JP2009101490A - Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting - Google Patents
Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting Download PDFInfo
- Publication number
- JP2009101490A JP2009101490A JP2007277583A JP2007277583A JP2009101490A JP 2009101490 A JP2009101490 A JP 2009101490A JP 2007277583 A JP2007277583 A JP 2007277583A JP 2007277583 A JP2007277583 A JP 2007277583A JP 2009101490 A JP2009101490 A JP 2009101490A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- hard coating
- component
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 95
- 239000011247 coating layer Substances 0.000 title claims abstract description 50
- 239000010410 layer Substances 0.000 claims abstract description 276
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 81
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 81
- 239000010936 titanium Substances 0.000 claims abstract description 38
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 33
- 239000011195 cermet Substances 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 39
- 150000004767 nitrides Chemical class 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 229910052796 boron Inorganic materials 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 18
- 239000000956 alloy Substances 0.000 abstract description 18
- -1 compound nitride Chemical class 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 239000010935 stainless steel Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229910000617 Mangalloy Inorganic materials 0.000 description 10
- 238000010891 electric arc Methods 0.000 description 10
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 9
- 238000007733 ion plating Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 7
- 238000003475 lamination Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000005553 drilling Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 229910004349 Ti-Al Inorganic materials 0.000 description 4
- 229910004692 Ti—Al Inorganic materials 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、すぐれた潤滑性をも有し、したがって、高熱発生を伴うと共に、大きな断続的・機械的負荷がかかる軟鋼、ステンレス鋼、高マンガン鋼等の高速断続切削加工に用いた場合にすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた工具特性を示す表面被覆切削工具(以下、被覆工具という)に関するものである。 In the present invention, the hard coating layer has excellent high-temperature hardness, high-temperature strength, and high-temperature oxidation resistance, and also has excellent lubricity. Therefore, it is accompanied by high heat generation, and has a large intermittent and mechanical load. A surface-coated cutting tool that exhibits excellent wear resistance when used in high-speed intermittent cutting of such mild steel, stainless steel, high-manganese steel, etc., and exhibits excellent tool characteristics over a long period of time (hereinafter referred to as coated tool) It is about.
一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
従来、被覆工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、均一組成のCrとAlの複合窒化物((Cr,Al)N)層を設けた被覆工具が知られている。
また、上記(Cr,Al)N層に、微量のSiを含有させたCrとAlとSiの複合窒化物((Cr,Al,Si)N)層を設けた被覆工具も知られており、この被覆工具は、耐欠損性と耐摩耗性にすぐれることが知られている。
さらに、上記(Cr,Al)N層に、微量のBを含有させたCrとAlとBの複合窒化物((Cr,Al,B)N)層を設けた被覆工具も知られており、この被覆工具は、耐溶着性、耐酸化性、耐摩耗性にすぐれることが知られている。
Conventionally, as one of the coated tools, for example, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as these) A coated tool is known in which a uniform nitride ((Cr, Al) N) layer of Cr and Al having a uniform composition is provided on the surface of a tool base) as a hard coating layer.
Also known is a coated tool in which the above (Cr, Al) N layer is provided with a composite nitride of (Cr, Al, Si) N) containing Cr and Al and Si containing a small amount of Si. It is known that this coated tool is excellent in fracture resistance and wear resistance.
Furthermore, a coated tool in which the above (Cr, Al) N layer is provided with a composite nitride of (Cr, Al, B) N and Cr and Al and B containing a trace amount of B is also known, This coated tool is known to have excellent welding resistance, oxidation resistance, and wear resistance.
また、他の被覆工具としては、例えば、工具基体表面に、TiとAlの複合窒化物((Ti,Al)N)層、複合炭窒化物((Ti,Al)(C,N))層、あるいは、これにさらに、Si、B、Y、Zr、V等を微量添加含有させたTiとAlを主成分とする複合窒化物層、複合炭窒化物層(以下、これらを総称して、(Ti,Al)系炭窒化物層という)を設けた被覆工具も知られており、上記(Ti,Al)系炭窒化物層がすぐれた高温強度、耐欠損性、耐摩耗性を示すことも知られている。 As other coated tools, for example, a composite nitride ((Ti, Al) N) layer and a composite carbonitride ((Ti, Al) (C, N)) layer of Ti and Al are formed on the tool base surface. Or, in addition to this, a composite nitride layer mainly composed of Ti and Al containing a small amount of Si, B, Y, Zr, V and the like, a composite carbonitride layer (hereinafter collectively referred to as these, (Ti, Al) -based carbonitride layer) is also known, and the above (Ti, Al) -based carbonitride layer has excellent high-temperature strength, fracture resistance, and wear resistance. Is also known.
さらに、上記の各種従来被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極(例えば、(Cr,Al,Si)N層を形成するためには、Cr−Al−Si合金、また、(Ti,Al)N層を形成するためには、Ti−Al合金)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方、上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体表面に、硬質被覆層(例えば、(Ti,Al)N層、(Cr,Al,Si)N層)を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、例えば、硬質被覆層として、(Cr,Al)N層、(Cr,Al,Si)N層、(Cr,Al,B)N層等を蒸着形成した従来被覆工具においては、これを鋼や鋳鉄の通常条件での切削に用いた場合には格別問題はないが、特に、切削時に高熱発生を伴い、かつ、切刃部に対して大きな衝撃的・機械的負荷がかかる軟鋼、ステンレス鋼、高マンガン鋼等の高速断続切削条件で用いた場合には、硬質被覆層の高温強度および潤滑性が不足するために、硬質被覆層には欠損、偏摩耗、チッピング等が発生しやすく、また、硬質被覆層として、(Ti,Al)系炭窒化物層を蒸着形成した従来被覆工具においては、軟鋼、ステンレス鋼、高マンガン鋼等の高速断続切削条件下では、耐摩耗性が満足できるものではないため、いずれの従来被覆工具においても、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting work. In a conventional coated tool in which (Cr, Al) N layer, (Cr, Al, Si) N layer, (Cr, Al, B) N layer, etc. are deposited as a coating layer, this is the normal condition for steel or cast iron. There are no particular problems when used for cutting, but in particular, mild steel, stainless steel, high manganese steel, etc. that generate high heat during cutting and that have a large impact and mechanical load on the cutting edge. When used under high-speed intermittent cutting conditions, the hard coating layer lacks the high-temperature strength and lubricity, so the hard coating layer is prone to chipping, uneven wear, chipping, etc. (Ti, Al) carbonitride In conventional coated tools that are formed by vapor deposition, wear resistance is not satisfactory under high-speed interrupted cutting conditions such as mild steel, stainless steel, and high manganese steel. At present, the service life is reached.
そこで、本発明者等は、上述のような観点から、特に軟鋼、ステンレス鋼、高マンガン鋼等の難削材の高速断続切削加工で、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、すぐれた潤滑性と耐摩耗性を発揮する被覆工具を開発すべく、上記従来被覆工具の硬質被覆層に着目し、研究を行った結果、以下の知見を得た。
(a)硬質被覆層が、(Cr,Al)N層、(Cr,Al,Si)N層あるいは(Cr,Al,B)N層(以下では、これらを総称して、(Cr,Al)系窒化物層という)で構成された従来被覆工具において、硬質被覆層の構成成分であるAlは高温硬さと耐熱性を向上させ、Crは高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、添加成分としてSiを含有させた場合、耐熱塑性変形性を向上させ、Bを含有させた場合は熱伝導性を向上させる作用があり、そして、硬質被覆層は、これら各成分を含有することによって、耐欠損性、耐溶着性、耐酸化性および耐摩耗性という特性を発揮すること。
In view of the above, the present inventors, in particular, have high-temperature hardness, high-temperature strength, high-temperature, excellent hard coating layers, especially in high-speed intermittent cutting of difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. In order to develop a coated tool that has oxidation resistance and also exhibits excellent lubricity and wear resistance, the following findings were obtained as a result of research conducted focusing on the hard coating layer of the conventional coated tool.
(A) Hard coating layer is (Cr, Al) N layer, (Cr, Al, Si) N layer or (Cr, Al, B) N layer (hereinafter, these are collectively referred to as (Cr, Al) In a conventional coated tool composed of a nitride-based nitride layer), Al, which is a component of the hard coating layer, improves high-temperature hardness and heat resistance, Cr improves high-temperature strength, and Cr and Al coexist. There is an effect of improving high-temperature oxidation resistance in the state, and when Si is added as an additive component, the heat-resistant plastic deformability is improved, and when B is contained, there is an effect of improving thermal conductivity, And a hard coating layer shall exhibit the characteristics of a fracture resistance, welding resistance, oxidation resistance, and abrasion resistance by containing these each component.
(b)ところで、上記従来被覆工具の硬質被覆層を構成する(Cr,Al)系窒化物層のCrとAlの含有割合を、組成式:(Cr1-XAlX)Nで表した場合、Alの含有割合Xが少ない場合(例えば、0.65≧X)には、(Cr,Al)系窒化物層は立方晶構造の(Cr,Al)系窒化物層(以下、fcc(Cr,Al)系窒化物層で示す)であるが、Al含有割合Xを、例えば、X≧0.75というように増加させてやると、その結晶構造は、立方晶構造と六方晶構造の混在した結晶構造に変化し、そして、このような立方晶構造と六方晶構造の混在した結晶構造を有する(Cr,Al)系窒化物層(以下、fcc/hcp(Cr,Al)系窒化物層で示す)は、潤滑特性が向上するようになるが、上記fcc/hcp(Cr,Al)系窒化物層は、fcc(Cr,Al)系窒化物層に比して十分な高温硬さを備えていないため、fcc/hcp(Cr,Al)系窒化物層を、硬質被覆層として単独で蒸着形成することによっては、高速断続切削加工条件下では満足できる耐摩耗性を得ることはできないこと。 (B) By the way, when the content ratio of Cr and Al in the (Cr, Al) -based nitride layer constituting the hard coating layer of the conventional coated tool is expressed by a composition formula: (Cr 1-X Al X ) N When the Al content ratio X is small (for example, 0.65 ≧ X), the (Cr, Al) -based nitride layer is a cubic structure (Cr, Al) -based nitride layer (hereinafter referred to as fcc (Cr , Al) -based nitride layer), but when the Al content ratio X is increased, for example, X ≧ 0.75, the crystal structure is a mixture of a cubic crystal structure and a hexagonal crystal structure. (Cr, Al) -based nitride layer (hereinafter referred to as fcc / hcp (Cr, Al) -based nitride layer) having a crystal structure in which such a cubic structure and a hexagonal structure are mixed. Is improved in lubrication characteristics, but the fcc / hcp (Cr, A ) -Based nitride layer does not have sufficient high-temperature hardness as compared with the fcc (Cr, Al) -based nitride layer. Therefore, the fcc / hcp (Cr, Al) -based nitride layer is used as the hard coating layer. By vapor deposition alone, satisfactory wear resistance cannot be obtained under high-speed interrupted cutting conditions.
(c)そこで、すぐれた高温硬さを有する上記fcc(Cr,Al)系窒化物層を薄層Aとし、また、すぐれた潤滑特性を有する上記fcc/hcp(Cr,Al)系窒化物層を薄層Bとし、薄層Aと薄層Bとを交互に積層し、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を構成すると、薄層Aと薄層Bは、それぞれの特性を害することなく、硬質被覆層全体として、すぐれた潤滑性を備え所定の耐摩耗性を発揮するようになるが、切刃部に大きな衝撃的・機械的負荷が加わる高速断続切削という厳しい条件の切削加工では、特に工具基体と硬質被覆層間の密着強度が十分でないために、硬質被覆層の剥離、欠損、チッピングが発生しやすいこと。 (C) Therefore, the fcc (Cr, Al) nitride layer having excellent high-temperature hardness is used as the thin layer A, and the fcc / hcp (Cr, Al) nitride layer having excellent lubrication characteristics. Is a thin layer B, and the thin layer A and the thin layer B are alternately laminated to form a hard coating layer composed of an alternating laminated structure of the thin layer A and the thin layer B. The hard coating layer as a whole will have excellent lubricity and exhibit the specified wear resistance without harming the characteristics of the high-speed intermittent cutting that imposes a large impact and mechanical load on the cutting edge. In the cutting of conditions, since the adhesion strength between the tool base and the hard coating layer is not sufficient, peeling, chipping and chipping of the hard coating layer are likely to occur.
(d)そこで、さらに、上記薄層Aと薄層Bからなる交互積層と工具基体との間に、高温強度にすぐれる(Ti,Al)系炭窒化物層を下部層として介在形成したところ、(Ti,Al)系炭窒化物層はそれ自体すぐれた高温強度を備え、さらに、工具基体と交互積層のいずれに対してもすぐれた高密着力を有するため、硬質被覆層として、(Ti,Al)系炭窒化物層を下部層として蒸着形成し、そして、薄層Aと薄層Bの交互積層を上部層として蒸着形成した被覆工具は、高熱発生を伴うと共に、大きな断続的・機械的負荷がかかるステンレス鋼等の高速断続切削加工に用いた場合でも、硬質被覆層全体として、すぐれた高温強度を有するとともにすぐれた潤滑性を示し、剥離、欠損、チッピングを発生することなくすぐれた耐摩耗性を長期に亘って発揮するようになること。 (D) Therefore, a (Ti, Al) -based carbonitride layer having excellent high-temperature strength is interposed between and formed as a lower layer between the alternately laminated layers of the thin layers A and B and the tool base. The (Ti, Al) -based carbonitride layer itself has excellent high-temperature strength, and further has excellent adhesion to both the tool substrate and the alternate lamination, so that as a hard coating layer, (Ti, A coated tool in which an Al) -based carbonitride layer is deposited as a lower layer and an alternate stack of thin layers A and B is deposited as an upper layer is accompanied by high heat generation and large intermittent and mechanical Even when used for high-speed interrupted cutting of stainless steel, etc. where the load is applied, the hard coating layer as a whole has excellent high-temperature strength and excellent lubricity, and excellent resistance to peeling, chipping and chipping. Abrasion To become able to exert over the period.
この発明は、上記の研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層として下部層と上部層が蒸着形成された表面被覆切削工具において、
(a)上記下部層は、0.1〜1.5μmの層厚を有し、
組成式:(Ti1−Q−RAlQM1R)(C,N)
で表した場合に、0.4≦Q≦0.65、0≦R≦0.1(但し、Qは原子比によるAlの含有割合、Rは原子比による成分M1の合計含有割合であり、また、成分M1は、Si、B、Zr、Y、V、W、NbまたはMoから選ばれる1種または2種以上の元素を示す)を満足するTiとAlとM1の複合窒化物層または複合炭窒化物層、
(b)上記上部層は、1〜8μmの合計層厚を有するとともに、それぞれ25〜100nmの一層層厚を有する薄層Aと薄層Bの交互積層からなるCrとAlの複合窒化物層であって、さらに、
(c)上記薄層Aは、
組成式:(Cr1−α−βAlαM2β)N
で表した場合に、0.25≦α≦0.65、0≦β≦0.1(但し、αは原子比によるAlの含有割合、βは原子比による成分M2の合計含有割合であり、また、成分M2は、SiまたはBから選ばれる1種または2種の元素を示す)を満足する立方晶構造のCrとAlとM2の複合窒化物層であり、
(d)上記薄層Bは、
組成式:(Cr1−γ−δAlγM3δ)N
で表した場合に、0.75≦γ≦0.95、0≦δ≦0.1(但し、γは原子比によるAlの含有割合、δは原子比による成分M3の合計含有割合であり、また、成分M3は、SiまたはBから選ばれる1種または2種の元素を示す)を満足し、さらに、上記薄層Bについて測定した立方晶結晶格子の(200)面からのX線回折強度のピーク強度I(f)と、六方晶結晶格子の(100)面からのX線回折強度のピーク強度I(h)の比の値I(f)/I(h)が、0.1≦I(f)/I(h)≦11.5を満足する立方晶構造と六方晶構造の混在するCrとAlとM3の複合窒化物層である、
ことを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
In a surface-coated cutting tool in which a lower layer and an upper layer are vapor-deposited as a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer has a layer thickness of 0.1 to 1.5 μm,
Composition formula: (Ti 1-QR Al Q M 1R ) (C, N)
0.4 ≦ Q ≦ 0.65, 0 ≦ R ≦ 0.1 (where Q is the Al content by atomic ratio, and R is the total content of component M 1 by atomic ratio) In addition, the component M 1 represents one or more elements selected from Si, B, Zr, Y, V, W, Nb, and Mo), and a composite nitride of Ti, Al, and M 1 Layer or composite carbonitride layer,
(B) The upper layer is a composite nitride layer of Cr and Al, which has a total layer thickness of 1 to 8 μm, and is composed of alternately laminated thin layers A and B each having a single layer thickness of 25 to 100 nm. In addition,
(C) The thin layer A is
Composition formula: (Cr 1-α-β Al α M 2β ) N
0.25 ≦ α ≦ 0.65, 0 ≦ β ≦ 0.1 (where α is the Al content ratio by atomic ratio, β is the total content ratio of component M 2 by atomic ratio) In addition, the component M 2 is a composite nitride layer of Cr, Al, and M 2 having a cubic structure satisfying one or two elements selected from Si or B)
(D) The thin layer B is
Composition formula: (Cr 1-γ-δ Al γ M 3δ ) N
0.75 ≦ γ ≦ 0.95, 0 ≦ δ ≦ 0.1 (where γ is the Al content by atomic ratio, and δ is the total content of component M 3 by atomic ratio) In addition, the component M 3 represents one or two elements selected from Si or B), and X-rays from the (200) plane of the cubic crystal lattice measured for the thin layer B The ratio value I (f) / I (h) of the peak intensity I (f) of the diffraction intensity and the peak intensity I (h) of the X-ray diffraction intensity from the (100) plane of the hexagonal crystal lattice is 0. It is a composite nitride layer of Cr, Al and M 3 in which a cubic structure and a hexagonal structure satisfying 1 ≦ I (f) / I (h) ≦ 11.5.
A surface-coated cutting tool characterized by that. "
It has the characteristics.
つぎに、この発明の被覆工具の硬質被覆層に関し、より詳細に説明する。
(a)上部層の薄層A
薄層Aを構成する立方晶構造のCrとAlの複合窒化物層(fcc(Cr,Al)N層)あるいはCrとAlとM2の複合窒化物層(fcc(Cr,Al,M2)N層)は、高熱発生を伴う高速断続切削加工において、硬質被覆層の耐摩耗性を担保する層として作用する。
既に述べたように、(Cr,Al)N層あるいは(Cr,Al,M2)N層の組成を、
組成式:(Cr1-αAlα)N、あるいは、
組成式:(Cr1-(α+β)AlαM2β)N、
で表した場合、Alの含有割合αの値を、α≦0.65とすることによって、立方晶構造(fcc)の層として形成することができ、このfcc構造によって耐摩耗性が維持されるが、Alの含有割合αの値がα<0.25となると、相対的にCrの含有割合が増加し、結晶構造がfccであったとしても、fcc(Cr,Al)N層、fcc(Cr,Al,M2)N層自体の高温硬さが急激な低下傾向を示し、高速断続切削加工において最小限必要とされる耐摩耗性を確保することが困難になることから、薄層AにおけるAlの含有割合αは、0.25≦α≦0.65と定めた。
また、fcc(Cr,Al)N層、fcc(Cr,Al,M2)N層の構成成分であるCr成分は、薄層Aの高温強度を向上させ、硬質被覆層の耐チッピング性・耐欠損性に寄与するとともに、Al成分との共存含有によって、高温耐酸化性向上にも寄与する。
さらに、fcc(Cr,Al,M2)N層の構成成分としてM2成分を含有させる場合、M2成分としては、SiまたはBから選ばれる1種または2種の元素含有させることができ、Si成分は、耐熱塑性変形性を向上させることによって、また、B成分は熱伝導性を向上させることによって、いずれも薄層Aの耐摩耗性向上に寄与するが、M2成分の含有割合βの値(Si含有割合とB含有割合の合計値)が0.1を超えると薄層Aの高温強度が低下することから、薄層AにおけるM2成分の含有割合βは、0≦β≦0.1と定めた。
Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
(A) Upper layer thin layer A
Composite nitride layer of Cr and Al cubic structure constituting the thin layer A (fcc (Cr, Al) N layer) or Cr and Al composite nitride layer of M 2 (fcc (Cr, Al , M 2) N layer) acts as a layer that ensures the wear resistance of the hard coating layer in high-speed intermittent cutting with high heat generation.
As already stated, the composition of the (Cr, Al) N layer or (Cr, Al, M 2 ) N layer is
Composition formula: (Cr 1-α Al α ) N, or
Composition formula: (Cr 1− (α + β) Al α M 2β ) N,
When the value of the Al content ratio α is α ≦ 0.65, a layer having a cubic structure (fcc) can be formed, and the wear resistance is maintained by this fcc structure. However, when the value of the Al content ratio α is α <0.25, the Cr content ratio is relatively increased, and even if the crystal structure is fcc, the fcc (Cr, Al) N layer, fcc ( Since the high-temperature hardness of the Cr, Al, M 2 ) N layer itself tends to decrease sharply and it becomes difficult to ensure the minimum wear resistance required in high-speed interrupted cutting, the thin layer A The content ratio α of Al was determined as 0.25 ≦ α ≦ 0.65.
In addition, the Cr component, which is a constituent component of the fcc (Cr, Al) N layer and the fcc (Cr, Al, M 2 ) N layer, improves the high-temperature strength of the thin layer A and improves the chipping resistance / In addition to contributing to deficiency, the coexistence with the Al component also contributes to improving high-temperature oxidation resistance.
Furthermore, fcc (Cr, Al, M 2) If as a constituent of the N layer to contain M 2 component, the M 2 component can be contained one or two elements selected from Si or B, Si component, by improving the thermal plastic deformation resistance, addition, B component by improving the thermal conductivity, both contribute to improvement in wear resistance of the thin layer a, the content of M 2 component β When the value (total value of Si content and B content) exceeds 0.1, the high temperature strength of the thin layer A decreases, so the content ratio β of the M 2 component in the thin layer A is 0 ≦ β ≦ It was set as 0.1.
(b)上部層の薄層B
薄層Bを構成する、立方晶構造と六方晶構造の混在する薄層BのCrとAlの複合窒化物層(fcc/hcp(Cr,Al)N層)あるいはCrとAlとM3の複合窒化物層(fcc/hcp(Cr,Al,M3)N層)は、高熱発生を伴う難削材の高速断続切削加工において、fcc(Cr,Al)N層、fcc(Cr,Al,M2)N層からなる薄層Aに不足する潤滑性を補完することにより、結果としてより一層耐摩耗性を向上させる層として作用する。
fcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層からなる薄層Bの構成成分であるCr、M3成分の作用は、薄層AのCr、M2のそれと同様である。
ただ、上記薄層Bの構成成分であるAlについて言えば、fcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層の組成を、
組成式:(Cr1-γAlγ)N、あるいは、
組成式:(Cr1-(γ+δ)AlγM3δ)N、
で表した場合、
Alの含有割合γの値を、γ≧0.75とすることによって、立方晶構造(fcc)と六方晶構造(hcp)の混在する結晶構造(fcc/hcp)の薄層Bを形成することができ、このfcc/hcp構造によって高熱発生を伴う高速切削加工条件下での潤滑性が確保されるが、Alの含有割合γの値がγ>0.95となると、相対的なCr含有割合の減少によって、fcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層の高温強度が低下し、チッピング・欠損等を発生しやすくなることから、薄層BにおけるAlの含有割合γは、0.75≦γ≦0.95と定めた。
また、Alの含有割合γを、0.75≦γ≦0.95の範囲内としたfcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層からなる薄層BについてX線回折を行ったところ、立方晶構造の(200)面からの回折ピーク強度I(f)と、六方晶構造の(100)面からの回折ピーク強度I(h)との比の値I(f)/I(h)は、表4、5、10、13にも示されるように、0.1≦I(f)/I(h)≦11.5であった。
なお、薄層Bの構成成分としてM3成分(SiまたはBから選ばれる1種または2種の元素)を含有させた場合、薄層Aの場合と同様、Si成分は、耐熱塑性変形性を向上させ、また、B成分は熱伝導性を向上させることによって、薄層Bの耐摩耗性向上に寄与するが、薄層Bの耐摩耗性を向上させつつ同時に薄層Bの高温強度低下を防止するためには、薄層Aの場合と同様、薄層BにおけるM3成分の含有割合δは、0≦δ≦0.1とする必要がある。
(B) Upper layer thin layer B
The thin layer B is composed of a composite nitride layer of Cr and Al (fcc / hcp (Cr, Al) N layer) of the thin layer B mixed with a cubic structure and a hexagonal structure, or a composite of Cr, Al and M 3 . The nitride layer (fcc / hcp (Cr, Al, M 3 ) N layer) is an fcc (Cr, Al) N layer, fcc (Cr, Al, M, M) in high-speed intermittent cutting of difficult-to-cut materials with high heat generation. 2 ) By complementing the lack of lubricity of the thin layer A composed of the N layer, it acts as a layer that further improves the wear resistance.
fcc / hcp (Cr, Al) N layer, fcc / hcp (Cr, Al , M 3) consist of N layer which is a component of the thin layer B Cr, effects of M 3 component, Cr thin layer A, M It is the same as that of 2 .
However, regarding Al, which is a constituent of the thin layer B, the composition of the fcc / hcp (Cr, Al) N layer and the fcc / hcp (Cr, Al, M 3 ) N layer is
Composition formula: (Cr 1-γ Al γ ) N, or
Composition formula: (Cr 1− (γ + δ) Al γ M 3δ ) N,
In the case of
A thin layer B having a crystal structure (fcc / hcp) in which a cubic structure (fcc) and a hexagonal structure (hcp) are mixed is formed by setting the content ratio γ of Al to γ ≧ 0.75. This fcc / hcp structure ensures lubricity under high-speed cutting conditions with high heat generation, but when the Al content ratio γ is γ> 0.95, the relative Cr content ratio Decrease in the high-temperature strength of the fcc / hcp (Cr, Al) N layer and the fcc / hcp (Cr, Al, M 3 ) N layer, and chipping and defects are likely to occur. The Al content ratio γ was determined to be 0.75 ≦ γ ≦ 0.95.
In addition, a thin layer comprising an fcc / hcp (Cr, Al) N layer and an fcc / hcp (Cr, Al, M 3 ) N layer with an Al content ratio γ within the range of 0.75 ≦ γ ≦ 0.95. When X-ray diffraction was performed on the layer B, the ratio between the diffraction peak intensity I (f) from the (200) plane of the cubic structure and the diffraction peak intensity I (h) from the (100) plane of the hexagonal structure. The value I (f) / I (h) was 0.1 ≦ I (f) / I (h) ≦ 11.5 as shown in Tables 4, 5, 10, and 13.
In the case of containing the M 3 component (Si or one or two elements selected from B) as a constituent of the thin layer B, as in the case of the thin layer A, Si component, a heat plastic deformation resistance In addition, the B component contributes to improving the wear resistance of the thin layer B by improving the thermal conductivity. However, while improving the wear resistance of the thin layer B, the high temperature strength of the thin layer B is simultaneously reduced. in order to prevent, as in the case of the thin layer a, the content ratio [delta] of M 3 component in the thin layer B, it is necessary to be 0 ≦ δ ≦ 0.1.
(c)薄層Aと薄層Bの交互積層
薄層Aは、その一層層厚が25nm(0.025μm)未満では、自身のもつすぐれた耐摩耗性を長期に亘って十分発揮することができず、工具寿命短命の原因となり、一方その一層層厚が100nm(0.1μm)を越えると、チッピングが発生し易くなることから、その一層層厚を25〜100nm(0.025〜0.1μm)とすることが必要である。
また、薄層Bについても、その一層層厚が25nm(0.025μm)未満では、薄層Aの潤滑性不足を補完することはできず、一方その一層層厚が100nm(0.1μm)を越えると、チッピングが発生し易くなることから、その一層層厚を25〜100nm(0.025〜0.1μm)とすることが必要である。
さらに、薄層Aと薄層Bを交互に積層して形成した交互積層について、その合計層厚が1μm未満では、自身のもつすぐれた潤滑性とおよびすぐれた耐摩耗性を長期に亘って発揮することができないため工具寿命短命の原因となり、一方、その合計層厚が8μmを越えると、チッピングが発生し易くなることから、その合計層厚は1〜8μmとする。
なお、fcc(Cr,Al)N層、fcc(Cr,Al,M2)N層からなる薄層Aと、fcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層からなる薄層Bとは同一あるいは類似成分系の硬質被覆層であるため、異成分系の薄層Aと薄層Bとの交互積層に比して、薄層Aと薄層B間の付着強度も大であり、硬質被覆層全体としての高温強度向上に寄与するばかりか、層間剥離等の生じる恐れもない。
(C) Alternating lamination of thin layer A and thin layer B If the single layer thickness is less than 25 nm (0.025 μm), the thin layer A can sufficiently exhibit its excellent wear resistance over a long period of time. However, when the layer thickness exceeds 100 nm (0.1 μm), chipping is likely to occur. Therefore, the layer thickness is 25-100 nm (0.025-0. 1 μm).
Further, for the thin layer B, if the layer thickness is less than 25 nm (0.025 μm), the lack of lubricity of the thin layer A cannot be supplemented, while the layer thickness is 100 nm (0.1 μm). If it exceeds, chipping is likely to occur. Therefore, the thickness of one layer is required to be 25 to 100 nm (0.025 to 0.1 μm).
Furthermore, the alternate lamination formed by alternately laminating the thin layer A and the thin layer B, when the total layer thickness is less than 1 μm, exhibits its own excellent lubricity and excellent wear resistance over a long period of time. Therefore, if the total layer thickness exceeds 8 μm, chipping is likely to occur. Therefore, the total layer thickness is set to 1 to 8 μm.
Note that a thin layer A composed of an fcc (Cr, Al) N layer, an fcc (Cr, Al, M 2 ) N layer, an fcc / hcp (Cr, Al) N layer, and an fcc / hcp (Cr, Al, M 3). ) Since the thin layer B consisting of N layers is the same or a similar hard coating layer of the component system, the thin layer A and the thin layer B are compared with the alternate lamination of the different component system thin layer A and the thin layer B. The adhesion strength between them is also high, contributing not only to the improvement of the high-temperature strength of the entire hard coating layer, but also the possibility of delamination.
(d)下部層
薄層Aと薄層Bの交互積層構造からなる上部層は、前記のとおり、すぐれた潤滑性を備え、かつすぐれた耐摩耗性を備えた層であるが、工具基体表面に直接このような交互積層を蒸着形成した被覆工具は、切刃部に大きな衝撃的・機械的負荷が加わる高速断続切削という厳しい条件の切削加工では、特に工具基体と交互積層からなる上部層との間の密着強度が十分でないために、上部層の剥離が生じやすいという欠点があるが、それ自体高温強度にすぐれる(Ti,Al)系炭窒化物層を下部層として介在形成したところ、(Ti,Al)系炭窒化物層がすぐれた高温強度を備えることに加え、(Ti,Al)系炭窒化物層が、工具基体と交互積層のいずれに対してもすぐれた高密着力を有するため、(Ti,Al)系炭窒化物層を工具基体と交互関相との間に下部層として蒸着形成した硬質被覆層を備える被覆工具は、高熱発生を伴うと共に、大きな断続的・機械的負荷がかかるステンレス鋼等の高速断続切削加工に用いた場合でも、硬質被覆層全体として、すぐれた高温強度を有し、また、すぐれた潤滑性を示し、剥離、欠損、チッピングを発生することなくすぐれた耐摩耗性を長期に亘って発揮するようになる。
ここで、(Ti,Al)系炭窒化物層を、
組成式:(Ti1−Q−RAlQM1R)(C,N)
で表した場合に、Alの含有割合を示すQ値が0.4未満では、高温硬さが低下するため耐摩耗性の劣化を招き、また、Q値が0.65を超えると、相対的なTi含有割合の減少により、十分な高温強度を確保することができなくなることから、Alの含有割合Q値を、0.4≦Q≦0.65と定めた。また、(Ti,Al)系炭窒化物に、M1成分(但し、成分M1は、Si、B、Zr、Y、V、W、NbまたはMoから選ばれる1種または2種以上の元素を示す)を添加含有させた場合、M1成分の含有割合R値が0.1を超えると、Ti含有割合あるいはAl含有割合の相対的な減少によって、下部層に必要とされる高温硬さと高温強度をバランス良く確保することが困難になるので、R値(M1成分の合計含有割合)は、0≦R≦0.1と定めた。
なお、M1成分であるSi成分は、耐熱塑性変形性、B成分は熱伝導性、Zr成分は耐熱塑性変形性、Y成分は高温耐酸化性、V成分は潤滑性、W成分は放熱性、Nb成分は高温耐摩耗性、Mo成分は耐溶着性、をそれぞれ向上させ、いずれも下部層の特性向上に寄与する。
また、下部層の層厚が0.1μm未満では、交互積層からなる上部層と工具基体間の密着強度向上効果を期待することはできず、一方、その層厚が1.5μmを超えると熱塑性変形による偏摩耗を発生しやすくなるので、下部層の層厚は0.1〜1.5μmと定めた。
(D) Lower layer The upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B is a layer having excellent lubricity and excellent wear resistance as described above. Coated tools with such alternating layers deposited directly on top of each other, especially in severe cutting conditions such as high-speed intermittent cutting in which a large impact / mechanical load is applied to the cutting edge, Since the adhesion strength between the layers is not sufficient, there is a drawback that the upper layer is easily peeled off, but when the (Ti, Al) -based carbonitride layer excellent in high-temperature strength itself is interposed as a lower layer, In addition to the (Ti, Al) -based carbonitride layer having excellent high-temperature strength, the (Ti, Al) -based carbonitride layer has excellent high adhesion to both the tool base and the alternating lamination. Therefore, (Ti, Al) -based carbonitride A coated tool with a hard coating layer deposited as a lower layer between the tool base and alternating phase is a high-speed intermittent cutting process such as stainless steel that is accompanied by high heat generation and a large intermittent and mechanical load. Even when it is used for, the hard coating layer as a whole has excellent high-temperature strength, excellent lubricity, and excellent wear resistance without peeling, chipping or chipping over a long period of time. To come.
Here, the (Ti, Al) carbonitride layer is
Composition formula: (Ti 1-QR Al Q M 1R ) (C, N)
When the Q value indicating the content ratio of Al is less than 0.4, the high temperature hardness decreases, leading to deterioration of wear resistance, and when the Q value exceeds 0.65, Since a sufficient decrease in Ti content makes it impossible to ensure sufficient high-temperature strength, the Al content ratio Q is determined to be 0.4 ≦ Q ≦ 0.65. In addition, (Ti, Al) -based carbonitride contains M 1 component (provided that component M 1 is one or more elements selected from Si, B, Zr, Y, V, W, Nb or Mo) If added is contained are shown), the content ratio R value of M 1 component exceeds 0.1, the relative decrease of the Ti content or Al content, and high-temperature hardness required for the lower layer Since it is difficult to ensure high-temperature strength in a well-balanced manner, the R value (total content ratio of M 1 component) was determined as 0 ≦ R ≦ 0.1.
Incidentally, Si component is M 1 component, heat plastic deformation resistance, B component thermally conductive, Zr component heat plastic deformation resistance, Y component high temperature oxidation resistance, V component lubricity, W component heat dissipation The Nb component improves high-temperature wear resistance, and the Mo component improves welding resistance, both of which contribute to improving the properties of the lower layer.
Also, if the layer thickness of the lower layer is less than 0.1 μm, the effect of improving the adhesion strength between the upper layer composed of alternating layers and the tool substrate cannot be expected. On the other hand, if the layer thickness exceeds 1.5 μm, the thermoplasticity Since uneven wear due to deformation is likely to occur, the thickness of the lower layer is determined to be 0.1 to 1.5 μm.
この発明の被覆工具は、硬質被覆層の上部層が、少なくとも、fcc(Cr,Al)N層、fcc(Cr,Al,M2)N層からなる薄層Aと、fcc/hcp(Cr,Al)N層、fcc/hcp(Cr,Al,M3)N層からなる薄層Bの交互積層構造として構成され、すぐれた高温硬さ、高温強度、高温耐酸化性に加え、すぐれた潤滑性をも有し、さらに、硬質被覆層の下部層が、(Ti,Al)N層、(Ti,Al)CN層、(Ti,Al,M1)N層、(Ti,Al,M1)CN層などの(Ti,Al)系炭窒化物層で構成され、すぐれた高温強度とすぐれた密着強度を有することから、特に高熱発生を伴い、大きな断続的・機械的負荷がかかる軟鋼、ステンレス鋼、高マンガン鋼等の難削材の高速断続切削加工でも、硬質被覆層が剥離、欠損、チッピング等を発生することなく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated tool of the present invention, the upper layer of the hard coating layer includes a thin layer A composed of at least an fcc (Cr, Al) N layer and an fcc (Cr, Al, M 2 ) N layer, and an fcc / hcp (Cr, Constructed as an alternating layered structure of thin layers B consisting of Al) N layers and fcc / hcp (Cr, Al, M 3 ) N layers, excellent lubrication in addition to excellent high-temperature hardness, high-temperature strength and high-temperature oxidation resistance Furthermore, the lower layer of the hard coating layer includes a (Ti, Al) N layer, a (Ti, Al) CN layer, a (Ti, Al, M 1 ) N layer, and a (Ti, Al, M 1). ) It is composed of a (Ti, Al) carbonitride layer such as a CN layer, and has excellent high-temperature strength and excellent adhesion strength. Hard even in high-speed intermittent cutting of difficult-to-cut materials such as stainless steel and high manganese steel Covering layer is peeled, defect, without causing chipping or the like, and exhibits over a superior wear resistance to long term.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.
(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、所定成分組成の薄層A形成用Cr−Al(−M2)合金、他方側のカソード電極(蒸発源)として、同じく所定成分組成をもった薄層B形成用Cr−Al(−M3)合金を前記回転テーブルを挟んで対向配置し、さらに、上記両カソード電極(蒸発源)のいずれからも90°離れた位置に、下部層形成用Ti−Al(−M1)合金からなるカソード電極(蒸発源)を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al(−M1)合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Ti−Al(−M1)合金によってボンバード洗浄し、
(c)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、前記下部層形成用Ti−Al(−M1)合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に表3に示される所定組成、所定層厚の下部層を形成し、
(d)引き続き、薄層A形成用Cr−Al(−M2)合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、下部層の表面に所定層厚の薄層Aを形成し、薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Cr−Al(−M3)合金のカソード電極とアノード電極間に同じく50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し、再び前記薄層A形成用Cr−Al(−M2)合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Cr−Al(−M3)合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表4、5に示される組成および層厚の薄層Aと薄層Bの交互積層からなる硬質被覆層を蒸着形成することにより、
硬質被覆層が、(Ti,Al)系炭窒化物層からなる下部層と、fcc(Cr,Al,M2)N層とfcc/hcp(Cr,Al,M3)N層の交互積層からなる上部層とで構成された本発明表面被覆切削工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Cr-Al for forming a thin layer A having a predetermined composition as a cathode electrode (evaporation source) on one side is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus. (-M 2 ) alloy, as a cathode electrode (evaporation source) on the other side, Cr-Al (-M 3 ) alloy for forming a thin layer B, which also has a predetermined component composition, is arranged oppositely across the rotary table, Furthermore, a cathode electrode (evaporation source) made of a Ti—Al (−M 1 ) alloy for forming a lower layer is disposed at a position 90 ° apart from both of the cathode electrodes (evaporation source).
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 100 A is passed between the lower layer forming Ti—Al (−M 1 ) alloy and the anode electrode to generate an arc discharge. Bombarded with (-M 1 ) alloy,
(C) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. In this state, a predetermined current in a range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the lower layer forming Ti—Al (−M 1 ) alloy to generate arc discharge, and the tool A lower layer having a predetermined composition and a predetermined layer thickness shown in Table 3 is formed on the surface of the substrate.
(D) Subsequently, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the Cr—Al (—M 2 ) alloy for forming the thin layer A to generate arc discharge, A thin layer A having a predetermined layer thickness is formed on the surface of the layer, and after the thin layer A is formed, the arc discharge is stopped. Instead, the cathode and anode of the thin layer B forming Cr—Al (−M 3 ) alloy Similarly, a predetermined current in the range of 50 to 100 A is passed between the electrodes to generate arc discharge to form a thin layer B having a predetermined thickness, then the arc discharge is stopped, and the thin layer A forming Cr is again formed. -Al (-M 2) and formation of the thin layer a by arc discharge between the cathode electrode and the anode electrode of the alloy, the thin layer B forming Cr-Al (-M 3) arc between the cathode electrode and the anode electrode of the alloy Alternately and repeatedly forming the thin layer B by discharge, Wherein the surface of the tool substrate, by a hard coating layer comprising alternate lamination of the thin layer A and the thin layer B having the composition and layer thicknesses shown in Tables 4 and 5 along the thickness direction formed by evaporation Te,
The hard coating layer is composed of a lower layer composed of a (Ti, Al) -based carbonitride layer, an alternate stack of fcc (Cr, Al, M 2 ) N layers and fcc / hcp (Cr, Al, M 3 ) N layers. The present invention surface-coated carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 as the surface coated cutting tool of the present invention comprising the upper layer were produced.
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)としてCr−Al−M2合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al(−M2)合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al(−M2)合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al(−M2)合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表6に示される組成および層厚の単一相・単一結晶構造を有するfcc(Cr,Al,M2)N層からなる硬質被覆層を蒸着形成することにより、比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The device was charged and Cr—Al—M 2 alloy was mounted as a cathode electrode (evaporation source). First, the inside of the device was evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the device was heated to 500 ° C. with a heater. Then, a DC bias voltage of -1000 V is applied to the tool base, and an arc discharge is generated by applying a current of 100 A between the Cr-Al (-M 2 ) alloy of the cathode electrode and the anode electrode. It is allowed, with have bombarded cleaned tool substrate surface in the Cr-Al (-M 2) alloy, followed by introduction of nitrogen gas as a reaction gas into the apparatus and reaction atmosphere of 3 Pa, mark on the tool base body The bias voltage to be reduced to -100 V, to generate arc discharge between the cathode electrode and the anode electrode of the Cr-Al (-M 2) alloy, said tool substrate A-1 to A-10 and with B- 1 to B-6 are vapor-deposited with a hard coating layer composed of an fcc (Cr, Al, M 2 ) N layer having a single-phase / single-crystal structure having the composition and layer thickness shown in Table 6 Thus, comparative surface coated carbide throwaway tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 were produced.
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・SS400の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 2.5 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)での軟鋼の乾式連続高速切削加工試験(通常の切削速度は、180m/min.)、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 230 m/min.、
切り込み: 2 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのステンレス鋼の乾式連続高速切削加工試験(通常の切削速度は、150m/min.)、
被削材:JIS・SCMnH12の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 2 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での高マンガン鋼の乾式連続高速切削加工試験(通常の切削速度は、150m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the comparative coated carbide chip 1 are compared with the above-mentioned various coated carbide chips, all of which are screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS / SS400 lengthwise equidistant 4 round bars with flutes,
Cutting speed: 200 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high speed cutting test of mild steel under the conditions (cutting condition A) (normal cutting speed is 180 m / min.),
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 230 m / min. ,
Incision: 2 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
A dry continuous high-speed cutting test of stainless steel under the conditions (cutting condition B) (normal cutting speed is 150 m / min.),
Work material: JIS / SCMnH12, 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 240 m / min. ,
Incision: 2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 150 m / min.) Of high manganese steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 7.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表8に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod-forming bodies for forming a cemented carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the above three types of round rod sintered bodies were ground and shown in Table 8. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される組成、層厚の下部層および表10に示される組成、層厚の交互積層からなる上部層を蒸着形成することにより、硬質被覆層が、(Ti,Al)系炭窒化物層からなる下部層と、fcc(Cr,Al,M2)N層とfcc/hcp(Cr,Al,M3)N層の交互積層からなる上部層とで構成された本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8を製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. By vapor-depositing the composition shown in Table 9 along the layer thickness direction, the lower layer of the layer thickness, and the upper layer composed of the alternating layers of the composition and layer thickness shown in Table 10 along the layer thickness direction under the same conditions as in Example 1. The hard coating layer is composed of a lower layer made of a (Ti, Al) carbonitride layer, an alternating layer of fcc (Cr, Al, M 2 ) N layer and fcc / hcp (Cr, Al, M 3 ) N layer. The surface-coated carbide end mills of the present invention (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 as the surface-coated cutting tool of the present invention composed of an upper layer comprising 1 to 8 were produced.
また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される組成および層厚の単一相・単一結晶構造を有する(Cr,Al,M2)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8を製造した。 For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. And a hard coating layer comprising a (Cr, Al, M 2 ) N layer having a single-phase / single-crystal structure having the composition and layer thickness shown in Table 11 under the same conditions as in Example 1 above. By vapor deposition, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 were produced.
つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、
本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SCMnH2の板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 2 mm、
テーブル送り: 300 mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SS400の板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 1.5 mm、
テーブル送り: 350 mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は、40m/min.)を行い、
本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUS304の板材、
切削速度: 45 m/min.、
溝深さ(切り込み): 5 mm、
テーブル送り: 400 mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験(通常の切削速度は、35m/min.)を行い、
上記のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記の測定結果を表10、11にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8,
About this invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 300 mm / min,
The high-manganese steel dry high-speed grooving test under the conditions (normal cutting speed is 30 m / min.)
For the coated carbide end mills 4-6 of the present invention and the comparative coated carbide end mills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 1.5 mm,
Table feed: 350 mm / min,
A dry high-speed grooving test of mild steel under the conditions (normal cutting speed is 40 m / min.),
For the coated carbide end mills 7 and 8 of the present invention and the comparative coated carbide end mills 7 and 8,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SUS304 plate material,
Cutting speed: 45 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 400 mm / min,
A dry high-speed grooving test of stainless steel under the conditions (normal cutting speed is 35 m / min.),
In any of the above groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Tables 10 and 11, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、
C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、 8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7,
3 types of round bar sintered bodies (for C-8 formation) were used, and from these three types of round bar sintered bodies, the diameter x length of the groove forming part was 4 mm x 13 mm (carbide) by grinding. Bases D-1 to D-3), 8 mm × 22 mm (Carbide bases D-4 to D-6), and 16 mm × 45 mm (Carbide bases D-7 and D-8), and the twist angle WC base cemented carbide tool bases (drills) D-1 to D-8 each having a 30-degree two-blade shape were produced.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される組成、層厚の下部層および表13に示される組成、層厚の交互積層からなる上部層を蒸着形成することにより、硬質被覆層が、(Ti,Al)系炭窒化物層からなる下部層と、fcc(Cr,Al,M2)N層とfcc/hcp(Cr,Al,M3)N層の交互積層からなる上部層とで構成された本発明表面被覆切削工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8を製造した。 Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same conditions as in Example 1 above, by depositing the composition shown in Table 12 and the lower layer of the layer thickness and the composition shown in Table 13 and the upper layer consisting of the alternating lamination of the layer thickness, The hard coating layer is composed of a lower layer composed of a (Ti, Al) -based carbonitride layer, an alternate stack of fcc (Cr, Al, M 2 ) N layers and fcc / hcp (Cr, Al, M 3 ) N layers. The surface-coated carbide drills of the present invention (hereinafter referred to as the present invention-coated carbide drills) 1 to 8 as the surface-coated cutting tool of the present invention composed of the upper layer were manufactured.
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表14に示される組成および層厚の単一相・単一結晶構造を有する(Cr,Al,M2)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8を製造した。 For the purpose of comparison, the surface of the tool base (drill) D-1 to D-8 is subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. From a (Cr, Al, M 2 ) N layer having a single-phase / single-crystal structure having the composition and layer thickness shown in Table 14 under the same conditions as in Example 1 above. Comparative surface-coated carbide drills (hereinafter referred to as comparative-coated carbide drills) 1 to 8 were produced by vapor-depositing the hard coating layer.
つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、
本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUS304の板材、
切削速度: 40 m/min.、
送り: 0.25 mm/rev、
穴深さ: 8 mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、25m/min.)を行い、
本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SCMnH2の板材、
切削速度: 45 m/min.、
送り: 0.2 mm/rev、
穴深さ: 25 mm、
の条件での高マンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SS400の板材、
切削速度: 50 m/min.、
送り: 0.3 mm/rev、
穴深さ: 35 mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、35m/min.)を行い、
上記いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表13、14にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8,
About this invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SUS304 plate material,
Cutting speed: 40 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 8 mm,
Wet stainless steel under high-speed wet drilling test (normal cutting speed is 25 m / min.)
About this invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 45 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 25 mm,
A high-speed wet drilling test of high-manganese steel under normal conditions (normal cutting speed is 30 m / min.)
For the coated carbide drills 7 and 8 and the comparative coated carbide drills 7 and 8 of the present invention,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 50 m / min. ,
Feed: 0.3 mm / rev,
Hole depth: 35 mm,
A high-speed wet drilling test of mild steel under the conditions (normal cutting speed is 35 m / min.),
In any of the above wet high-speed drilling tests (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 13 and 14, respectively.
この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8および本発明被覆超硬ドリル1〜8の硬質被覆層を構成する下部層、薄層Aおよび薄層Bそれぞれの組成を、また、比較表面被覆切削工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8および比較被覆超硬ドリル1〜8の硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
Lower parts constituting the hard coating layers of the present coated carbide tips 1 to 16, the present coated carbide end mills 1 to 8, and the present coated carbide drills 1 to 8 as the surface coated cutting tool of the present invention obtained as a result. The composition of each of the layer, thin layer A and thin layer B is also compared with comparative coated carbide tips 1-16, comparative coated carbide end mills 1-8 and comparative coated carbide drills 1-8 as comparative surface coated cutting tools. When the composition of the hard coating layer was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, the composition was substantially the same as the target composition.
Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
さらに、本発明表面被覆切削工具の薄層A、薄層Bを構成する組成の(Cr,Al,M2)N層、(Cr,Al,M3)N層および比較表面被覆切削工具の硬質被覆層を構成する組成の(Cr,Al,M2)N層について、各層の結晶構造をX線回折により求め、その結果を表4〜6、10、11、13、14に示した。
また、本発明表面被覆切削工具の薄層Bを構成する組成の(Cr,Al,M3)N層については、X線回折により測定した立方晶構造の(200)面からの回折ピーク強度I(f)と、六方晶構造の(100)面からの回折ピーク強度I(h)との比の値I(f)/I(h)についても、表4、5、10、13に示した。
Furthermore, the thin layer A and the thin layer B of the surface-coated cutting tool of the present invention, the (Cr, Al, M 2 ) N layer, the (Cr, Al, M 3 ) N layer of the composition constituting the thin layer B, and the comparative surface-coated cutting tool are hard. Regarding the (Cr, Al, M 2 ) N layer having the composition constituting the coating layer, the crystal structure of each layer was determined by X-ray diffraction, and the results are shown in Tables 4 to 6, 10, 11, 13, and 14.
For the (Cr, Al, M 3 ) N layer having the composition constituting the thin layer B of the surface-coated cutting tool of the present invention, the diffraction peak intensity I from the (200) plane of the cubic structure measured by X-ray diffraction is used. The ratio values I (f) / I (h) between (f) and the diffraction peak intensity I (h) from the (100) plane of the hexagonal crystal structure are also shown in Tables 4, 5, 10, and 13. .
表3〜7、9〜14に示される結果から、本発明表面被覆切削工具は、硬質被覆層が、下部層と、薄層Aと薄層Bの交互積層構造の上部層とからなり、上部層は層間付着強度が大であるとともに、特に、薄層Aがすぐれた耐摩耗性を、また、薄層Bがすぐれた潤滑性を備え、また、下部層はすぐれた高温強度を備えると共に工具基体への硬質被覆層の密着強度を高めているので、硬質被覆層は全体としてこれらのすぐれた特性を兼ね備えたものとなり、その結果、高熱発生を伴うとともに、切刃部に対して大きな衝撃的・機械的負荷がかかる軟鋼、ステンレス鋼、高マンガン鋼等の難削材の高速断続切削加工でも、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相・単一結晶構造の(Cr,Al,M2)N層からなる被覆工具は、特に硬質被覆層の潤滑性不足、高温強度不足が原因で切刃部にチッピング、欠損が生じたり、また、摩耗の進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 7 and 9 to 14, the surface-coated cutting tool of the present invention has a hard coating layer consisting of a lower layer and an upper layer of an alternately laminated structure of thin layers A and B. The layer has a high interlaminar adhesion strength, in particular the thin layer A has excellent wear resistance, the thin layer B has excellent lubricity, and the lower layer has excellent high temperature strength and a tool. Since the adhesion strength of the hard coating layer to the substrate is increased, the hard coating layer has these excellent characteristics as a whole, resulting in high heat generation and a large impact on the cutting edge.・ Excellent wear resistance even in high-speed interrupted cutting of difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel that are subjected to mechanical load, while the hard coating layer has a single phase / single crystal structure (Cr, Al, M 2) consisting of N layer coated tool In particular, it is clear that chipping and chipping occur at the cutting edge due to insufficient lubricity of the hard coating layer and insufficient high-temperature strength, and that wear progresses faster and reaches the service life in a relatively short time. .
上述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴うとともに、切刃部に対して大きな衝撃的・機械的負荷がかかる軟鋼、ステンレス鋼、高マンガン鋼等の難削材の高速断続切削加工でも、すぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the surface-coated cutting tool of the present invention is not only used for cutting under normal cutting conditions such as various types of steel and cast iron, but also generates high heat and has a large impact on the cutting edge.・ Even in high-speed intermittent cutting of difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel that are subjected to mechanical load, they exhibit excellent wear resistance and show excellent cutting performance over a long period of time. It is possible to satisfactorily meet the demands for high performance cutting equipment, labor saving and energy saving of cutting, and cost reduction.
Claims (1)
(a)上記下部層は、0.1〜1.5μmの層厚を有し、
組成式:(Ti1−Q−RAlQM1R)(C,N)
で表した場合に、0.4≦Q≦0.65、0≦R≦0.1(但し、Qは原子比によるAlの含有割合、Rは原子比による成分M1の合計含有割合であり、また、成分M1は、Si、B、Zr、Y、V、W、NbまたはMoから選ばれる1種または2種以上の元素を示す)を満足するTiとAlとM1の複合窒化物または複合炭窒化物層、
(b)上記上部層は、1〜8μmの合計層厚を有するとともに、それぞれ25〜100nmの一層層厚を有する薄層Aと薄層Bの交互積層からなるCrとAlの複合窒化物層であって、さらに、
(c)上記薄層Aは、
組成式:(Cr1−α−βAlαM2β)N
で表した場合に、0.25≦α≦0.65、0≦β≦0.1(但し、αは原子比によるAlの含有割合、βは原子比による成分M2の合計含有割合であり、また、成分M2は、SiまたはBから選ばれる1種または2種の元素を示す)を満足する立方晶構造のCrとAlとM2の複合窒化物層であり、
(d)上記薄層Bは、
組成式:(Cr1−γ−δAlγM3δ)N
で表した場合に、0.75≦γ≦0.95、0≦δ≦0.1(但し、γは原子比によるAlの含有割合、δは原子比による成分M3の合計含有割合であり、また、成分M3は、SiまたはBから選ばれる1種または2種の元素を示す)を満足し、(e)さらに、上記薄層Bについて測定した立方晶結晶格子の(200)面からのX線回折強度のピーク強度I(f)と、六方晶結晶格子の(100)面からのX線回折強度のピーク強度I(h)の比の値I(f)/I(h)が、0.1≦I(f)/I(h)≦11.5を満足する立方晶構造と六方晶構造の混在するCrとAlとM3の複合窒化物層である、
ことを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a lower layer and an upper layer are vapor-deposited as a hard coating layer on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer has a layer thickness of 0.1 to 1.5 μm,
Composition formula: (Ti 1-QR Al Q M 1R ) (C, N)
0.4 ≦ Q ≦ 0.65, 0 ≦ R ≦ 0.1 (where Q is the Al content by atomic ratio, and R is the total content of component M 1 by atomic ratio) In addition, the component M 1 represents one or more elements selected from Si, B, Zr, Y, V, W, Nb, and Mo), and a composite nitride of Ti, Al, and M 1 Or composite carbonitride layer,
(B) The upper layer is a composite nitride layer of Cr and Al, which has a total layer thickness of 1 to 8 μm, and is composed of alternately laminated thin layers A and B each having a single layer thickness of 25 to 100 nm. In addition,
(C) The thin layer A is
Composition formula: (Cr 1-α-β Al α M 2β ) N
0.25 ≦ α ≦ 0.65, 0 ≦ β ≦ 0.1 (where α is the Al content ratio by atomic ratio, β is the total content ratio of component M 2 by atomic ratio) In addition, the component M 2 is a composite nitride layer of Cr, Al, and M 2 having a cubic structure satisfying one or two elements selected from Si or B)
(D) The thin layer B is
Composition formula: (Cr 1-γ-δ Al γ M 3δ ) N
0.75 ≦ γ ≦ 0.95, 0 ≦ δ ≦ 0.1 (where γ is the Al content by atomic ratio, and δ is the total content of component M 3 by atomic ratio) In addition, the component M 3 represents one or two elements selected from Si or B), and (e), further, from the (200) plane of the cubic crystal lattice measured for the thin layer B The ratio value I (f) / I (h) of the peak intensity I (f) of the X-ray diffraction intensity and the peak intensity I (h) of the X-ray diffraction intensity from the (100) plane of the hexagonal crystal lattice is , 0.1 ≦ I (f) / I (h) ≦ 11.5, a mixed nitride layer of Cr, Al, and M 3 in which a cubic structure and a hexagonal structure are mixed.
A surface-coated cutting tool characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277583A JP2009101490A (en) | 2007-10-25 | 2007-10-25 | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277583A JP2009101490A (en) | 2007-10-25 | 2007-10-25 | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009101490A true JP2009101490A (en) | 2009-05-14 |
Family
ID=40703799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007277583A Withdrawn JP2009101490A (en) | 2007-10-25 | 2007-10-25 | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009101490A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010105137A (en) * | 2008-10-31 | 2010-05-13 | Sumitomo Electric Ind Ltd | Surface-coated cutting tool |
KR20140146203A (en) * | 2012-04-16 | 2014-12-24 | 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 | High performance tools exhibiting reduced crater wear in particular by dry machining operations |
JP2016093857A (en) * | 2014-11-13 | 2016-05-26 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP2016165788A (en) * | 2015-03-10 | 2016-09-15 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP2017505856A (en) * | 2013-11-26 | 2017-02-23 | エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon | Hard material layer to reduce heat input to the coated substrate |
-
2007
- 2007-10-25 JP JP2007277583A patent/JP2009101490A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010105137A (en) * | 2008-10-31 | 2010-05-13 | Sumitomo Electric Ind Ltd | Surface-coated cutting tool |
KR20140146203A (en) * | 2012-04-16 | 2014-12-24 | 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 | High performance tools exhibiting reduced crater wear in particular by dry machining operations |
JP2015514870A (en) * | 2012-04-16 | 2015-05-21 | エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ | High performance tools that exhibit reduced crater wear, especially with dry machining operations |
KR102172628B1 (en) * | 2012-04-16 | 2020-11-03 | 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 | High performance tools exhibiting reduced crater wear in particular by dry machining operations |
JP2017505856A (en) * | 2013-11-26 | 2017-02-23 | エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーンOerlikon Surface Solutions Ag, Pfaeffikon | Hard material layer to reduce heat input to the coated substrate |
JP2016093857A (en) * | 2014-11-13 | 2016-05-26 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP2016165788A (en) * | 2015-03-10 | 2016-09-15 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4702520B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP5344129B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP5440346B2 (en) | Surface coated cutting tool | |
JP2009101490A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP2009101474A (en) | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting | |
JP5445847B2 (en) | A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer | |
JP2009125832A (en) | Surface-coated cutting tool | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP2009101475A (en) | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting | |
JP5234499B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP4645821B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4687965B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4702538B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP2007290090A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP5499861B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5440351B2 (en) | Surface coated cutting tool | |
JP5099495B2 (en) | Surface coated cutting tool | |
JP4678582B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP2008188738A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material | |
JP2005034925A (en) | Surface coated cemented carbide cutting tool having surface coating layer which is excellent in wear resistance in high speed cutting | |
JP2007313582A (en) | Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material | |
JP4120499B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110104 |