JP2009175065A - Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof - Google Patents
Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof Download PDFInfo
- Publication number
- JP2009175065A JP2009175065A JP2008015819A JP2008015819A JP2009175065A JP 2009175065 A JP2009175065 A JP 2009175065A JP 2008015819 A JP2008015819 A JP 2008015819A JP 2008015819 A JP2008015819 A JP 2008015819A JP 2009175065 A JP2009175065 A JP 2009175065A
- Authority
- JP
- Japan
- Prior art keywords
- neutron
- prompt gamma
- measuring
- target substance
- gamma ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
この発明は、中性子即発ガンマ線分析により複数元素を同時に3次元元素分布観測・計測するための計測技術とそのための装置に関する。 The present invention relates to a measurement technique for simultaneously observing and measuring a plurality of elements by three-dimensional element distribution by neutron prompt gamma ray analysis and an apparatus therefor.
中性子ビームを測定試料に照射すると直ちに対象物質から即発ガンマ線が放射される。この即発ガンマ線を測定し、ガンマ線エネルギーから同位体又は元素の同定、ガンマ線強度から元素量の定量を行う分析法が即発ガンマ線分析法である。中性子と即発ガンマ線ともに物質に対する透過性が高く固体試料全体の正確な非破壊・多元素同時分析が可能である。 As soon as the measurement sample is irradiated with a neutron beam, prompt gamma rays are emitted from the target substance. Prompt gamma ray analysis is an analysis method that measures prompt gamma rays, identifies isotopes or elements from gamma ray energy, and quantifies the amount of elements from gamma ray intensity. Both neutrons and prompt gamma rays are highly permeable to matter, enabling accurate nondestructive and multielement simultaneous analysis of the entire solid sample.
3次元の非破壊可視化手法としては、物体を回転させながらX線あるいは中性子を透過させ各回転角度で得られた透過映像をコンピュータで処理することにより物体の内部を可視化するCT技法が活用されており、物体内部の構成物質の粗密分布が観測される。 As a three-dimensional non-destructive visualization method, a CT technique is used which visualizes the inside of an object by transmitting X-rays or neutrons while rotating the object and processing a transmission image obtained at each rotation angle by a computer. In addition, the density distribution of the constituent materials inside the object is observed.
さらに、物体内部の構成物質の粗密分布に加えて、物質内の結晶粒子又は磁区の方位情報をも含めた測定を可能とする三次元マッピング法も提案されている(特許文献1)。
さらに又、本発明者等は、中性子即発ガンマ線分析(PGA)を行って、試料を中性子照射した際に放出される即発ガンマ線を測定することにより非破壊で多元素同時分析を行い、他の方法では分析が困難なH,B,Si等の軽元素をはじめ多くの元素分析に有効であることの検討を行った(k0法に基づく中性子即発ガンマ線分析法の研究)。
In addition, the present inventors conducted neutron prompt gamma ray analysis (PGA), and conducted prompt non-destructive multi-element analysis by measuring prompt gamma rays emitted when a sample was irradiated with neutrons. Then, it was examined that it is effective for analysis of many elements including light elements such as H, B, and Si, which are difficult to analyze (research on neutron prompt gamma ray analysis based on the k 0 method).
しかしながら、以上の技術によれば、対象物質内の複数元素を同時に3次元元素分布観測・計測するとは困難であった。 However, according to the above technique, it is difficult to simultaneously observe and measure a three-dimensional element distribution of a plurality of elements in a target substance.
本発明は、CT技法(コンピュータ・トモグラフィ技法)と中性子即発ガンマ線分析とを組み合わせることで、物対象物質内の複数元素を同時に3次元元素分布観測・計測することを課題とする。 It is an object of the present invention to simultaneously observe and measure a three-dimensional element distribution of a plurality of elements in an object target material by combining CT technique (computer tomography technique) and neutron prompt gamma ray analysis.
以上の課題を解決するために、第一発明は、必要な空間分解能に応じたビーム形に切取った平行性の高い中性子ビームを利用して物体を走査し、各走査に応じた即発ガンマ線スペクトルを測定・記録し、記録された走査位置毎の即発ガンマ線スペクトルをコンピュータ処理することで、物体内部の三次元での元素分布を測定することを特徴とする測定技術である。 In order to solve the above problems, the first invention scans an object using a highly parallel neutron beam cut into a beam shape corresponding to the required spatial resolution, and prompt gamma ray spectra corresponding to each scan. Is a measurement technique characterized by measuring the element distribution in three dimensions inside the object by computer processing the prompt gamma ray spectrum for each scan position recorded.
第二発明は記録された走査位置毎の即発ガンマ線スペクトル中の複数の同位体からのガンマ線ピーク毎にコンピュータ処理を行うことで、多元素を同時に物体内部の三次元元素分布を測定することを特徴とする測定技術である。 The second invention is characterized in that the three-dimensional element distribution in the object is simultaneously measured by performing computer processing for each gamma ray peak from a plurality of isotopes in the prompt gamma ray spectrum for each recorded scanning position. Measurement technology.
第三発明は、物体内を中性子ビームが通過する際の自己吸収及び散乱に伴う減衰を補正するために中性子ビーム線上の試料の前後にモニター元素を置き、そのガンマ線強度を測定することで試料による中性子自己吸収の補正を行う補正法である。 According to the third aspect of the present invention, a monitor element is placed before and after the sample on the neutron beam line in order to correct attenuation due to self-absorption and scattering when the neutron beam passes through the object, and the gamma ray intensity is measured. This is a correction method for correcting neutron self-absorption.
第一発明によれば、必要な空間分解能に応じたビーム形に切取った平行性の高い中性子ビームを利用して物体を走査し、各走査に応じた即発ガンマ線スペクトルを測定・記録し、記録された走査位置毎の即発ガンマ線スペクトルをコンピュータ処理することで、物体内部の特定元素の3次元分布を測定することが可能である。また、ほぼ全ての元素は中性子即発ガンマ線を発生するので対象は全元素である。また、中性子即発ガンマ線分析法で高感度に分析可能である水素、ホウ素、カドミウム、水銀、サマリウム、ガドリニウム等は微量分布分析も可能である。 According to the first invention, an object is scanned using a highly parallel neutron beam cut into a beam shape corresponding to a required spatial resolution, and an prompt gamma ray spectrum corresponding to each scan is measured and recorded. It is possible to measure the three-dimensional distribution of the specific element inside the object by computer processing the prompt gamma ray spectrum for each scanning position. Moreover, since almost all elements generate neutron prompt gamma rays, the target is all elements. Also, trace distribution analysis is possible for hydrogen, boron, cadmium, mercury, samarium, gadolinium, etc., which can be analyzed with high sensitivity by neutron prompt gamma ray analysis.
第二発明によれば、各走査位置で記録された即発ガンマ線スペクトル中の複数のガンマ線ピークごとにコンピュータ処理を行えば多元素同時に物体内部の3次元元素分布を取得することが可能となる。 According to the second invention, if a computer process is performed for each of a plurality of gamma ray peaks in the prompt gamma ray spectrum recorded at each scanning position, a three-dimensional element distribution inside the object can be obtained simultaneously with multiple elements.
第三発明によれば、物体内を中性子ビームが通過する際の自己吸収及び散乱に伴う減衰はコンピュータ断層撮影において大きな不確定要素となる。これら不確定要素の補正を行うために中性子ビーム線上の試料の前後に分析の対象としないモニター元素を置き、そのガンマ線強度を同時測定することで試料による中性子自己吸収の補正を行う。これにより、不確定要素の補正された物体内部の特定元素の3次元分布を測定することが可能である。 According to the third invention, attenuation due to self-absorption and scattering when a neutron beam passes through an object is a large uncertainty factor in computed tomography. In order to correct these uncertain factors, a monitor element that is not subject to analysis is placed before and after the sample on the neutron beam, and the gamma ray intensity is measured simultaneously to correct the neutron self-absorption by the sample. Thereby, it is possible to measure the three-dimensional distribution of the specific element inside the object in which the uncertain element is corrected.
図1に、本発明の中性子即発ガンマ線分析による複数元素の同時3次元分布・可視化観察・計測するための装置の概要が示されている。原子炉等の中性子源からの中性子ビームを中性子コリメータ1で切り取って平行性が高い、測定に必要な空間分解能の大きさにコリメートし、測定試料(カドミウム線で構成される三角錐)2に照射する。測定試料は、中性子ビームに対して垂直にX−Y方向に駆動でき、回転できる2D(2次元)+回転ステージ3に設置する。測定試料2はコリメートされた中性子ビームに照射され各(X,Y,回転角度φ)座標毎に中性子遮蔽体5とガンマ線コリメータ6を経てガンマ線検出器7で検出されガンマ線スペクトロメトリ8により即発ガンマ線スペクトル9が測定及び記録される。 FIG. 1 shows an outline of an apparatus for simultaneous three-dimensional distribution, visualization observation and measurement of a plurality of elements by neutron prompt gamma ray analysis according to the present invention. A neutron beam from a neutron source such as a nuclear reactor is cut out by a neutron collimator 1 and collimated to a high parallelism and a spatial resolution required for measurement, and irradiated to a measurement sample (triangular pyramid composed of cadmium wires) 2 To do. The measurement sample is placed on a 2D (two-dimensional) + rotation stage 3 that can be driven and rotated in the XY direction perpendicular to the neutron beam. The measurement sample 2 is irradiated with a collimated neutron beam, detected at each (X, Y, rotation angle φ) coordinate through a neutron shield 5 and a gamma ray collimator 6 by a gamma ray detector 7, and prompt gamma ray spectrum by a gamma ray spectrometer 8. 9 is measured and recorded.
図1に示すように、即発ガンマ線スペクトル9中の元素毎に特定される即発ガンマ線にROI(Region of Interest:関心領域)を指定することで、元素毎の特定のガンマ線ピークの計数情報が得られる。ROIの指定は、あらかじめ目的元素が明確であれば測定前に指定可能である。未知の場合には測定後でも可能である。 As shown in FIG. 1, by specifying ROI (Region of Interest) for prompt gamma rays specified for each element in the prompt gamma ray spectrum 9, count information of specific gamma ray peaks for each element can be obtained. . The ROI can be specified before measurement if the target element is clear in advance. If unknown, it is possible even after measurement.
(X,Y,回転角度φ)座標毎に得られた元素毎のガンマ線ピーク情報からコンピュータ・トモグラフィ処理を行うことで、多元素を同時に物体内部の三次元元素分布を得ることが出来る。 By performing computer tomography processing from gamma ray peak information for each element obtained for each (X, Y, rotation angle φ) coordinate, a three-dimensional element distribution inside the object can be obtained at the same time.
以下図面に沿って実施例を示し、中性子即発ガンマ線分析による複数元素の同時3次元分布・可視化観察・計測方法及びその装置についてより詳しく説明する。日本原子力研究開発機構JRR−3研究用原子炉の即発ガンマ線分析装置内に図1に示すような2D+回転ステージ3を設置し、そのステージ上に各辺1cmの0.25mmφのカドミウム線で作成した三角錐試料2を設置した。この三角錐試料は3本の1cm長さのワイヤ線が3角錐状に頂点で結合したものである。
中性子ビームは中性子コリメータ1により1×1mm2にコリメートし三角錐試料2に照射した。ステージによりX,Y,φ(ビームに対し横X、高さY、回転)方向にそれぞれ1mm,1.5mm,10度刻みで試料を駆動しながらJRR−3即発ガンマ線分析装置に付属するGe半導体検出器により即発ガンマ線スペクトルを測定した。即発ガンマ線スペクトル中のカドミウムの558keV即発ガンマ線にROIを設定し、ROI領域のガンマ線計数を測定位置ごとに記録した。測定データ及び測定座標データを日本原子力研究開発機構が開発した計測解析ソフト(NIPPON)によりコンピュータ・トモグラフィ処理を行い図2に示すカドミウム元素の三次元元素マッピングを得た。三次元元素マッピング画像は任意の指定から画像化することが出来るが図2中には真上から見たCT画像10と真横から見たCT画像11を示す。画像10と画像11中の写真図の画像は指定された元素由来のガンマ線ピークのROIのガンマ線強度であり、指定された元素の存在量に相関している。そのガンマ線強度は図中のマップの色の濃さに基づいて示される。
即ち、図2の10と11の色の濃さは、ガンマ線強度、つまりカドミウム元素の存在量を代表する数値を色の濃さで表したものである。測定試料のワイヤ線の端の辺りに出てくる輝きを示す部分は、カドミウム線が重なり合ってガンマ線強度が強くなったためにそれに伴って表示される色の濃さが変わったものである。又、左側に示される各数字はガンマ線強度を色の濃さによって表したものである。
Hereinafter, embodiments will be described with reference to the drawings, and a method and apparatus for simultaneous three-dimensional distribution / visualization observation / measurement of a plurality of elements by neutron prompt gamma ray analysis will be described in more detail. A 2D + rotating stage 3 as shown in Fig. 1 was installed in the prompt gamma ray analyzer of the Japan Atomic Energy Agency JRR-3 research reactor, and it was created with a 0.25mmφ cadmium wire with a side of 1cm on each stage. Triangular pyramid sample 2 was installed. This triangular pyramid sample is one in which three 1 cm long wire wires are joined at the apex in a triangular pyramid shape.
The neutron beam was collimated to 1 × 1 mm 2 by the neutron collimator 1 and irradiated to the triangular pyramid sample 2. A Ge semiconductor attached to the JRR-3 prompt gamma ray analyzer while driving the sample in 1 mm, 1.5 mm, and 10 degree increments in the X, Y, and φ (lateral X, height Y, and rotation) directions by the stage, respectively. Prompt gamma-ray spectra were measured with a detector. ROI was set to 558 keV prompt gamma ray of cadmium in the prompt gamma ray spectrum, and the gamma ray count in the ROI region was recorded for each measurement position. The measurement data and measurement coordinate data were subjected to computer tomography processing by measurement analysis software (NIPPON) developed by the Japan Atomic Energy Agency, and the three-dimensional element mapping of the cadmium element shown in FIG. 2 was obtained. Although the three-dimensional element mapping image can be imaged from any designation, FIG. 2 shows a CT image 10 viewed from directly above and a CT image 11 viewed from the side. The image of the photographic diagram in the images 10 and 11 is the gamma ray intensity of the ROI of the gamma ray peak derived from the designated element, and correlates with the abundance of the designated element. The gamma ray intensity is indicated based on the color density of the map in the figure.
That is, the color densities of 10 and 11 in FIG. 2 represent the gamma ray intensity, that is, a numerical value representing the abundance of the cadmium element, expressed by the color intensity. The portion of the measurement sample that shows the brightness that appears near the end of the wire line is one in which the cadmium lines overlap and the intensity of the gamma rays increases, so that the density of the displayed color changes accordingly. Each number shown on the left represents the intensity of gamma rays in terms of color intensity.
1:中性子コリメータ、2:測定試料又は三角錐試料、3:2D+回転ステージ、4:即発ガンマ線、5:中性子遮蔽体、6:ガンマ線コリメータ、7:ガンマ線検出器、8:ガンマ線スペクトロメータ、9:ガンマ線スペクトル、10:CT解析結果(真上から見た図)、11:CT解析結果(真横から見た図) 1: neutron collimator, 2: measurement sample or triangular pyramid sample, 3: 2D + rotation stage, 4: prompt gamma ray, 5: neutron shield, 6: gamma ray collimator, 7: gamma ray detector, 8: gamma ray spectrometer, 9: Gamma ray spectrum, 10: CT analysis result (viewed from directly above), 11: CT analysis result (viewed from the side)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008015819A JP2009175065A (en) | 2008-01-28 | 2008-01-28 | Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008015819A JP2009175065A (en) | 2008-01-28 | 2008-01-28 | Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009175065A true JP2009175065A (en) | 2009-08-06 |
Family
ID=41030305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008015819A Pending JP2009175065A (en) | 2008-01-28 | 2008-01-28 | Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009175065A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099211B2 (en) | 2010-12-20 | 2015-08-04 | Korea Atomic Energy Research Institute | Prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons |
KR101676963B1 (en) * | 2015-07-22 | 2016-11-17 | 가톨릭대학교 산학협력단 | The real-time monitoring method using boron fusion reaction during antiproton device |
KR20200106772A (en) * | 2019-03-05 | 2020-09-15 | 한국원자력연구원 | Coincidence-based prompt-gamma activation imaging apparatus and imaging method using the same |
CN114609685A (en) * | 2020-12-09 | 2022-06-10 | 同方威视技术股份有限公司 | Article detection apparatus, article detection method, and storage medium |
WO2022211063A1 (en) * | 2021-03-31 | 2022-10-06 | 株式会社トプコン | Nondestructive inspection system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791089B1 (en) * | 1999-03-29 | 2004-09-14 | Bechtel Bwxt Idaho, Llc | PINS chemical identification software |
-
2008
- 2008-01-28 JP JP2008015819A patent/JP2009175065A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791089B1 (en) * | 1999-03-29 | 2004-09-14 | Bechtel Bwxt Idaho, Llc | PINS chemical identification software |
Non-Patent Citations (6)
Title |
---|
JPN6012046754; KASTZTOVSKY,Z. 他: '"FROM PGAA TO PGAI: FROM BULK ANALYSIS TO ELEMENTAL MAPPING"' Archeometriai Muhely Volume III, Number 2, 2006, Pages 16-21 * |
JPN6012046757; FLOYD Jr,C.E. 他: '"Introduction to neutron stimulated emission computed tomography"' PHYSICS IN MEDICINE AND BIOLOGY Volume 51, Number 14, 20060721, Pages 3375-3390 * |
JPN6012046760; BLAAUW,M. 他: '"Development of a non-invasive method for the determination of the macroscopic neutron cross sectio' Journal of Radioanalytical and Nuclear Chemistry Volume 271, Number 3, 2007, Pages 765-770 * |
JPN6012046763; KASTZTOVSKY,Z. 他: '"NON-DESTRUCTIVE INVESTIGATIONS OF CULTURAL HERITAGE OBJECTS WITH GUIDED NEUTRONS: THE ANCIENT CHAR' Archeometriai Muhely Volume III, Number 1, 2006, Pages 12-17 * |
JPN6012046767; 佐藤博隆 他: '"CTを利用した物体内部における中性子共鳴吸収スペクトルの再構成"' 日本原子力学会秋の大会予稿集 Volume 2006, 20060817, Page 186 * |
JPN6013004551; KURETA,M.: '"Development of a Neutron Radiography Three-Dimensional Computed Tomography System for Void Fractio' JOURNAL OF POWER AND ENERGY SYSTEMS Volume 1, Number 3, 20071210, pp.211-224 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099211B2 (en) | 2010-12-20 | 2015-08-04 | Korea Atomic Energy Research Institute | Prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons |
KR101676963B1 (en) * | 2015-07-22 | 2016-11-17 | 가톨릭대학교 산학협력단 | The real-time monitoring method using boron fusion reaction during antiproton device |
KR20200106772A (en) * | 2019-03-05 | 2020-09-15 | 한국원자력연구원 | Coincidence-based prompt-gamma activation imaging apparatus and imaging method using the same |
KR102222309B1 (en) * | 2019-03-05 | 2021-03-04 | 한국원자력연구원 | Coincidence-based prompt-gamma activation imaging apparatus and imaging method using the same |
CN114609685A (en) * | 2020-12-09 | 2022-06-10 | 同方威视技术股份有限公司 | Article detection apparatus, article detection method, and storage medium |
EP4012462A1 (en) * | 2020-12-09 | 2022-06-15 | Nuctech Company Limited | Object detecting device, object detecting method, and storage medium |
WO2022211063A1 (en) * | 2021-03-31 | 2022-10-06 | 株式会社トプコン | Nondestructive inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10521936B2 (en) | Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement | |
KR101378757B1 (en) | Radiation imaging equipment and method available to obtain element date of material and select dimensions of image | |
JP5603784B2 (en) | System for inspecting nuclear fuel | |
Priyada et al. | Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection | |
JP2015187567A (en) | radiation measuring device | |
Craft et al. | Characterization of a neutron beam following reconfiguration of the Neutron Radiography Reactor (NRAD) core and addition of new fuel elements | |
JP2009175065A (en) | Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof | |
JP2007508559A (en) | Fan beam coherent scattering computed tomography | |
JP7340476B2 (en) | Radiation measurement device and radiation measurement method | |
US20190025231A1 (en) | A method of detection of defects in materials with internal directional structure and a device for performance of the method | |
KR101270674B1 (en) | Radiation imaging method | |
Bernardi et al. | Nuclear waste drum characterization with 2 MeV x-ray and gamma-ray tomography | |
JP7437337B2 (en) | Internal state imaging device and internal state imaging method | |
JP5030056B2 (en) | Nondestructive inspection method and apparatus | |
Sim et al. | Measurement of ballooning gap size of irradiated fuels using neutron radiography transfer method and HV image filter | |
JP2009276285A (en) | Apparatus and method for radiation tomographic photographing | |
Glazkov et al. | A neutron tomograph at the IR-8 reactor of the National Research Centre Kurchatov Institute | |
Craft et al. | AFIP-7 Tomography–2013 Status Report | |
US20230251213A1 (en) | LABORATORY-BASED 3D SCANNING X-RAY LAUE MICRO-DIFFRACTION SYSTEM AND METHOD (LAB3DuXRD) | |
JP2017044588A (en) | X-ray detector and X-ray imaging system | |
JP2022180690A (en) | Radiation measuring device and its measurement method | |
Lin et al. | Simulation Study on Pinhole Imaging of 239 Pu using Nuclear Resonance Fluorescence with Laser Compton Scattering Gamma Rays | |
SALLEH et al. | Establishment of a Digital Laminography facility at the Malaysian Nuclear Agency | |
Shaikh | Development of neutron and x-ray detectors and neutron radiography at Barc | |
JPH10268055A (en) | Device and method for measuring radioactive waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101213 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130401 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130821 |