JP2009164296A - 露光装置およびデバイス製造方法 - Google Patents
露光装置およびデバイス製造方法 Download PDFInfo
- Publication number
- JP2009164296A JP2009164296A JP2007341115A JP2007341115A JP2009164296A JP 2009164296 A JP2009164296 A JP 2009164296A JP 2007341115 A JP2007341115 A JP 2007341115A JP 2007341115 A JP2007341115 A JP 2007341115A JP 2009164296 A JP2009164296 A JP 2009164296A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- substrate
- projection optical
- exposure apparatus
- aberration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B27/00—Photographic printing apparatus
- G03B27/32—Projection printing apparatus, e.g. enlarger, copying camera
- G03B27/52—Details
- G03B27/54—Lamp housings; Illuminating means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70083—Non-homogeneous intensity distribution in the mask plane
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70325—Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
- G03F7/70333—Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
【課題】原版または基板を投影光学系の像面に対して傾けて基板を露光した場合に生じる不具合を低減することを可能にする技術を提供する。
【解決手段】走査露光装置50は、原版17を照明する照明光学系ILおよび原版17のパターンを基板20に投影する投影光学系POを有し、原版17または基板20が投影光学系POの像面に対して傾いた状態で原版17および基板20を走査しながら基板17を露光する。走査露光装置50は、原版17または20基板の傾きに応じた収差を発生させるように投影光学系POを制御する制御部30を備える。
【選択図】図2
【解決手段】走査露光装置50は、原版17を照明する照明光学系ILおよび原版17のパターンを基板20に投影する投影光学系POを有し、原版17または基板20が投影光学系POの像面に対して傾いた状態で原版17および基板20を走査しながら基板17を露光する。走査露光装置50は、原版17または20基板の傾きに応じた収差を発生させるように投影光学系POを制御する制御部30を備える。
【選択図】図2
Description
本発明は、露光装置およびデバイス製造方法に係り、例えば、原版または基板が投影光学系の像面に対して傾いた状態で前記基板を露光する走査露光装置およびそれを用いてデバイスを製造するデバイス製造方法に関する。
半導体デバイスの製造技術の進展は近年ますます速度を増しており、それに伴って微細加工技術の進展も著しいものがある。特に露光装置を用いてなされるフォトリソグラフィーは、形成するパターンの最小寸法が100nm以下の領域に踏み込んだ。
解像力を向上させるアプローチとして、投影光学系のNAを大きくしていくアプローチと、露光光の波長をg線からi線、更にはエキシマレーザーの発振波長というようにより短波長化していくアプローチとがある。最近では、位相シフトマスクや変形照明等により、フォトリソグラフィーの限界を広げる試みが行なわれている。
ここで、解像力を向上させるために投影光学系のNAを大きくすると、焦点深度がNAの2乗に反比例して減少する。したがって、半導体デバイスの製造において、フォーカスマージンを確保するためのプロセス技術が要求される。一方、露光装置では、フォーカスの誤差を小さくする技術が要求される。
特許文献1には、フォーカス深度を大きくするために、マスクのパターンを光軸方向の異なる位置に結像させる技術、いわゆるFLEX技術が提案されている。
現在の露光装置は、レンズ設計上の難易度軽減、ステージの制御技術の向上というトレンドを受け、走査型の露光装置が主流となっている。最先端の走査露光装置は、液浸タイプのレンズを搭載し、レンズのNAが1を超えている。このような大きなNAを有する投影レンズを備えた露光装置には、焦点深度を確保する観点から、FLEX技術の搭載が望まれている。
特許文献2には、マスクとウエハを同期して走査しながら、ウエハを光軸方向に移動させることが開示されている。
マスクのパターンは、投影レンズを通して基板上に結像する。ここで、マスク面における光の入射領域およびウエハ面における光の入射領域をスリット領域と呼ぶことにする。スリット領域の形状は、矩形、或いは円弧状の領域となっている。通常の露光装置では、図9に示すように、スリット領域の全面において、マスクとウエハとが共役な関係にある。露光動作時は、マスクとウエハが投影レンズの倍率に応じた速度比で走査駆動される。
FLEX露光を走査露光装置で実施する際、図10に示すように、マスクまたはウエハが投影レンズの物体面または像面を横切るように走査駆動される。図10では、ウエハが像面に対して傾いた状態で該ウエハが走査駆動されることが示されているが、実際には、ウエハではなく、マスクを傾けた状態で該マスクを走査駆動してもよい。FLEX露光において、投影レンズの像面全体で均一の効果を得るためには、スリット領域が略矩形であることが必要である。円弧のスリット領域の場合、走査方向と直交する方向の各位置では、ステージの傾斜のためにデフォーカス量が変わってしまい、ショット領域内で均一な深度拡大の効果が得られない。
現在、走査露光装置の光源として、主としてエキシマレーザーが使用されている。パルス光を発振するエキシマレーザーを光源とするミラープロジェクション方式やステップアンドスキャン方式の走査露光装置においては、走査速度、または、パルス発光のタイミングがずれた場合に、マスク面上やウエハ面上で露光ムラが生じうる。この露光ムラを回避するための技術として、特許文献3には、スリット領域を規定する視野絞りをマスクに共役な面に対してデフォーカスした位置に配置し、マスクの走査方向に対して略台形の光強度分布を持たせる技術が開示されている。光強度分布が台形の斜辺に相当する位置では、視野絞りによって照明光の一部が遮断されているために、有効光源(照明光学系の瞳においてゼロより大きい光強度を有する部分)の一部がかけている状態である。
特開昭63−42122号公報
特許第3255312号公報
特開平7−230949号公報
照射領域を規定する視野絞りをマスク面に共役な面に対してデフォーカスさせた照明光学系を備える露光装置では、次のような現象が起こる。すなわち、台形のスロープ部分をマスクまたはウエハが通過する際に、マスクまたはウエハから観察される有効光源は、月の満ち欠けのように、徐々に完全に成ったり、徐々に欠けたりする。図11に模式的に示されるように、スリット領域(マスクを照明する光がマスク面に入射する領域)にマスクのある点が入っていく際は、マスクの当該点からは、有効光源がその端から徐々に現れるように見える(図11(A))。マスクのある点が光強度分布を示す台形のフラットな部分に到達すると、当該点からは有効光源の全体が見える(図11((B))。マスクのある点がスリット領域から出て行く際は、マスクのある当該点からは、有効光源がその端から徐々に欠け出して最後にはなくなるように見える(図11(C))。このように、マスクから観察される有効光源の形状が変化することで、照明光学系の実効的な主光線の投影レンズへの入射角が変化する。すなわち、図12にあるように投影レンズの瞳面において、スリット領域にマスクのある点が入っていく際(図12(A))および当該点がスリット領域から出て行く際(図12(C))、当該点に入射する光の実効的な主光線は、照明光学系の瞳の中心を通らない。
図13は、有効光源形状の変化が無い場合におけるデフォーカスした波面と回折光との関係を例示する図である。横軸は瞳の座標、縦軸は波面の位相である。有効光源に歪が無い場合、0次回折光は波面の中心を通り、±1次光は0次回折光を中心に対称な方向に進む。したがって、その時の0次回折光、−1次回折光、+1次回折光の位相をP0、P1、P2とすると、P1=P2であるので、
(P1−P0)−(P2−P0)=P1−P2=0
となる。したがって、位相差が生じないので、有効光源に歪が無い場合は、デフォーカスによらず、投影レンズによって形成される光学像は、非対称にならない。
(P1−P0)−(P2−P0)=P1−P2=0
となる。したがって、位相差が生じないので、有効光源に歪が無い場合は、デフォーカスによらず、投影レンズによって形成される光学像は、非対称にならない。
一方、図14は、有効光源の形状が変化し、0次回折光が左側にシフトした場合におけるデフォーカスした波面と回折光との関係を例示する図である。この時の位相差は、P1≠P0であるので、
(P1−P0)−(P2−P0)=P1−P2=Dp≠0
となる。この場合、デフォーカスした波面において位相差が生じるので、投影レンズによって形成される光学像は、非対称になる。また、Dpの値は、デフォーカス量に応じて変化し、デフォーカス量が大きくなるほどDpも大きくなる。
(P1−P0)−(P2−P0)=P1−P2=Dp≠0
となる。この場合、デフォーカスした波面において位相差が生じるので、投影レンズによって形成される光学像は、非対称になる。また、Dpの値は、デフォーカス量に応じて変化し、デフォーカス量が大きくなるほどDpも大きくなる。
上記のような照明光学系を備える装置によって、FLEX法にしたがってウエハWを露光する場合を考える。ウエハは、スリット領域の中心を横切るように、投影光学系POの物面(および像面)に対して傾斜した方向に走査駆動される。そのため、マスクMのある点がスリット領域を通過する際に、図16に例示するように、+Z方向にデフォーカスした状態から、スリット領域の中央でベストフォーカス位置となり、さらに該中央を過ぎると−Z方向にデフォーカスした状態でスリットから出て行く。また、テレセン度は、スリットにおける台形強度分布に応じ、図17に例示するように、スリット手前側(マスクが入ってくる側)で+、中央で0、スリット奥(マスクが出る側)となる。
この時、スリット手前側の状態を、図14とすると、スリット奥側の状態は、図15のようになる。図15の場合、0次回折光が図14とくらべ、瞳中心に対し対称の位置にずれるとする。この時の位相差は、
(P1−P0)−(P2−P0)=P1−P2=Dp≠0
となる。この場合、図14と図15は、瞳中心に対して対称なので、Dpの量も符号も同じとなる。したがって、スリット手前側の光学像の非対称性とスリット奥側の光学像の非対称性は、同じ方向となる。この場合、ウエハに塗布されたレジストのある微細領域における露光量のプロファイルは、当該微細領域がスリット領域を通過する時間内における光強度の積算となる。したがって、図4に例示されるように、非対称なレジストプロファイルとなる。コマ収差が投影レンズに存在しないにもかかわらず、あたかもコマ収差が存在する場合におけるようなレジストプロファイルであり、パターン不良の原因となってしまう。
(P1−P0)−(P2−P0)=P1−P2=Dp≠0
となる。この場合、図14と図15は、瞳中心に対して対称なので、Dpの量も符号も同じとなる。したがって、スリット手前側の光学像の非対称性とスリット奥側の光学像の非対称性は、同じ方向となる。この場合、ウエハに塗布されたレジストのある微細領域における露光量のプロファイルは、当該微細領域がスリット領域を通過する時間内における光強度の積算となる。したがって、図4に例示されるように、非対称なレジストプロファイルとなる。コマ収差が投影レンズに存在しないにもかかわらず、あたかもコマ収差が存在する場合におけるようなレジストプロファイルであり、パターン不良の原因となってしまう。
本発明は、上記の課題認識を契機としてなされたものであり、例えば、原版または基板を投影光学系の像面に対して傾けて基板を露光した場合に生じる不具合を低減することを可能にする技術を提供することを目的とする。
本発明の1つの側面は、原版を照明する照明光学系および前記原版のパターンを基板に投影する投影光学系を有し、前記原版または前記基板が前記投影光学系の像面に対して傾いた状態で前記原版および前記基板を走査しながら前記基板を露光する走査露光装置に係り、前記走査露光装置は、前記原版または前記基板の傾きに応じた収差を発生させるように前記投影光学系を制御する制御部を備える。
本発明によれば、例えば、原版または基板を投影光学系の像面に対して傾けて基板を露光した場合に生じる不具合を低減することを可能にする技術が提供される。
以下に、本発明の実施の形態を添付の図面に基づいて詳細に説明する。
[第1実施形態]
図1は、本発明の第1実施形態の走査露光装置の概略構成を示す図である。本発明の第1実施形態の走査露光装置50は、原版(マスクまたはレチクルとも呼ばれうる)17および基板20を走査しながら原版17のパターンを投影光学系POによって基板20に投影して基板20を走査露光するように構成されている。
図1は、本発明の第1実施形態の走査露光装置の概略構成を示す図である。本発明の第1実施形態の走査露光装置50は、原版(マスクまたはレチクルとも呼ばれうる)17および基板20を走査しながら原版17のパターンを投影光学系POによって基板20に投影して基板20を走査露光するように構成されている。
この明細書では、投影光学系POの光軸に平行な軸をZ軸、原版17および基板20の走査方向に平行な軸をX軸としてXYZ座標系を定義する。X軸、Y軸、Z軸に平行な方向をそれぞれX方向、Y方向、Z方向とする。なお、照明学系ILは、ミラー9、15によって光路が折り曲げられているので、照明光学系ILにおいては、照明光学系ILの光軸をZ軸、原版17および基板20の走査方向に対応する軸をX軸としてXYZ座標系を定義する。
照明光学系ILは、この実施形態では、光源1からコリメータレンズ16に至る光路に配置された要素によって構成される。光源1としては、例えば、発振波長が約193nmのArFエキシマレーザーや、発振波長が約248nmのKrFエキシマレーザーであるが、本発明において、光源の種類や光源が発する光の波長に制限はない。
光源1から出射された光は、引き回し光学系2によって回折光学素子3に導かれる。典型的には、複数の回折光学素子3が複数のスロットを有するターレットのそれぞれのスロットに搭載されており、アクチュエーター4によって、任意の回折光学素子3を光路中に配置されうる。
回折光学素子3から出射された光は、コンデンサーレンズ5によって集光され、回折パターン面6に回折パターンを形成する。アクチュエーター4により光路中に位置する回折光学素子3を交換すれば、回折パターンの形状を変えることができる。
回折パターン面6に形成された回折パターンは、プリズム群7(7a、7b)、ズームレンズ8によって輪帯率やσ値などのパラメータが調整された後、ミラー9に入射する。ミラー9によって反射された光束は、オプティカルインテグレータ10に入射する。オプティカルインテグレータ10は、例えば、レンズアレイ(フライアイ)として構成されうる。
プリズム7群は、例えば、プリズム7a、7bを含む。プリズム7a、7b間の距離が十分に小さい場合は、プリズム7aと7bは一体化した一枚のガラス平板とみなすことができる。回折パターン面6に形成された回折パターンは、ほぼ相似形状を保ちながらズームレンズ8によりσ値が調整され、オプティカルインテグレータ10の入射面に結像される。プリズム7aと7bの位置を離すことによって、回折パターン面6に形成された回折パターンは、輪帯率や開口角も調整される。
オプティカルインテグレータ10から出射された光束は、コンデンサーレンズ11で集光されて、原版17と共役な面13に目的とする光強度分布を形成する。
照明視野絞り(遮光部材)12は、原版17が配置される面と共役な面13からずれた位置に配置され、露光光による原版17の照明領域を規定するとともに該照明領域における光強度分布を制御する。より具体的には、遮光部材12は、原版17および基板20の走査方向に沿った光強度分布が台形状となるように露光光の光強度分布を制御する。台形状の光強度分布は、光源1が発生する光がパルス光であること、即ち不連続性を有することに起因する走査方向の積算露光量のばらつきを低減するために効果的である。
照明視野絞り12の開口(スリット)を通過した光束は、ミラー15で反射された後に原版17を照明する。原版17のパターンは、投影光学系POによって、チルトステージ19を含む基板ステージWSによって保持された基板20に投影される。これにより、基板20がその表面に有する感光剤に潜像パターンが形成される。
チルトステージ19は、それによって保持される基板20の面が投影光学系POの像面に対して傾いた状態で基板20が走査されるように位置決めされる不図示のチルト機構によって傾きが制御される。基板20の傾きは、不図示のセンサによって検知され、フィードバック制御されうる。ここで、基板20を傾ける代わりに原版17を傾けてもよい。図1に示す例では、走査方向は、X軸に沿った方向であり、フォーカス深度の拡大のために基板20または原版17の傾きを制御する軸は、Y軸周りの回転(ωY)である。
投影光学系POは、それを構成する複数のレンズの少なくとも1つのレンズ24を移動、回転および/または変形させることにより投影光学系POの収差を変化させる駆動機構25を有する。駆動機構25は、例えば、投影光学系POの光軸AXに沿った方向に1または複数のレンズ24を移動させる機構と、光軸AXに垂直な2軸(X軸、Y軸)に平行な軸の周りで1または複数のレンズ24を回転させる機構とを含みうる。レンズ24の駆動に対する収差変化の敏感度は、予め計算または実測を通して決定され、それを示す特性データ(例えば、テーブル)が制御部30のメモリ32に格納される。
投影光学系POの収差を目標収差に近づけるときは、制御部30は、メモリ32に格納された特性データを参照し、調整対象の収差が目標収差に近づき且つその他の収差の変化は許容範囲に収まるように計算を実行する。そして、制御部30は、その計算結果に基づいて、1または複数のレンズ24の駆動量を決定し、その駆動量にしたがって1または複数のレンズ24の駆動量を駆動する。
FLEX法で基板を露光する際は、投影光学系POの像面側において、基板20の各点がデフォーカス→ベストフォーカス→デフォーカスとなるように、基板20を走査駆動する必要がある。例えば、基板20の表面の光軸AXが通る点が投影光学系POのベストフォーカス位置に一致するように制御部30により基板ステージWSが制御される。また、基板20の傾け量θが目標とする傾け量になるように制御部30により基板ステージWSが制御される。ここで、傾け量θは、デフォーカス量と相関を有するので、傾け量θをデフォーカス量で特定することもできる。ここで、基板20の傾け量θもそれと相関を有するデフォーカス量も、基板20の傾きを表現するための一手段である。
傾け量θまたはデフォーカス量とレジストプロファイルの非対称性(歪み量)との関係を示すデータが予めシミュレーションまたは実験によって求められてメモリ32に格納される。また、投影光学系POの収差(典型的には、コマ収差)とレジストプロファイルの非対称性(歪み量)との関係を示すデータが予めシミュレーションまたは実験によって求められてメモリ32に格納される。ここで、コマ収差は、スリット領域内でほぼ一律に変化する成分である。
制御部30は、基板20の傾き(例えば、基板20の傾け量θまたはデフォーカス量として表現される)に対応するレジストプロファイルの非対称性(歪み量)を補正するための収差変化量を決定する。制御部30は、その収差変化量に応じて1または複数のレンズ24を駆動し、投影光学系POの収差を変化させる。また、実際とシミュレーションとが合わないケースも想定されるので、収差補正量をマニュアルで設定することもできるようにしておくこともよい。
図2を参照しながら制御部30による制御の例を説明する。Step1において、制御部30は、外部装置またはコンソール等から入力される情報(例えば、傾け量θを示すパラメータ、または、デフォーカス量df自体を示すパラメータ)にしたがって走査露光時におけるデフォーカス量dfを決定する。
Step2において、制御部30は、デフォーカス量dfに応じたレジストプロファイル(基板20の面に形成される光学像)の非対称性Δを(1)式にしたがって算出する。ここで、デフォーカス量dfを非対称性Δに換算するための係数Aは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Δ=A×df ・・・(1)
Step3において、制御部30は、Step2で求めた非対称性歪Δを補正するために必要なコマ収差量Cmを(2)式にしたがって算出する。ここで、レジストプロファイルの非対称性Δをコマ収差量Cmに換算するための係数Bは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Step3において、制御部30は、Step2で求めた非対称性歪Δを補正するために必要なコマ収差量Cmを(2)式にしたがって算出する。ここで、レジストプロファイルの非対称性Δをコマ収差量Cmに換算するための係数Bは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Cm=B×Δ ・・・(2)
Step4において、制御部30は、Step3で求めたコマ収差量Cmを発生させるために必要な1または複数のレンズ24の駆動量を算出する。その際、他の収差は、変化しないよう連立方程式の計算、または最適化計算を実施し、1または複数のレンズ24の駆動量が決定される。具体例を挙げると、1または複数のレンズ24の諸収差についての敏感度を示す行列Cがシミュレーションで求められうる。例えば、3つのレンズ24の駆動量L1、L2、L3を算出する場合において、コマ収差量Cm以外に、メリディオナル像面FC、倍率Mをパラメータとすると、
Cm=C11×L1+C12×L2+C13×L3 ・・・(4)
FC=C21×L1+C22×L2+C23×L3 ・・・(5)
M =C31×L1+C12×L2+C33×L3 ・・・(6)
の連立方程式ができるので、FC=M=0となるようにL1、L2、L3を求めればよい。
Step4において、制御部30は、Step3で求めたコマ収差量Cmを発生させるために必要な1または複数のレンズ24の駆動量を算出する。その際、他の収差は、変化しないよう連立方程式の計算、または最適化計算を実施し、1または複数のレンズ24の駆動量が決定される。具体例を挙げると、1または複数のレンズ24の諸収差についての敏感度を示す行列Cがシミュレーションで求められうる。例えば、3つのレンズ24の駆動量L1、L2、L3を算出する場合において、コマ収差量Cm以外に、メリディオナル像面FC、倍率Mをパラメータとすると、
Cm=C11×L1+C12×L2+C13×L3 ・・・(4)
FC=C21×L1+C22×L2+C23×L3 ・・・(5)
M =C31×L1+C12×L2+C33×L3 ・・・(6)
の連立方程式ができるので、FC=M=0となるようにL1、L2、L3を求めればよい。
或いは、評価する収差の項目を多くする場合には、例えば、評価関数φを(7)式のように定義する。
φ=√(G1×(S1×L1)2+G2×(S2×L2)2+G3×(S3×L3)2) ・・・(7)
G1〜G3:重み関数
S1〜S3:各レンズの収差敏感度行列
そして、評価関数φが最小になるようようにL1〜L3を決定してもよい。
G1〜G3:重み関数
S1〜S3:各レンズの収差敏感度行列
そして、評価関数φが最小になるようようにL1〜L3を決定してもよい。
Step5において、制御部30は、上記の算出された駆動量にしたがって各レンズ24が駆動されるように駆動機構25を制御する。
以上の制御により、デフォーカス量dfでFLEX法による露光を実施した際において、照明要因で歪むレジストプロファイルを投影光学系POに収差を発生させることによって補正することができる。
また、この補正において、シミュレーションによって換算係数A、Bが決定される場合には、シミュレーションにおける非対称性と現実の非対称性とが合わない場合もありうる。そこで、これを調整するために換算係数A、Bの値をマニュアルで変更したり、オフセットの項を各式に設けたりしてもよい。
[第2実施形態]
図3は、本発明の第2実施形態の走査露光装置の概略構成を示す図である。図3において、図1に示す第1実施形態の走査露光装置50と同一の構成要素には、同一の符号が付されている。図3に示す第2実施形態の走査露光装置50’は、図1に示す第1実施形態の走査露光装置50に対して、非対称性検知センサ101および測定パターン102が追加されている。図6は、走査時における非対称性検知センサ101および測定パターン102を模式的に示す図である。
図3は、本発明の第2実施形態の走査露光装置の概略構成を示す図である。図3において、図1に示す第1実施形態の走査露光装置50と同一の構成要素には、同一の符号が付されている。図3に示す第2実施形態の走査露光装置50’は、図1に示す第1実施形態の走査露光装置50に対して、非対称性検知センサ101および測定パターン102が追加されている。図6は、走査時における非対称性検知センサ101および測定パターン102を模式的に示す図である。
非対称性検知センサ101は、基板ステージWSのチルトステージ19の上に配置されうる。測定パターン102は、原版17、または原版17を保持する原版ステージRSに配置されうる。測定パターン102は、基板20と共役な面であれば、他の位置に配置されてもよい。
図5を参照しながら制御部30による制御の例を説明する。Step11において、制御部30は、外部装置またはコンソール等から入力される情報(例えば、傾け量θを示すパラメータ、または、デフォーカス量df自体を示すパラメータ)にしたがって走査露光時におけるデフォーカス量dfを決定する。
Step12において、制御部30は、デフォーカス量dfに応じて基板ステージWS(基板20)の傾きを制御する。また、制御部30は、非対称性検知センサ101による測定パターン102の像の検知を開始するための位置に原版ステージRSおよび基板ステージWSの位置を制御する。そして、制御部30は、原版ステージRSおよび基板ステージWSを走査駆動しながら非対称性検知センサ101に測定パターン102の光学像を検知させる。この光学像は、FLEX法において基板20の表面に形成されうる光学像と等価である。制御部30は、その光学像の非対称性を評価して非対称度Idを決定する。非対称性Idは、例えば、図4に例示するように決定されうる。
Step13において、制御部30は、Step12で非対称性検知センサを使って求めた非対称性Idを補正するために必要なコマ収差量Cmを(8)式にしたがって算出する。ここで、測定パターンの像の非対称性Idをコマ収差量Cmに換算するための係数Biは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Cm=Bi×Id ・・・(8)
Step14において、制御部30は、Step13で求めたコマ収差量Cmを発生させるために必要な1または複数のレンズ24の駆動量を算出する。その際、他の収差は、変化しないよう連立方程式の計算、または最適化計算を実施し、1または複数のレンズ24の駆動量が決定される。具体例を挙げると、1または複数のレンズ24の諸収差についての敏感度を示す行列Cがシミュレーションで求められうる。例えば、3つのレンズ24の駆動量L1、L2、L3を算出する場合において、コマ収差量Cm以外に、メリディオナル像面FC、倍率Mをパラメータとすると、
Cm=C11×L1+C12×L2+C13×L3 ・・・(9)
FC=C21×L1+C22×L2+C23×L3 ・・・(10)
M =C31×L1+C12×L2+C33×L3 ・・・(11)
の連立方程式ができるので、FC=M=0となるようにL1、L2、L3を求めればよい。
Step14において、制御部30は、Step13で求めたコマ収差量Cmを発生させるために必要な1または複数のレンズ24の駆動量を算出する。その際、他の収差は、変化しないよう連立方程式の計算、または最適化計算を実施し、1または複数のレンズ24の駆動量が決定される。具体例を挙げると、1または複数のレンズ24の諸収差についての敏感度を示す行列Cがシミュレーションで求められうる。例えば、3つのレンズ24の駆動量L1、L2、L3を算出する場合において、コマ収差量Cm以外に、メリディオナル像面FC、倍率Mをパラメータとすると、
Cm=C11×L1+C12×L2+C13×L3 ・・・(9)
FC=C21×L1+C22×L2+C23×L3 ・・・(10)
M =C31×L1+C12×L2+C33×L3 ・・・(11)
の連立方程式ができるので、FC=M=0となるようにL1、L2、L3を求めればよい。
或いは、評価する収差の項目を多くする場合には、例えば、評価関数φを(12)式のように定義する。
φ=√(G1×(S1×L1)2+G2×(S2×L2)2+G3×(S3×L3)2) ・・・(12)
G1〜G3:重み関数
S1〜S3:各レンズの収差敏感度行列
そして、評価関数φが最小になるようようにL1〜L3を決定してもよい。
G1〜G3:重み関数
S1〜S3:各レンズの収差敏感度行列
そして、評価関数φが最小になるようようにL1〜L3を決定してもよい。
制御部30は、Step15において、上記の算出された駆動量にしたがって各レンズ24が駆動されるように駆動機構25を制御する。
以上の制御により、デフォーカス量dfでFLEX法による露光を実施した際において、照明要因で歪むレジストプロファイルを投影光学系POに収差を発生させることによって補正することができる。
また、この補正において、シミュレーションによって換算係数A、Bが決定される場合には、シミュレーションにおける非対称性と現実の非対称性とが合わない場合もありうる。そこで、これを調整するために換算係数A、Bの値をマニュアルで変更したり、オフセットの項を各式に設けたりしてもよい。
[第3実施形態]
図7は、本発明の第3実施形態の走査露光装置の概略構成を示す図である。図7において、図1に示す第1実施形態の走査露光装置50”と同一の構成要素には、同一の符号が付されている。図7に示す第3実施形態の走査露光装置50”は、コマ収差量Cmを発生する収差調整ユニットとして、投影光学系POは、露光光を透過する平板42と、平板42を駆動する駆動機構44とを含む。平板42は、その表面とその裏面とが互いに平行な板部材である。平板42は、駆動機構44によってY軸に平行な軸の周りで回転駆動される。つまり、平板42は、その面(表面および裏面)が投影光学系POの像面に対して傾けることができるように構成されている。この構成により投影光学系POにおけるコマ収差のみを独立して制御することができる。
図7は、本発明の第3実施形態の走査露光装置の概略構成を示す図である。図7において、図1に示す第1実施形態の走査露光装置50”と同一の構成要素には、同一の符号が付されている。図7に示す第3実施形態の走査露光装置50”は、コマ収差量Cmを発生する収差調整ユニットとして、投影光学系POは、露光光を透過する平板42と、平板42を駆動する駆動機構44とを含む。平板42は、その表面とその裏面とが互いに平行な板部材である。平板42は、駆動機構44によってY軸に平行な軸の周りで回転駆動される。つまり、平板42は、その面(表面および裏面)が投影光学系POの像面に対して傾けることができるように構成されている。この構成により投影光学系POにおけるコマ収差のみを独立して制御することができる。
図8を参照しながら制御部30による制御の例を説明する。Step21において、制御部30は、外部装置またはコンソール等から入力される情報(例えば、傾け量θを示すパラメータ、または、デフォーカス量df自体を示すパラメータ)にしたがって走査露光時におけるデフォーカス量dfを決定する。
Step22において、制御部30は、デフォーカス量dfに応じたレジストプロファイルの非対称性Δを(13)式にしたがって算出する。ここで、デフォーカス量dfを非対称性Δに換算するための係数Aは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Δ=A×df ・・・(13)
Step13において、制御部30は、Step12で求めた非対称性歪Δを補正するために必要なコマ収差量Cmを(14)式にしたがって算出する。ここで、レジストプロファイルの非対称性Δをコマ収差量Cmに換算するための係数Bは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Step13において、制御部30は、Step12で求めた非対称性歪Δを補正するために必要なコマ収差量Cmを(14)式にしたがって算出する。ここで、レジストプロファイルの非対称性Δをコマ収差量Cmに換算するための係数Bは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Cm=B×Δ ・・・(14)
Step14において、制御部30は、Step13で求めたコマ収差量Cmのコマ収差を発生させるために必要な平板42の傾け量(像面に平行な面に対する回転量)Tを(15)式にしたがって算出する。ここで、コマ収差量Cmを平板42の傾け量Tに換算するための係数Bsは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
Step14において、制御部30は、Step13で求めたコマ収差量Cmのコマ収差を発生させるために必要な平板42の傾け量(像面に平行な面に対する回転量)Tを(15)式にしたがって算出する。ここで、コマ収差量Cmを平板42の傾け量Tに換算するための係数Bsは、予めシミュレーションまたは実験によって求めてメモリ32に格納される。
T=Bs×Cm ・・・(15)
Step15において、制御部30は、上記の算出された傾け量Tにしたがって平板42が傾けられるように駆動機構44を制御する。
Step15において、制御部30は、上記の算出された傾け量Tにしたがって平板42が傾けられるように駆動機構44を制御する。
以上の制御により、デフォーカス量dfでFLEX法による露光を実施した際において、照明要因で歪むレジストプロファイルを投影光学系POに収差を発生させることによって補正することができる。
また、この補正において、シミュレーションによって換算係数A、Bが決定される場合には、シミュレーションにおける非対称性と現実の非対称性とが合わない場合もありうる。そこで、これを調整するために換算係数A、Bの値をマニュアルで変更したり、オフセットの項を各式に設けたりしてもよい。
[その他]
上記の実施形態では、FLEX法による露光において発生するパターンの非対称性に関して、レジストプロファイルの非対称性に着目して議論してきたが、これ以外の特性が重要な場合には、それらに着目してコマ収差を調整する。例えば、2本のラインパターンの線幅差や、2つ以上の異なる形状のパターンのシフト量などのように、実質的に回折光の位相差の非対称性を原因とする特性に着目して、それらを修正するようにコマ収差を調整してもよい。
上記の実施形態では、FLEX法による露光において発生するパターンの非対称性に関して、レジストプロファイルの非対称性に着目して議論してきたが、これ以外の特性が重要な場合には、それらに着目してコマ収差を調整する。例えば、2本のラインパターンの線幅差や、2つ以上の異なる形状のパターンのシフト量などのように、実質的に回折光の位相差の非対称性を原因とする特性に着目して、それらを修正するようにコマ収差を調整してもよい。
また、2つ以上の特性に着目して、それらが共通的に改善するようにコマ収差を設定してもよい。
[応用例]
次に上記の露光装置を利用したデバイス製造方法を説明する。図18は、半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(レチクル作製)では設計した回路パターンに基づいてレチクル(原版)を作製する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハ(基板ともいう)を製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記のレチクルとウエハを用いて、リソグラフィー技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。
次に上記の露光装置を利用したデバイス製造方法を説明する。図18は、半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(レチクル作製)では設計した回路パターンに基づいてレチクル(原版)を作製する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハ(基板ともいう)を製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記のレチクルとウエハを用いて、リソグラフィー技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。
図19は、上記ウエハプロセスの詳細なフローを示す図である。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(CMP)ではCMP工程によって絶縁膜を平坦化する。ステップ16(レジスト処理)ではウエハに感光剤を塗布する。ステップ17(露光)では上記の露光装置を用いて、回路パターンが形成されたマスクを介し感光剤が塗布されたウエハを露光してレジストに潜像パターンを形成する。ステップ18(現像)ではウエハ上のレジストに形成された潜像パターンを現像してレジストパターンを形成する。ステップ19(エッチング)ではレジストパターンが開口した部分を通してレジストパターンの下にある層又は基板をエッチングする。ステップ20(レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
IL 照明光学系
PO 投影光学系
17 原版(レチクル)
RS 原版ステージ
19 チルトステージ
24 レンズ
25 駆動機構
20 基板
WS 基板ステージ
30 制御部
32 メモリ
42 平板
44 駆動機構
101 非対称性検知センサ
102 測定パターン
PO 投影光学系
17 原版(レチクル)
RS 原版ステージ
19 チルトステージ
24 レンズ
25 駆動機構
20 基板
WS 基板ステージ
30 制御部
32 メモリ
42 平板
44 駆動機構
101 非対称性検知センサ
102 測定パターン
Claims (8)
- 原版を照明する照明光学系および前記原版のパターンを基板に投影する投影光学系を有し、前記原版または前記基板が前記投影光学系の像面に対して傾いた状態で前記原版および前記基板を走査しながら前記基板を露光する露光装置であって、
前記原版または前記基板の傾きに応じた収差を発生させるように前記投影光学系を制御する制御部を備えることを特徴とする露光装置。 - 前記照明光学系は、前記原版の走査方向に沿った光強度分布が台形である光で前記原版を照明する、ことを特徴とする請求項1に記載の露光装置。
- 前記投影光学系に発生させる収差はコマ収差を含む、ことを特徴とする請求項1または2に記載の露光装置。
- 前記制御部は、前記投影光学系に含まれる1または複数のレンズを駆動することによって前記投影光学系に収差を発生させる、ことを特徴とする請求項1ないし3のいずれか1項に記載の露光装置。
- 前記制御部は、前記投影光学系に含まれる平板の傾きを調整することによって前記投影光学系に収差を発生させる、ことを特徴とする請求項1ないし3のいずれか1項に記載の露光装置。
- 前記基板が配置される面に形成される光学像の非対称性を検知するためのセンサを更に備え、前記制御部は、前記センサを使って検知した非対称性に基づいて、前記投影光学系に発生させる収差を制御する、ことを特徴とする請求項1ないし3のいずれか1項に記載の露光装置。
- 前記制御部は、前記原版または前記基板の傾きに起因して前記基板が配置される面に形成される光学像の非対称性が低減されるように、前記投影光学系に収差を発生させる、ことを特徴とする請求項1ないし6のいずれか1項に記載の露光装置。
- デバイス製造方法であって、
請求項1ないし7のいずれか1項に記載された露光装置を用いて基板を露光する工程と、
該基板を現像する工程と、
を含むことを特徴とするデバイス製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007341115A JP2009164296A (ja) | 2007-12-28 | 2007-12-28 | 露光装置およびデバイス製造方法 |
KR1020080127016A KR20090072960A (ko) | 2007-12-28 | 2008-12-15 | 노광장치 및 디바이스 제조 방법 |
US12/338,272 US20090170042A1 (en) | 2007-12-28 | 2008-12-18 | Exposure apparatus and device manufacturing method |
TW097150260A TW200944950A (en) | 2007-12-28 | 2008-12-23 | Exposure apparatus and device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007341115A JP2009164296A (ja) | 2007-12-28 | 2007-12-28 | 露光装置およびデバイス製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009164296A true JP2009164296A (ja) | 2009-07-23 |
Family
ID=40798893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007341115A Withdrawn JP2009164296A (ja) | 2007-12-28 | 2007-12-28 | 露光装置およびデバイス製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090170042A1 (ja) |
JP (1) | JP2009164296A (ja) |
KR (1) | KR20090072960A (ja) |
TW (1) | TW200944950A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010147482A (ja) * | 2008-12-22 | 2010-07-01 | Carl Zeiss Smt Ag | マイクロリソグラフィのための投影露光方法及び投影露光装置 |
JP2017003617A (ja) * | 2015-06-04 | 2017-01-05 | キヤノン株式会社 | 走査露光装置、走査露光方法、及びデバイス製造方法 |
JP2018109744A (ja) * | 2016-11-21 | 2018-07-12 | マーベル ワールド トレード リミテッド | チルトパターニングによりicチップを製造するための方法および装置 |
JP2018521342A (ja) * | 2015-05-18 | 2018-08-02 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 波面マニピュレータを有する投影レンズ、投影露光方法、及び投影露光装置 |
JP2020071274A (ja) * | 2018-10-29 | 2020-05-07 | キヤノン株式会社 | 露光装置、および物品製造方法 |
KR20200055130A (ko) * | 2017-10-19 | 2020-05-20 | 사이머 엘엘씨 | 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540731B (zh) * | 2010-12-08 | 2015-08-19 | 无锡华润上华科技有限公司 | 光刻机曝光方法 |
US9715180B2 (en) | 2013-06-11 | 2017-07-25 | Cymer, Llc | Wafer-based light source parameter control |
KR102355347B1 (ko) * | 2014-11-26 | 2022-01-24 | 에이에스엠엘 네델란즈 비.브이. | 계측 방법, 컴퓨터 제품 및 시스템 |
GB201712639D0 (en) * | 2017-08-07 | 2017-09-20 | Univ Oxford Innovation Ltd | Method for laser machining inside materials |
JP7527760B2 (ja) * | 2019-03-18 | 2024-08-05 | キヤノン株式会社 | レンズ装置および撮像装置 |
KR102700458B1 (ko) * | 2019-04-30 | 2024-08-30 | 에이에스엠엘 네델란즈 비.브이. | 포토리소그래피 이미징을 위한 장치 및 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4869999A (en) * | 1986-08-08 | 1989-09-26 | Hitachi, Ltd. | Method of forming pattern and projection aligner for carrying out the same |
JP3255312B2 (ja) * | 1993-04-28 | 2002-02-12 | 株式会社ニコン | 投影露光装置 |
JP3057998B2 (ja) * | 1994-02-16 | 2000-07-04 | キヤノン株式会社 | 照明装置及びそれを用いた投影露光装置 |
TW591694B (en) * | 2001-02-13 | 2004-06-11 | Nikon Corp | Specification determining method, making method and adjusting method of projection optical system, exposure apparatus and making method thereof, and computer system |
WO2004099874A1 (ja) * | 2003-04-16 | 2004-11-18 | Nikon Corporation | パターン決定方法及びシステム、マスクの製造方法、結像性能調整方法、露光方法及び装置、並びにプログラム及び情報記録媒体 |
-
2007
- 2007-12-28 JP JP2007341115A patent/JP2009164296A/ja not_active Withdrawn
-
2008
- 2008-12-15 KR KR1020080127016A patent/KR20090072960A/ko not_active Application Discontinuation
- 2008-12-18 US US12/338,272 patent/US20090170042A1/en not_active Abandoned
- 2008-12-23 TW TW097150260A patent/TW200944950A/zh unknown
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010147482A (ja) * | 2008-12-22 | 2010-07-01 | Carl Zeiss Smt Ag | マイクロリソグラフィのための投影露光方法及び投影露光装置 |
JP2018521342A (ja) * | 2015-05-18 | 2018-08-02 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 波面マニピュレータを有する投影レンズ、投影露光方法、及び投影露光装置 |
JP2017003617A (ja) * | 2015-06-04 | 2017-01-05 | キヤノン株式会社 | 走査露光装置、走査露光方法、及びデバイス製造方法 |
JP2018109744A (ja) * | 2016-11-21 | 2018-07-12 | マーベル ワールド トレード リミテッド | チルトパターニングによりicチップを製造するための方法および装置 |
JP7069495B2 (ja) | 2016-11-21 | 2022-05-18 | マーベル アジア ピーティーイー、リミテッド | チルトパターニングによりicチップを製造するための方法および装置 |
KR20200055130A (ko) * | 2017-10-19 | 2020-05-20 | 사이머 엘엘씨 | 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법 |
JP2021500603A (ja) * | 2017-10-19 | 2021-01-07 | サイマー リミテッド ライアビリティ カンパニー | 単一リソグラフィ露光パスで複数の空間像を形成すること |
KR102428750B1 (ko) | 2017-10-19 | 2022-08-02 | 사이머 엘엘씨 | 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법 |
JP2022136121A (ja) * | 2017-10-19 | 2022-09-15 | サイマー リミテッド ライアビリティ カンパニー | 単一リソグラフィ露光パスで複数の空間像を形成すること |
US11526082B2 (en) | 2017-10-19 | 2022-12-13 | Cymer, Llc | Forming multiple aerial images in a single lithography exposure pass |
US12001144B2 (en) | 2017-10-19 | 2024-06-04 | Cymer, Llc | Forming multiple aerial images in a single lithography exposure pass |
KR20200049528A (ko) | 2018-10-29 | 2020-05-08 | 캐논 가부시끼가이샤 | 노광장치, 및 물품 제조방법 |
JP2020071274A (ja) * | 2018-10-29 | 2020-05-07 | キヤノン株式会社 | 露光装置、および物品製造方法 |
JP7222659B2 (ja) | 2018-10-29 | 2023-02-15 | キヤノン株式会社 | 露光装置、および物品製造方法 |
KR102568839B1 (ko) | 2018-10-29 | 2023-08-21 | 캐논 가부시끼가이샤 | 노광장치, 및 물품 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20090072960A (ko) | 2009-07-02 |
TW200944950A (en) | 2009-11-01 |
US20090170042A1 (en) | 2009-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009164296A (ja) | 露光装置およびデバイス製造方法 | |
JP5071385B2 (ja) | 可変スリット装置、照明装置、露光装置、露光方法及びデバイス製造方法 | |
JP3631094B2 (ja) | 投影露光装置及びデバイス製造方法 | |
JP4968589B2 (ja) | 基板処理方法、フォトマスクの製造方法及びフォトマスク、並びにデバイス製造方法 | |
JP3413160B2 (ja) | 照明装置及びそれを用いた走査型露光装置 | |
JPH02166717A (ja) | 露光方法 | |
TW201028799A (en) | Projection exposure method and projection exposure apparatus for microlithography | |
US20090190118A1 (en) | Exposure apparatus inspection mask, and method of inspecting exposure apparatus using exposure apparatus inspection mask | |
US20100290020A1 (en) | Optical apparatus, exposure apparatus, exposure method, and method for producing device | |
JP2008153401A (ja) | 露光装置及びデバイス製造方法 | |
TW201411292A (zh) | 用於euv投射微影之照射光學單元與光學系統 | |
CN111103765B (zh) | 曝光装置以及物品制造方法 | |
JP2009218492A (ja) | 波面誤差計測方法、波面誤差調整方法及び半導体装置の製造方法 | |
JP2897345B2 (ja) | 投影露光装置 | |
CN110531587B (zh) | 评估方法、曝光方法和用于制造物品的方法 | |
JP2011108851A (ja) | 露光装置及びデバイスの製造方法 | |
JP2001250760A (ja) | 収差計測方法、該方法を使用するマーク検出方法、及び露光方法 | |
JP2008124308A (ja) | 露光方法及び露光装置、それを用いたデバイス製造方法 | |
JP2009038152A (ja) | 光学系、露光装置及びデバイス製造方法 | |
JP2009164356A (ja) | 走査露光装置およびデバイス製造方法 | |
JP3357928B2 (ja) | 露光方法、デバイス形成方法、及び露光装置 | |
JP3313932B2 (ja) | 投影露光装置 | |
JP2876616B2 (ja) | 投影露光装置 | |
JP4950795B2 (ja) | 露光装置、デバイス製造方法及び補正方法 | |
CN114286966B (zh) | 曝光装置以及物品制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110301 |