Nothing Special   »   [go: up one dir, main page]

JP2009144930A - Total enthalpy heat exchanger - Google Patents

Total enthalpy heat exchanger Download PDF

Info

Publication number
JP2009144930A
JP2009144930A JP2006094170A JP2006094170A JP2009144930A JP 2009144930 A JP2009144930 A JP 2009144930A JP 2006094170 A JP2006094170 A JP 2006094170A JP 2006094170 A JP2006094170 A JP 2006094170A JP 2009144930 A JP2009144930 A JP 2009144930A
Authority
JP
Japan
Prior art keywords
partition plate
heat exchanger
total heat
hydrophilic polymer
polyoxyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006094170A
Other languages
Japanese (ja)
Inventor
Michio Murai
道雄 村井
Eiji Nobutoki
英治 信時
Shinya Tokizaki
晋也 鴇崎
Hidemoto Arai
秀元 荒井
Masaru Takada
勝 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006094170A priority Critical patent/JP2009144930A/en
Priority to PCT/JP2006/325357 priority patent/WO2007116567A1/en
Publication of JP2009144930A publication Critical patent/JP2009144930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total enthalpy heat exchanger producing the same performance even in an environment where dew condensation occurs repeatedly, and improves the efficiency of total enthalpy heat exchange. <P>SOLUTION: In this total enthalpy heat exchanger, supply air and discharge air are caused to flow with a partition plate 4 between them, thus, sensible heat/latent heat exchange is conducted between the supply air and the discharge air via the partition plate 4. The partition plate 4 includes a non-woven fabric and a moisture-permeable gas-barrier material adherent thereto. The moisture-permeable gas-barrier material includes a water-insoluble hydrophilic polymeric material containing polyoxyethylene, and a moisture absorbent held in the hydrophilic polymeric material, and including at least one of deliquescent alkali metal salts and alkaline earth metal salts. The polyoxyethylene content in the hydrophilic polymeric material is 10-50 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、例えば室外から室内への吸気と、室内から室外への排気とを同時に行う換気装置等に用いられる全熱交換器に関するものである。   The present invention relates to a total heat exchanger used in, for example, a ventilator that simultaneously performs intake air from the outdoor to the indoors and exhaust air from the indoors to the outdoor.

室内の冷暖房効果を損なわずに換気を行う方法としては、吸気と排気との間で熱交換を行いながら換気を行う方法がある。また、熱交換の効率を向上させるためには、吸気と排気との間で温度(顕熱)とともに湿度(潜熱)の交換も同時に行う(即ち、全熱交換を行う)のが有効である。   As a method of performing ventilation without impairing the indoor air conditioning effect, there is a method of performing ventilation while exchanging heat between intake and exhaust. In order to improve the efficiency of heat exchange, it is effective to simultaneously exchange temperature (sensible heat) and humidity (latent heat) between intake and exhaust (that is, perform total heat exchange).

従来、高分子多孔質シートに吸湿性物質を含浸または塗布した仕切板を介して吸気及び排気間の全熱交換を行う全熱交換器が提案されている。吸湿性物質としては、吸湿剤を含有する親水性高分子等が用いられている(特許文献1参照)。   Conventionally, there has been proposed a total heat exchanger that performs total heat exchange between intake and exhaust through a partition plate in which a porous polymer sheet is impregnated or coated with a hygroscopic substance. As the hygroscopic substance, a hydrophilic polymer containing a hygroscopic agent is used (see Patent Document 1).

また、従来、多孔質シートの片面に非水溶性の親水性高分子薄膜を形成した仕切板を介して吸気及び排気間の全熱交換を行う全熱交換器も提案されている。親水性高分子薄膜は、オキシエチレン基を30%含むポリウレタン系樹脂により構成されている(特許文献2参照)。   Conventionally, a total heat exchanger that performs total heat exchange between intake and exhaust via a partition plate in which a water-insoluble hydrophilic polymer thin film is formed on one side of a porous sheet has also been proposed. The hydrophilic polymer thin film is made of a polyurethane resin containing 30% oxyethylene groups (see Patent Document 2).

特公平4−15476号公報Japanese Patent Publication No. 4-15476 特許第2639303号公報Japanese Patent No. 2639303

しかし、特許文献1に示された全熱交換器では、親水性高分子による吸湿剤の保持力が弱く、仕切板表面に発生した結露による吸湿剤の流失量が多くなってしまうので、仕切板の透湿性を長期間維持することができなくなる。従って、全熱交換器を長期間使用した場合には、全熱交換器の性能が低下してしまう。   However, in the total heat exchanger shown in Patent Document 1, the retention capacity of the hygroscopic agent by the hydrophilic polymer is weak, and the amount of the hygroscopic agent that has flowed out due to condensation on the surface of the partition plate increases. The moisture permeability cannot be maintained for a long time. Therefore, when the total heat exchanger is used for a long period of time, the performance of the total heat exchanger is degraded.

また、特許文献2に示された全熱交換器では、吸湿剤が仕切板に含まれていないので、仕切板の透湿性が悪くなり、仕切板が吸湿剤を含む場合に比べて、全熱交換効率が低くなってしまう。   Further, in the total heat exchanger shown in Patent Document 2, since the hygroscopic agent is not included in the partition plate, the moisture permeability of the partition plate is deteriorated, and compared with the case where the partition plate includes the hygroscopic agent, the total heat is reduced. The exchange efficiency will be low.

この発明は、上記のような課題を解決するためになされたものであり、結露を繰り返す環境下でも性能の低下の抑制を図ることができるとともに、全熱交換効率の向上を図ることができる全熱交換器を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is capable of suppressing a decrease in performance even in an environment where condensation is repeated, and can improve the total heat exchange efficiency. The purpose is to obtain a heat exchanger.

この発明に係る全熱交換器は、仕切板を隔てて二種の気流を流動させ、仕切板を介して二種の気流の顕熱及び潜熱を熱交換させる全熱交換器であって、仕切板は、ポリオキシエチレンを含む非水溶性の親水性高分子材料と、親水性高分子材料内に保持され、潮解性を有するアルカリ金属塩及びアルカリ土類金属塩の少なくともいずれかを含む吸湿剤とを有し、親水性高分子材料におけるポリオキシエチレンの含有率は、10〜50wt%の範囲内とされている。   A total heat exchanger according to the present invention is a total heat exchanger that causes two types of airflow to flow through a partition plate, and performs heat exchange between sensible heat and latent heat of the two types of airflow through the partition plate. The board comprises a water-insoluble hydrophilic polymer material containing polyoxyethylene, and a hygroscopic agent held in the hydrophilic polymer material and having at least one of an alkali metal salt and an alkaline earth metal salt having deliquescence The content of polyoxyethylene in the hydrophilic polymer material is in the range of 10 to 50 wt%.

この発明に係る全熱交換器では、仕切板が、ポリオキシエチレンを含む非水溶性の親水性高分子材料と、この親水性高分子材料内に保持され、潮解性を有するアルカリ金属塩及びアルカリ土類金属塩の少なくともいずれかを含む吸収剤とを有し、親水性高分子材料におけるポリオキシエチレンの含有率が10〜50wt%の範囲内とされているので、吸湿剤とポリオキシエチレンとの会合効果(鎖形成効果)により吸湿剤と親水性高分子とが相溶しやすくなり、吸湿剤の流失の防止を図ることができる。また、仕切板の結露による親水性高分子材料そのものの流動の防止を図ることができ、気体遮蔽性の低下の抑制も図ることができる。従って、結露を繰り返す環境下でも性能の低下の抑制を図ることができるとともに、全熱交換効率の向上を図ることができる。   In the total heat exchanger according to the present invention, the partition plate includes a water-insoluble hydrophilic polymer material containing polyoxyethylene, and an alkali metal salt and alkali that are held in the hydrophilic polymer material and have deliquescence properties. An absorbent containing at least one of earth metal salts, and the content of polyoxyethylene in the hydrophilic polymer material is in the range of 10 to 50 wt%. The association effect (chain formation effect) makes it easier for the hygroscopic agent and the hydrophilic polymer to be compatible with each other, thereby preventing the hygroscopic agent from being lost. In addition, it is possible to prevent the hydrophilic polymer material itself from flowing due to condensation of the partition plate, and it is possible to suppress a decrease in gas shielding properties. Accordingly, it is possible to suppress a decrease in performance even in an environment where condensation is repeated, and to improve the total heat exchange efficiency.

実施の形態
図1は、この発明の実施の形態による全熱交換器を示す斜視図である。図において、全熱交換器1は、給気の気流が通される給気層2と、排気の気流が通される排気層3とが仕切板4を介して交互に積層された積層体である。給気層2には、仕切板4に沿って給気の気流を導く給気通路5が設けられている。排気層3には、仕切板4に沿って排気の気流を導く排気通路6が設けられている。給気通路5及び排気通路6は、各仕切板4の間隔を保持する波形の間隔板7によりそれぞれ形成されている。給気の気流が給気通路5により導かれる方向Aと、排気の気流が排気通路6により導かれる方向Bとは、互いに垂直になっている。
Embodiment FIG. 1 is a perspective view showing a total heat exchanger according to an embodiment of the present invention. In the figure, a total heat exchanger 1 is a laminated body in which an air supply layer 2 through which an air flow of supply air passes and an exhaust layer 3 through which an air flow of exhaust passes are alternately stacked via a partition plate 4. is there. The air supply layer 2 is provided with an air supply passage 5 that guides the airflow of the supply air along the partition plate 4. The exhaust layer 3 is provided with an exhaust passage 6 that guides an exhaust airflow along the partition plate 4. The air supply passage 5 and the exhaust passage 6 are respectively formed by corrugated spacing plates 7 that keep the spacing between the partition plates 4. A direction A in which the airflow of the supply air is guided by the air supply passage 5 and a direction B in which the airflow of the exhaust air is guided by the exhaust passage 6 are perpendicular to each other.

各仕切板4は、不織布(多孔質シート)と、不織布に着けられ、空気を遮るとともに熱及び水蒸気を通過させる性質を有する膜状の透湿性気体遮蔽物とを有している。   Each partition plate 4 has a nonwoven fabric (porous sheet) and a membrane-like moisture-permeable gas shield that is attached to the nonwoven fabric and has a property of blocking air and allowing heat and water vapor to pass through.

透湿性気体遮蔽物は、ポリオキシエチレンを含む非水溶性の親水性高分子材料と、この親水性高分子材料内に保持され、潮解性を有するアルカリ金属塩及びアルカリ土類金属塩の少なくともいずれかを含む吸湿剤とを有している。即ち、透湿性気体遮蔽物は、ポリオキシエチレンを含む非水溶性の親水性高分子材料内に吸湿剤が保持された吸湿剤含有高分子体である。親水性高分子材料におけるポリオキシエチレンの含有率は、10〜50wt%の範囲内とされている。即ち、親水性高分子材料の分子中には、ポリオキシエチレン鎖が10〜50wt%含まれている。   The moisture-permeable gas shielding material includes a water-insoluble hydrophilic polymer material containing polyoxyethylene and at least any one of an alkali metal salt and an alkaline earth metal salt held in the hydrophilic polymer material and having deliquescence. And a hygroscopic agent containing That is, the moisture-permeable gas shielding material is a hygroscopic agent-containing polymer body in which a hygroscopic agent is held in a water-insoluble hydrophilic polymer material containing polyoxyethylene. The polyoxyethylene content in the hydrophilic polymer material is in the range of 10 to 50 wt%. That is, 10-50 wt% of polyoxyethylene chains are contained in the molecule of the hydrophilic polymer material.

不織布は、ポリエステル繊維により構成されている。また、不織布の目付量は15g/m2、不織布の厚さは35μm、不織布の通気度は280cc/cm2/secとされている。 The nonwoven fabric is made of polyester fibers. The basis weight of the nonwoven fabric is 15 g / m 2 , the thickness of the nonwoven fabric is 35 μm, and the air permeability of the nonwoven fabric is 280 cc / cm 2 / sec.

なお、間隔板7は、加工紙を波板状に加工して作製されている。加工紙の厚さは、50μm〜200μmの範囲内に設定されている。   The interval plate 7 is manufactured by processing a processed paper into a corrugated plate shape. The thickness of the processed paper is set within a range of 50 μm to 200 μm.

次に、動作について説明する。例えば、冷たくて乾燥した外気が給気として給気層2に通され、暖かくて湿気の高い室内空気が排気として排気層3に通されると、給気及び排気の各気流(二種の気流)が各仕切板4を隔てて流れる。このとき、仕切板4を熱及び水蒸気が通り、給気と排気との間で顕熱及び潜熱の熱交換が各仕切板4を介して行われる。これにより、給気は暖められるとともに加湿されて室内に供給され、排気は冷やされるとともに減湿されて室外へ排出される。   Next, the operation will be described. For example, when cold and dry outside air is passed through the air supply layer 2 as supply air, and warm and humid room air is passed through the exhaust layer 3 as exhaust, each air flow of supply and exhaust (two air flows) ) Flows across each partition plate 4. At this time, heat and water vapor pass through the partition plate 4, and heat exchange of sensible heat and latent heat is performed via the partition plates 4 between the supply air and the exhaust air. Thus, the supply air is warmed and humidified and supplied to the room, and the exhaust is cooled and dehumidified and discharged to the outside.

以下、この実施の形態における実施例1〜7と、実施例1〜7と比較するための比較例1〜5とについて説明する。   Hereinafter, Examples 1 to 7 in this embodiment and Comparative Examples 1 to 5 for comparison with Examples 1 to 7 will be described.

実施例1.
この例では、塩化リチウムが吸湿剤として用いられている。また、非水溶性の親水性高分子材料としては、ポリウレタン樹脂が用いられている。さらに、非水溶性の親水性高分子材料におけるポリオキシエチレンの含有率は、50wt%とされている。さらにまた、透湿性気体遮蔽物における吸湿剤の含有率は、10wt%とされている。
Example 1.
In this example, lithium chloride is used as the hygroscopic agent. A polyurethane resin is used as the water-insoluble hydrophilic polymer material. Furthermore, the polyoxyethylene content in the water-insoluble hydrophilic polymer material is 50 wt%. Furthermore, the content rate of the hygroscopic agent in the moisture-permeable gas shield is set to 10 wt%.

次に、全熱交換器1の製造方法について説明する。まず、ジフェニルメタンジイソシアネート(以下、「MDI」という)、1,4−ブタンジオール(以下、「BG」という)、ポリエチレングリコール(以下、「PEG」という)及びポリテトラメチレングリコール(以下、「PTMG」という)を混合した後、加熱重合する。これにより、ポリオキシエチレン鎖(原料のPEGに由来)を分子中に50wt%含むポリウレタン樹脂を作製する。   Next, the manufacturing method of the total heat exchanger 1 is demonstrated. First, diphenylmethane diisocyanate (hereinafter referred to as “MDI”), 1,4-butanediol (hereinafter referred to as “BG”), polyethylene glycol (hereinafter referred to as “PEG”) and polytetramethylene glycol (hereinafter referred to as “PTMG”). ) And then polymerized by heating. This produces a polyurethane resin containing 50 wt% of polyoxyethylene chains (derived from the raw material PEG) in the molecule.

この後、作製したポリウレタン樹脂をジメチルホルムアミドに溶解してポリウレタン溶液とした後、ポリウレタン溶液と塩化リチウムとを混合したポリウレタン樹脂混合溶液を作製する。このとき、ポリウレタン樹脂と塩化リチウムとの重量比が9:1となるようにする。   Thereafter, the prepared polyurethane resin is dissolved in dimethylformamide to form a polyurethane solution, and then a polyurethane resin mixed solution in which the polyurethane solution and lithium chloride are mixed is prepared. At this time, the weight ratio of the polyurethane resin to lithium chloride is set to 9: 1.

この後、ポリウレタン樹脂混合溶液を離型フィルムにコンマコータで塗布し、加熱乾燥することにより、厚さが20μmの塩化リチウム含有ポリウレタン樹脂膜を透湿性気体遮蔽物として作製する。   Thereafter, the polyurethane resin mixed solution is applied to the release film with a comma coater and dried by heating to produce a lithium chloride-containing polyurethane resin film having a thickness of 20 μm as a moisture-permeable gas shield.

この後、塩化リチウム含有ポリウレタン樹脂膜を離型フィルムから不織布に熱ロールにより転着させる。このようにして、塩化リチウム含有ポリウレタン樹脂膜が不織布に形成された仕切板4を作製する。   Thereafter, the lithium chloride-containing polyurethane resin film is transferred from the release film to the nonwoven fabric by a hot roll. Thus, the partition plate 4 in which the lithium chloride-containing polyurethane resin film is formed on the nonwoven fabric is produced.

この後、波状に成形された間隔板7と仕切板4とを貼り合わせた積層単位体を作製する。この後、仕切板4の形状が30cm角の正方形になるように積層単位体を成形した後、間隔板7の波溝の方向が一段おきに直交するように複数の積層単位体を積層する。このようにして、高さが50cmの全熱交換器1を作製する。   Then, the laminated unit body which bonded together the spacing plate 7 and the partition plate 4 which were wave-shaped is produced. After that, after forming the laminated unit body so that the shape of the partition plate 4 is a 30 cm square, a plurality of laminated unit bodies are laminated so that the direction of the wave groove of the spacing plate 7 is orthogonal every other step. In this way, the total heat exchanger 1 having a height of 50 cm is produced.

実施例2.
この例では、透湿性気体遮蔽物における吸湿剤の含有率が33wt%とされている。即ち、ポリウレタン樹脂と塩化リチウムとの重量比が2:1となるようにポリウレタン溶液と塩化リチウムとを混合したポリウレタン樹脂混合溶液を作製し、この後、実施例1と同様にして全熱交換器1を作製している。他の構成は実施例1と同様である。
Example 2
In this example, the content of the hygroscopic agent in the moisture-permeable gas shield is 33 wt%. That is, a polyurethane resin mixed solution was prepared by mixing a polyurethane solution and lithium chloride so that the weight ratio of polyurethane resin to lithium chloride was 2: 1. Thereafter, the total heat exchanger was prepared in the same manner as in Example 1. 1 is produced. Other configurations are the same as those of the first embodiment.

実施例3.
この例では、透湿性気体遮蔽物における吸湿剤の含有率が50wt%とされている。即ち、ポリウレタン樹脂と塩化リチウムとの重量比が1:1となるようにポリウレタン溶液と塩化リチウムとを混合したポリウレタン樹脂混合溶液を作製し、この後、実施例1と同様にして全熱交換器1を作製している。他の構成は実施例1と同様である。
Example 3 FIG.
In this example, the content of the hygroscopic agent in the moisture-permeable gas shield is 50 wt%. That is, a polyurethane resin mixed solution in which a polyurethane solution and lithium chloride were mixed so that the weight ratio of the polyurethane resin and lithium chloride was 1: 1 was prepared. Thereafter, the total heat exchanger was prepared in the same manner as in Example 1. 1 is produced. Other configurations are the same as those of the first embodiment.

実施例4.
この例では、非水溶性の親水性高分子材料におけるポリオキシエチレンの含有率が30wt%とされている。即ち、PEG及びPTMGの配合比を変えることにより、ポリオキシエチレン鎖を分子中に30wt%含むポリウレタン樹脂を作製し、この後、実施例1と同様にして全熱交換器1を作製している。他の構成は実施例1と同様である。
Example 4
In this example, the polyoxyethylene content in the water-insoluble hydrophilic polymer material is 30 wt%. That is, by changing the blending ratio of PEG and PTMG, a polyurethane resin containing 30 wt% of polyoxyethylene chains in the molecule is produced, and thereafter, the total heat exchanger 1 is produced in the same manner as in Example 1. . Other configurations are the same as those of the first embodiment.

実施例5.
この例では、非水溶性の親水性高分子材料におけるポリオキシエチレンの含有率が10wt%とされている。即ち、PEG及びPTMGの配合比を変えることにより、ポリオキシエチレン鎖を分子中に10wt%含むポリウレタン樹脂を作製し、この後、実施例1と同様にして全熱交換器1を作製している。他の構成は実施例1と同様である。
Embodiment 5 FIG.
In this example, the polyoxyethylene content in the water-insoluble hydrophilic polymer material is 10 wt%. That is, by changing the blending ratio of PEG and PTMG, a polyurethane resin containing 10 wt% of polyoxyethylene chains in the molecule is produced, and thereafter, the total heat exchanger 1 is produced in the same manner as in Example 1. . Other configurations are the same as those of the first embodiment.

実施例6.
この例では、塩化カルシウムが吸湿剤として用いられている。他の構成は実施例1と同様である。
Example 6
In this example, calcium chloride is used as a hygroscopic agent. Other configurations are the same as those of the first embodiment.

実施例7.
この例では、ポリアクリル樹脂が非水溶性の親水性高分子材料として用いられている。他の構成は実施例1と同様である。
Example 7
In this example, polyacrylic resin is used as a water-insoluble hydrophilic polymer material. Other configurations are the same as those of the first embodiment.

次に、この例での全熱交換器1の製造方法について説明する。まず、ポリエチレングリコールモノアクリレートとメチルメタクリレートとを重合させ、ポリエチレングリコールモノアクリレートのポリオキシエチレン鎖部分の重量分率が50wt%になるようにポリアクリル樹脂を調製する。即ち、ポリオキシエチレン鎖を分子中に50wt%含むポリアクリル樹脂を作製する。   Next, the manufacturing method of the total heat exchanger 1 in this example will be described. First, polyethylene glycol monoacrylate and methyl methacrylate are polymerized to prepare a polyacrylic resin so that the weight fraction of the polyoxyethylene chain portion of polyethylene glycol monoacrylate is 50 wt%. That is, a polyacrylic resin containing 50% by weight of polyoxyethylene chains in the molecule is prepared.

この後、作製したポリアクリル樹脂をアセトンに溶解してポリアクリル溶液とした後、ポリアクリル溶液と塩化リチウム水溶液とを混合したポリアクリル樹脂混合溶液を作製する。このとき、ポリアクリル樹脂と塩化リチウムとの重量比が9:1となるようにする。   Thereafter, the prepared polyacrylic resin is dissolved in acetone to form a polyacrylic solution, and then a polyacrylic resin mixed solution in which the polyacrylic solution and the lithium chloride aqueous solution are mixed is prepared. At this time, the weight ratio of polyacrylic resin to lithium chloride is set to 9: 1.

この後、ポリアクリル樹脂混合溶液を離型フィルムにコンマコータで塗布し、加熱乾燥することにより、厚さが20μmの塩化リチウム含有ポリアクリル樹脂膜を透湿性気体遮蔽物として作製する。   Thereafter, the polyacrylic resin mixed solution is applied to the release film with a comma coater and dried by heating to produce a lithium chloride-containing polyacrylic resin film having a thickness of 20 μm as a moisture-permeable gas shield.

この後、塩化リチウム含有ポリアクリル樹脂膜を離型フィルムから不織布に熱ロールにより転着させる。このようにして、塩化リチウム含有ポリアクリル樹脂膜が不織布に形成された仕切板4を作製する。この後の工程は、実施例1と同様である。   Thereafter, the lithium chloride-containing polyacrylic resin film is transferred from the release film to the nonwoven fabric by a hot roll. Thus, the partition plate 4 in which the lithium chloride-containing polyacrylic resin film is formed on the nonwoven fabric is produced. The subsequent steps are the same as in the first embodiment.

比較例1.
この例では、ポリオキシエチレン鎖が親水性高分子材料の分子中に含まれていない。即ち、親水性高分子材料におけるポリオキシエチレンの含有率は、0wt%とされている。また、MDI、BG及びPTMGを混合し、加熱重合することにより得られるポリウレタン樹脂が親水性高分子材料として用いられている。他の構成は実施例1と同様である。
Comparative Example 1
In this example, the polyoxyethylene chain is not contained in the molecule of the hydrophilic polymer material. That is, the polyoxyethylene content in the hydrophilic polymer material is 0 wt%. Moreover, the polyurethane resin obtained by mixing MDI, BG, and PTMG and carrying out heat polymerization is used as a hydrophilic polymer material. Other configurations are the same as those of the first embodiment.

比較例2.
この例でも、ポリオキシエチレン鎖が親水性高分子材料の分子中に含まれていない。即ち、親水性高分子材料におけるポリオキシエチレンの含有率は、0wt%とされている。また、ポリビニルアルコール樹脂が親水性高分子材料として用いられている。他の構成は実施例1と同様である。
Comparative Example 2
Also in this example, the polyoxyethylene chain is not contained in the molecule of the hydrophilic polymer material. That is, the polyoxyethylene content in the hydrophilic polymer material is 0 wt%. Polyvinyl alcohol resin is used as a hydrophilic polymer material. Other configurations are the same as those of the first embodiment.

この例での仕切板4は、以下のようにして作製する。まず、ポリビニルアルコール樹脂と塩化リチウムとの重量比が9:1となるように、ポリビニルアルコール樹脂と塩化リチウムとを含む水溶液を作製する。この後、離型フィルムに重ねられた不織布にこの水溶液をコンマコータで塗布し、加熱乾燥する。この後、離型フィルムを剥がして、塩化リチウム含有ポリビニルアルコール樹脂膜が不織布に形成された仕切板4を作製する。   The partition plate 4 in this example is manufactured as follows. First, an aqueous solution containing a polyvinyl alcohol resin and lithium chloride is prepared so that the weight ratio of the polyvinyl alcohol resin and lithium chloride is 9: 1. Then, this aqueous solution is apply | coated to the nonwoven fabric piled up on the release film with a comma coater, and it heat-drys. Then, a release film is peeled off and the partition plate 4 in which the lithium chloride containing polyvinyl alcohol resin film was formed in the nonwoven fabric is produced.

比較例3.
この例では、吸収剤が親水性高分子材料内に保持されていない。即ち、透湿性気体遮蔽物における吸収剤の含有率は、0wt%とされている。また、実施例1のポリウレタン溶液のみから作製されるポリウレタン樹脂が親水性高分子材料として用いられている。他の構成は実施例1と同様である。
Comparative Example 3
In this example, the absorbent is not retained in the hydrophilic polymer material. That is, the content rate of the absorbent in the moisture-permeable gas shield is set to 0 wt%. Moreover, the polyurethane resin produced only from the polyurethane solution of Example 1 is used as the hydrophilic polymer material. Other configurations are the same as those of the first embodiment.

この例での仕切板4は、以下のようにして作製する。まず、実施例1と同様のポリウレタン溶液を作製する。この後、ポリウレタン溶液を離型フィルムにコンマコータで塗布し、加熱乾燥することにより、ポリウレタン樹脂膜を作製する。この後、ポリウレタン樹脂膜を離型フィルムから不織布に熱ロールにより転着させて仕切板4を作製する。   The partition plate 4 in this example is manufactured as follows. First, the same polyurethane solution as in Example 1 is prepared. Thereafter, the polyurethane solution is applied to the release film with a comma coater and dried by heating to produce a polyurethane resin film. Thereafter, the polyurethane resin film is transferred from the release film to the nonwoven fabric by a hot roll to produce the partition plate 4.

比較例4.
この例では、平均分子量20万のポリオキシエチレン樹脂が親水性高分子材料として用いられている。即ち、親水性高分子材料におけるポリオキシエチレンの含有率は、100wt%とされている。他の構成は実施例1と同様である。
Comparative Example 4
In this example, a polyoxyethylene resin having an average molecular weight of 200,000 is used as the hydrophilic polymer material. That is, the polyoxyethylene content in the hydrophilic polymer material is 100 wt%. Other configurations are the same as those of the first embodiment.

この例での仕切板4は、以下のようにして作製する。まず、ポリオキシエチレン樹脂と塩化リチウムとの重量比が9:1となるように、ポリオキシエチレン樹脂と塩化リチウムとを含む水溶液を作製する。この後、離型フィルムに重ねられた不織布にこの水溶液をコンマコータで塗布し、加熱乾燥する。この後、離型フィルムを剥がして、塩化リチウム含有ポリオキシエチレン樹脂膜が不織布に形成された仕切板4を作製する。   The partition plate 4 in this example is manufactured as follows. First, an aqueous solution containing the polyoxyethylene resin and lithium chloride is prepared so that the weight ratio of the polyoxyethylene resin and lithium chloride is 9: 1. Then, this aqueous solution is apply | coated to the nonwoven fabric piled up on the release film with a comma coater, and it heat-drys. Thereafter, the release film is peeled off to produce the partition plate 4 in which the lithium chloride-containing polyoxyethylene resin film is formed on the nonwoven fabric.

比較例5.
この例では、親水性高分子材料におけるポリオキシエチレンの含有率が70wt%とされている。即ち、MDI、BG、PTMG及びPEGの配合比を変えることにより、ポリオキシエチレン鎖を分子中に70wt%含むポリウレタン樹脂を作製し、この後、実施例1と同様にして全熱交換器1を作製している。他の構成は実施例1と同様である。
Comparative Example 5
In this example, the content of polyoxyethylene in the hydrophilic polymer material is 70 wt%. That is, by changing the mixing ratio of MDI, BG, PTMG and PEG, a polyurethane resin containing 70 wt% of polyoxyethylene chains in the molecule was prepared. I am making it. Other configurations are the same as those of the first embodiment.

次に、実施例1〜7及び比較例1〜5の各全熱交換器1の性能評価について説明する。各全熱交換器1の性能評価は、仕切板4の初期及び結露試験後のそれぞれの気体遮蔽性と、湿度交換効率についての全熱交換器1の耐結露性とを判定することにより行われる。   Next, performance evaluation of each total heat exchanger 1 of Examples 1 to 7 and Comparative Examples 1 to 5 will be described. The performance evaluation of each total heat exchanger 1 is performed by determining the gas shielding properties of the partition plate 4 at the initial stage and after the dew condensation test, and the dew condensation resistance of the total heat exchanger 1 with respect to the humidity exchange efficiency. .

仕切板4の気体遮蔽性の評価は、仕切板4の透気度をJIS P 8117に準じて測定することにより行う。即ち、仕切板4の面積645mmの範囲の部分を100cmの空気が透過する時間を測定し、測定結果を透気度とする。また、仕切板4の透気度の測定は、仕切板4の任意の5箇所で行う。この結果、仕切板4の任意の5箇所での透気度がいずれも10000秒以上であれば、気体遮蔽性が良いとの良判定(○)を行い、仕切板4の任意の5箇所での透気度のいずれかが10000秒未満であれば、気体遮蔽性が悪いとの不良判定(×)を行う。 The gas shielding property of the partition plate 4 is evaluated by measuring the air permeability of the partition plate 4 in accordance with JIS P 8117. That is, the time required for 100 cm 3 of air to pass through a part of the partition plate 4 having an area of 645 mm 2 is measured, and the measurement result is defined as the air permeability. Further, the measurement of the air permeability of the partition plate 4 is performed at any five locations of the partition plate 4. As a result, if the air permeability at any five locations of the partition plate 4 is 10,000 seconds or more, a good judgment (◯) that the gas shielding property is good is performed, and at any five locations of the partition plate 4 If any of the air permeability is less than 10000 seconds, a failure determination (x) that the gas shielding property is poor is performed.

仕切板4の結露試験は、仕切板4を水中に浸漬した後乾燥させることを数度繰り返して結露状態を模擬することにより行う。仕切板4の初期の気体遮蔽性の評価は、結露試験前における仕切板4の透気度の測定結果に基づいて行い、仕切板4の結露試験後の気体遮蔽性の評価は、結露試験後における仕切板4の透気度の測定結果に基づいて行う。   The dew condensation test of the partition plate 4 is performed by simulating the dew condensation state by repeatedly immersing the partition plate 4 in water and then drying it. The initial gas shielding performance of the partition plate 4 is evaluated based on the measurement result of the air permeability of the partition plate 4 before the condensation test, and the gas shielding performance after the condensation test of the partition plate 4 is evaluated after the condensation test. This is performed based on the measurement result of the air permeability of the partition plate 4.

湿度交換効率についての全熱交換器1の耐結露性の評価は、全熱交換器1の結露試験の前後の湿度交換効率をJIS B 8628(全熱交換器)の付属書4内の2室法に準じた方式で測定し、結露試験の前後の測定結果を比較することにより行う。即ち、全熱交換器1の湿度交換効率を測定した後、全熱交換器の結露試験を行い、結露試験後の全熱交換器1について、湿度交換効率の測定を再度行う。この結果、結露試験前から結露試験後への湿度交換効率の低下率が10%未満であれば、耐結露性が良いとの良判定(○)を行い、10%以上であれば、耐結露性が悪いとの不良判定(×)を行う。   Evaluation of condensation resistance of the total heat exchanger 1 with respect to humidity exchange efficiency is based on the humidity exchange efficiency before and after the dew condensation test of the total heat exchanger 1 in two chambers in Annex 4 of JIS B 8628 (total heat exchanger). It is measured by a method according to the law, and the measurement results before and after the condensation test are compared. That is, after measuring the humidity exchange efficiency of the total heat exchanger 1, a dew condensation test of the total heat exchanger is performed, and the humidity exchange efficiency of the total heat exchanger 1 after the dew condensation test is measured again. As a result, if the rate of decrease in humidity exchange efficiency from the pre-condensation test to the post-condensation test is less than 10%, a good judgment (○) is made that the dew resistance is good. The defect judgment (x) that the property is bad is performed.

なお、湿度交換効率の測定では、一次気流(給気)の条件が温度27℃、相対湿度52.7%rhとされ、二次気流(排気)の条件が温度35℃、相対湿度64.3%rhとされている。また、全熱交換器1の結露試験は、全熱交換器1を水中に浸漬した後乾燥させることを数度繰り返して結露状態を模擬することにより行う。   In the measurement of the humidity exchange efficiency, the condition of the primary air flow (supply air) is 27 ° C. and the relative humidity is 52.7% rh, and the condition of the secondary air flow (exhaust air) is 35 ° C. and the relative humidity is 64.3. % Rh. In addition, the dew condensation test of the total heat exchanger 1 is performed by simulating the dew condensation state by repeatedly immersing the total heat exchanger 1 in water and then drying it several times.

図2は、図1の全熱交換器1の性能評価の結果を実施例1〜7及び比較例1〜5ごとに示す表である。なお、図2には、全熱交換器1の性能評価の結果とともに、親水性高分子材料(樹脂)におけるポリオキシエチレンの含有率(wt%)と、透湿性気体遮蔽物における吸湿剤の含有率(wt%)と、全熱交換器1の温度交換効率、湿度交換効率及び全熱交換効率のそれぞれの値(%)とが実施例1〜7及び比較例1〜5ごとに示されている。また、仕切板4の結露試験後の気体遮蔽性が悪化している比較例4及び5については、全熱交換器1の耐結露性の評価は行っていない。   FIG. 2 is a table showing the results of performance evaluation of the total heat exchanger 1 of FIG. 1 for each of Examples 1 to 7 and Comparative Examples 1 to 5. FIG. 2 shows the results of performance evaluation of the total heat exchanger 1, the polyoxyethylene content (wt%) in the hydrophilic polymer material (resin), and the moisture absorbent content in the moisture-permeable gas shield. The rate (wt%) and the values (%) of the temperature exchange efficiency, humidity exchange efficiency, and total heat exchange efficiency of the total heat exchanger 1 are shown for each of Examples 1 to 7 and Comparative Examples 1 to 5. Yes. Moreover, about the comparative examples 4 and 5 in which the gas-shielding property after the dew condensation test of the partition plate 4 has deteriorated, the dew resistance of the total heat exchanger 1 is not evaluated.

図2に示すように、実施例1〜7の全熱交換器1の性能は、仕切板4の初期及び結露試験後のそれぞれの気体遮蔽性、及び全熱交換器1の耐結露性のすべてについて、優れていることが分かる。   As shown in FIG. 2, the performances of the total heat exchanger 1 of Examples 1 to 7 are all the initial gas barrier property of the partition plate 4 and the respective gas shielding properties after the dew condensation test, and the dew condensation resistance of the total heat exchanger 1. You can see that it is excellent.

また、実施例1、4及び5と、比較例4及び5との結果から、仕切板4に用いられる樹脂内のポリオキシエチレン鎖の含有率が高いほど、全熱交換器1の湿度交換効率が高くなることが分かる。   Moreover, from the results of Examples 1, 4 and 5, and Comparative Examples 4 and 5, the higher the content of polyoxyethylene chains in the resin used for the partition plate 4, the higher the humidity exchange efficiency of the total heat exchanger 1 It turns out that becomes high.

さらに、実施例1〜7と、比較例4及び5との比較から、樹脂内のポリオキシエチレン鎖の含有率が50wt%よりも高くなると、仕切板4の結露試験後の気体遮蔽性が悪化することが分かる。これは、親水性の高いポリオキシエチレン鎖の含有率が高くなり過ぎると、結露水等により樹脂そのものが流動し、仕切板4の気体遮蔽性が保持できなくなったためであると考えられる。なお、比較例4の結果では、仕切板4の初期の気体遮蔽性も悪くなっていることが分かる。これは、樹脂を不織布に塗布し、加熱乾燥した際にポリオキシエチレン樹脂の結晶化による体積収縮が起こり、仕切板4にピンホールが生じたためであると考えられる。   Further, from comparison between Examples 1 to 7 and Comparative Examples 4 and 5, when the content of the polyoxyethylene chain in the resin is higher than 50 wt%, the gas shielding property after the dew condensation test of the partition plate 4 is deteriorated. I understand that This is considered to be because when the content of the highly hydrophilic polyoxyethylene chain becomes too high, the resin itself flows due to condensed water or the like, and the gas shielding property of the partition plate 4 cannot be maintained. In addition, in the result of the comparative example 4, it turns out that the initial gas-shielding property of the partition plate 4 is also getting worse. This is considered to be because when the resin was applied to the nonwoven fabric and heated and dried, volume shrinkage occurred due to crystallization of the polyoxyethylene resin, and pinholes were generated in the partition plate 4.

さらにまた、実施例1〜7と、比較例1及び2との比較から、樹脂内のポリオキシエチレン鎖の含有率が10wt%よりも低くなると、全熱交換器1の耐結露性が悪化することが分かる。これは、樹脂内のポリオキシエチレン鎖の含有率が低くなり過ぎると、吸湿剤とポリオキシエチレン鎖との会合効果による保持力が弱くなり、仕切板4の結露により吸湿剤が流失しやすくなるためであると考えられる。   Furthermore, from the comparison between Examples 1 to 7 and Comparative Examples 1 and 2, when the content of the polyoxyethylene chain in the resin is lower than 10 wt%, the dew resistance of the total heat exchanger 1 is deteriorated. I understand that. This is because if the content of the polyoxyethylene chain in the resin becomes too low, the retention due to the association effect between the hygroscopic agent and the polyoxyethylene chain becomes weak, and the hygroscopic agent tends to flow away due to condensation of the partition plate 4. This is probably because of this.

従って、樹脂におけるポリオキシエチレン鎖の含有率を10〜50wt%の範囲内とするのがよいことが分かる。   Therefore, it can be seen that the polyoxyethylene chain content in the resin should be in the range of 10 to 50 wt%.

また、実施例1と比較例3との比較から、仕切板4に用いられる樹脂内への吸湿剤の添加の有無によって、全熱交換器1の湿度交換効率及び全熱交換効率が大きく異なることが分かる。即ち、吸湿剤が樹脂内に添加されていない比較例3では、吸湿剤が樹脂内に添加されている実施例1に比べて、全熱交換器1の湿度交換効率及び全熱交換効率が著しく悪くなっている。   Further, from the comparison between Example 1 and Comparative Example 3, the humidity exchange efficiency and the total heat exchange efficiency of the total heat exchanger 1 differ greatly depending on whether or not a hygroscopic agent is added to the resin used for the partition plate 4. I understand. That is, in Comparative Example 3 in which the hygroscopic agent is not added in the resin, the humidity exchange efficiency and the total heat exchange efficiency of the total heat exchanger 1 are significantly higher than those in Example 1 in which the hygroscopic agent is added in the resin. It is getting worse.

さらに、実施例1〜3の結果から、樹脂に対する吸湿剤(塩化リチウム)の添加量が多くなる(即ち、透湿性気体遮蔽物における吸湿剤の含有率が高くなる)ほど、全熱交換器1の湿度交換効率及び全熱交換効率が高くなることが分かる。   Further, from the results of Examples 1 to 3, the total heat exchanger 1 increases as the amount of the hygroscopic agent (lithium chloride) added to the resin increases (that is, the content of the hygroscopic agent in the moisture-permeable gas shield increases). It can be seen that the humidity exchange efficiency and the total heat exchange efficiency are increased.

さらにまた、実施例1及び6の結果から、吸湿剤が塩化カルシウムであっても塩化リチウムと同様に仕切板4が高い透湿性を示すことが分かる。ただし、透湿性の観点からは、吸湿剤が塩化リチウムであることが好ましい。   Furthermore, it can be seen from the results of Examples 1 and 6 that the partition plate 4 exhibits high moisture permeability like lithium chloride even when the hygroscopic agent is calcium chloride. However, from the viewpoint of moisture permeability, the hygroscopic agent is preferably lithium chloride.

また、実施例1及び7の結果から、仕切板4に用いられる樹脂成分の種類は、同量のポリオキシエチレン鎖を分子中に含んでいれば、全熱交換器1の性能には大きく影響しないことが分かる。   In addition, from the results of Examples 1 and 7, the type of the resin component used for the partition plate 4 greatly affects the performance of the total heat exchanger 1 if the same amount of polyoxyethylene chain is included in the molecule. I understand that I don't.

このような全熱交換器では、ポリオキシエチレンを含む非水溶性の親水性高分子材料と、この親水性高分子材料内に保持され、潮解性を有するアルカリ金属塩及びアルカリ土類金属塩の少なくともいずれかを含む吸収剤とを有する透湿性気体遮蔽物が仕切板4に用いられ、親水性高分子材料におけるポリオキシエチレンの含有率が10〜50wt%の範囲内とされているので、吸湿剤とポリオキシエチレンとの会合効果(鎖形成効果)により吸湿剤と親水性高分子とが相溶しやすくなり、吸湿剤の流失の防止を図ることができる。また、親水性高分子材料そのものの流動の防止を図ることができ、仕切板4の結露による気体遮蔽性の低下の抑制も図ることができる。従って、結露を繰り返す環境下でも性能の低下の抑制を図ることができるとともに、全熱交換効率の向上を図ることができる。   In such a total heat exchanger, a water-insoluble hydrophilic polymer material containing polyoxyethylene, and alkali metal salt and alkaline earth metal salt that are held in the hydrophilic polymer material and have deliquescence properties. A moisture-permeable gas shield having an absorbent containing at least one of them is used for the partition plate 4, and the content of polyoxyethylene in the hydrophilic polymer material is in the range of 10 to 50 wt%. As a result of the association effect (chain formation effect) between the agent and polyoxyethylene, the hygroscopic agent and the hydrophilic polymer are easily compatible with each other, and it is possible to prevent the hygroscopic agent from being lost. Further, it is possible to prevent the hydrophilic polymer material itself from flowing, and it is possible to suppress a decrease in gas shielding property due to condensation of the partition plate 4. Accordingly, it is possible to suppress a decrease in performance even in an environment where condensation is repeated, and to improve the total heat exchange efficiency.

また、吸湿剤が塩化リチウムであると、全熱交換器1の湿度交換効率が向上するので、全熱交換効率の向上をさらに図ることができる。   Moreover, since the humidity exchange efficiency of the total heat exchanger 1 is improved when the hygroscopic agent is lithium chloride, the total heat exchange efficiency can be further improved.

この発明の実施の形態による全熱交換器を示す斜視図である。It is a perspective view which shows the total heat exchanger by embodiment of this invention. 図1の全熱交換器の性能評価の結果を実施例1〜7及び比較例1〜5ごとに示す表である。It is a table | surface which shows the result of the performance evaluation of the total heat exchanger of FIG. 1 for every Examples 1-7 and Comparative Examples 1-5.

符号の説明Explanation of symbols

1 全熱交換器、4 仕切板。   1 Total heat exchanger, 4 partition plate.

Claims (2)

仕切板を隔てて二種の気流を流動させ、上記仕切板を介して上記二種の気流の顕熱及び潜熱を熱交換させる全熱交換器であって、
上記仕切板は、ポリオキシエチレンを含む非水溶性の親水性高分子材料と、上記親水性高分子材料内に保持され、潮解性を有するアルカリ金属塩及びアルカリ土類金属塩の少なくともいずれかを含む吸湿剤とを有し、
上記親水性高分子材料における上記ポリオキシエチレンの含有率は、10〜50wt%の範囲内とされていることを特徴とする全熱交換器。
A total heat exchanger that flows two kinds of airflows across a partition plate and exchanges sensible heat and latent heat of the two kinds of airflows through the partition plate,
The partition plate comprises at least one of a water-insoluble hydrophilic polymer material containing polyoxyethylene and an alkali metal salt and an alkaline earth metal salt held in the hydrophilic polymer material and having deliquescence. Including a hygroscopic agent,
The total heat exchanger, wherein the polyoxyethylene content in the hydrophilic polymer material is in the range of 10 to 50 wt%.
上記吸湿剤は、塩化リチウムであることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein the hygroscopic agent is lithium chloride.
JP2006094170A 2006-03-30 2006-03-30 Total enthalpy heat exchanger Pending JP2009144930A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006094170A JP2009144930A (en) 2006-03-30 2006-03-30 Total enthalpy heat exchanger
PCT/JP2006/325357 WO2007116567A1 (en) 2006-03-30 2006-12-20 Total enthalpy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094170A JP2009144930A (en) 2006-03-30 2006-03-30 Total enthalpy heat exchanger

Publications (1)

Publication Number Publication Date
JP2009144930A true JP2009144930A (en) 2009-07-02

Family

ID=38580869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094170A Pending JP2009144930A (en) 2006-03-30 2006-03-30 Total enthalpy heat exchanger

Country Status (2)

Country Link
JP (1) JP2009144930A (en)
WO (1) WO2007116567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011169560A (en) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp Air conditioning device, heat exchanger and method of treating drain water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250585A (en) * 2008-04-10 2009-10-29 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
ES2527826T3 (en) 2012-01-20 2015-01-30 Zehnder Verkaufs- Und Verwaltungs Ag Heat exchanger element and production procedure
CN105556233B (en) * 2013-07-19 2019-09-17 韦斯特温德有限公司 Heat/enthalpy exchanger element and production method
WO2015012398A1 (en) * 2013-07-25 2015-01-29 国立大学法人岡山大学 Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger
CZ2014956A3 (en) * 2014-12-23 2016-05-18 2Vv S.R.O. Enthalpic heat-exchange apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639303B2 (en) * 1992-11-05 1997-08-13 三菱電機株式会社 Total heat exchanger
JPH07133994A (en) * 1993-11-09 1995-05-23 Japan Gore Tex Inc Heat exchanging film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011169560A (en) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp Air conditioning device, heat exchanger and method of treating drain water

Also Published As

Publication number Publication date
WO2007116567A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
JP5506441B2 (en) Total heat exchange element and total heat exchanger
TWI311636B (en)
KR101371120B1 (en) Sheets for total heat exchangers, elements for total heat exchangers, and total heat exchangers
JP5230821B2 (en) Total heat exchanger and method of manufacturing partition plate used therefor
JP2009144930A (en) Total enthalpy heat exchanger
JP2639303B2 (en) Total heat exchanger
JP2008089199A (en) Total enthalpy heat exchanger
JP5987854B2 (en) Heat exchange element and heat exchanger
JP2009250585A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011145003A (en) Total enthalpy heat exchange element
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP2007315649A (en) Total enthalpy heat exchanger
JPH0425476B2 (en)
US20230375282A1 (en) Partition plate, total heat exchange element and total heat exchanger including partition plate, and method for producing partition plate
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
JPH0124529B2 (en)
JPH08233485A (en) Total heat exchanger
JP2008292061A (en) Total enthalpy heat exchanger
JP6987681B2 (en) Total heat exchanger and total heat exchanger