. until the total stretching amount was 2.2 times, and 0.2 times in a heating furnace at 220 ° C. The relaxation process was carried out, and molding was performed so that the total draw ratio was finally doubled. This multilayer composite hollow fiber membrane had a three-layer structure in which a homogeneous membrane (non-porous thin film) was sandwiched between two porous layers.
<酸化防止剤の溶出量とその影響>
実施例および比較例の各多層複合中空糸膜について、酸化防止剤の濃度を測定した。具体的には、40℃のIPA(イソプロピルアルコール)中に、サンプル100gを5日間浸漬し、IPA液中の酸化防止剤の溶出量を測定した。測定条件は以下の通りである。
<Elution amount of antioxidant and its influence>
About each multilayer composite hollow fiber membrane of an Example and a comparative example, the density | concentration of antioxidant was measured. Specifically, 100 g of a sample was immersed in IPA (isopropyl alcohol) at 40 ° C. for 5 days, and the elution amount of the antioxidant in the IPA solution was measured. The measurement conditions are as follows.
[酸化防止剤の濃度測定条件]
HPLCクロマトグラムを用いて定量分析を行った。
前処理:試料1gを精秤して高周波抽出後、抽出液中の樹脂成分を取り除き、これを供試試料としてHPLC分析を行った。
装置:HewlettPackard(HP)製、1100型。
カラム:逆相分配系カラム。
検出波長:UV210nm。
移動相:アセトニトリル水溶液。
[Conditions for measuring antioxidant concentration]
Quantitative analysis was performed using HPLC chromatogram.
Pretreatment: 1 g of a sample was precisely weighed and subjected to high-frequency extraction, the resin component in the extract was removed, and HPLC analysis was performed using this as a test sample.
Apparatus: HewlettPackard (HP), 1100 type.
Column: Reversed phase distribution system column.
Detection wavelength: UV210nm.
Mobile phase: Acetonitrile aqueous solution.
また実施例および比較例の各多層複合中空糸膜について、特開2006−15564号公報と同じ方法により、60℃のインク中にサンプル(中空糸膜)を5日間浸漬し、その後のインク中の異物発生の有無を確認した。具体的には、ろ過瓶のメッシュフィルター上に開口径10μmの電鋳製金属フィルターを配置し、減圧ろ過下で電鋳製金属フィルターへ一定量のインクを滴下、ろ過し、金属顕微鏡で結晶性分子錯体と思われる形状の異物を目視により観察・確認し、必要に応じ赤外線吸光光度計(FT−IR)で同定した。 Further, for each multilayer composite hollow fiber membrane of Examples and Comparative Examples, a sample (hollow fiber membrane) was immersed in 60 ° C. ink for 5 days by the same method as in Japanese Patent Application Laid-Open No. 2006-15564. The presence or absence of foreign matter was confirmed. Specifically, an electroformed metal filter having an opening diameter of 10 μm is placed on a mesh filter of a filtration bottle, and a certain amount of ink is dropped and filtered onto the electroformed metal filter under reduced pressure filtration. A foreign substance having a shape considered to be a molecular complex was visually observed and confirmed, and identified with an infrared absorptiometer (FT-IR) as necessary.
下記表1に、IPAへの酸化防止剤の溶出量の測定結果と異物の発生の評価結果を示す。また、支持層及び均質膜を構成する各樹脂中が酸化防止剤の含有量(%)(均質膜と支持層の各々の質量を100%基準とした場合)と、支持層と均質膜との質量比(具体的には紡糸時のノズル吐出量比)と、中空糸膜全体での酸化防止剤含有量(%)(中空糸膜全体の質量を100%基準とした場合)も併せて示す。この表1から明らかなように、実施例1および2においては異物の発生も無く、酸化防止剤の溶出も見られなかった。 Table 1 below shows the measurement results of the amount of the antioxidant dissolved in IPA and the evaluation results of the generation of foreign matter. Further, the content of the antioxidant (%) in each resin constituting the support layer and the homogeneous membrane (when the mass of each of the homogeneous membrane and the support layer is based on 100%) and the support layer and the homogeneous membrane The mass ratio (specifically, the nozzle discharge amount ratio during spinning) and the antioxidant content (%) in the entire hollow fiber membrane (when the mass of the entire hollow fiber membrane is based on 100%) are also shown together. . As is apparent from Table 1, in Examples 1 and 2, no foreign matter was generated and no antioxidant was eluted.
本発明の脱気用複合中空糸膜は、例えば、半導体の製造ライン、液晶のカラーフィルター製造ライン及びインクジェットプリンタのインク製造などにおいて、水系溶液、有機溶剤、レジスト液中の溶存ガス量を低減するための脱気用途に有用である。特に、半導体の製造ラインにおけるリソグラフィーに用いるフォトレジスト液や現像液の脱気用途に非常に有用である。 The degassing composite hollow fiber membrane of the present invention reduces the amount of dissolved gas in aqueous solutions, organic solvents, and resist solutions in, for example, semiconductor production lines, liquid crystal color filter production lines, and ink jet printer ink production. Useful for deaeration applications. In particular, it is very useful for deaeration of a photoresist solution and a developer used for lithography in a semiconductor production line.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007286111A JP5393971B2 (en) | 2007-11-02 | 2007-11-02 | Composite hollow fiber membrane for deaeration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007286111A JP5393971B2 (en) | 2007-11-02 | 2007-11-02 | Composite hollow fiber membrane for deaeration |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009112896A true JP2009112896A (en) | 2009-05-28 |
JP5393971B2 JP5393971B2 (en) | 2014-01-22 |
Family
ID=40780638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007286111A Active JP5393971B2 (en) | 2007-11-02 | 2007-11-02 | Composite hollow fiber membrane for deaeration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5393971B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150436A (en) * | 2008-12-25 | 2010-07-08 | Mitsui Chemicals Inc | Olefin resin-based coating material |
WO2012043613A1 (en) * | 2010-09-29 | 2012-04-05 | 三菱レイヨン株式会社 | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module |
JP2013202575A (en) * | 2012-03-29 | 2013-10-07 | Mitsubishi Rayon Co Ltd | Composite hollow fiber membrane for degassing and hollow fiber membrane module |
CN104185503A (en) * | 2012-03-08 | 2014-12-03 | 新加坡国立大学 | Catalytic hollow fibers |
EP2832425A1 (en) * | 2012-03-30 | 2015-02-04 | Mitsubishi Rayon Co., Ltd. | Composite hollow fiber membrane and hollow fiber membrane module |
CN114749032A (en) * | 2022-04-13 | 2022-07-15 | 河北科技大学 | PMP hollow fiber membrane and preparation method and application thereof |
EP3902623A4 (en) * | 2018-12-27 | 2022-09-21 | 3M Innovative Properties Company | Hollow fiber membranes with nucleating agent and methods of making and using the same |
EP3902624A4 (en) * | 2018-12-27 | 2022-09-21 | 3M Innovative Properties Company | Asymmetric hollow fiber membranes and methods of making and using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105536553B (en) * | 2015-12-25 | 2018-04-10 | 北京碧水源膜科技有限公司 | A kind of preparation method with regular surfaces form NF membrane |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11104473A (en) * | 1997-10-02 | 1999-04-20 | Mitsubishi Rayon Co Ltd | Deaeration membrane |
JP2000084368A (en) * | 1998-09-08 | 2000-03-28 | Mitsubishi Rayon Co Ltd | Multiple hollow fiber membrane for liquid chemical deaeration |
JP2006015564A (en) * | 2004-06-30 | 2006-01-19 | Seiko Epson Corp | Inkjet printer, method of inkjet recording, and recorded material |
JP2006028325A (en) * | 2004-07-15 | 2006-02-02 | Seiko Epson Corp | Ink composition, inkjet recording method and recorded product |
-
2007
- 2007-11-02 JP JP2007286111A patent/JP5393971B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11104473A (en) * | 1997-10-02 | 1999-04-20 | Mitsubishi Rayon Co Ltd | Deaeration membrane |
JP2000084368A (en) * | 1998-09-08 | 2000-03-28 | Mitsubishi Rayon Co Ltd | Multiple hollow fiber membrane for liquid chemical deaeration |
JP2006015564A (en) * | 2004-06-30 | 2006-01-19 | Seiko Epson Corp | Inkjet printer, method of inkjet recording, and recorded material |
JP2006028325A (en) * | 2004-07-15 | 2006-02-02 | Seiko Epson Corp | Ink composition, inkjet recording method and recorded product |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150436A (en) * | 2008-12-25 | 2010-07-08 | Mitsui Chemicals Inc | Olefin resin-based coating material |
US9120053B2 (en) | 2010-09-29 | 2015-09-01 | Mitsubishi Rayon Co., Ltd. | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module |
WO2012043613A1 (en) * | 2010-09-29 | 2012-04-05 | 三菱レイヨン株式会社 | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module |
CN103228344A (en) * | 2010-09-29 | 2013-07-31 | 三菱丽阳株式会社 | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-wbr/>fiber membrane module |
JPWO2012043613A1 (en) * | 2010-09-29 | 2014-02-24 | 三菱レイヨン株式会社 | Polyolefin composite hollow fiber membrane, method for producing the same, and hollow fiber membrane module |
KR101482477B1 (en) * | 2010-09-29 | 2015-01-13 | 미쯔비시 레이온 가부시끼가이샤 | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module |
CN104185503A (en) * | 2012-03-08 | 2014-12-03 | 新加坡国立大学 | Catalytic hollow fibers |
CN104185503B (en) * | 2012-03-08 | 2016-10-12 | 新加坡国立大学 | Catalysis doughnut |
JP2013202575A (en) * | 2012-03-29 | 2013-10-07 | Mitsubishi Rayon Co Ltd | Composite hollow fiber membrane for degassing and hollow fiber membrane module |
US20150059576A1 (en) * | 2012-03-30 | 2015-03-05 | Mitsubishi Rayon Co., Ltd. | Composite hollow fiber membrane and hollow fiber membrane module |
EP2832425A4 (en) * | 2012-03-30 | 2015-04-22 | Mitsubishi Rayon Co | Composite hollow fiber membrane and hollow fiber membrane module |
EP2832425A1 (en) * | 2012-03-30 | 2015-02-04 | Mitsubishi Rayon Co., Ltd. | Composite hollow fiber membrane and hollow fiber membrane module |
US9694313B2 (en) | 2012-03-30 | 2017-07-04 | Mitsubishi Rayon Co., Ltd. | Composite hollow fiber membrane and hollow fiber membrane module |
EP3902623A4 (en) * | 2018-12-27 | 2022-09-21 | 3M Innovative Properties Company | Hollow fiber membranes with nucleating agent and methods of making and using the same |
EP3902624A4 (en) * | 2018-12-27 | 2022-09-21 | 3M Innovative Properties Company | Asymmetric hollow fiber membranes and methods of making and using the same |
US11883777B2 (en) | 2018-12-27 | 2024-01-30 | 3M Innovative Properties Company | Asymmetric hollow fiber membranes and methods of making and using the same |
US11986777B2 (en) | 2018-12-27 | 2024-05-21 | 3M Innovative Properties Company | Hollow fiber membranes with nucleating agent and methods of making and using the same |
CN114749032A (en) * | 2022-04-13 | 2022-07-15 | 河北科技大学 | PMP hollow fiber membrane and preparation method and application thereof |
CN114749032B (en) * | 2022-04-13 | 2023-05-23 | 河北科技大学 | PMP hollow fiber membrane and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5393971B2 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5393971B2 (en) | Composite hollow fiber membrane for deaeration | |
US9120053B2 (en) | Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module | |
KR100480868B1 (en) | Liquid degassing apparatus and method | |
CA2388246C (en) | Heat resistant microporous membrane | |
JP5500765B2 (en) | Composite hollow fiber membrane for deaeration and method for producing the same | |
KR101763461B1 (en) | Composite hollow fiber membrane and hollow fiber membrane module | |
JP5155599B2 (en) | Method for producing hollow fiber membrane module for deaeration | |
KR20100061743A (en) | Gas separation membrane | |
JPWO2013147187A1 (en) | Composite hollow fiber membrane and hollow fiber membrane module | |
WO2021033735A1 (en) | Polyolefin microporous film, layered body, and battery | |
JP6003057B2 (en) | Polyethylene porous hollow fiber membrane for water purifier, cartridge for water purifier, and hollow fiber membrane module | |
JP2006321841A (en) | Microporous polyethylene film | |
JP6191700B2 (en) | Hollow fiber membrane and hollow fiber membrane module | |
JP5885123B2 (en) | Composite hollow fiber membrane and hollow fiber membrane module for deaeration | |
JP4778410B2 (en) | Composite hollow fiber membrane for deaeration | |
JP5657852B2 (en) | Hollow fiber membrane module and manufacturing method thereof | |
WO2021033733A1 (en) | Polyolefin micro porous film, laminate, and battery | |
CN117414710A (en) | PMP hollow fiber membrane for degassing and preparation method and application thereof | |
JP2015167939A (en) | Deaeration hollow fiber membrane module | |
JP2015167940A (en) | Deaeration hollow fiber membrane module | |
JP2014104445A (en) | Method for manufacturing hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100803 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120321 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131016 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5393971 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |