Nothing Special   »   [go: up one dir, main page]

JP2009156090A - Exhaust recirculating device of variable cylinder internal combustion engine - Google Patents

Exhaust recirculating device of variable cylinder internal combustion engine Download PDF

Info

Publication number
JP2009156090A
JP2009156090A JP2007332674A JP2007332674A JP2009156090A JP 2009156090 A JP2009156090 A JP 2009156090A JP 2007332674 A JP2007332674 A JP 2007332674A JP 2007332674 A JP2007332674 A JP 2007332674A JP 2009156090 A JP2009156090 A JP 2009156090A
Authority
JP
Japan
Prior art keywords
pressure egr
cylinder
low
egr gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007332674A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ono
智幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007332674A priority Critical patent/JP2009156090A/en
Publication of JP2009156090A publication Critical patent/JP2009156090A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique in an exhaust recirculating device of an variable cylinder internal combustion engine for obtaining a proper combustion condition relative to an operating cylinder in a cylinder reducing operation while improving fuel consumption by the cylinder reducing operation, and for reducing an NOx amount generated by the operating cylinder in combustion. <P>SOLUTION: This device has a plurality of cylinders, and can execute a cylinder reducing operation for continuing an operation by stopping fuel injection to some of the cylinders and continuing the operation with the rest of the cylinders under a cylinder reducing operation. The device comprises a low-pressure EGR device and a high-pressure EGR device. In the cylinder reducing operation, a ratio of a low-pressure EGR gas amount at an EGR gas amount combined with a low-pressure EGR gas amount recirculated from the low-pressure EGR device supplied to an internal combustion engine and a high-pressure EGR gas amount recirculated from the high-pressure EGR device is made high. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可変気筒内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for a variable cylinder internal combustion engine.

ターボチャージャのタービンより下流の排気通路から排気の一部を低圧EGRガスとして取り込みターボチャージャのコンプレッサより上流の吸気通路へ当該低圧EGRガスを還流させる低圧EGR装置と、タービンより上流の排気通路から排気の一部を高圧EGRガスとして取り込みコンプレッサより下流の吸気通路へ当該高圧EGRガスを還流させる高圧EGR装置とを備え、低温燃焼が行われるときに、機関要求負荷に基づいて低圧EGRガス量及び高圧EGRガス量を制御する技術が知られている(特許文献1参照)。
特開2005−76456号公報 特開2005−54771号公報 特許第3175491号公報
A low-pressure EGR device that takes in a part of exhaust gas as low-pressure EGR gas from the exhaust passage downstream of the turbine of the turbocharger and returns the low-pressure EGR gas to the intake passage upstream of the compressor of the turbocharger, and exhausts from the exhaust passage upstream of the turbine. A high-pressure EGR device that takes in a part of the gas as high-pressure EGR gas and recirculates the high-pressure EGR gas to the intake passage downstream from the compressor. When low-temperature combustion is performed, the low-pressure EGR gas amount and high-pressure A technique for controlling the amount of EGR gas is known (see Patent Document 1).
JP-A-2005-76456 JP 2005-54771 A Japanese Patent No. 3175491

ところで、複数の気筒を有し、減筒条件下で一部の気筒への燃料噴射を休止して残りの気筒で運転を継続する減筒運転を行う可変気筒内燃機関がある。減筒運転を行うと、作動気筒の機関負荷を上昇させることで燃費を向上することができる。この可変気筒内燃機関にも低圧EGR装置及び高圧EGR装置を用いることができる。しかし、可変気筒内燃機関の減筒運転時には、作動気筒と休止気筒のそれぞれから排出される排気成分が異なるため、内燃機関に還流されるEGRガス成分がサイクルごとに変化してしまう。この変化はEGRガスが供給される作動気筒のEGR率に影響が及び作動気筒のEGR率が不安定になり、作動気筒の燃焼状態が不安定になる。また、減筒運転時には作動気筒の機関負荷が上昇しているため、作動気筒が燃焼時に発生させるNOx量が増加してしまう。   By the way, there is a variable cylinder internal combustion engine that has a plurality of cylinders and performs a reduced cylinder operation in which fuel injection to some cylinders is stopped under reduced cylinder conditions and operation is continued with the remaining cylinders. When the reduced-cylinder operation is performed, the fuel consumption can be improved by increasing the engine load of the working cylinder. A low pressure EGR device and a high pressure EGR device can also be used for this variable cylinder internal combustion engine. However, during the cylinder reduction operation of the variable cylinder internal combustion engine, since the exhaust components discharged from the working cylinder and the idle cylinder are different, the EGR gas component recirculated to the internal combustion engine changes for each cycle. This change affects the EGR rate of the working cylinder to which EGR gas is supplied, makes the EGR rate of the working cylinder unstable, and makes the combustion state of the working cylinder unstable. Further, since the engine load of the working cylinder is increased during the reduced-cylinder operation, the amount of NOx generated by the working cylinder during combustion increases.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、可変気筒内燃機関の排気還流装置において、減筒運転により燃費を向上しつつ、減筒運転時の作動気筒に対して適切な燃焼状態を実現させると共に作動気筒が燃焼時に発生させるNOx量を低減する技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas recirculation device for a variable cylinder internal combustion engine, while improving fuel efficiency by reducing cylinder operation, while reducing the operating cylinder during reduced cylinder operation. It is another object of the present invention to provide a technique for realizing an appropriate combustion state and reducing the amount of NOx generated by a working cylinder during combustion.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
複数の気筒を有し、減筒条件下で一部の気筒への燃料噴射を休止して残りの気筒で運転を継続する減筒運転を実行可能な可変気筒内燃機関の排気還流装置であって、
前記内燃機関の排気通路に配置されたタービン及び前記内燃機関の吸気通路に配置されたコンプレッサを有するターボチャージャと、
前記タービンより下流の前記排気通路から排気の一部を低圧EGRガスとして取り込み、前記コンプレッサより上流の前記吸気通路へ当該低圧EGRガスを還流させる低圧EGR装置と、
前記タービンより上流の前記排気通路から排気の一部を高圧EGRガスとして取り込み、前記コンプレッサより下流の前記吸気通路へ当該高圧EGRガスを還流させる高圧EGR装置と、
を備え、
前記減筒運転時には、前記内燃機関へ供給される前記低圧EGRガス量及び前記高圧EGRガス量を合わせたEGRガス量における前記低圧EGRガス量の比率を高めることを特徴とする可変気筒内燃機関の排気還流装置である。
In the present invention, the following configuration is adopted. That is, the present invention
An exhaust gas recirculation device for a variable cylinder internal combustion engine having a plurality of cylinders and capable of executing a reduced cylinder operation in which fuel injection to some cylinders is stopped under reduced cylinder conditions and operation is continued in the remaining cylinders. ,
A turbocharger having a turbine disposed in an exhaust passage of the internal combustion engine and a compressor disposed in an intake passage of the internal combustion engine;
A low-pressure EGR device that takes in a part of exhaust gas as low-pressure EGR gas from the exhaust passage downstream from the turbine and recirculates the low-pressure EGR gas to the intake passage upstream from the compressor;
A high-pressure EGR device that takes in a part of exhaust gas as high-pressure EGR gas from the exhaust passage upstream of the turbine and recirculates the high-pressure EGR gas to the intake passage downstream of the compressor;
With
In the variable-cylinder internal combustion engine, the ratio of the low-pressure EGR gas amount to the EGR gas amount obtained by combining the low-pressure EGR gas amount and the high-pressure EGR gas amount supplied to the internal combustion engine is increased during the reduced-cylinder operation. Exhaust gas recirculation device.

可変気筒内燃機関の減筒運転時には、作動気筒と休止気筒のそれぞれから排出される排気成分が異なるため、可変気筒内燃機関に還流されるEGRガス成分がサイクルごとに変化してしまう。この変化はEGRガスが供給される作動気筒のEGR率に影響が及び作動気筒のEGR率が不安定になり、作動気筒の燃焼状態が不安定になる。これは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なることに起因して高圧EGR装置によって還流される高圧EGRガスの二酸化炭素濃度が変化し、作動気筒の吸気酸素濃度が安定しないことに因る。高圧EGRガスはタービンより上流の排気通路からコンプレッサより下流の吸気通路へ還流される。よって高圧EGRガスは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なっていると、排気の二酸化炭素濃度のサイクルごとの変化に応じて二酸化炭素濃度が変化してしまうからである。また、減筒運転時には作動気筒の負荷が上昇しているため、作動気筒が燃焼時に発生させるNOx量が増加してしまう。   When the variable cylinder internal combustion engine is in the reduced cylinder operation, the exhaust components discharged from the working cylinder and the non-operating cylinder are different, so the EGR gas component recirculated to the variable cylinder internal combustion engine changes for each cycle. This change affects the EGR rate of the working cylinder to which EGR gas is supplied, makes the EGR rate of the working cylinder unstable, and makes the combustion state of the working cylinder unstable. This is because the carbon dioxide concentration of the high pressure EGR gas recirculated by the high pressure EGR device changes due to the difference in the carbon dioxide concentration of the exhaust discharged from the working cylinder and the idle cylinder, and the intake oxygen concentration in the working cylinder changes. Due to instability. The high pressure EGR gas is recirculated from the exhaust passage upstream of the turbine to the intake passage downstream of the compressor. Therefore, if the high-pressure EGR gas has different carbon dioxide concentrations in the exhaust gas discharged from the working cylinder and the idle cylinder, the carbon dioxide concentration changes in accordance with the cycle-by-cycle change in the carbon dioxide concentration in the exhaust gas. is there. In addition, since the load on the working cylinder increases during the reduced-cylinder operation, the amount of NOx generated by the working cylinder during combustion increases.

そこで、本発明では、減筒運転時には、内燃機関へ供給される低圧EGRガス量及び高圧EGRガス量を合わせたEGRガス量における低圧EGRガス量の比率を高めるようにした。   Therefore, in the present invention, during the reduced-cylinder operation, the ratio of the low-pressure EGR gas amount to the EGR gas amount obtained by combining the low-pressure EGR gas amount and the high-pressure EGR gas amount supplied to the internal combustion engine is increased.

本発明によると、減筒運転時には低圧EGRガス量の比率を増加し、高圧EGRガス量の比率を減少させる。低圧EGRガスはタービンより下流の排気通路からコンプレッサより上流の吸気通路へ還流される。よって低圧EGRガスは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なっていても、コンプレッサより上流の吸気通路へ還流された際にその長い経路を流通する間に新気と混ざりさらにはコンプレッサで攪拌される。このため低圧EGRガスと新気は一様に混ざり、吸気の酸素濃度が安定する。これにより作動気筒のEGR率が安定し、作動気筒に対して適切な燃焼状態を実現できる。   According to the present invention, the ratio of the low pressure EGR gas amount is increased and the ratio of the high pressure EGR gas amount is decreased during the reduced cylinder operation. The low pressure EGR gas is returned from the exhaust passage downstream of the turbine to the intake passage upstream of the compressor. Therefore, even if the low-pressure EGR gas has different carbon dioxide concentrations in the exhaust gas discharged from the working cylinder and the non-operating cylinder, when the low-pressure EGR gas is recirculated to the intake passage upstream of the compressor, It is mixed and stirred with a compressor. For this reason, the low pressure EGR gas and the fresh air are uniformly mixed, and the oxygen concentration of the intake air is stabilized. Thereby, the EGR rate of the working cylinder is stabilized, and an appropriate combustion state can be realized for the working cylinder.

また、減筒運転時には作動気筒では負荷が上昇しているため排気量が増加し、休止気筒では排気量が少なくなるので、排気脈動が大きな変位量且つ大きなスパンで生じる。このような排気脈動であると、排気エネルギを駆動源とするターボチャージャは過給能力が落ちる。加えて高圧EGRガスを還流させるためにタービンより上流の排気通路から排気の一部を高圧EGR装置に取り込むと、タービンを通過する排気量が減少し、これによってもターボチャージャの過給能力が落ちてしまう。しかしながら本発明によると、高圧EGRガス量の比率を減少させるのでタービンより上流の排気通路から排気の一部を高圧EGR装置に取り込む量が減少し、タービンを通過する排気量が増加するので、ターボチャージャの過給能力が落ちることを抑制できる。このように過給能力が維持されているので、休止気筒も作動を再開させる通常運転にスムーズに復帰できる。   Further, during the reduced cylinder operation, since the load is increased in the working cylinder, the exhaust amount increases, and in the idle cylinder, the exhaust amount decreases. Therefore, the exhaust pulsation occurs with a large displacement amount and a large span. With such exhaust pulsation, the turbocharger using exhaust energy as a drive source has a reduced supercharging capability. In addition, if a part of the exhaust gas is taken into the high-pressure EGR device from the exhaust passage upstream of the turbine in order to recirculate the high-pressure EGR gas, the amount of exhaust gas passing through the turbine is reduced, which also reduces the turbocharger's supercharging capability. End up. However, according to the present invention, since the ratio of the high pressure EGR gas amount is reduced, the amount of exhaust gas taken into the high pressure EGR device from the exhaust passage upstream of the turbine is reduced, and the exhaust amount passing through the turbine is increased. It is possible to prevent the charger's supercharging ability from being reduced. Since the supercharging capability is maintained in this way, it is possible to smoothly return to the normal operation in which the operation of the deactivated cylinder is resumed.

さらに、減筒運転時には作動気筒の負荷が上昇しているため、作動気筒が燃焼時に発生させるNOx量が増加してしまう。しかし本発明によると、低圧EGRガスはタービンより下流の排気通路からコンプレッサより上流の吸気通路へ還流される際に、その還流経路が長いことから冷えるので、吸気を冷却できる。この吸気を冷却できる低圧EGRガス量の比率を増加するので、吸気が強力に冷却でき作動気筒では燃焼温度が低下する。燃焼温度が低下すると燃焼時に発生するNOx量が低下するので、作動気筒が燃焼時に発生させるNOx量を低減できる。   Furthermore, since the load on the working cylinder is increased during the reduced-cylinder operation, the amount of NOx generated by the working cylinder during combustion increases. However, according to the present invention, when the low pressure EGR gas is returned from the exhaust passage downstream from the turbine to the intake passage upstream from the compressor, the low pressure EGR gas is cooled because the return passage is long, so that the intake air can be cooled. Since the ratio of the low-pressure EGR gas amount that can cool the intake air is increased, the intake air can be cooled strongly and the combustion temperature is lowered in the working cylinder. When the combustion temperature decreases, the amount of NOx generated during combustion decreases, so the amount of NOx generated by the working cylinder during combustion can be reduced.

以上により減筒運転により燃費を向上しつつ、減筒運転時の作動気筒に対して適切な燃焼状態を実現でき、過給能力が落ちることを抑制でき、作動気筒が燃焼時に発生させるNOxを低減できる。   As described above, while reducing fuel consumption by reducing cylinder operation, it is possible to realize an appropriate combustion state for the operating cylinder during reduced cylinder operation, to suppress a decrease in supercharging capacity, and to reduce NOx generated by the operating cylinder during combustion. it can.

前記低圧EGR装置に、前記低圧EGR装置内を流通する前記低圧EGRガスを冷却する冷却手段を備えるとよい。   The low-pressure EGR device may be provided with a cooling means for cooling the low-pressure EGR gas flowing through the low-pressure EGR device.

本発明によると、低圧EGRガスをより強力に冷却できるので、より強力に吸気を冷却できる。このため作動気筒では燃焼温度がより低下する。燃焼温度が低下すると燃焼時に発生するNOx量が低下するので、作動気筒が燃焼時に発生させるNOx量をより低減できる。   According to the present invention, the low pressure EGR gas can be cooled more powerfully, so that the intake air can be cooled more powerfully. Therefore, the combustion temperature is further lowered in the working cylinder. When the combustion temperature decreases, the amount of NOx generated during combustion decreases, so that the amount of NOx generated by the working cylinder during combustion can be further reduced.

本発明によると、可変気筒内燃機関の排気還流装置において、減筒運転により燃費を向上しつつ、減筒運転時の作動気筒に対して適切な燃焼状態を実現できると共に作動気筒が燃焼時に発生させるNOx量を低減できる。   According to the present invention, in an exhaust gas recirculation apparatus for a variable cylinder internal combustion engine, while improving fuel efficiency by reducing cylinder operation, it is possible to realize an appropriate combustion state with respect to the operating cylinder during reduced cylinder operation and to generate the operating cylinder during combustion. The amount of NOx can be reduced.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の排気還流装置を適用する内燃機関、及びその吸気系・排気系の概略構成を示す図である。図1に示す内燃機関1は、ピストンと共に燃焼室を形成する気筒2を4つ有する水冷式の4ストロークサイクル・ディーゼルエンジンである。内燃機関1は、車両に搭載されている。各気筒2には、燃料としての軽油が供給され気筒2内へ軽油を適宜の量且つ適宜のタイミングで噴射する燃料噴射弁3が設けられている。内燃機関1には、吸気通路4及び排気通路5が接続されている。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas recirculation apparatus for an internal combustion engine according to this embodiment is applied, and an intake system and an exhaust system thereof. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-stroke cycle diesel engine having four cylinders 2 that form a combustion chamber together with a piston. The internal combustion engine 1 is mounted on a vehicle. Each cylinder 2 is provided with a fuel injection valve 3 that is supplied with light oil as fuel and injects the light oil into the cylinder 2 at an appropriate amount and at an appropriate timing. An intake passage 4 and an exhaust passage 5 are connected to the internal combustion engine 1.

内燃機関1に接続された吸気通路4の途中には、排気のエネルギを駆動源として作動するターボチャージャのコンプレッサ6aが配置されている。コンプレッサ6aよりも上流の吸気通路4には、該吸気通路4内を流通する吸気の流量を調節する第1スロットル弁7が配置されている。この第1スロットル弁7は、電動アクチュエータにより開閉される。第1スロットル弁7よりも上流の吸気通路4には、該吸気通路4内を流通する新気の流量に応じた信号を出力するエアフローメータ8が配置されている。このエアフローメータ8により、内燃機関1に吸入される吸入空気量(新気量)が測定される。エアフローメータ8よりも上流の吸気通路4には、該吸気通路4内を流通する新気の温度に応じた信号を出力する吸気温度センサ9が配置されている。この吸気温度センサ9により、内燃機関1に吸入される吸入空気温度(新気温度)が測定される。   In the middle of the intake passage 4 connected to the internal combustion engine 1, a compressor 6a of a turbocharger that operates using exhaust energy as a drive source is disposed. A first throttle valve 7 that adjusts the flow rate of intake air flowing through the intake passage 4 is disposed in the intake passage 4 upstream of the compressor 6a. The first throttle valve 7 is opened and closed by an electric actuator. An air flow meter 8 that outputs a signal corresponding to the flow rate of fresh air flowing in the intake passage 4 is disposed in the intake passage 4 upstream of the first throttle valve 7. The air flow meter 8 measures the intake air amount (fresh air amount) taken into the internal combustion engine 1. An intake air temperature sensor 9 that outputs a signal corresponding to the temperature of fresh air flowing through the intake air passage 4 is disposed in the intake air passage 4 upstream of the air flow meter 8. The intake air temperature sensor 9 measures the intake air temperature (fresh air temperature) taken into the internal combustion engine 1.

コンプレッサ6aよりも下流の吸気通路4には、吸気と外気とで熱交換を行うインタークーラ10が配置されている。インタークーラ10よりも下流の吸気通路4には、該吸気通路4内を流通する吸気の流量を調節する第2スロットル弁11が配置されている。この第2スロットル弁11は、電動アクチュエータにより開閉される。これら吸気通路4及びそれに配置された機器が内燃機関1に吸気を取り入れるための吸気系を構成している。   An intercooler 10 that performs heat exchange between the intake air and outside air is disposed in the intake passage 4 downstream of the compressor 6a. A second throttle valve 11 that adjusts the flow rate of the intake air flowing through the intake passage 4 is disposed in the intake passage 4 downstream of the intercooler 10. The second throttle valve 11 is opened and closed by an electric actuator. These intake passages 4 and the devices arranged in the intake passages 4 constitute an intake system for taking intake air into the internal combustion engine 1.

一方、内燃機関1に接続された排気通路5の途中には、ターボチャージャのタービン6bが配置されている。タービン6bよりも下流の排気通路5には、排気浄化装置12が配置されている。排気浄化装置12は、酸化触媒と当該酸化触媒の後段に配置されたディーゼルパティキュレートフィルタ(以下単にフィルタという)とを有して構成される。フィルタには吸蔵還元型NOx触媒(以下単にNOx触媒という)が担持されている。これら排気通路5及びそれに配置された機器が内燃機関1から排気を排出させるための排気系を構成している。   On the other hand, a turbocharger turbine 6 b is disposed in the middle of the exhaust passage 5 connected to the internal combustion engine 1. An exhaust purification device 12 is disposed in the exhaust passage 5 downstream of the turbine 6b. The exhaust emission control device 12 includes an oxidation catalyst and a diesel particulate filter (hereinafter simply referred to as a filter) disposed at the subsequent stage of the oxidation catalyst. The filter carries a NOx storage reduction catalyst (hereinafter simply referred to as NOx catalyst). The exhaust passage 5 and the devices arranged in the exhaust passage 5 constitute an exhaust system for exhausting exhaust gas from the internal combustion engine 1.

そして、内燃機関1には、排気通路5内を流通する排気の一部を低圧で吸気通路4へ還
流(再循環)させる低圧EGR装置30が備えられている。本実施例では、低圧EGR装置30によって還流される排気を低圧EGRガスと称している。
The internal combustion engine 1 is provided with a low-pressure EGR device 30 that recirculates (recirculates) a part of the exhaust gas flowing through the exhaust passage 5 to the intake passage 4 at a low pressure. In this embodiment, the exhaust gas recirculated by the low pressure EGR device 30 is referred to as low pressure EGR gas.

低圧EGR装置30は、低圧EGRガスが流通する低圧EGR通路31と、低圧EGR通路31を流通する低圧EGRガスの流量を調節する低圧EGR弁32と、低圧EGRガスを冷却する低圧EGRクーラ33と、を有する。   The low pressure EGR device 30 includes a low pressure EGR passage 31 through which the low pressure EGR gas flows, a low pressure EGR valve 32 that adjusts a flow rate of the low pressure EGR gas that flows through the low pressure EGR passage 31, a low pressure EGR cooler 33 that cools the low pressure EGR gas, and Have.

低圧EGR通路31は、排気浄化装置12よりも下流側の排気通路5と、コンプレッサ6aよりも上流且つ第1スロットル弁7よりも下流側の吸気通路4とを接続している。この低圧EGR通路31を通って、排気が低圧EGRガスとして低圧で内燃機関1へ送り込まれる。   The low pressure EGR passage 31 connects the exhaust passage 5 downstream of the exhaust purification device 12 and the intake passage 4 upstream of the compressor 6 a and downstream of the first throttle valve 7. Through this low-pressure EGR passage 31, the exhaust is sent to the internal combustion engine 1 at low pressure as low-pressure EGR gas.

低圧EGR弁32は、低圧EGRクーラ33よりも下流の低圧EGR通路31に配置され、低圧EGR通路31の通路断面積を調整することにより、該低圧EGR通路31を流れる低圧EGRガスの流量を調節する。この低圧EGR弁32は、電動アクチュエータにより開閉される。なお、低圧EGRガス流量の調節は、低圧EGR弁32の開度の調整以外の方法によって行うこともできる。例えば、第1スロットル弁7の開度を調整することにより、或いは不図示の排気絞り弁の開度を調節することにより、低圧EGR通路31の上流と下流との差圧を変化させ、これにより低圧EGRガスの流量を調節することができる。   The low-pressure EGR valve 32 is disposed in the low-pressure EGR passage 31 downstream from the low-pressure EGR cooler 33, and adjusts the flow cross-sectional area of the low-pressure EGR passage 31 to adjust the flow rate of the low-pressure EGR gas flowing through the low-pressure EGR passage 31. To do. The low pressure EGR valve 32 is opened and closed by an electric actuator. The low-pressure EGR gas flow rate can be adjusted by a method other than the adjustment of the opening degree of the low-pressure EGR valve 32. For example, by adjusting the opening of the first throttle valve 7 or by adjusting the opening of an exhaust throttle valve (not shown), the differential pressure between the upstream and downstream of the low pressure EGR passage 31 is changed. The flow rate of the low pressure EGR gas can be adjusted.

低圧EGRクーラ33は、低圧EGR通路31の途中に配置される。低圧EGRクーラ33は、低圧EGRクーラ33内を通過する低圧EGRガスと機関冷却水とで熱交換をして、低圧EGRガスの温度を低下させる。本実施例における低圧EGRクーラ33が本発明の冷却手段に相当する。   The low pressure EGR cooler 33 is disposed in the middle of the low pressure EGR passage 31. The low-pressure EGR cooler 33 exchanges heat between the low-pressure EGR gas passing through the low-pressure EGR cooler 33 and the engine cooling water, and lowers the temperature of the low-pressure EGR gas. The low pressure EGR cooler 33 in this embodiment corresponds to the cooling means of the present invention.

一方、内燃機関1には、排気通路5内を流通する排気の一部を高圧で吸気通路4へ還流(再循環)させる高圧EGR装置40が備えられている。本実施例では、高圧EGR装置40によって還流される排気を高圧EGRガスと称している。   On the other hand, the internal combustion engine 1 is provided with a high pressure EGR device 40 that recirculates (recirculates) a part of the exhaust gas flowing in the exhaust passage 5 to the intake passage 4 at a high pressure. In the present embodiment, the exhaust gas recirculated by the high pressure EGR device 40 is referred to as high pressure EGR gas.

高圧EGR装置40は、高圧EGRガスが流通する高圧EGR通路41と、高圧EGR通路41を流通する高圧EGRガスの流量を調節する高圧EGR弁42と、を有する。   The high pressure EGR device 40 includes a high pressure EGR passage 41 through which the high pressure EGR gas flows, and a high pressure EGR valve 42 that adjusts the flow rate of the high pressure EGR gas through the high pressure EGR passage 41.

高圧EGR通路41は、タービン6bよりも上流側の排気通路5と、第2スロットル弁11よりも下流側の吸気通路4とを接続している。この高圧EGR通路41を通って、排気が高圧EGRガスとして高圧で内燃機関1へ送り込まれる。   The high pressure EGR passage 41 connects the exhaust passage 5 upstream of the turbine 6 b and the intake passage 4 downstream of the second throttle valve 11. Exhaust gas is sent to the internal combustion engine 1 at high pressure as high pressure EGR gas through the high pressure EGR passage 41.

高圧EGR弁42は、高圧EGR通路41に配置され、高圧EGR通路41の通路断面積を調整することにより、該高圧EGR通路41を流れる高圧EGRガスの流量を調節する。この高圧EGR弁42は、電動アクチュエータにより開閉される。なお、高圧EGRガス流量の調節は、高圧EGR弁42の開度の調整以外の方法によって行うこともできる。例えば、第2スロットル弁11の開度を調整することにより、高圧EGR通路41の上流と下流との差圧を変化させ、これにより高圧EGRガスの流量を調節することができる。また、ターボチャージャのタービン6bが可変容量型の場合には、タービン6bの流量特性を変更するノズルベーンの開度を調整することによっても高圧EGRガスの量を調節することができる。   The high-pressure EGR valve 42 is disposed in the high-pressure EGR passage 41 and adjusts the flow rate of the high-pressure EGR gas flowing through the high-pressure EGR passage 41 by adjusting the passage cross-sectional area of the high-pressure EGR passage 41. The high pressure EGR valve 42 is opened and closed by an electric actuator. The adjustment of the high-pressure EGR gas flow rate can also be performed by a method other than the adjustment of the opening degree of the high-pressure EGR valve 42. For example, by adjusting the opening degree of the second throttle valve 11, the differential pressure between the upstream and downstream of the high pressure EGR passage 41 can be changed, and thereby the flow rate of the high pressure EGR gas can be adjusted. Further, when the turbine 6b of the turbocharger is of a variable capacity type, the amount of high-pressure EGR gas can be adjusted also by adjusting the opening degree of the nozzle vane that changes the flow rate characteristics of the turbine 6b.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU13が併設されている。ECU13は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 13 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 13 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU13には、エアフローメータ8、吸気温度センサ9、機関回転数を検出するクランクポジションセンサ14、運転者がアクセルペダル15を踏み込んだ量に応じた電気信号を出力し燃料噴射量を検出可能なアクセル開度センサ16、機関冷却水の温度を検出する水温センサ17、大気圧を検出する大気圧センサ18、及び車両の車速を検出する車速センサ19が電気配線を介して接続され、これら各種センサの出力信号がECU13に入力されるようになっている。   The ECU 13 has an air flow meter 8, an intake air temperature sensor 9, a crank position sensor 14 that detects the engine speed, and an accelerator that can detect the fuel injection amount by outputting an electric signal corresponding to the amount of depression of the accelerator pedal 15 by the driver. An opening sensor 16, a water temperature sensor 17 that detects the temperature of the engine cooling water, an atmospheric pressure sensor 18 that detects atmospheric pressure, and a vehicle speed sensor 19 that detects the vehicle speed of the vehicle are connected via electric wiring, and these various sensors An output signal is input to the ECU 13.

一方、ECU13には、燃料噴射弁3、第1スロットル弁7、第2スロットル弁11、低圧EGR弁32、及び高圧EGR弁42の各アクチュエータが電気配線を介して接続されており、該ECU13によりこれらの機器が制御される。   On the other hand, the actuators of the fuel injection valve 3, the first throttle valve 7, the second throttle valve 11, the low pressure EGR valve 32, and the high pressure EGR valve 42 are connected to the ECU 13 through electric wiring. These devices are controlled.

そして、本実施例における内燃機関1は、1番〜4番の4気筒の内、減筒条件下で例えば1番及び4番の2気筒への燃料噴射を休止して残りの2番及び3番の2気筒で運転を継続する減筒運転を行うことのできる可変気筒内燃機関である。以下では減筒運転に対し、全気筒で燃料噴射を行い運転する場合を通常運転という。減筒運転を行う目的は、図2に示すように横軸に機関負荷をとり縦軸に燃費をとると、通常運転Aでは各気筒において燃費がかさむのに対し、減筒運転Bでは作動する気筒(以下、作動気筒という。ここでは2番及び3番気筒)を減らしつつ、当該作動気筒の機関負荷を上昇させることで燃費を向上するためである。減筒運転では、燃料噴射を休止した気筒(以下、休止気筒という。ここでは1番及び4番気筒)は燃料噴射だけが停止されており、吸排気は行われている。   The internal combustion engine 1 according to this embodiment stops fuel injection into, for example, No. 1 and No. 2 cylinders under the reduced cylinder condition among No. 1 to No. 4 cylinders, and the remaining Nos. 2 and 3 This is a variable-cylinder internal combustion engine that can perform a reduced-cylinder operation that continues operation with two cylinders. In the following, the case where the operation is performed by injecting fuel in all the cylinders is referred to as the normal operation in contrast to the reduced cylinder operation. The purpose of performing the reduced cylinder operation is that when the engine load is taken along the horizontal axis and the fuel consumption is taken along the vertical axis, as shown in FIG. This is because fuel efficiency is improved by increasing the engine load of the working cylinder while reducing the number of cylinders (hereinafter referred to as working cylinders, here, the second and third cylinders). In the reduced-cylinder operation, only the fuel injection is stopped and the intake and exhaust are performed in the cylinders in which the fuel injection is stopped (hereinafter referred to as the stopped cylinders, here, the first and fourth cylinders).

次に、本実施例における通常運転と減筒運転の切り替え制御について説明する。図3は、本実施例における内燃機関1の運転状態に応じた通常運転と減筒運転の使用領域を例示した概略図である。図3の横軸は内燃機関1の機関回転数Neを表し、縦軸は内燃機関の要求トルクTを表している。   Next, switching control between normal operation and reduced-cylinder operation in this embodiment will be described. FIG. 3 is a schematic view exemplifying use areas of normal operation and reduced-cylinder operation according to the operation state of the internal combustion engine 1 in the present embodiment. 3 represents the engine speed Ne of the internal combustion engine 1, and the vertical axis represents the required torque T of the internal combustion engine.

図3において、減筒運転領域は、内燃機関1の運転状態が低トルク・高回転の領域であり、減筒運転が行われる。すなわち、内燃機関1の運転状態が減筒運転領域に含まれる場合が減筒条件下となる。減筒運転は、例えば本実施例のような4気筒内燃機関であると、2速などの低いギアで車速を30kmとして機関回転数が1600回転となるような場合に行われる。また8気筒内燃機関であると、低トルク・低回転のアイドル状態まで含めて減筒運転を行うことができる。このため図3における減筒運転領域はあくまで例示したものであり、内燃機関の種別などによってその領域は変化するものである。一方、通常運転領域は、減筒運転領域以外の部分の領域であり、通常運転が行われる。このように通常運転と減筒運転とを切り替えることによって、できるだけ減筒運転を行い燃費を向上するようにしている。   In FIG. 3, the reduced-cylinder operation region is a region where the operating state of the internal combustion engine 1 is low torque and high rotation, and the reduced-cylinder operation is performed. That is, the reduced cylinder condition is when the operating state of the internal combustion engine 1 is included in the reduced cylinder operating region. For example, in the case of a four-cylinder internal combustion engine as in this embodiment, the reduced-cylinder operation is performed when the engine speed is 1600 with a low gear such as the second speed and a vehicle speed of 30 km. Further, in the case of an 8-cylinder internal combustion engine, it is possible to perform a reduced-cylinder operation including an idle state with low torque and low rotation. For this reason, the reduced-cylinder operation region in FIG. 3 is merely an example, and the region changes depending on the type of the internal combustion engine. On the other hand, the normal operation region is a region other than the reduced-cylinder operation region, and normal operation is performed. By switching between normal operation and reduced-cylinder operation in this way, reduced-cylinder operation is performed as much as possible to improve fuel efficiency.

ところで、減筒運転時には、作動気筒と休止気筒のそれぞれから排出される排気成分が異なるため、内燃機関1に還流される低圧EGRガス及び高圧EGRガスを合わせたEGRガスの成分がサイクルごとに変化してしまう。このEGRガス成分の変化はEGRガスが供給される作動気筒の、吸気におけるEGRガスの割合を示すEGR率に影響が及び作動気筒のEGR率が不安定になり、作動気筒の燃焼状態が不安定になる。これは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なることに起因して高圧EGR装置40によって還流される高圧EGRガスの二酸化炭素濃度が変化し、作動気筒の吸気酸素濃度が安定しないことに因る。高圧EGRガスはタービン6bより上流の排気通路5からコンプレッサ6aより下流の吸気通路4へ還流される。よって高圧EGRガスの還流経路が短く、高圧EGRガスは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なっていると、排気の二酸化炭素濃度のサイクルごとの変化に応じて二酸化炭素濃度がサイクリックに変化してしまうからである。また、減筒運転時には作
動気筒の機関負荷が上昇しているため、作動気筒が燃焼時に発生させるNOx量が増加してしまう。
By the way, during the reduced-cylinder operation, the exhaust components discharged from the working cylinder and the non-operating cylinder are different, so the components of the EGR gas combined with the low-pressure EGR gas and the high-pressure EGR gas recirculated to the internal combustion engine 1 change for each cycle. Resulting in. This change in the EGR gas component affects the EGR rate indicating the ratio of EGR gas in the intake air of the working cylinder to which the EGR gas is supplied, and the EGR rate of the working cylinder becomes unstable, and the combustion state of the working cylinder becomes unstable. become. This is because the carbon dioxide concentration of the high pressure EGR gas recirculated by the high pressure EGR device 40 changes due to the difference in the carbon dioxide concentration of the exhaust discharged from each of the working cylinder and the idle cylinder, and the intake oxygen concentration of the working cylinder changes. Is due to the instability. The high pressure EGR gas is recirculated from the exhaust passage 5 upstream from the turbine 6b to the intake passage 4 downstream from the compressor 6a. Therefore, if the high-pressure EGR gas has a short recirculation path and the high-pressure EGR gas has different carbon dioxide concentrations in the exhaust gas discharged from the working cylinder and the idle cylinder, the carbon dioxide concentration in the exhaust gas varies depending on the cycle. This is because the carbon concentration changes cyclically. Further, since the engine load of the working cylinder is increased during the reduced-cylinder operation, the amount of NOx generated by the working cylinder during combustion increases.

そこで本実施例では、減筒運転時には、内燃機関1へ供給される低圧EGRガス量及び高圧EGRガス量を合わせたEGRガス量における低圧EGRガス量の比率を高めるようにした。   In this embodiment, therefore, the ratio of the low-pressure EGR gas amount to the EGR gas amount that is the sum of the low-pressure EGR gas amount and the high-pressure EGR gas amount supplied to the internal combustion engine 1 is increased during the reduced-cylinder operation.

具体的には、通常運転時に比して減筒運転時の高圧EGR弁42の最大開度を小さくすると共に低圧EGR弁32の最大開度を大きくし、低圧EGRガス量と高圧EGRガス量を合わせたEGRガス量における低圧EGRガス量の比率を高める。   Specifically, the maximum opening degree of the high pressure EGR valve 42 during the reduced cylinder operation is decreased and the maximum opening degree of the low pressure EGR valve 32 is increased as compared with the normal operation, so that the low pressure EGR gas amount and the high pressure EGR gas amount are increased. The ratio of the low-pressure EGR gas amount to the combined EGR gas amount is increased.

本実施例によると、減筒運転時には通常運転時に比して低圧EGRガス量の比率を増加し、高圧EGRガス量の比率を減少させる。低圧EGRガスはタービン6bより下流の排気通路5からコンプレッサ6aより上流の吸気通路4へ還流される。よって低圧EGRガスは作動気筒と休止気筒のそれぞれから排出される排気の二酸化炭素濃度が異なっていても、コンプレッサ6aより上流の吸気通路4へ還流された際に吸気通路4における低圧EGR通路31との接続部位から吸気弁までの長い経路を流通する間に新気と混ざりさらにはコンプレッサ6aで攪拌される。このため低圧EGRガスと新気は一様に混ざり、吸気の酸素濃度が安定する。これにより作動気筒のEGR率が安定し、作動気筒に対して適切な燃焼状態を実現できる。   According to this embodiment, the ratio of the low-pressure EGR gas amount is increased during the reduced-cylinder operation and the ratio of the high-pressure EGR gas amount is decreased as compared with the normal operation. The low pressure EGR gas is recirculated from the exhaust passage 5 downstream of the turbine 6b to the intake passage 4 upstream of the compressor 6a. Therefore, even when the low pressure EGR gas is recirculated to the intake passage 4 upstream from the compressor 6a, the low pressure EGR passage 31 in the intake passage 4 and the exhaust gas discharged from the working cylinder and the idle cylinder are different from each other. While flowing through a long path from the connection part to the intake valve, it is mixed with fresh air and further stirred by the compressor 6a. For this reason, the low pressure EGR gas and the fresh air are uniformly mixed, and the oxygen concentration of the intake air is stabilized. Thereby, the EGR rate of the working cylinder is stabilized, and an appropriate combustion state can be realized for the working cylinder.

また、減筒運転時には2番及び3番の作動気筒では機関負荷が上昇しているため排気量が増加し、1番及び4番の休止気筒では燃焼せず単に吸排気が行われる。このため、排気脈動が2番及び3番の作動気筒が燃焼した時の大きな変位量且つ1番〜4番の全気筒が燃焼する通常運転時では180°CAのスパンであったのに対して2番及び3番の作動気筒が燃焼する間が360°CAと広がり燃焼間隔が大きなスパンで生じる。このような大きな変位量且つ大きなスパンを有する排気脈動であると、排気エネルギを駆動源とするターボチャージャは過給能力が落ちる。加えて高圧EGRガスを還流させるためにタービン6bより上流の排気通路5から排気の一部を高圧EGR装置40に取り込むと、タービン6bを通過する排気量が減少し、これによってもターボチャージャの過給能力が落ちてしまう。しかしながら本実施例によると、減筒運転時には高圧EGRガス量の比率を減少させるのでタービン6bより上流の排気通路5から排気の一部を高圧EGR装置40に取り込む量が減少し、タービン6bを通過する排気量が増加するので、ターボチャージャの過給能力が落ちることを抑制できる。このように過給能力が維持されており過給圧がかかり易いので、例えば減筒運転時から車両が加速して休止気筒も作動を再開させて通常運転となる場合に通常運転にスムーズに復帰できる。   Further, during the reduced-cylinder operation, the engine load increases in the second and third working cylinders, so the displacement increases, and the first and fourth idle cylinders simply perform intake and exhaust without combustion. For this reason, the exhaust pulsation was a large displacement when the No. 2 and No. 3 working cylinders burned and a span of 180 ° CA during normal operation where all No. 1 to No. 4 cylinders burned. While the 2nd and 3rd working cylinders are combusted, the range is 360 ° CA and the combustion interval is generated with a large span. When the exhaust pulsation has such a large displacement and a large span, the turbocharger that uses exhaust energy as a drive source has a reduced supercharging capability. In addition, if a part of the exhaust gas is taken into the high-pressure EGR device 40 from the exhaust passage 5 upstream from the turbine 6b in order to recirculate the high-pressure EGR gas, the amount of exhaust gas passing through the turbine 6b is reduced, which also causes excessive turbocharger excess. The salary capacity will drop. However, according to the present embodiment, the ratio of the high-pressure EGR gas amount is decreased during the reduced-cylinder operation, so that the amount of the exhaust gas taken into the high-pressure EGR device 40 from the exhaust passage 5 upstream from the turbine 6b is reduced and passes through the turbine 6b. Since the amount of exhaust gas to be increased increases, it is possible to suppress the turbocharger's supercharging capability from being lowered. Since the supercharging capability is maintained in this way and the supercharging pressure is easily applied, for example, when the vehicle accelerates from the reduced cylinder operation and the operation of the deactivated cylinder is resumed to return to the normal operation, the normal operation is smoothly restored. it can.

さらに、減筒運転時には作動気筒の機関負荷が上昇しているため、作動気筒が燃焼時に発生させるNOx量が増加してしまう。しかし本実施例によると、低圧EGRガスはタービン6bより下流の排気通路5からコンプレッサ6aより上流の吸気通路4へ還流される際に、その還流経路が長いことから冷え、加えて低圧EGRクーラ33によって強力に冷却されるので、吸気を強力に冷却できる。減筒運転時にはこの吸気を強力に冷却できる低圧EGRガス量の比率を増加するので、吸気が強力に冷却でき作動気筒では燃焼温度が低下する。燃焼温度が低下すると燃焼時に発生するNOx量が低下するので、作動気筒が燃焼時に発生させるNOx量を低減できる。   Further, since the engine load of the working cylinder is increased during the reduced-cylinder operation, the amount of NOx generated by the working cylinder during combustion increases. However, according to the present embodiment, when the low-pressure EGR gas is recirculated from the exhaust passage 5 downstream from the turbine 6b to the intake passage 4 upstream from the compressor 6a, the low-pressure EGR gas is cooled because the recirculation path is long, and in addition, the low-pressure EGR cooler 33 Because it is cooled strongly by the, intake air can be cooled strongly. Since the ratio of the low-pressure EGR gas amount that can cool the intake air strongly during the reduced-cylinder operation is increased, the intake air can be strongly cooled and the combustion temperature is lowered in the working cylinder. When the combustion temperature decreases, the amount of NOx generated during combustion decreases, so the amount of NOx generated by the working cylinder during combustion can be reduced.

以上のように本実施例によると、減筒運転により燃費を向上しつつ、減筒運転時の作動気筒に対して適切な燃焼状態を実現でき、過給能力が落ちることを抑制でき、作動気筒が燃焼時に発生させるNOx量を低減できる。   As described above, according to this embodiment, while improving fuel efficiency by reducing cylinder operation, it is possible to realize an appropriate combustion state with respect to the operating cylinder at the time of reducing cylinder operation, and to suppress a decrease in supercharging capacity. Can reduce the amount of NOx generated during combustion.

本実施例による減筒運転を実施する制御ルーチンについて説明する。図4は、本実施例による減筒運転を実施する制御ルーチンを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。   A control routine for performing the reduced-cylinder operation according to this embodiment will be described. FIG. 4 is a flowchart showing a control routine for performing reduced-cylinder operation according to this embodiment. This routine is repeatedly executed every predetermined time.

ステップS101では、ECU13は、クランクポジションセンサ14からの出力信号に基づき機関回転数Neを検出する。   In step S101, the ECU 13 detects the engine speed Ne based on the output signal from the crank position sensor 14.

ステップS102では、ECU13は、アクセル開度センサ16からの出力信号に基づき燃料噴射量qfinを検出する。   In step S102, the ECU 13 detects the fuel injection amount qfin based on the output signal from the accelerator opening sensor 16.

ステップS103では、ECU13は、水温センサ17、吸気温度センサ9、及び大気圧センサ18からの出力信号に基づき環境補正量を算出する。   In step S <b> 103, the ECU 13 calculates an environmental correction amount based on output signals from the water temperature sensor 17, the intake air temperature sensor 9, and the atmospheric pressure sensor 18.

ステップS104では、ECU13は、車速センサ19からの出力信号に基づき車速を検出する。   In step S104, the ECU 13 detects the vehicle speed based on the output signal from the vehicle speed sensor 19.

ステップS105では、ECU13は、要求トルクTを算出する。具体的には、要求トルクTは、ステップS101で検出した機関回転数Ne、ステップS102で検出した燃料噴射量qfin、ステップS103で算出した環境補正量、及びステップS104で検出した車速に基づいて算出される。   In step S105, the ECU 13 calculates the required torque T. Specifically, the required torque T is calculated based on the engine speed Ne detected in step S101, the fuel injection amount qfin detected in step S102, the environmental correction amount calculated in step S103, and the vehicle speed detected in step S104. Is done.

ステップS106では、ECU13は、減筒運転可能か否か判別する。ここでの判別は、ステップS101で検出した機関回転数NeとステップS105で算出した要求トルクTとを予め実験などにより求められた図3に示すマップに取り込み、減筒運転領域内に含まれるか否かで判断する。   In step S106, the ECU 13 determines whether or not the reduced cylinder operation is possible. In this determination, whether the engine speed Ne detected in step S101 and the required torque T calculated in step S105 are incorporated in the map shown in FIG. Judge by no.

ステップS106において減筒運転が可能であると肯定判定された場合には、ステップS107へ移行する。ステップS106において減筒運転が不可能であると否定判定された場合には、本ルーチンを一旦終了する。   If an affirmative determination is made in step S106 that the reduced-cylinder operation is possible, the process proceeds to step S107. If it is determined in step S106 that the reduced-cylinder operation is not possible, this routine is temporarily terminated.

ステップS107では、ECU13は、気筒休止設定を行う。具体的には、1番及び4番気筒に対する燃料噴射弁3からの燃料噴射を停止する設定を行う。   In step S107, the ECU 13 performs cylinder deactivation setting. Specifically, a setting is made to stop fuel injection from the fuel injection valve 3 for the first and fourth cylinders.

ステップS108では、ECU13は、減筒運転時の2番及び3番気筒に対する燃料噴射弁3からの燃料噴射量を算出する。具体的には、「減筒運転時燃料噴射量qtmp=2×燃料噴射量qfin+トルク段差補正項qdm」で算出される。ここで、燃料噴射量qfinはステップS102で検出したものである。また、トルク段差補正項qdmは減筒運転時のトルク段差を補正するものであり、「減筒運転時燃料噴射量qtmp」を「2×燃料噴射量qfin」よりも低減させるマイナスの補正項である。すなわち、トルク段差補正項qdm分だけ減筒運転時に燃費が向上することになる。   In step S108, the ECU 13 calculates the fuel injection amount from the fuel injection valve 3 for the second and third cylinders during the reduced cylinder operation. Specifically, it is calculated as “fuel injection amount qtmp = 2 × fuel injection amount qfin + torque step correction term qdm during reduced-cylinder operation”. Here, the fuel injection amount qfin is detected in step S102. Further, the torque step correction term qdm is for correcting the torque step during the reduced-cylinder operation, and is a negative correction term for reducing the “fuel injection amount qtmp during the reduced-cylinder operation” from “2 × fuel injection amount qfin”. is there. That is, the fuel efficiency is improved during the reduced cylinder operation by the torque step correction term qdm.

ステップS109では、ECU13は、減筒運転時燃料噴射量qtmpに基づく各種制御量を算出する。具体的には、減筒運転時燃料噴射量qtmpに基づいて、コモンレール圧、過給圧、燃料噴射時期、及び燃料噴射パターンの各種制御量を算出する。   In step S109, the ECU 13 calculates various control amounts based on the fuel injection amount qtmp during the reduced cylinder operation. Specifically, various control amounts of the common rail pressure, the supercharging pressure, the fuel injection timing, and the fuel injection pattern are calculated based on the fuel injection amount qtmp during the reduced cylinder operation.

ステップS110では、ECU13は、減筒運転時の目標EGR率を算出する。減筒運転時に燃費を向上させるため、通常運転時と減筒運転時とでは燃料噴射量が異なる。このため燃焼後の排気成分も異なる。したがってこの排気成分の差異分を埋めるため、減筒運転時の目標EGR率は通常運転時の目標EGR率よりもEGRガス量が増加する傾向(全吸気の内EGRガスの割合を示すEGR率が大きくなる傾向)に算出される。   In step S110, the ECU 13 calculates a target EGR rate during the reduced cylinder operation. In order to improve fuel efficiency during reduced-cylinder operation, the fuel injection amount differs between normal operation and reduced-cylinder operation. For this reason, the exhaust components after combustion are also different. Therefore, in order to fill this difference in exhaust components, the target EGR rate during the reduced-cylinder operation tends to increase the amount of EGR gas compared to the target EGR rate during normal operation (the EGR rate indicating the ratio of EGR gas in the total intake air It tends to be larger).

ステップS111では、ECU13は、減筒運転時の高圧EGR弁開度及び低圧EGR弁開度(両EGR弁開度)を算出する。具体的には、減筒運転時の高圧EGR弁開度及び低圧EGR弁開度は、ステップS101で検出した機関回転数Ne、ステップS108で算出した燃料噴射量qtmp、及びステップS110で算出した目標EGR率に基づく3次元マップにから算出されるが、この際に通常運転時に比して高圧EGR弁42の最大開度を小さくすると共に低圧EGR弁32の最大開度を大きくし、減筒運転時のEGRガス量における低圧EGRガス量の比率を高める。   In step S111, the ECU 13 calculates the high pressure EGR valve opening and the low pressure EGR valve opening (both EGR valve openings) during the reduced cylinder operation. Specifically, the high-pressure EGR valve opening and the low-pressure EGR valve opening during the reduced-cylinder operation are the engine speed Ne detected in step S101, the fuel injection amount qtmp calculated in step S108, and the target calculated in step S110. Calculated from a three-dimensional map based on the EGR rate. At this time, the maximum opening degree of the high pressure EGR valve 42 is reduced and the maximum opening degree of the low pressure EGR valve 32 is increased as compared with the normal operation, thereby reducing the cylinder operation. Increase the ratio of the low-pressure EGR gas amount to the hourly EGR gas amount.

図5(a)は機関回転数Neに対する高圧EGR弁42の最大開度を示し、図5(b)は機関回転数Neに対する低圧EGR弁32の最大開度を示す。図5(a)及び(b)における実線が減筒運転時の最大開度であり、破線が通常運転時の最大開度である。図5に示すように機関回転数Neに対して通常運転時に比して減筒運転時の高圧EGR弁42の最大開度を小さくすると共に低圧EGR弁32の最大開度を大きくする。なお、このようなことは燃料噴射量qtmpに対しても成立し、図示しないが燃料噴射量qtmpに対しても通常運転時に比して減筒運転時の高圧EGR弁42の最大開度を小さくすると共に低圧EGR弁32の最大開度を大きくする。   FIG. 5A shows the maximum opening degree of the high pressure EGR valve 42 with respect to the engine speed Ne, and FIG. 5B shows the maximum opening degree of the low pressure EGR valve 32 with respect to the engine speed Ne. The solid line in FIGS. 5A and 5B is the maximum opening during the reduced cylinder operation, and the broken line is the maximum opening during the normal operation. As shown in FIG. 5, the maximum opening degree of the high pressure EGR valve 42 during the reduced cylinder operation is reduced and the maximum opening degree of the low pressure EGR valve 32 is increased as compared with the normal operation time with respect to the engine speed Ne. This is also true for the fuel injection amount qtmp, and although not shown, the maximum opening of the high-pressure EGR valve 42 during the reduced cylinder operation is smaller for the fuel injection amount qtmp than during normal operation. In addition, the maximum opening degree of the low pressure EGR valve 32 is increased.

これにより、減筒運転時は、通常運転時に比して高圧EGR弁開度が閉じ側に設定されると共に低圧EGR弁開度が開き側に設定される。よって減筒運転時には通常運転時に比して低圧EGRガス量の比率を増加し、高圧EGRガス量の比率を減少させることになる。   Thereby, at the time of reduced-cylinder operation, the high-pressure EGR valve opening is set to the closed side and the low-pressure EGR valve opening is set to the open side as compared with the normal operation. Therefore, during the reduced cylinder operation, the ratio of the low pressure EGR gas amount is increased and the ratio of the high pressure EGR gas amount is decreased as compared with the normal operation.

なお、本実施例では、減筒運転時に通常運転時に比して高圧EGR弁開度が閉じ側に設定されると共に低圧EGR弁開度が開き側に設定されることで、EGRガス量における低圧EGRガス量の比率を高めるようにしているが、本発明はこれに限られない。例えば高圧EGR弁開度及び低圧EGR弁開度は減筒運転時においても通常運転時と変わらないまま、減筒運転時では他の機器(例えば第1、第2スロットル弁7,11、排気絞り弁、可変容量型のタービン6bなど)によってEGRガス量における低圧EGRガス量の比率を高めるようにしてもよい。   In the present embodiment, the high-pressure EGR valve opening is set to the closed side and the low-pressure EGR valve opening is set to the open side as compared with the normal operation during the reduced-cylinder operation, thereby reducing the low pressure in the EGR gas amount. Although the ratio of the EGR gas amount is increased, the present invention is not limited to this. For example, the high-pressure EGR valve opening and the low-pressure EGR valve opening remain unchanged during the reduced-cylinder operation and during the reduced-cylinder operation, other devices (for example, the first and second throttle valves 7, 11 and the exhaust throttle) The ratio of the low pressure EGR gas amount to the EGR gas amount may be increased by a valve, a variable displacement turbine 6b, or the like.

ステップS112では、ECU13は、制御を実行する。具体的には、ステップS107で設定した気筒休止設定に応じて1番及び4番の気筒休止を実行し、ステップS109で算出した各種制御量に応じて各種制御を実行し、ステップS111で設定した開度となるように高圧EGR弁42及び低圧EGR弁32の制御を実行する。本ステップの処理の後、本ルーチンを一旦終了する。   In step S112, the ECU 13 executes control. Specifically, the first and fourth cylinder deactivations are executed in accordance with the cylinder deactivation settings set in step S107, various controls are performed in accordance with the various control amounts calculated in step S109, and set in step S111. Control of the high-pressure EGR valve 42 and the low-pressure EGR valve 32 is executed so that the opening degree is reached. After the processing of this step, this routine is once ended.

以上の制御ルーチンを実行することにより、内燃機関1に還流するEGRガス量における低圧EGRガス量の比率を高めた減筒運転ができる。   By executing the above control routine, the reduced-cylinder operation in which the ratio of the low-pressure EGR gas amount to the EGR gas amount recirculated to the internal combustion engine 1 can be performed.

本発明に係る可変気筒内燃機関の排気還流装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The exhaust gas recirculation device for a variable cylinder internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention.

実施例1に係る内燃機関、及びその吸気系・排気系の概略構成を示す図。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to a first embodiment and intake and exhaust systems thereof. 実施例1に係る通常運転及び減筒運転における機関負荷と燃費との関係を示す図。The figure which shows the relationship between the engine load and fuel consumption in the normal driving | operation and reduced-cylinder driving which concern on Example 1. FIG. 実施例1に係る内燃機関の運転状態に応じた通常運転と減筒運転の使用領域を示す図。The figure which shows the use area | region of the normal driving | operation according to the driving | running state of the internal combustion engine which concerns on Example 1, and a reduced cylinder driving | operation. 実施例1に係る減筒運転を実施する制御ルーチンを示したフローチャート。3 is a flowchart showing a control routine for performing reduced-cylinder operation according to the first embodiment. 実施例1に係る通常運転及び減筒運転における内燃機関の機関回転数とEGR弁の最大開度との関係を示す図であり、(a)が高圧EGR弁の場合であり、(b)が低圧EGR弁の場合である。It is a figure which shows the relationship between the engine speed of an internal combustion engine and the maximum opening degree of an EGR valve in the normal driving | operation and reduction-cylinder driving which concern on Example 1, (a) is a case where it is a high pressure EGR valve, (b) is This is the case of the low pressure EGR valve.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 燃料噴射弁
4 吸気通路
5 排気通路
6a コンプレッサ
6b タービン
7 第1スロットル弁
8 エアフローメータ
9 吸気温度センサ
10 インタークーラ
11 第2スロットル弁
12 排気浄化装置
13 ECU
14 クランクポジションセンサ
15 アクセルペダル
16 アクセル開度センサ
17 水温センサ
18 大気圧センサ
19 車速センサ
30 低圧EGR装置
31 低圧EGR通路
32 低圧EGR弁
33 低圧EGRクーラ
40 高圧EGR装置
41 高圧EGR通路
42 高圧EGR弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Fuel injection valve 4 Intake passage 5 Exhaust passage 6a Compressor 6b Turbine 7 First throttle valve 8 Air flow meter 9 Intake temperature sensor 10 Intercooler 11 Second throttle valve 12 Exhaust purification device 13 ECU
14 Crank position sensor 15 Accelerator pedal 16 Accelerator opening sensor 17 Water temperature sensor 18 Atmospheric pressure sensor 19 Vehicle speed sensor 30 Low pressure EGR device 31 Low pressure EGR passage 32 Low pressure EGR valve 33 Low pressure EGR cooler 40 High pressure EGR device 41 High pressure EGR passage 42 High pressure EGR valve

Claims (2)

複数の気筒を有し、減筒条件下で一部の気筒への燃料噴射を休止して残りの気筒で運転を継続する減筒運転を実行可能な可変気筒内燃機関の排気還流装置であって、
前記内燃機関の排気通路に配置されたタービン及び前記内燃機関の吸気通路に配置されたコンプレッサを有するターボチャージャと、
前記タービンより下流の前記排気通路から排気の一部を低圧EGRガスとして取り込み、前記コンプレッサより上流の前記吸気通路へ当該低圧EGRガスを還流させる低圧EGR装置と、
前記タービンより上流の前記排気通路から排気の一部を高圧EGRガスとして取り込み、前記コンプレッサより下流の前記吸気通路へ当該高圧EGRガスを還流させる高圧EGR装置と、
を備え、
前記減筒運転時には、前記内燃機関へ供給される前記低圧EGRガス量及び前記高圧EGRガス量を合わせたEGRガス量における前記低圧EGRガス量の比率を高めることを特徴とする可変気筒内燃機関の排気還流装置。
An exhaust gas recirculation apparatus for a variable cylinder internal combustion engine having a plurality of cylinders and capable of executing a reduced cylinder operation in which fuel injection to some cylinders is stopped under reduced cylinder conditions and operation is continued in the remaining cylinders. ,
A turbocharger having a turbine disposed in an exhaust passage of the internal combustion engine and a compressor disposed in an intake passage of the internal combustion engine;
A low-pressure EGR device that takes in a part of exhaust gas as low-pressure EGR gas from the exhaust passage downstream from the turbine and recirculates the low-pressure EGR gas to the intake passage upstream from the compressor;
A high-pressure EGR device that takes in a part of exhaust gas as high-pressure EGR gas from the exhaust passage upstream of the turbine and recirculates the high-pressure EGR gas to the intake passage downstream of the compressor;
With
In the variable-cylinder internal combustion engine, the ratio of the low-pressure EGR gas amount to the EGR gas amount obtained by combining the low-pressure EGR gas amount and the high-pressure EGR gas amount supplied to the internal combustion engine is increased during the reduced-cylinder operation. Exhaust gas recirculation device.
前記低圧EGR装置に、前記低圧EGR装置内を流通する前記低圧EGRガスを冷却する冷却手段を備えたことを特徴とする請求項1に記載の可変気筒内燃機関の排気還流装置。   2. The exhaust gas recirculation device for a variable cylinder internal combustion engine according to claim 1, wherein the low pressure EGR device is provided with a cooling means for cooling the low pressure EGR gas flowing through the low pressure EGR device.
JP2007332674A 2007-12-25 2007-12-25 Exhaust recirculating device of variable cylinder internal combustion engine Withdrawn JP2009156090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332674A JP2009156090A (en) 2007-12-25 2007-12-25 Exhaust recirculating device of variable cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332674A JP2009156090A (en) 2007-12-25 2007-12-25 Exhaust recirculating device of variable cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009156090A true JP2009156090A (en) 2009-07-16

Family

ID=40960371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332674A Withdrawn JP2009156090A (en) 2007-12-25 2007-12-25 Exhaust recirculating device of variable cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009156090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223040A (en) * 2009-03-23 2010-10-07 Hino Motors Ltd Exhaust gas recirculation method and device for turbocharged engine
JP2012012998A (en) * 2010-06-30 2012-01-19 Mazda Motor Corp Diesel engine for vehicle
JP5218669B2 (en) * 2009-10-30 2013-06-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2016050500A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Internal combustion engine
JP2016065465A (en) * 2014-09-24 2016-04-28 マツダ株式会社 Air intake and exhaust device of engine
CN107237696A (en) * 2016-03-28 2017-10-10 长城汽车股份有限公司 The cylinder deactivation control method and system of engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223040A (en) * 2009-03-23 2010-10-07 Hino Motors Ltd Exhaust gas recirculation method and device for turbocharged engine
JP5218669B2 (en) * 2009-10-30 2013-06-26 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012012998A (en) * 2010-06-30 2012-01-19 Mazda Motor Corp Diesel engine for vehicle
JP2016050500A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Internal combustion engine
JP2016065465A (en) * 2014-09-24 2016-04-28 マツダ株式会社 Air intake and exhaust device of engine
CN107237696A (en) * 2016-03-28 2017-10-10 长城汽车股份有限公司 The cylinder deactivation control method and system of engine
CN107237696B (en) * 2016-03-28 2020-06-09 长城汽车股份有限公司 Cylinder deactivation control method and system for engine

Similar Documents

Publication Publication Date Title
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4285528B2 (en) Exhaust gas recirculation system for internal combustion engines
JP4240101B2 (en) EGR system for internal combustion engine
JP4215069B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5187123B2 (en) Control device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
KR20170139926A (en) Engine systme having exahust gas recirculation apparatus and control mehtod using the same
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP2008138598A (en) Egr system for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP4765966B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2008150978A (en) Exhaust gas recirculating device of internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2013148067A (en) Control device of internal combustion engine
JP2011179425A (en) Exhaust recirculation device of internal combustion engine
JP2011226437A (en) Abnormality detection device and method of egr system
JP4957478B2 (en) Exhaust gas purification device for internal combustion engine
JP2005299570A (en) Premixed combustion control system for compression ignition internal combustion engine
JP2008031874A (en) Exhaust emission control device for engine
JP2011185096A (en) Exhaust recirculation device for internal combustion engine
JP2008019730A (en) Exhaust gas recirculating device of internal combustion engine
JP2009270476A (en) Egr flow control device and egr flow control system
JP2007291975A (en) Exhaust recirculation device of internal combustion engine
JP4175952B2 (en) Combustion control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301