Nothing Special   »   [go: up one dir, main page]

JP2009158440A - Thin battery - Google Patents

Thin battery Download PDF

Info

Publication number
JP2009158440A
JP2009158440A JP2007338863A JP2007338863A JP2009158440A JP 2009158440 A JP2009158440 A JP 2009158440A JP 2007338863 A JP2007338863 A JP 2007338863A JP 2007338863 A JP2007338863 A JP 2007338863A JP 2009158440 A JP2009158440 A JP 2009158440A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collector
thin battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007338863A
Other languages
Japanese (ja)
Other versions
JP5526475B2 (en
Inventor
Osamu Yamashita
修 山下
Koji Kajitani
浩司 梶谷
Sadahiko Miura
貞彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007338863A priority Critical patent/JP5526475B2/en
Publication of JP2009158440A publication Critical patent/JP2009158440A/en
Application granted granted Critical
Publication of JP5526475B2 publication Critical patent/JP5526475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin battery which can improve its reliability. <P>SOLUTION: The thin battery includes a positive electrode composition section 10, and a negative electrode composition section 20 arranged opposite to the positive electrode composition section 10. Further, the thin battery has a separator 30 arranged between the positive electrode composition section 10 and the negative electrode composition section 20 and partitioning a positive electrode side and a negative electrode side, and a plurality of firmly-fixing sections 40 firmly fixing a part of the positive electrode side and the negative electrode side and formed by separating each other and having insulation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄型電池に関し、例えば柔軟性を有する薄型電池に関する。   The present invention relates to a thin battery, for example, a flexible thin battery.

昨今、磁気カードに変わる簡易記録媒体として、マイクロコンピュータを内蔵したICカードの需要が拡大してきている。内部電源の無いICカードへの電力の供給は、電磁誘導式が主流である。このため、ICカード内の記録されたデータや新規データの書き込みには、専用端末が必要になるという煩わしさがある。最近、このようなICカードにおいて内部電源を持ち記憶内容を表示したり、セキュリティー機能の入力の機能を設ける試みがある。   Recently, as a simple recording medium replacing a magnetic card, the demand for an IC card with a built-in microcomputer has increased. The mainstream of power supply to an IC card without an internal power supply is an electromagnetic induction type. For this reason, there is an inconvenience that a dedicated terminal is required for writing the recorded data or new data in the IC card. Recently, an attempt has been made to provide an internal power supply in such an IC card to display stored contents and to provide a security function input function.

ICカードなどに組み込む電池は、例えば、図10に示されるように、負極材22が形成された負極集電体21と、正極材12が形成された正極集電体11とが、セパレータ30を介して、対向配置された構成を有する。そして、これらは、電解質31とともに、外装材32によって覆われる。また、例えば特許文献1に開示されたような、柔軟性を持つ電池や、特許文献2に開示されたような、曲げ操作を繰り返しても表面に大きなシワが残りにくい薄型電池などが考案されている。   For example, as shown in FIG. 10, a battery incorporated in an IC card or the like includes a negative electrode current collector 21 in which a negative electrode material 22 is formed and a positive electrode current collector 11 in which a positive electrode material 12 is formed. And having a configuration of being opposed to each other. And these are covered with the exterior material 32 with the electrolyte 31. In addition, for example, a battery having flexibility as disclosed in Patent Document 1 and a thin battery such as disclosed in Patent Document 2 in which large wrinkles do not remain on the surface even after repeated bending operations have been devised. Yes.

ICカードなどに組み込む電池は、例えば、図11に示されるように、正極材12及び負極材22を分割し複数配置する構成も提案されている。例えば、特許文献3、4には、隔壁を格子状に形成し、電池構成要素を複数に分割する構成が開示されている。また、特許文献5では、同一電池構成内の電池要素を分割し複数配置する構成が開示されている。これにより、電極の膨張収縮や衝撃による破壊による特性劣化を緩和することができる。   For example, as shown in FIG. 11, a battery to be incorporated into an IC card or the like has been proposed in which a plurality of positive electrode materials 12 and negative electrode materials 22 are divided and arranged. For example, Patent Documents 3 and 4 disclose a configuration in which partition walls are formed in a lattice shape and a battery component is divided into a plurality of parts. Patent Document 5 discloses a configuration in which a plurality of battery elements in the same battery configuration are divided and arranged. Thereby, characteristic deterioration due to expansion / contraction of the electrode or breakage due to impact can be alleviated.

このようなICカードに組み込む電池には、ICカードのISO規格にある物理特性項目において1000回にもおよぶ曲げサイクル試験、同回数のねじりサイクル試験に耐えられる物理特性が要求されている。しかし、上記のいずれの電池も、物理的特性である、曲げ、ねじりなどに対しては十分でなかった。   A battery incorporated in such an IC card is required to have physical characteristics that can withstand 1000 cycles of bending cycle tests and the same number of torsion cycle tests in the physical characteristics items of the IC card ISO standard. However, none of the batteries described above was sufficient for physical properties such as bending and twisting.

また、薄型電池の利用分野としては、ICカードのほかに、フレキシブルディスプレイや電子ペーパなども提案されており、同様の曲げ、ねじりなど物理特性耐性や温度などによる膨張、収縮に対する信頼性が求められている。
特開平2−213052号公報 特開2006−172766号公報 特開平5−283055号公報 特開平6−215753号公報 特開2001−15153号公報
In addition to IC cards, flexible displays and electronic paper have also been proposed as thin battery usage fields, and similar resistance to physical properties such as bending and twisting and reliability against expansion and contraction due to temperature are required. ing.
Japanese Patent Laid-Open No. 2-213052 JP 2006-172766 A Japanese Patent Application Laid-Open No. H5-283055 JP-A-6-215753 JP 2001-15153 A

薄型電池の曲げ、ねじりサイクル試験としては、ICカードに課される物理特性サイクル試験での耐久性を凌駕する特性が求められる。例えば、薄型電池を弓なりに曲げる操作と元に戻す操作を行うと、凸部表面側の電極層には引っ張り応力がかかり、凹部側には圧縮応力がかかることになる。引っ張り応力を受けた側の電極層の集電体−電極材間にはすべり応力が発生し、他方の圧縮応力を受けた電極層には圧縮応力を逃がすためにシワや、剥離が発生することになる。さらには、曲げ試験を繰り返すことにより集電体11、21と電極材12、22のシワや、剥離、集電体11、12の亀裂が進行すると、セパレータ30を損傷したり、電池の内部抵抗が上昇したりするなど、電池の機能に致命的な影響を及ぼす可能性がある。また、温度変化などによる膨張収縮などの繰り返し変化に対しても同様の課題がある。また薄型電池に生じたシワ、クラックは、ICカードなどの表面に転写される可能性もあり、ICカードの美観が損なわれるという課題もあった。   As a bending and twisting cycle test of a thin battery, characteristics exceeding the durability in a physical characteristic cycle test imposed on an IC card are required. For example, if the thin battery is bent and returned to its original shape, tensile stress is applied to the electrode layer on the convex surface side, and compressive stress is applied to the concave side. Slip stress occurs between the collector and electrode material of the electrode layer on the side subjected to tensile stress, and wrinkles or peeling occurs in the other electrode layer that receives compressive stress to release the compressive stress. become. Furthermore, when the bending test is repeated, if the current collectors 11 and 21 and the electrode materials 12 and 22 are wrinkled, peeled off, and the current collectors 11 and 12 are cracked, the separator 30 may be damaged, or the internal resistance of the battery The battery function may be fatally affected. Further, there is a similar problem with respect to repeated changes such as expansion and contraction due to temperature changes. In addition, wrinkles and cracks generated in the thin battery may be transferred to the surface of the IC card or the like, which causes a problem that the aesthetic appearance of the IC card is impaired.

また、特許文献3、4のように、格子状に隔壁を形成し、電池構成要素を完全に仕切ると、それぞれの部分に電解質を形成しなければならない。このため、作業性が低下するという課題があった。また、それぞれの部分に電解質を形成するため、電解質濃度を均一にすることが困難であり、電池信頼性が低下するという課題があった。   Further, as in Patent Documents 3 and 4, when partition walls are formed in a lattice shape and battery components are completely partitioned, an electrolyte must be formed in each portion. For this reason, there existed a subject that workability | operativity fell. Moreover, since electrolyte is formed in each part, it was difficult to make electrolyte concentration uniform, and there existed a subject that battery reliability fell.

本発明は、上記の問題を鑑みるためになされたものであり、電池信頼性が向上する薄型電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a thin battery with improved battery reliability.

本発明の薄型電池は、正極構成部分と、前記正極構成部分と対向配置された負極構成部分と、前記正極構成部分と前記負極構成部分との間に配置され、正極側と負極側とを分割するセパレータと、前記正極側と前記負極側との一部を固着し、離間して複数形成され、絶縁性を有する固着部とを備えるものである。   The thin battery of the present invention is arranged between the positive electrode component, the negative electrode component disposed opposite to the positive electrode component, the positive electrode component and the negative electrode component, and divides the positive electrode side and the negative electrode side. Separators, and a part of the positive electrode side and the negative electrode side are fixed, a plurality of the spacers are formed apart from each other, and an insulating fixing part is provided.

本発明によれば、電池信頼性が向上する薄型電池を提供することができる。   According to the present invention, a thin battery with improved battery reliability can be provided.

本発明の実施の形態について図面を参照して詳細に説明する。まず、図1を参照して本発明の薄型電池の構成を説明する。図1は、本発明の薄型電池の構成を示す断面図である。   Embodiments of the present invention will be described in detail with reference to the drawings. First, the configuration of the thin battery of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a configuration of a thin battery of the present invention.

薄型電池は、正極構成部分10と負極構成部分20が対向配置された構成を有する。正極構成部分10は、例えば正極集電体と正極材とが積層された構成を有する。同様に、負極構成部分20は、例えば負極集電体と負極材とが積層された構成を有する。この場合、それぞれの電極材(正極材及び負極材)を内側にして対向配置される。そして、正極構成部分10と負極構成部分20との間に、セパレータ30が配置される。また、例えばセパレータ30を固体電解質として、セパレータ30に電解質の役割をもたせてもよい。もちろん、別途、電解液等の電解質を用いてもよい。   The thin battery has a configuration in which the positive electrode component 10 and the negative electrode component 20 are arranged to face each other. The positive electrode component 10 has a configuration in which, for example, a positive electrode current collector and a positive electrode material are laminated. Similarly, the negative electrode component 20 has a configuration in which, for example, a negative electrode current collector and a negative electrode material are laminated. In this case, each electrode material (a positive electrode material and a negative electrode material) is opposed to each other. A separator 30 is disposed between the positive electrode component 10 and the negative electrode component 20. Further, for example, the separator 30 may be a solid electrolyte, and the separator 30 may have an electrolyte role. Of course, an electrolyte such as an electrolytic solution may be used separately.

そして、セパレータ30によって、正極側と負極側とが分割される。図1では、セパレータ30より下側が正極側、セパレータ30より上側が負極側となる。ここで、正極側とは、正極構成部分10に限らず、セパレータ30より下側に配置される全ての構成要素を含むものとする。同様に、負極側とは、負極構成部分20に限らず、セパレータ30より上側に配置される全ての構成要素を含むものとする。例えば、薄型電池が、正極構成部分10、負極構成部分20、及びセパレータ30を覆う外装材をさらに有する場合、正極側は、セパレータ30より下側の外装材を含む。同様に、負極側は、セパレータ30より上側の外装材を含む。   The positive electrode side and the negative electrode side are divided by the separator 30. In FIG. 1, the lower side from the separator 30 is the positive electrode side, and the upper side from the separator 30 is the negative electrode side. Here, the positive electrode side is not limited to the positive electrode component 10, and includes all components disposed below the separator 30. Similarly, the negative electrode side includes not only the negative electrode component 20 but also all components disposed above the separator 30. For example, when the thin battery further includes an exterior material that covers the positive electrode component 10, the negative electrode component 20, and the separator 30, the positive electrode side includes an exterior material below the separator 30. Similarly, the negative electrode side includes an exterior material above the separator 30.

そして、固着部40は、正極側と負極側との一部を固着する。固着部40は、離間して複数形成され、絶縁性を有する。なお、固着部40は、一定の間隔を隔てて複数形成されてもよいし、必要に応じてそれぞれの間隔を変えて複数形成されてもよい。このように、固着部40を離間して複数形成することにより、正極構成部分10、負極構成部分20、及びセパレータ30からなる電池構成物質を区分けして設けなくてもよい。これにより、作業性が向上する。本発明の薄型電池は、以上のように構成される。   And the adhering part 40 adheres a part of positive electrode side and negative electrode side. A plurality of the fixing portions 40 are formed apart from each other and have insulating properties. Note that a plurality of the fixing portions 40 may be formed at a constant interval, or a plurality of fixing portions 40 may be formed at different intervals as necessary. In this way, by forming a plurality of the fixing portions 40 apart from each other, the battery constituent material including the positive electrode component 10, the negative electrode component 20, and the separator 30 may not be provided separately. Thereby, workability | operativity improves. The thin battery of the present invention is configured as described above.

上記のように、一部を固着部40によって固着することにより、物理的特性試験による曲げ、ねじり、または温度変化などによる膨張収縮などの繰り返し変化に対して格別の信頼性向上の効果を実現することができる。また、固着部40を離間して形成することにより、電池構成物質を区分けして設けなくてもよい。このため、電解質の濃度が均一になる。また、電解質として電解液を設けた場合、電解液の注入が容易になる。これにより、作業性、電池信頼性が向上する。   As described above, by fixing a part by the fixing part 40, an effect of particularly improving reliability is realized with respect to repeated changes such as bending and twisting due to a physical characteristic test or expansion and contraction due to a temperature change or the like. be able to. Further, by forming the fixing portions 40 apart from each other, the battery constituent materials may not be provided separately. For this reason, the concentration of the electrolyte becomes uniform. In addition, when an electrolytic solution is provided as an electrolyte, the injection of the electrolytic solution is facilitated. Thereby, workability | operativity and battery reliability improve.

実施の形態1.
次に、具体的な実施の形態について図2〜図4を参照して詳細に説明する。図2は、本実施の形態に係る薄型電池の構成を示す上面図である。図3は、図2のIII−III断面図である。図4は、図2のIV−IV断面図である。ここでは、一般的なリチウム2次電池を例に挙げて説明する。
Embodiment 1.
Next, specific embodiments will be described in detail with reference to FIGS. FIG. 2 is a top view showing the configuration of the thin battery according to the present embodiment. 3 is a cross-sectional view taken along the line III-III in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. Here, a typical lithium secondary battery will be described as an example.

本実施の形態では、正極集電体11の負極構成部分20側の面に、複数の正極材12を形成する。正極集電体11と正極材12が正極構成部分10となる。同様に、負極集電体21の正極構成部分10側の面に、複数の負極材22を形成する。負極集電体21と負極材22が負極構成部分20となる。図2に示されるように、集電体11、21は、後述する気密接着層50内に形成される。また、正極集電体11は、一部に電極タブ13を有する。具体的には、集電体11は一部が突出した矩形状に形成され、突出した部分が電極タブ13となる。そして、正極集電体11に外部から接続できるよう、電極タブ13のみ後述する外装材32の外側まで形成される。同様に、負極集電体21は、一部に電極タブ23を有し、電極タブ23のみ外装材32の外側まで形成される。これにより、放電時、正極集電体11及び負極集電体21から外部に電流を供給することができる。また、充電時、正極集電体11及び負極集電体21に対して外部から電流を供給することができる。正極集電体11としては、10μm〜50μmのアルミ箔を用いることができる。また、負極集電体21としては、数μm〜50μm程度の銅箔を用いることができる。   In the present embodiment, a plurality of positive electrode materials 12 are formed on the surface of the positive electrode current collector 11 on the negative electrode component portion 20 side. The positive electrode current collector 11 and the positive electrode material 12 become the positive electrode component 10. Similarly, a plurality of negative electrode materials 22 are formed on the surface of the negative electrode current collector 21 on the positive electrode component 10 side. The negative electrode current collector 21 and the negative electrode material 22 become the negative electrode component 20. As shown in FIG. 2, the current collectors 11 and 21 are formed in an airtight adhesive layer 50 described later. Further, the positive electrode current collector 11 has an electrode tab 13 in part. Specifically, the current collector 11 is formed in a rectangular shape with a part protruding, and the protruding part becomes the electrode tab 13. And only the electrode tab 13 is formed to the outside of the exterior material 32 described later so that it can be connected to the positive electrode current collector 11 from the outside. Similarly, the negative electrode current collector 21 has an electrode tab 23 in a part, and only the electrode tab 23 is formed to the outside of the exterior material 32. As a result, current can be supplied from the positive electrode current collector 11 and the negative electrode current collector 21 to the outside during discharge. In addition, current can be supplied from the outside to the positive electrode current collector 11 and the negative electrode current collector 21 during charging. As the positive electrode current collector 11, an aluminum foil having a thickness of 10 μm to 50 μm can be used. Moreover, as the negative electrode current collector 21, a copper foil of about several μm to 50 μm can be used.

図2に示されるように、正極材12と負極材22は、それぞれが矩形状であり、規則的にマトリクス状に形成される。なお、正極材12と負極材22は、それぞれが対向配置される。正極材12としてはリチウム酸コバルトなど、負極材22としてはグラファイトなどが一般的に用いられる。正極材12と負極材22との間には、セパレータ30が配置される。セパレータ30はそれぞれの正極材12及び負極材22の間に分割して複数配置されるのではなく、1枚のセパレータ30が複数の正極材12と複数の負極材22との間に配置される。セパレータ30としては、ポリエチレンやポリプロピレン、もしくは双方を重ね合わせた不織布からなるものを採用することができる。また、セパレータ30の厚さは、数μm〜50μm程度が望ましい。   As shown in FIG. 2, each of the positive electrode material 12 and the negative electrode material 22 has a rectangular shape and is regularly formed in a matrix shape. The positive electrode material 12 and the negative electrode material 22 are arranged to face each other. As the positive electrode material 12, cobalt lithium or the like is generally used, and as the negative electrode material 22, graphite or the like is generally used. A separator 30 is disposed between the positive electrode material 12 and the negative electrode material 22. A plurality of separators 30 are not disposed between the positive electrode material 12 and the negative electrode material 22, but a single separator 30 is disposed between the plurality of positive electrode materials 12 and the plurality of negative electrode materials 22. . The separator 30 may be made of polyethylene, polypropylene, or a nonwoven fabric in which both are stacked. Further, the thickness of the separator 30 is desirably about several μm to 50 μm.

また正極集電体11と負極集電体21との間の空間には、電解液などの電解質31が形成される。電解液としては、エチレンカーボネイト(EC)、プロピレンカーボネイト(PC)などの有機溶媒に、リチウム塩などを溶解させたものを用いることができる。リチウム塩の種類としては、例えばLiBF、LiPFなどが良く用いられる。 An electrolyte 31 such as an electrolytic solution is formed in the space between the positive electrode current collector 11 and the negative electrode current collector 21. As an electrolytic solution, a lithium salt or the like dissolved in an organic solvent such as ethylene carbonate (EC) or propylene carbonate (PC) can be used. For example, LiBF 4 and LiPF 6 are often used as the type of lithium salt.

正極集電体11と負極集電体21の間において、正極材12同士の間、及び負極材22同士の間には、固着部40としての支持体41が形成される。すなわち、図3に示されるように、正極集電体11と負極集電体21との間で、正極材12及び支持体41が横方向に交互に配置される。同様に、正極集電体11と負極集電体21との間で、負極材22及び支持体41が横方向に交互に配置される。また、図2に示されるように、支持体41の上面は、十字型の形状を有する。また、支持体41は、正極集電体11と負極集電体21との間に、均等かつ限定的に形成される。図2に示されるように、支持体41は、それぞれの正極材12又は負極材22を取り囲むように形成しない。すなわち、支持体41は、格子状に形成せず、一定の間隔を隔てて複数形成される。換言すると、隣接する正極材12は、支持体41によって完全に仕切られておらず、矩形状の正極材12の4辺中央近傍において、隣接する正極材12と連通している。負極材22についても同様である。   Between the positive electrode current collector 11 and the negative electrode current collector 21, a support body 41 as a fixing portion 40 is formed between the positive electrode materials 12 and between the negative electrode materials 22. That is, as shown in FIG. 3, the positive electrode material 12 and the support body 41 are alternately arranged in the lateral direction between the positive electrode current collector 11 and the negative electrode current collector 21. Similarly, the negative electrode material 22 and the support body 41 are alternately arranged in the horizontal direction between the positive electrode current collector 11 and the negative electrode current collector 21. As shown in FIG. 2, the upper surface of the support body 41 has a cross shape. Further, the support body 41 is formed uniformly and in a limited manner between the positive electrode current collector 11 and the negative electrode current collector 21. As shown in FIG. 2, the support body 41 is not formed so as to surround each positive electrode material 12 or negative electrode material 22. That is, the support body 41 is not formed in a lattice shape, but a plurality of support bodies 41 are formed at regular intervals. In other words, the adjacent positive electrode material 12 is not completely partitioned by the support body 41 and communicates with the adjacent positive electrode material 12 in the vicinity of the center of the four sides of the rectangular positive electrode material 12. The same applies to the negative electrode material 22.

本実施の形態では、セパレータ30の両面に支持体41がそれぞれ形成される。なお、上面視では、セパレータ30の両面に形成された支持体41は、重なるように形成される。すなわち、支持体41は、セパレータ30によって分断されたような形状となる。また、支持体41は、セパレータ30に形成されるため、支持体41の位置はセパレータ30によって制御される。支持体41は、所定の厚みを持ち、正極集電体11と負極集電体21とが一定の間隔になるように制御する。本実施の形態では、支持体41は、電極材12、22の厚みと略同じ厚みを有する。すなわち、これらに接する集電体11、21は平面状の形状を有する。   In the present embodiment, support bodies 41 are formed on both surfaces of separator 30, respectively. In addition, in the top view, the support bodies 41 formed on both surfaces of the separator 30 are formed so as to overlap each other. That is, the support 41 has a shape that is divided by the separator 30. Further, since the support body 41 is formed on the separator 30, the position of the support body 41 is controlled by the separator 30. The support 41 has a predetermined thickness, and is controlled so that the positive electrode current collector 11 and the negative electrode current collector 21 are at a constant interval. In the present embodiment, the support body 41 has substantially the same thickness as the electrode materials 12 and 22. That is, the current collectors 11 and 21 in contact with these have a planar shape.

このように、支持体41は、セパレータ30を挟んで、両集電体11、21間の一部を物理的に繋ぐ。具体的には、正極集電体11とセパレータ30とを正極側の支持体41で支持する。同様に、負極集電体21とセパレータ30とを負極側の支持体41で支持する。このように、支持体41は、両集電体11、21間の一部を物理的に繋ぐため、絶縁体であることが好ましい。なお、本実施の形態では、絶縁性を有するセパレータ30を介して、両集電体11、21間を接続するが、セパレータ30として用いられる不織布等は、厚みが薄く、小さな孔を多数有する。このため、セパレータ30は絶縁体であることが好ましい。また、両集電体11、21は前述のように金属が一般的に用いられるため、支持体41は、金属との密着性に優れた樹脂などであることが望ましい。金属との密着性が良い点から、支持体41としては例えばアイオノマー樹脂などが使用されている。また、支持体41は電解質31とも接触するため、例えば電解質31に用いられる有機溶媒に侵されにくいことも重要である。   Thus, the support body 41 physically connects a part between the current collectors 11 and 21 with the separator 30 interposed therebetween. Specifically, the positive electrode current collector 11 and the separator 30 are supported by a support 41 on the positive electrode side. Similarly, the negative electrode current collector 21 and the separator 30 are supported by a support 41 on the negative electrode side. Thus, the support 41 is preferably an insulator in order to physically connect a part between the current collectors 11 and 21. In the present embodiment, the current collectors 11 and 21 are connected to each other through the insulating separator 30. However, the nonwoven fabric or the like used as the separator 30 is thin and has a large number of small holes. For this reason, it is preferable that the separator 30 is an insulator. Further, since the current collectors 11 and 21 are generally made of metal as described above, the support 41 is preferably made of a resin having excellent adhesion to the metal. For example, an ionomer resin or the like is used as the support 41 from the viewpoint of good adhesion with metal. In addition, since the support 41 is also in contact with the electrolyte 31, it is also important that the support 41 is not easily affected by an organic solvent used for the electrolyte 31, for example.

これら電池構成物質及び支持体41は、フレキシブルなフィルムからなる外装材32に覆われて密閉される。また、外装材32は、これらを内側に加圧するように覆う。すなわち、外装材32は、正極集電体11と負極集電体21に密着する。このため、外装材32の上面は、正極集電体11に沿った形状となり、下面は、負極集電体21に沿った形状となる。このように、正極集電体11及び負極集電体21に密着した状態でこれらを覆うことにより、正負極間が所定の圧力で加圧保持され、機械的強度が強固となる。外装材32としては、樹脂−金属−樹脂のラミネート材を使用している。このラミネート材は、一般的に金属にアルミニウムを使用し、樹脂部にはPETまたはポリエチレンなどで表層を絶縁してあるものが多い。また、外装材32は、電池構成物質等を密閉する際の集電体11、21側の面(外装材32の内面)に樹脂等からなる接着層を有する。接着層は、外装材32の内面全面に形成してもよいし、必要な箇所のみに形成されていてもよい。そして、この接着層によって、電池構成物質及び支持体41を囲むように枠状に外装材32を接着し、気密接着層50が形成される。本実施の形態にかかる薄型電池は、以上の様に構成される。   The battery constituent material and the support 41 are covered and sealed with an exterior material 32 made of a flexible film. Moreover, the exterior material 32 covers so that these may be pressurized inside. That is, the exterior material 32 is in close contact with the positive electrode current collector 11 and the negative electrode current collector 21. For this reason, the upper surface of the exterior member 32 has a shape along the positive electrode current collector 11, and the lower surface has a shape along the negative electrode current collector 21. Thus, by covering these with the positive electrode current collector 11 and the negative electrode current collector 21 in close contact with each other, the positive and negative electrodes are pressed and held at a predetermined pressure, and the mechanical strength is strengthened. As the exterior member 32, a resin-metal-resin laminate material is used. In many cases, this laminate material uses aluminum as a metal, and the resin layer has a surface layer insulated with PET or polyethylene. Further, the exterior member 32 has an adhesive layer made of a resin or the like on the current collector 11, 21 side surface (inner surface of the exterior material 32) when sealing the battery constituent material or the like. The adhesive layer may be formed on the entire inner surface of the exterior material 32, or may be formed only at a necessary location. Then, with this adhesive layer, the outer packaging material 32 is adhered in a frame shape so as to surround the battery constituent material and the support body 41, thereby forming an airtight adhesive layer 50. The thin battery according to the present embodiment is configured as described above.

本実施の形態にかかる薄型電池は、全体としてシート状に形成される。しかしながら、支持体41が形成されるため、物理的特性である、曲げ、ねじりなどに対して十分な機械的強度を有する。すなわち、集電体11、21と電極材12、22のシワや、剥離、集電体11、12の亀裂を抑制することが可能である。このため、セパレータ30の損傷、電池の内部抵抗の上昇など、電池の機能に対する致命的な影響を抑制することができる。また、温度変化などによる膨張収縮などの繰り返し変化に対しても同様に、電池の機能に対する致命的な影響を抑制することができる。このように、本実施の形態では、薄型電池の特性を改善することができる。また、本実施の形態のように、外装材32によって電池構成物質を密閉している。具体的には、外装材32によって正負極間が所定の圧力で加圧保持され、外装材32と集電体11、12とが密着する。これにより、さらに電池の機械的強度が向上する。また、本実施の形態では、電極材12、22を分割して複数形成している。これにより、外部応力を分散できる。   The thin battery according to the present embodiment is formed in a sheet shape as a whole. However, since the support body 41 is formed, it has sufficient mechanical strength against bending, twisting, and the like, which are physical characteristics. That is, it is possible to suppress wrinkles between the current collectors 11 and 21 and the electrode materials 12 and 22, peeling, and cracks in the current collectors 11 and 12. For this reason, the fatal influence with respect to the function of a battery, such as damage to the separator 30 and a raise of internal resistance of a battery, can be suppressed. Similarly, a fatal influence on the function of the battery can be suppressed even in the case of repeated changes such as expansion and contraction due to temperature changes. Thus, in this embodiment, the characteristics of the thin battery can be improved. Further, as in the present embodiment, the battery constituent material is hermetically sealed by the exterior material 32. Specifically, the exterior material 32 is pressed and held between the positive and negative electrodes at a predetermined pressure, and the exterior material 32 and the current collectors 11 and 12 are in close contact with each other. This further improves the mechanical strength of the battery. Moreover, in this Embodiment, the electrode materials 12 and 22 are divided | segmented and formed in multiple numbers. Thereby, an external stress can be disperse | distributed.

次に、本実施の形態にかかる薄型電池の製造方法を説明する。まず、正極集電体11の一方の面上に、例えばスクリーン印刷などにより正極材12を所定の厚さ寸法、配置で塗布して正極構成部分10を形成する。つぎに、負極集電体21の一方の面上に、例えばスクリーン印刷などにより負極材22を所定厚さ寸法、配置で塗布して負極構成部分20を形成する。   Next, the manufacturing method of the thin battery concerning this Embodiment is demonstrated. First, the positive electrode component 10 is formed on one surface of the positive electrode current collector 11 by applying the positive electrode material 12 with a predetermined thickness and arrangement, for example, by screen printing or the like. Next, the negative electrode component 20 is formed on one surface of the negative electrode current collector 21 by applying the negative electrode material 22 with a predetermined thickness and arrangement, for example, by screen printing or the like.

次に、セパレータ30の両面に、ペースト状の支持体41を所定の寸法で印刷する。また、セパレータ30のそれぞれの面に形成された支持体41は、上面視にて重なるように印刷される。そして、正極集電体11、正極材12、セパレータ30、負極材22、負極集電体21などの電池構成物質を順番に重ねる。このとき、正極材12の対向部に負極材22が、また正極材12と負極材22の無い部分に支持体41がくるように正確に形成されることが重要である。そして、正確に位置決めされた支持体41部分を熱圧着または超音波融着にて正極集電体11と負極集電体21間を接合し電池構成物質を得る。   Next, the paste-like support body 41 is printed on both surfaces of the separator 30 with a predetermined dimension. Moreover, the support body 41 formed on each surface of the separator 30 is printed so as to overlap in a top view. And battery constituent materials, such as the positive electrode collector 11, the positive electrode material 12, the separator 30, the negative electrode material 22, and the negative electrode collector 21, are piled up in order. At this time, it is important that the negative electrode material 22 is accurately formed at the facing portion of the positive electrode material 12 and the support body 41 is formed at a portion where the positive electrode material 12 and the negative electrode material 22 are not present. Then, the positively positioned current collector 11 and the negative electrode current collector 21 are joined to each other with the accurately positioned support 41 portion by thermocompression bonding or ultrasonic fusion to obtain a battery constituent material.

次に外装材32を袋状、またはケース状に形成したものの中に電池構成物質を挿入する。なお、電極タブ13、23のみ、外装材32からはみ出す。そして、外装材32内に、電解質31としての電解液を注入する。上記のように、隣接する電極材12、22は、支持体41によって完全に仕切られておらず、電極材12、22同士は連通している。このため、電解液を別個、注入する必要がなく、容易に注入できる。そして、作業効率が向上する。また、電解液の濃度を均一にすることができる。また、前もって電極材12、22に電解液を適度に含浸しておく、又は形成時に練りこんでおくこともできる。   Next, the battery constituent material is inserted into the outer packaging material 32 formed into a bag shape or a case shape. Only the electrode tabs 13 and 23 protrude from the exterior material 32. Then, an electrolyte solution as the electrolyte 31 is injected into the exterior member 32. As described above, the adjacent electrode members 12 and 22 are not completely partitioned by the support body 41, and the electrode members 12 and 22 communicate with each other. For this reason, it is not necessary to inject | pour electrolyte solution separately, and can inject easily. And work efficiency improves. Further, the concentration of the electrolytic solution can be made uniform. In addition, the electrode materials 12 and 22 can be appropriately impregnated with an electrolytic solution in advance, or can be kneaded during formation.

外装材32は、例えば金属ラミネートシートからなり、内面に接着層を有する。最後に、真空雰囲気中又は減圧雰囲気中で、外装材32の電池構成物質の周囲の接着層を、溶融及び固化させて気密接着層50を形成する。これにより、電池構成物質の封止が完了し、薄型電池が得られる。なお、真空雰囲気中又は減圧雰囲気中でなくても、例えば正極集電体11と負極集電体21の間から空気を吸引しながら封止を行ってもよい。以上の工程により、本実施の形態にかかる薄型電池が製造される。   The exterior material 32 is made of, for example, a metal laminate sheet, and has an adhesive layer on the inner surface. Finally, the adhesive layer around the battery constituent material of the exterior member 32 is melted and solidified in a vacuum atmosphere or a reduced pressure atmosphere to form the airtight adhesive layer 50. Thereby, sealing of a battery constituent material is completed and a thin battery is obtained. Note that the sealing may be performed while sucking air from between the positive electrode current collector 11 and the negative electrode current collector 21, for example, without being in a vacuum atmosphere or a reduced pressure atmosphere. Through the above steps, the thin battery according to the present embodiment is manufactured.

上記のように、製造された薄型電池は、正負極間の機械的強度が強固となる。従って、電気的信頼性および曲げ、ねじりなどの物理特性が格段に向上する。しかも、本実施の形態では、外装材32を加圧融着する際に、例えば減圧チャンバー内で封止する。このため、薄型電池内部が減圧状態となり、通常使用時では大気圧にてさらに両電極材が加圧される。従って、薄型電池の電気的信頼性がさらに向上するという効果が得られる。   As described above, the manufactured thin battery has a strong mechanical strength between the positive and negative electrodes. Therefore, electrical reliability and physical characteristics such as bending and twisting are significantly improved. Moreover, in the present embodiment, when the exterior material 32 is pressure-fused, it is sealed, for example, in a decompression chamber. Therefore, the inside of the thin battery is in a reduced pressure state, and both electrode materials are further pressurized at atmospheric pressure during normal use. Therefore, an effect of further improving the electrical reliability of the thin battery can be obtained.

なお、本実施の形態では、電極材12、22の形成に、スクリーン印刷という工程を採用している。このように、ペースト状の電極材12、22を印刷する代わりに、予めフィルム状に形成された電極材12、22を用いることもできる。フィルム状の電極材12、22の場合、所定の寸法または形状に打ち抜いてセパレータ30の上に配置することができ位置決めが容易となる。また、印刷用のマスクも不要になるという利点も得られる。   In the present embodiment, a process called screen printing is adopted for forming the electrode materials 12 and 22. Thus, instead of printing the paste-like electrode materials 12 and 22, the electrode materials 12 and 22 previously formed in a film shape can be used. In the case of the film-like electrode materials 12 and 22, they can be punched into a predetermined size or shape and placed on the separator 30 to facilitate positioning. In addition, there is an advantage that a printing mask is not required.

なお、本実施の形態は、リチウムイオン2次電池を例にとり説明を行っているが、その他の薄型電池であるリチウム一次電池、全固体二次電池、マンガン電池などに応用できることは言うまでもない。また、本実施の形態にかかる薄型電池は、カード型端末、フレキシブルディスプレイや電子ペーパなどに使用することができる。以下に示す実施の形態でも、様々な電池に応用することができ、様々な分野に利用することができる。   Although this embodiment has been described by taking a lithium ion secondary battery as an example, it goes without saying that the present embodiment can be applied to other thin batteries such as a lithium primary battery, an all-solid secondary battery, and a manganese battery. Further, the thin battery according to this embodiment can be used for a card-type terminal, a flexible display, electronic paper, and the like. The following embodiments can also be applied to various batteries and can be used in various fields.

実施の形態2.
本実施の形態は、実施の形態1と基本的な構成は同一であるので、実施の形態1と異なる部分のみ説明する。まず、本実施の形態にかかる薄型電池の構成を図5を参照して説明する。図5は、薄型電池の構成を示す断面図である。なお、図5は、実施の形態1の図3に相当し、図2、4は、本実施の形態と共通する。
Embodiment 2. FIG.
Since the basic configuration of the present embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described. First, the configuration of the thin battery according to this embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a configuration of a thin battery. FIG. 5 corresponds to FIG. 3 of the first embodiment, and FIGS. 2 and 4 are common to the present embodiment.

本実施の形態では、セパレータ30が複数の孔を有する。この孔は、実施の形態1において支持体41とセパレータ30とが接触する部分にある。すなわち、セパレータ30の孔は、支持体41の上面と略同一の形状を有する。そして、支持体41は、セパレータ30の孔を通り、正極集電体11と負極集電体21との一部を直接固着して支持する。すなわち、セパレータ30によって支持体41は分断されず、実施の形態1の正極側の支持体41及び負極側の支持体41が一体的に形成される。なお、支持体41は、実施の形態1と厚みが異なるが、上面形状や形成箇所等は、実施の形態1と同様である。   In the present embodiment, the separator 30 has a plurality of holes. This hole is in a portion where the support 41 and the separator 30 are in contact with each other in the first embodiment. That is, the holes of the separator 30 have substantially the same shape as the upper surface of the support body 41. The support 41 passes through the holes of the separator 30 and directly supports and supports a part of the positive electrode current collector 11 and the negative electrode current collector 21. That is, the support body 41 is not divided by the separator 30, and the positive electrode side support body 41 and the negative electrode side support body 41 of the first embodiment are integrally formed. The support 41 has a thickness different from that of the first embodiment, but the upper surface shape, the formation location, and the like are the same as those of the first embodiment.

支持体41は、電極材12、22、及びセパレータ30を重ねた際の厚みより薄くなっている。すなわち、これらに接する集電体11、21は、支持体41と接する部分で内側に窪んだ形状となる。このため、正極集電体11と負極集電体21との間の高さは、支持体41と接する部分ではその周辺部より高さが低くなる。また、実施の形態1と同様、外装材32は、集電体11、21に沿った形状となるため、薄型電池全体としても、支持体41部分ではその周辺部より高さが低くなる。すなわち、薄型電池は、支持体41部分で、その周辺部より厚みが薄くなる。これにより、正極材12及び負極材22は、加圧保持される。このような支持体41の存在により、正負極間の機械的強度がさらに強固となる。   The support 41 is thinner than the thickness when the electrode members 12 and 22 and the separator 30 are stacked. That is, the current collectors 11 and 21 that are in contact with each other have a shape that is recessed inward at the portion that contacts the support 41. For this reason, the height between the positive electrode current collector 11 and the negative electrode current collector 21 is lower in the portion in contact with the support 41 than in the peripheral portion thereof. Further, as in the first embodiment, the outer packaging material 32 has a shape along the current collectors 11 and 21, and therefore, the thickness of the thin battery as a whole is lower in the support 41 portion than in its peripheral portion. That is, the thin battery is thinner at the support 41 portion than at the periphery thereof. Thereby, the positive electrode material 12 and the negative electrode material 22 are held under pressure. Due to the presence of the support 41, the mechanical strength between the positive and negative electrodes is further strengthened.

また、実施の形態1と同様、隣接する正極材12は、支持体41によって完全に仕切られていない。このため、支持体41もセパレータ30によって完全に仕切らない。従って、支持体41に対応する箇所に孔が開いていれば、セパレータ30を分割する必要がない。   Further, as in the first embodiment, the adjacent positive electrode members 12 are not completely partitioned by the support body 41. For this reason, the support body 41 is not completely partitioned by the separator 30. Therefore, it is not necessary to divide the separator 30 as long as a hole is opened at a location corresponding to the support body 41.

本実施の形態でも、実施の形態1と同様の効果を奏する。さらに、正極集電体11と負極集電体21の一部を直接、支持体41で固着するので、電池構成物質が加圧保持されやすいという相乗的な効果を奏する。すなわち、薄型電池の機械的強度がさらに強固なものとなる。従って、電気的信頼性および曲げ、ねじりなどの物理特性がさらに向上する。   This embodiment also has the same effect as that of the first embodiment. Furthermore, since the positive electrode current collector 11 and a part of the negative electrode current collector 21 are directly fixed by the support body 41, there is a synergistic effect that the battery constituent material is easily held under pressure. That is, the mechanical strength of the thin battery is further increased. Therefore, electrical reliability and physical characteristics such as bending and twisting are further improved.

次に、本実施の形態にかかる薄型電池の製造方法を説明する。まず、実施の形態1と同様に、正極集電体11に正極材12、負極集電体21に負極材22を形成する。これにより、正極構成部分10と負極構成部分20が形成される。そして、正極集電体11又は負極集電体21に、例えば印刷などにより、支持体41を形成するのが望ましい。   Next, the manufacturing method of the thin battery concerning this Embodiment is demonstrated. First, as in the first embodiment, the positive electrode material 12 is formed on the positive electrode current collector 11, and the negative electrode material 22 is formed on the negative electrode current collector 21. Thereby, the positive electrode component 10 and the negative electrode component 20 are formed. And it is desirable to form the support body 41 in the positive electrode collector 11 or the negative electrode collector 21 by printing etc., for example.

また、セパレータ30には、実施の形態1において支持体41とセパレータ30とが接触する部分を打ち抜いて孔をあける。セパレータ30の孔は、支持体41の形状に応じて形成される。これにより、セパレータ30を介して、正極構成部分10と負極構成部分20とを重ねた際に、支持体41とセパレータ30とが干渉することがない。そして、正極集電体11、正極材12、セパレータ30、負極材22、負極集電体21などの電池構成物質を順番に重ねる。これにより、正極集電体11と負極集電体21との一部が、支持体41によって直接固着して支持される。また、これらを重ねた後、支持体41部分を加圧圧縮し接合する。これにより、支持体41部分の集電体11、21が内側に窪んだ形状となる。次に外装材32を袋状、またはケース状に形成したものの中に電池構成物質を挿入し、電解質31としての電解液を注入する。最後に、真空雰囲気中又は減圧雰囲気中で、外装材32の電池構成物質の周囲の接着層を、溶融及び固化させて気密接着層50を形成する。なお、この際に、支持体部分も同時に加圧融着してもよい。これにより、電池構成物質の封止が完了し、薄型電池が得られる。   Further, the separator 30 is punched by punching out a portion where the support 41 and the separator 30 are in contact with each other in the first embodiment. The holes of the separator 30 are formed according to the shape of the support body 41. Thereby, when the positive electrode component 10 and the negative electrode component 20 are stacked via the separator 30, the support 41 and the separator 30 do not interfere with each other. And battery constituent materials, such as the positive electrode collector 11, the positive electrode material 12, the separator 30, the negative electrode material 22, and the negative electrode collector 21, are piled up in order. Thereby, a part of the positive electrode current collector 11 and the negative electrode current collector 21 is directly fixed and supported by the support body 41. Moreover, after these are piled up, the support body 41 part is pressure-compressed and joined. As a result, the current collectors 11 and 21 in the support 41 portion are recessed inward. Next, the battery constituent material is inserted into the outer material 32 formed in a bag shape or a case shape, and an electrolyte solution as the electrolyte 31 is injected. Finally, the adhesive layer around the battery constituent material of the exterior member 32 is melted and solidified in a vacuum atmosphere or a reduced pressure atmosphere to form the airtight adhesive layer 50. At this time, the support portion may also be pressure-fused simultaneously. Thereby, sealing of a battery constituent material is completed and a thin battery is obtained.

本実施の形態のように、セパレータ30の一部に孔を開けてもよいが、孔を開けなくてもセパレータ30の微細な空孔を利用することも可能である。これにより、薄型電池の製造方法を簡略化することができる。なお、ここでは、外装材32に電池構成物質を挿入する前に、支持体41部分を加圧圧縮しているがこれに限らない。例えば、集電体11、21と支持体41とを接合して外装材32に挿入した後、外装材32の電池構成物質の周囲の接着層を溶融及び固化させる際に、支持体41部分を加圧圧縮してもよい。   As in the present embodiment, a hole may be formed in a part of the separator 30, but it is also possible to use fine pores of the separator 30 without forming a hole. Thereby, the manufacturing method of a thin battery can be simplified. Here, before the battery constituent material is inserted into the exterior member 32, the support 41 portion is compressed and compressed, but the present invention is not limited to this. For example, after the current collectors 11 and 21 and the support body 41 are joined and inserted into the outer packaging material 32, the support 41 portion is formed when the adhesive layer around the battery constituent material of the outer packaging material 32 is melted and solidified. You may pressurize and compress.

実施の形態3.
本実施の形態は、実施の形態1、2と基本的な構成は同一であるので、実施の形態1、2と異なる部分のみ説明する。まず、本実施の形態にかかる薄型電池の構成を図6〜図8を参照して説明する。図6は、薄型電池の構成を示す上面図である。図7は、図6のVII−VII断面図である。図8は、図6のVIII−VIII断面図である。
Embodiment 3 FIG.
Since the basic configuration of this embodiment is the same as that of Embodiments 1 and 2, only the differences from Embodiments 1 and 2 will be described. First, the configuration of the thin battery according to the present embodiment will be described with reference to FIGS. FIG. 6 is a top view showing the configuration of the thin battery. 7 is a cross-sectional view taken along the line VII-VII in FIG. 8 is a sectional view taken along line VIII-VIII in FIG.

図6に示されるように、集電体11、21は複数の孔を有する。電極材12、22は、分割して複数形成されず、一体的に形成される。これにより、電池容量を大きくすることができる。電極材12、22の外形は、矩形状となっている。また、集電体11、21と同様、電極材12、22も複数の孔を有する。また、セパレータ30も複数の孔を有する。上面視にて、集電体11、21、電極材12、22、及びセパレータ30の孔は、重なるように形成される。また、これらの孔は、略同様の形状を有する。本実施の形態では、これらの孔は、円形の形状を有する。すなわち、電池構成物質を貫通する貫通孔51が複数形成される。貫通孔51は、支持体部分に対応して形成される。すなわち、貫通孔51は、離間して複数形成される。貫通孔51は、マトリクス状に配列される。そして、支持体41は、貫通孔51を通り、外装材32同士を支持する。   As shown in FIG. 6, the current collectors 11 and 21 have a plurality of holes. The electrode materials 12 and 22 are integrally formed without being divided into a plurality. Thereby, battery capacity can be enlarged. The outer shapes of the electrode materials 12 and 22 are rectangular. Similarly to the current collectors 11 and 21, the electrode materials 12 and 22 also have a plurality of holes. The separator 30 also has a plurality of holes. When viewed from above, the current collectors 11 and 21, the electrode materials 12 and 22, and the holes of the separator 30 are formed to overlap each other. Moreover, these holes have substantially the same shape. In the present embodiment, these holes have a circular shape. That is, a plurality of through holes 51 penetrating the battery constituent material are formed. The through hole 51 is formed corresponding to the support portion. That is, a plurality of through holes 51 are formed apart from each other. The through holes 51 are arranged in a matrix. And the support body 41 passes the through-hole 51, and supports the exterior materials 32 mutually.

また、支持体41の上面は、上記の孔と同様、円形の形状を有する。すなわち、支持体41は、円柱状となっている。支持体41の厚さは、実施の形態2と同程度であり、電極材12、22、及びセパレータ30を重ねた際の厚みより薄くなっている。すなわち、正極側及び負極側でこれらと接する外装材32は、支持体41と接する部分で内側に窪んだ形状となる。このため、正極側の外装材32と負極側の外装材32との間の高さは、支持体41と接する部分ではその周辺部より高さが低くなる。すなわち、薄型電池は、支持体41部分で、その周辺部より厚みが薄くなる。これにより、電池構成物質は加圧保持される。すなわち、支持体41の存在により正負極間の機械的強度がさらに強固となる。このように、電池構成物質が加圧保持されれば、実施の形態1、2のように正極集電体11と負極集電体21を固着してもよいし、本実施の形態のように外装材32同士を固着してもよい。   Moreover, the upper surface of the support body 41 has a circular shape like the above-mentioned holes. That is, the support body 41 has a cylindrical shape. The thickness of the support 41 is approximately the same as that of the second embodiment, and is thinner than the thickness when the electrode materials 12 and 22 and the separator 30 are stacked. That is, the exterior material 32 in contact with these on the positive electrode side and the negative electrode side has a shape recessed inward at the portion in contact with the support body 41. For this reason, the height between the positive electrode-side exterior material 32 and the negative electrode-side exterior material 32 is lower in the portion in contact with the support 41 than in the peripheral portion. That is, the thin battery is thinner at the support 41 portion than at the periphery thereof. Thereby, the battery constituent material is held under pressure. That is, the presence of the support 41 further increases the mechanical strength between the positive and negative electrodes. In this way, if the battery constituent material is held under pressure, the positive electrode current collector 11 and the negative electrode current collector 21 may be fixed as in the first and second embodiments, or as in the present embodiment. The exterior members 32 may be fixed together.

本実施の形態でも、上記の実施の形態と同様の効果を奏する。また、本実施の形態では、外装材32同士を支持体41にて固着しているので、支持体41に使用する樹脂の選択の幅が広がる。さらに、例えばアイオノマーのような比較的高価な樹脂を使用する必要が無いのでコスト削減に結びつくという相乗的(格別)な効果を奏する。   This embodiment also has the same effect as the above embodiment. Moreover, in this Embodiment, since the exterior materials 32 are mutually fixed by the support body 41, the breadth of selection of resin used for the support body 41 spreads. Further, since it is not necessary to use a relatively expensive resin such as an ionomer, there is a synergistic (extraordinary) effect that leads to cost reduction.

次に本実施の形態にかかる薄型電池の製造方法を説明する。正極集電体11と負極集電体21の一部の支持体41に対応する部分を予め打ち抜いて孔をあける。また、正極材12及び負極材22も、支持体41に対応する部分を予め打ち抜いて孔をあける。そして、正極集電体11上に正極材12、負極集電体21上に負極材22を固定する。このように、それぞれに孔をあけてから、集電体11、21上に電極材12、22を固定してもよいが、集電体11、21上に電極材12、22を形成してから孔をあけてもよい。   Next, the manufacturing method of the thin battery concerning this Embodiment is demonstrated. A portion corresponding to a part of the support 41 of the positive electrode current collector 11 and the negative electrode current collector 21 is punched in advance to make a hole. In addition, the positive electrode material 12 and the negative electrode material 22 are also punched by punching a portion corresponding to the support body 41 in advance. Then, the positive electrode material 12 is fixed on the positive electrode current collector 11, and the negative electrode material 22 is fixed on the negative electrode current collector 21. As described above, the electrode materials 12 and 22 may be fixed on the current collectors 11 and 21 after the holes are formed, but the electrode materials 12 and 22 are formed on the current collectors 11 and 21. A hole may be drilled from.

そして、セパレータ30の支持体41に対応する部分を打ち抜いて孔を開ける。次に、正極集電体11、正極材12、セパレータ30、負極材22、負極集電体21などの電池構成物質を順番に重ねる。このとき、それぞれに形成された孔、すなわち電池構成物質の貫通孔51を通るように支持体41を配置する。次に、外装材32を袋状、またはケース状に形成したものの中に電池構成物質を挿入し、電解質31としての電解液を注入する。そして、外装材32の支持体41に対応する部分の接着層を、溶融及び固化させて外装材32同士を支持体41で直接固着する。そして、外装材32の封止を完了させ薄型電池を得る。なお、外装材32と支持体41との固着と、外装材32の封止は同時に行ってもよい。これにより、製造工程を簡略化することができる。   And the part corresponding to the support body 41 of the separator 30 is punched out, and a hole is opened. Next, battery constituent materials such as the positive electrode current collector 11, the positive electrode material 12, the separator 30, the negative electrode material 22, and the negative electrode current collector 21 are sequentially stacked. At this time, the support body 41 is arrange | positioned so that the hole formed in each, ie, the through-hole 51 of a battery constituent material, may be passed. Next, a battery constituent material is inserted into the outer packaging material 32 formed in a bag shape or a case shape, and an electrolytic solution as the electrolyte 31 is injected. Then, a portion of the adhesive layer corresponding to the support body 41 of the exterior material 32 is melted and solidified to directly fix the exterior material 32 to each other with the support body 41. And the sealing of the exterior material 32 is completed and a thin battery is obtained. In addition, you may perform adhesion | attachment of the exterior material 32 and the support body 41, and sealing of the exterior material 32 simultaneously. Thereby, a manufacturing process can be simplified.

本実施の形態のように、電極材12、22を分割しないことにより、シートの精度が向上する。さらに、作業性を向上させることができる。   By not dividing the electrode materials 12 and 22 as in the present embodiment, the accuracy of the sheet is improved. Furthermore, workability can be improved.

実施の形態4.
本実施の形態は、実施の形態3と支持体41が異なる。なお、それ以外の構成については実施の形態3と同様なので説明を省略する。まず、本実施の形態にかかる薄型電池の構成を図9を参照して説明する。図9は、薄型電池の構成を示す断面図である。
Embodiment 4 FIG.
In the present embodiment, the support body 41 is different from the third embodiment. Since other configurations are the same as those in the third embodiment, description thereof is omitted. First, the configuration of the thin battery according to this embodiment will be described with reference to FIG. FIG. 9 is a cross-sectional view showing the configuration of a thin battery.

実施の形態3と同様、電池構成物質は複数の貫通孔51を有する。また、本実施の形態では、支持体41を形成しない。そして、外装材32同士を外装材32の接着層42によって接着する。すなわち、貫通孔51において、正極側の外装材32と負極側の外装材32とを接着層42によって接着する。なお、本実施の形態及びその他の実施の形態の断面図では図示を省略したが、外周で外装材32同士が接着された部分(上面図の気密接着層50部分)も接着層42によって接着される。このように、固着部としての接着層42により、実施の形態3と同様、電池構成物質を加圧保持できる。また、本実施の形態によれば、固着部として支持体等の部材を別途形成する必要がなく、薄型電池の構成を簡略化することができる。   As in the third embodiment, the battery constituent material has a plurality of through holes 51. Further, in the present embodiment, the support body 41 is not formed. Then, the exterior materials 32 are bonded together by the adhesive layer 42 of the exterior material 32. That is, in the through-hole 51, the positive electrode-side packaging material 32 and the negative electrode-side packaging material 32 are bonded by the adhesive layer 42. Although not shown in the cross-sectional views of the present embodiment and the other embodiments, a portion where the exterior material 32 is bonded to the outer periphery (the airtight bonding layer 50 portion in the top view) is also bonded by the bonding layer 42. The As described above, the battery constituent material can be held under pressure by the adhesive layer 42 as the fixing portion as in the third embodiment. Moreover, according to this Embodiment, it is not necessary to form members, such as a support body, separately as an adhering part, and the structure of a thin battery can be simplified.

次に本実施の形態にかかる薄型電池の製造方法を説明する。実施の形態3と同様、正極構成部分10と負極構成部分20を形成する。そして、セパレータ30の集電体11、21及び電極材12、22の孔に対応する部分を打ち抜いて孔を開ける。次に、正極集電体11、正極材12、セパレータ30、負極材22、負極集電体21などの電池構成物質を順番に重ねる。次に、外装材32を袋状、またはケース状に形成したものの中に電池構成物質を挿入し、電解質31としての電解液を注入する。そして、真空雰囲気中又は減圧雰囲気中で、外装材32の貫通孔51に対応する部分の接着層42を、溶融及び固化させて外装材32同士を直接固着する。そして、外装材32の封止を完了させ薄型電池を得る。   Next, the manufacturing method of the thin battery concerning this Embodiment is demonstrated. As in the third embodiment, the positive electrode component 10 and the negative electrode component 20 are formed. And the part corresponding to the collectors 11 and 21 of the separator 30 and the hole of the electrode materials 12 and 22 is punched out, and a hole is opened. Next, battery constituent materials such as the positive electrode current collector 11, the positive electrode material 12, the separator 30, the negative electrode material 22, and the negative electrode current collector 21 are sequentially stacked. Next, a battery constituent material is inserted into the outer packaging material 32 formed in a bag shape or a case shape, and an electrolytic solution as the electrolyte 31 is injected. Then, in a vacuum atmosphere or a reduced-pressure atmosphere, a portion of the adhesive layer 42 corresponding to the through hole 51 of the exterior material 32 is melted and solidified to directly adhere the exterior materials 32 to each other. And the sealing of the exterior material 32 is completed and a thin battery is obtained.

本実施の形態のように、外装材32の接着層42のみを利用し固着する構成とすることにより、支持体41が不要となる。このため、本実施の形態では支持体41に価する樹脂を配置、かつ固着する必要が無いので製造が容易になる。また、工程削減、材料費削減からもコスト削減に結びつき、さらには位置決めなどが容易になるという相乗的(格別)な効果を奏する。なお、実施の形態3及び本実施の形態では、電極材12、22を分割しなかったが、分割してもよい。この場合も、同様の効果を得ることができる。   As in the present embodiment, by using only the adhesive layer 42 of the exterior material 32 for fixing, the support 41 is not required. For this reason, in this Embodiment, since it is not necessary to arrange | position and adhere | attach the resin equivalent to the support body 41, manufacture becomes easy. In addition, there is a synergistic (extraordinary) effect that it leads to cost reduction from process reduction and material cost reduction, and further positioning becomes easy. In addition, in Embodiment 3 and this Embodiment, although the electrode materials 12 and 22 were not divided | segmented, you may divide | segment. In this case, the same effect can be obtained.

本発明の薄型電池の構成を示す断面図である。It is sectional drawing which shows the structure of the thin battery of this invention. 実施の形態1に係る薄型電池の構成を示す上面図である。1 is a top view showing a configuration of a thin battery according to Embodiment 1. FIG. 図2のIII−III断面図である。It is III-III sectional drawing of FIG. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 実施の形態2に係る薄型電池の構成を示す断面図である。4 is a cross-sectional view showing a configuration of a thin battery according to Embodiment 2. FIG. 実施の形態3に係る薄型電池の構成を示す上面図である。6 is a top view showing a configuration of a thin battery according to Embodiment 3. FIG. 図6のVII−VII断面図である。It is VII-VII sectional drawing of FIG. 図6のVIII−VIII断面図であるIt is VIII-VIII sectional drawing of FIG. 実施の形態4に係る薄型電池の構成を示す断面図である。6 is a cross-sectional view showing a configuration of a thin battery according to Embodiment 4. FIG. 関連する薄型電池の構成を示す断面図である。It is sectional drawing which shows the structure of a related thin battery. 関連する他の薄型電池の構成を示す断面図である。It is sectional drawing which shows the structure of another related thin battery.

符号の説明Explanation of symbols

10 正極構成部分、11 正極集電体、12 正極材、13 電極タブ、
20 負極構成部分、21 負極集電体、22 負極材、23 電極タブ、
30 セパレータ、31 電解質、32 外装材、
40 固着部、41 支持体、42 接着層、
50 気密接着層、51 貫通孔
10 positive electrode components, 11 positive electrode current collector, 12 positive electrode material, 13 electrode tab,
20 negative electrode component, 21 negative electrode current collector, 22 negative electrode material, 23 electrode tab,
30 separator, 31 electrolyte, 32 exterior material,
40 fixing part, 41 support, 42 adhesive layer,
50 airtight adhesive layer, 51 through hole

Claims (8)

正極構成部分と、
前記正極構成部分と対向配置された負極構成部分と、
前記正極構成部分と前記負極構成部分との間に配置され、正極側と負極側とを分割するセパレータと、
前記正極側と前記負極側との一部を固着し、離間して複数形成され、絶縁性を有する固着部とを備える薄型電池。
A positive electrode component;
A negative electrode component disposed opposite to the positive electrode component;
A separator disposed between the positive electrode component and the negative electrode component and dividing the positive electrode side and the negative electrode side;
A thin battery comprising a plurality of fixed portions, each having a positive electrode side and a negative electrode side fixed, spaced apart from each other, and having insulating properties.
前記正極構成部分、前記負極構成部分、及び前記セパレータを有する電池構成物質を覆い、フレキシブルなフィルムからなる外装材を有し、
前記外装材は前記正極構成部分及び前記負極構成部分と密着する請求項1に記載の薄型電池。
Covering the battery constituent material having the positive electrode constituent part, the negative electrode constituent part, and the separator, and having an exterior material made of a flexible film,
The thin battery according to claim 1, wherein the exterior material is in close contact with the positive electrode component and the negative electrode component.
前記固着部では、その周辺部より厚みが薄い請求項1又は2に記載の薄型電池。   The thin battery according to claim 1, wherein the fixing portion is thinner than a peripheral portion thereof. 前記正極構成部分は、正極集電体と前記正極集電体に形成される正極材とを有し、
前記負極構成部分は、負極集電体と前記負極集電体の前記正極構成部分側に形成される負極材とを有し、
前記固着部は、前記正極集電体と前記負極集電体とを固着する請求項1乃至3のいずれか1項に記載の薄型電池。
The positive electrode component has a positive electrode current collector and a positive electrode material formed on the positive electrode current collector,
The negative electrode component has a negative electrode current collector and a negative electrode material formed on the positive electrode component side of the negative electrode current collector,
The thin battery according to any one of claims 1 to 3, wherein the fixing portion fixes the positive electrode current collector and the negative electrode current collector.
前記セパレータを貫通する孔を有し、
前記固着部は、前記孔を通り、前記正極集電体と前記負極集電体とを支持する支持体である請求項4に記載の薄型電池。
Having a hole penetrating the separator;
The thin battery according to claim 4, wherein the fixing portion is a support that passes through the hole and supports the positive electrode current collector and the negative electrode current collector.
前記固着部は、前記正極側の前記外装材と前記負極側の前記外装材を固着する請求項2又は3に記載の薄型電池。   The thin battery according to claim 2 or 3, wherein the fixing portion fixes the exterior material on the positive electrode side and the exterior material on the negative electrode side. 前記電池構成物質を貫通する貫通孔を有し、
前記固着部は、前記貫通孔を通り、前記正極側の前記外装材と、前記負極側の前記外装材とを支持する支持体である請求項6に記載の薄型電池。
Having a through-hole penetrating the battery constituent material;
The thin battery according to claim 6, wherein the fixing portion is a support that passes through the through hole and supports the exterior material on the positive electrode side and the exterior material on the negative electrode side.
前記電池構成物質を貫通する貫通孔を有し、
前記固着部は、前記貫通孔において、前記正極側の前記外装材と、前記負極側の前記外装材とを接着する接着層である請求項6に記載の薄型電池。
Having a through-hole penetrating the battery constituent material;
The thin battery according to claim 6, wherein the fixing portion is an adhesive layer that bonds the exterior material on the positive electrode side and the exterior material on the negative electrode side in the through hole.
JP2007338863A 2007-12-28 2007-12-28 Thin battery Active JP5526475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338863A JP5526475B2 (en) 2007-12-28 2007-12-28 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338863A JP5526475B2 (en) 2007-12-28 2007-12-28 Thin battery

Publications (2)

Publication Number Publication Date
JP2009158440A true JP2009158440A (en) 2009-07-16
JP5526475B2 JP5526475B2 (en) 2014-06-18

Family

ID=40962200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338863A Active JP5526475B2 (en) 2007-12-28 2007-12-28 Thin battery

Country Status (1)

Country Link
JP (1) JP5526475B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238463A (en) * 2008-03-26 2009-10-15 Nec Corp Flat battery
CN102064334A (en) * 2009-11-18 2011-05-18 三星Sdi株式会社 Secondary battery
CN103748728A (en) * 2011-09-20 2014-04-23 株式会社Lg化学 Porous electrode assembly and secondary cell including same
KR20150064594A (en) * 2013-12-03 2015-06-11 삼성에스디아이 주식회사 Flexible secondary battery
KR20150128063A (en) * 2014-05-08 2015-11-18 주식회사 엘지화학 Electrode Assembly Having Alternatively-arranged Noncoating Parts and Coating Parts and Flexible Battery Cell Comprising the Same
KR101593031B1 (en) * 2015-08-12 2016-02-18 한국에너지기술연구원 Thin-film type super-capacitor device with enhanced durability and manufacturing method for the device
KR101624861B1 (en) 2015-08-11 2016-05-30 한국에너지기술연구원 Flash module for mobile device using flexible thin-film type super-capacitor and mobile device having the super-capacitor
JP2016115475A (en) * 2014-12-12 2016-06-23 Fdk鳥取株式会社 Laminated electricity storage element
US9520243B2 (en) 2014-02-17 2016-12-13 Korea Institute Of Energy Research Method of manufacturing flexible thin-film typer super-capacitor device using a hot-melt adhesive film, and super-capacitor device manufactured by the method
JP2017504933A (en) * 2014-01-06 2017-02-09 エルジー・ケム・リミテッド Flexible battery cell
WO2017094545A1 (en) * 2015-12-04 2017-06-08 株式会社村田製作所 Electrochemical device
KR101812386B1 (en) * 2015-10-26 2018-01-31 한국에너지기술연구원 Sealing Material and Super-Capacitor Device thereof
KR101812376B1 (en) * 2014-02-17 2018-01-31 한국에너지기술연구원 Sealing Material, Flexible Thin-film type Super-Capacitor Device Manufacturing Method having the same and Super-Capacitor Device thereof
JP2018045949A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Aqueous battery
JP2018186020A (en) * 2017-04-27 2018-11-22 株式会社豊田自動織機 Secondary battery
JP2022070875A (en) * 2015-07-29 2022-05-13 株式会社半導体エネルギー研究所 Electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379162U (en) * 1989-12-01 1991-08-12
JPH05283055A (en) * 1992-03-30 1993-10-29 Ricoh Co Ltd Battery system
JP2002015764A (en) * 2000-06-29 2002-01-18 Mitsubishi Electric Corp Battery, battery electrode forming method and electrode forming device
JP2002170552A (en) * 2000-12-01 2002-06-14 Nec Corp Electricity storage element and method for manufacturing the same
JP2002237279A (en) * 2001-02-09 2002-08-23 Mitsubishi Chemicals Corp Secondary battery
JP2009238463A (en) * 2008-03-26 2009-10-15 Nec Corp Flat battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379162U (en) * 1989-12-01 1991-08-12
JPH05283055A (en) * 1992-03-30 1993-10-29 Ricoh Co Ltd Battery system
JP2002015764A (en) * 2000-06-29 2002-01-18 Mitsubishi Electric Corp Battery, battery electrode forming method and electrode forming device
JP2002170552A (en) * 2000-12-01 2002-06-14 Nec Corp Electricity storage element and method for manufacturing the same
JP2002237279A (en) * 2001-02-09 2002-08-23 Mitsubishi Chemicals Corp Secondary battery
JP2009238463A (en) * 2008-03-26 2009-10-15 Nec Corp Flat battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238463A (en) * 2008-03-26 2009-10-15 Nec Corp Flat battery
US9419255B2 (en) 2009-11-18 2016-08-16 Samsung Sdi Co., Ltd. Secondary battery
CN102064334A (en) * 2009-11-18 2011-05-18 三星Sdi株式会社 Secondary battery
JP2011108612A (en) * 2009-11-18 2011-06-02 Samsung Sdi Co Ltd Secondary battery
CN103748728A (en) * 2011-09-20 2014-04-23 株式会社Lg化学 Porous electrode assembly and secondary cell including same
JP2014531111A (en) * 2011-09-20 2014-11-20 エルジー ケム. エルティーディ. Porous electrode assembly and secondary battery including the same
US9899708B2 (en) 2011-09-20 2018-02-20 Lg Chem, Ltd. Electrode assembly with porous structure and secondary battery including the same
KR20150064594A (en) * 2013-12-03 2015-06-11 삼성에스디아이 주식회사 Flexible secondary battery
JP2015109260A (en) * 2013-12-03 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Flexible secondary battery
KR102161290B1 (en) * 2013-12-03 2020-09-29 삼성에스디아이 주식회사 Flexible secondary battery
JP2017504933A (en) * 2014-01-06 2017-02-09 エルジー・ケム・リミテッド Flexible battery cell
KR101812376B1 (en) * 2014-02-17 2018-01-31 한국에너지기술연구원 Sealing Material, Flexible Thin-film type Super-Capacitor Device Manufacturing Method having the same and Super-Capacitor Device thereof
US9520243B2 (en) 2014-02-17 2016-12-13 Korea Institute Of Energy Research Method of manufacturing flexible thin-film typer super-capacitor device using a hot-melt adhesive film, and super-capacitor device manufactured by the method
US9842706B2 (en) 2014-02-17 2017-12-12 Korea Institute Of Energy Research Sealing material used as a flexible thin-film type super-capacitor device
KR20150128063A (en) * 2014-05-08 2015-11-18 주식회사 엘지화학 Electrode Assembly Having Alternatively-arranged Noncoating Parts and Coating Parts and Flexible Battery Cell Comprising the Same
KR101675950B1 (en) 2014-05-08 2016-11-14 주식회사 엘지화학 Electrode Assembly Having Alternatively-arranged Noncoating Parts and Coating Parts and Flexible Battery Cell Comprising the Same
JP2016115475A (en) * 2014-12-12 2016-06-23 Fdk鳥取株式会社 Laminated electricity storage element
JP7375057B2 (en) 2015-07-29 2023-11-07 株式会社半導体エネルギー研究所 Electronics
JP2022070875A (en) * 2015-07-29 2022-05-13 株式会社半導体エネルギー研究所 Electronic apparatus
KR101624861B1 (en) 2015-08-11 2016-05-30 한국에너지기술연구원 Flash module for mobile device using flexible thin-film type super-capacitor and mobile device having the super-capacitor
KR101593031B1 (en) * 2015-08-12 2016-02-18 한국에너지기술연구원 Thin-film type super-capacitor device with enhanced durability and manufacturing method for the device
KR101812386B1 (en) * 2015-10-26 2018-01-31 한국에너지기술연구원 Sealing Material and Super-Capacitor Device thereof
WO2017094545A1 (en) * 2015-12-04 2017-06-08 株式会社村田製作所 Electrochemical device
JP2018045949A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Aqueous battery
JP2018186020A (en) * 2017-04-27 2018-11-22 株式会社豊田自動織機 Secondary battery

Also Published As

Publication number Publication date
JP5526475B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5526475B2 (en) Thin battery
JP5113219B2 (en) Secondary battery
JP5363404B2 (en) Secondary battery
JP5589737B2 (en) Battery and manufacturing method thereof
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
CN108292730B (en) Electrochemical device
KR20080019311A (en) Pouch-type secondary battery having improved safety by preventing internal moving of electrode assembly
JP2000200585A (en) Battery package
US20130230767A1 (en) Secondary battery
TWI590272B (en) Electrochemical device
US20120301748A1 (en) Battery pack
KR101870801B1 (en) Thin film battery
CN110419121A (en) Electric vehicle battery unit with the polymer frame for battery cell assemblies
JP2012119291A (en) Middle or large sized battery
JP5332256B2 (en) Thin battery
CN102412379B (en) Secondary battery and manufacturing method of the same
JP5205790B2 (en) Battery and battery manufacturing method
KR102473094B1 (en) Battery pack and method for attaching label thereof
US20190043676A1 (en) Electrochemical device and method for manufacturing same
JP2006172766A (en) Thin battery and its manufacturing method
US10879016B2 (en) Electrochemical device and method for manufacturing same
JP2006269288A (en) Thin battery
KR101546002B1 (en) electrochemical energy storage device
JP2003308852A (en) Plate type battery and ic card having it built therein
CN113924679B (en) Battery cell structure and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150