Nothing Special   »   [go: up one dir, main page]

JP2009142798A - Metallic catalyst carrier - Google Patents

Metallic catalyst carrier Download PDF

Info

Publication number
JP2009142798A
JP2009142798A JP2007325642A JP2007325642A JP2009142798A JP 2009142798 A JP2009142798 A JP 2009142798A JP 2007325642 A JP2007325642 A JP 2007325642A JP 2007325642 A JP2007325642 A JP 2007325642A JP 2009142798 A JP2009142798 A JP 2009142798A
Authority
JP
Japan
Prior art keywords
core
shell
corrugated
catalyst carrier
metal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007325642A
Other languages
Japanese (ja)
Inventor
Tamotsu Sugimoto
保 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007325642A priority Critical patent/JP2009142798A/en
Publication of JP2009142798A publication Critical patent/JP2009142798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic catalyst carrier which can be prevented from being broken due to thermal stress without increasing the manufacturing cost. <P>SOLUTION: The metallic catalyst carrier is provided with: a core (20) formed by winding a flat plate (21) and a corrugated plate (22) several times; and a cylindrical shell (30) for incorporating the core (20). The outer periphery of the shell (30) has a shape corrugated in the peripheral direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車等に用いられる内燃機関の排気ガスを浄化するための触媒担体に関し、より詳細には、熱応力による破損を防ぐことのできる金属触媒担体に関するものである。   The present invention relates to a catalyst carrier for purifying exhaust gas of an internal combustion engine used in automobiles and the like, and more particularly to a metal catalyst carrier capable of preventing damage due to thermal stress.

一般的に自動車等のエンジンの排気系には、排気ガスを浄化するための触媒コンバータが配置されている。この触媒コンバータには、金属製の平板と波板とから形成されたコアと、このコアを内装するシェルとからなる金属触媒担体が広く用いられている。   Generally, a catalytic converter for purifying exhaust gas is disposed in an exhaust system of an engine such as an automobile. In this catalytic converter, a metal catalyst carrier comprising a core formed of a metal flat plate and corrugated plate and a shell in which the core is built is widely used.

ところで、コアを通過する排気ガスはコアの外周部に比べて中心部ほど流速が大きい。従って、金属触媒担体では、高温の排気ガスとの接触、触媒反応による発熱、及び外筒からの外気への熱放出により、中心部ほど高温で外周部ほど低温となる温度分布が生じる。この温度分布によりコアと外筒との膨張及び収縮量に差が生じるが、コアを構成する平板と波板の板厚は、一般的に外筒の板厚よりもかなり薄いことから、熱容量差からコアに熱応力が作用する。そして、膨張・収縮の繰り返しによりコアの平板及び波板が塑性変形して金属疲労が生じ、最終的にコアの平板及び波板に破断が生じる場合があった。   By the way, the exhaust gas passing through the core has a larger flow velocity in the central portion than in the outer peripheral portion of the core. Therefore, in the metal catalyst carrier, a temperature distribution is generated such that the temperature at the center is higher and the temperature at the outer periphery is lower due to contact with the high-temperature exhaust gas, heat generation by the catalytic reaction, and heat release from the outer cylinder to the outside air. Due to this temperature distribution, there is a difference in the amount of expansion and contraction between the core and the outer cylinder, but the plate thickness of the core and corrugated sheet that make up the core is generally much thinner than the thickness of the outer cylinder. Thermal stress acts on the core. The flat plate and corrugated sheet of the core are plastically deformed by repeated expansion and contraction, resulting in metal fatigue, and finally the core flat plate and corrugated sheet may be broken.

このような問題に対して、シェルを二重化し、内筒と外の熱膨張差により発生する応力を軽減して触媒コンバータの耐久性を図った触媒コンバータの金属担体が開示されている(特許文献1、参照。)。
特開平09−108575号公報
In response to such a problem, a metal carrier for a catalytic converter is disclosed in which the shell is doubled to reduce the stress generated by the difference in thermal expansion between the inner cylinder and the outside, thereby improving the durability of the catalytic converter (Patent Document). 1).
JP 09-108575 A

前述の特許文献1の触媒担体は、熱応力によるコアの破損を防止するものであるが、シェルを二重化し、さらに内筒と外筒との材質を異なるものとするので、コスト面において問題があった。また、シェルを二重化したために、触媒担体におけるコアの断面積が減少し、触媒の容量が小さくなってしまうという問題があった。   The catalyst carrier of Patent Document 1 described above prevents damage to the core due to thermal stress. However, since the shell is doubled and the inner and outer cylinders are made of different materials, there is a problem in cost. there were. In addition, since the shell is doubled, there is a problem that the cross-sectional area of the core in the catalyst carrier is reduced and the capacity of the catalyst is reduced.

本発明は、このような問題点に着目してなされたものであり、コストを増やすことなく、熱応力による破損を防ぐことのできる金属触媒担体を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object thereof is to provide a metal catalyst carrier capable of preventing damage due to thermal stress without increasing cost.

請求項1の発明は、平板と波板とが多重に巻回されて構成されたコアと、前記コアを内装する円筒形状のシェルと、を備え、前記シェルは、その外周が、周方向の波形形状を有することを特徴とする。   The invention of claim 1 is provided with a core configured by multiply winding a flat plate and a corrugated plate, and a cylindrical shell that houses the core, and the outer periphery of the shell is circumferential. It has a waveform shape.

請求項2の発明は、請求項1に記載の発明において、前記シェルは、その内周が、周方向の波形形状を有し、前記コアの外周は、前記シェルの内周面に、前記波形形状の隆起部で接することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the inner periphery of the shell has a corrugated shape in the circumferential direction, and the outer periphery of the core is formed on the inner peripheral surface of the shell. It is characterized by contacting with a raised portion of the shape.

請求項3の発明は、請求項2に記載の発明において、前記コアは、その最外周側に前記波板が配置され、前記シェルの内周面の波形形状の間隔が、前記コアの最外周側の波板の波形形状の間隔の整数倍であることを特徴とする。   According to a third aspect of the present invention, in the invention of the second aspect, the corrugated plate is disposed on the outermost circumferential side of the core, and the interval between the corrugated shapes on the inner circumferential surface of the shell is the outermost circumferential surface of the core. It is an integral multiple of the interval of the corrugated shape of the corrugated plate on the side.

請求項1の発明によると、シェルは、その外周が、周方向の波形形状を有するので、シェルの熱を外気等に放出する効率が高まり、これにより、比較的熱容量の小さいシェルに内装されるコアとの温度差が小さくなるので、熱応力の発生を小さく出来るからコアの破損を防止することができる。   According to the first aspect of the present invention, since the outer periphery of the shell has a corrugated shape in the circumferential direction, the efficiency of releasing the heat of the shell to the outside air or the like is increased, and thereby, the shell is embedded in the shell having a relatively small heat capacity. Since the temperature difference with the core is reduced, the generation of thermal stress can be reduced, so that damage to the core can be prevented.

請求項2の発明によると、シェルは、その内周が、周方向の波形形状を有し、コアの外周は、前記シェルの内周面に、前記波形形状の隆起部で接するので、シェルとコアとの接触部分の面積を小さくすることができ、シェルとコアとの熱伝導率が小さくなる。これにより、比較的熱容量の大きなシェルと接するコアの外周部とコアの中心部との温度差が小さくなるので、熱応力の発生を小さく出来るからコアの破損を防止することができる。   According to the invention of claim 2, the inner periphery of the shell has a corrugated shape in the circumferential direction, and the outer periphery of the core is in contact with the inner peripheral surface of the shell at the raised portion of the corrugated shape. The area of the contact portion with the core can be reduced, and the thermal conductivity between the shell and the core is reduced. As a result, the temperature difference between the outer peripheral portion of the core that is in contact with the shell having a relatively large heat capacity and the central portion of the core is reduced, so that the occurrence of thermal stress can be reduced, so that damage to the core can be prevented.

請求項3の発明によると、コアは、その最外周側に前記波板が配置され、シェルの内周面の波形形状の間隔が、前記コアの最外周側の波板の波形形状の間隔の整数倍であるので、シェルとコアとが確実に固定される。これにより、組み付け時の作業性が向上し、金属触媒担体の製造コストが低下する。   According to invention of Claim 3, the said corrugated sheet is arrange | positioned at the outermost periphery side of the core, and the space | interval of the waveform shape of the inner peripheral surface of a shell is the space | interval of the waveform shape of the corrugated sheet of the outermost periphery side of the said core. Since it is an integer multiple, the shell and the core are securely fixed. Thereby, the workability | operativity at the time of an assembly | attachment improves, and the manufacturing cost of a metal catalyst carrier falls.

以下に、本発明の実施形態の金属触媒担体について図面を用いて説明する。   Hereinafter, a metal catalyst carrier according to an embodiment of the present invention will be described with reference to the drawings.

<第1の実施形態>
図1は、本発明の第1の実施形態の金属触媒担体10を示す斜視図である。
<First Embodiment>
FIG. 1 is a perspective view showing a metal catalyst carrier 10 according to a first embodiment of the present invention.

金属触媒担体10は、円筒形状のシェル30に、コア20が内装されて構成される。コア20は、板状の箔材からなる平板21と、板状の箔材が波型に加工された部材である波板22とが多重に巻回されて構成される。シェル30は、後述するように、その外周側及び内周側が周方向の波形形状を有している。   The metal catalyst carrier 10 includes a core 20 and a cylindrical shell 30. The core 20 is configured by winding a flat plate 21 made of a plate-like foil material and a corrugated plate 22 which is a member obtained by processing the plate-like foil material into a corrugated shape. As will be described later, the outer peripheral side and the inner peripheral side of the shell 30 have a waveform shape in the circumferential direction.

金属触媒担体10は、エンジン等の排気管中に備えられ、コア20の表面に貴金属粒子等からなる触媒材を担持させることにより、排気ガス中の未燃焼成分や窒素酸化物等を還元させる触媒コンバータとして機能する。   The metal catalyst carrier 10 is provided in an exhaust pipe of an engine or the like, and carries a catalyst material made of noble metal particles or the like on the surface of the core 20 to reduce unburned components or nitrogen oxides in the exhaust gas. Functions as a converter.

ここで、コア20を通過する排気ガスは、コア20の外周部に比べて中心部ほど流速が大きい。一方、コアを内装するシェル30は、板厚がコア20と比較して大きいことから熱容量が大きい。また、外周が外気に接するため熱を放出しやすい。このため、コア20の中心部と、シェル30に接しているコア20の外周部とで温度差が生じる。   Here, the exhaust gas passing through the core 20 has a larger flow velocity toward the center than the outer periphery of the core 20. On the other hand, the shell 30 in which the core is built has a large heat capacity because the plate thickness is larger than that of the core 20. Moreover, since the outer periphery is in contact with the outside air, it is easy to release heat. For this reason, a temperature difference arises in the center part of the core 20, and the outer peripheral part of the core 20 which is in contact with the shell 30.

また、排気ガス温度は、エンジンの運転状況によって大きく変動する。例えば、理想空燃比付近や高負荷時には排気ガス温度は高くなる。一方、燃料カット時にはエンジンに吸入された空気がそのまま排気管へと排出されるため排気ガス温度は低くなる。   Further, the exhaust gas temperature varies greatly depending on the operating condition of the engine. For example, the exhaust gas temperature becomes high near the ideal air-fuel ratio or at a high load. On the other hand, when the fuel is cut, the air taken into the engine is discharged as it is into the exhaust pipe, so the exhaust gas temperature becomes low.

このような構造により、例えば排気ガス温度が急激に上昇した場合は、コア20の中心部の温度は排気ガス温度に伴って急激に上昇するが、シェル30に接しているコア20の外周部は、シェル30の熱容量により中心部ほど上昇しない。同様に、排気ガス温度が急激に下降した場合は、コア20の中心部側の温度は排気ガス温度に伴って急激に下降するが、シェル30に接しているコア20の外周部は、シェル30の熱容量により中心部ほど下降しない。   With such a structure, for example, when the exhaust gas temperature suddenly rises, the temperature of the central portion of the core 20 suddenly rises with the exhaust gas temperature, but the outer peripheral portion of the core 20 in contact with the shell 30 is The heat capacity of the shell 30 does not increase as much as the central portion. Similarly, when the exhaust gas temperature rapidly decreases, the temperature on the central portion side of the core 20 rapidly decreases with the exhaust gas temperature, but the outer peripheral portion of the core 20 in contact with the shell 30 Due to the heat capacity of the center, it does not descend as much as the center.

従来、このような排気ガス温度の変動によりコア20の中心部と外周部とで大きな温度差が生じ、また排気ガス温度の変動による熱膨張・収縮による応力が働き、コア20の破損の原因となっていた。   Conventionally, a large temperature difference occurs between the central portion and the outer peripheral portion of the core 20 due to such fluctuations in the exhaust gas temperature, and stress due to thermal expansion / contraction due to fluctuations in the exhaust gas temperature acts to cause damage to the core 20. It was.

そこで、本発明の第1の実施形態では、以降に具体的に説明するように、シェル30を、周方向に波形形状を有する構造とすることによって、コア20の中心部と外周部との温度差を小さくする金属触媒担体10を構成した。   Therefore, in the first embodiment of the present invention, as described in detail below, the shell 30 is structured to have a corrugated shape in the circumferential direction, whereby the temperatures of the center portion and the outer peripheral portion of the core 20 are increased. A metal catalyst carrier 10 for reducing the difference was configured.

図2は、本願の第1の実施形態のシェル30を示す斜視図である。   FIG. 2 is a perspective view showing the shell 30 of the first embodiment of the present application.

図2に示すように、シェル30は、その外周側及び内周側が周方向に波形形状を有する円筒形状の筒材である。   As shown in FIG. 2, the shell 30 is a cylindrical tubular member having an outer peripheral side and an inner peripheral side having a corrugated shape in the circumferential direction.

金属触媒担体10は、図1に示すように、周方向に波形形状を有するシェル30に円筒形状のコア20が内装されて構成される。コア20の最外周部は平板21となっているので、シェル30の内周面の波形形状の突起部分(凸部)とコア20の最外周部の平板21とが接する。なお、シェル30とコア20とは、ロウ接合等によって接合される。   As shown in FIG. 1, the metal catalyst carrier 10 is configured by including a cylindrical core 20 in a shell 30 having a corrugated shape in the circumferential direction. Since the outermost peripheral portion of the core 20 is a flat plate 21, the corrugated protruding portion (convex portion) on the inner peripheral surface of the shell 30 is in contact with the flat plate 21 at the outermost peripheral portion of the core 20. The shell 30 and the core 20 are joined by brazing or the like.

このシェル30は、図3に示すような波形形状が加工された板状の部材である板材31によって構成される。より具体的には、波形形状が加工された板材31を円筒状に折り曲げ加工し、長辺方向の両端部を互いにロウ接合等によって接合することによって、円筒形状のシェル30が構成される。   The shell 30 is constituted by a plate material 31 which is a plate-like member having a corrugated shape as shown in FIG. More specifically, the cylindrical shell 30 is configured by bending the corrugated plate material 31 into a cylindrical shape and joining both ends in the long side direction to each other by brazing or the like.

なお、この板材31は、より好ましくは以下に示すような形状とする(図4参照)。   In addition, this board | plate material 31 is made into the shape as shown below more preferably (refer FIG. 4).

波形のピッチp=2t〜5t
波形の先端の半径r=0.5t〜2t
波形の高さh=0.2t〜2t
(なお、板材の厚さをtとする)
また、板材31の長辺方向の長さは、ピッチpの整数倍とする。また、波形形状は、排気ガス流れ方向と平行、すなわち、板材の短辺方向と平行とする。
Waveform pitch p = 2t to 5t
Waveform tip radius r = 0.5t-2t
Wave height h = 0.2t to 2t
(Note that the thickness of the plate is t)
The length of the plate 31 in the long side direction is an integral multiple of the pitch p. The corrugated shape is parallel to the exhaust gas flow direction, that is, parallel to the short side direction of the plate.

このように加工された板材31からシェル30を構成することにより、シェル30の外周側の表面積を増すことができる。また、シェル30としての強度を著しく低下させることなく、径方向の剛性を若干低下させることができる。   By configuring the shell 30 from the plate material 31 processed in this way, the surface area on the outer peripheral side of the shell 30 can be increased. Further, the radial rigidity can be slightly reduced without significantly reducing the strength of the shell 30.

なお、シェル30は、外形が略真円の形状を有するシェルと比較すると、部材が1割程度増加する。しかし、前述の引用文献1のように異なる材質の部材により二重化することと比較すると、コストを低くできる。   Note that the number of members of the shell 30 is increased by about 10% as compared with a shell having a substantially circular outer shape. However, the cost can be reduced as compared with the case of duplexing with different materials as in the above cited reference 1.

また、シェル30は、必ずしも板材31を円筒形状に加工することにより構成される必要はない。例えば、外形が略真円の円筒形状の部材を、ハイドロフォーミング等によって波形形状を加工することにより、シェル30を構成してもよい。   Moreover, the shell 30 does not necessarily need to be configured by processing the plate material 31 into a cylindrical shape. For example, the shell 30 may be configured by processing a corrugated shape of a cylindrical member whose outer shape is a substantially perfect circle by hydroforming or the like.

また、本実施形態の金属触媒担体10は、シェル30の波形形状とコア20の最外周部の平板21との間に空隙が存在する。これは、金属触媒担体10を排気管に組み込む際に、例えば溶接等により、排気ガスがこの空隙を通過しないように構成される。   Further, in the metal catalyst carrier 10 of the present embodiment, a gap exists between the corrugated shape of the shell 30 and the flat plate 21 at the outermost peripheral portion of the core 20. This is configured such that when the metal catalyst carrier 10 is incorporated into the exhaust pipe, the exhaust gas does not pass through the gap, for example, by welding.

以上のように、本発明の第1の実施形態の金属触媒担体10は、シェル30を、周方向の波形形状を有する円筒形状とした。これにより、シェル30の外周側の表面積が、真円、楕円または長楕円形状と比較して増すため、シェル30の放熱性が高まる。これにより、比較的熱容量の大きいシェル30に接するコア20の外周部と熱容量の小さいコア中心部との温度差を小さくできる。   As described above, in the metal catalyst carrier 10 of the first embodiment of the present invention, the shell 30 has a cylindrical shape having a corrugated shape in the circumferential direction. Thereby, since the surface area of the outer peripheral side of the shell 30 increases compared with a perfect circle, an ellipse, or an ellipse shape, the heat dissipation of the shell 30 increases. Thereby, the temperature difference of the outer peripheral part of the core 20 which contact | connects the shell 30 with comparatively large heat capacity, and the core center part with small heat capacity can be made small.

また、シェル30の内周側が波形形状を有するので、コア20との接触部分の面積が小さくなる。すなわち、シェル30の波形形状のうち内周側への隆起部分(凸部分)のみが、コア20の最外周部の平板21に接する。そのため、シェル30とコア20との間での熱伝達が小さくなるので、シェル30に接するコア20の中心部と外周部との温度差を小さくできる。   Further, since the inner peripheral side of the shell 30 has a corrugated shape, the area of the contact portion with the core 20 is reduced. That is, only the protruding portion (protruding portion) on the inner peripheral side of the corrugated shape of the shell 30 is in contact with the flat plate 21 at the outermost peripheral portion of the core 20. Therefore, since heat transfer between the shell 30 and the core 20 is reduced, the temperature difference between the central portion and the outer peripheral portion of the core 20 that is in contact with the shell 30 can be reduced.

これらにより、シェル30に接するコア20の中心部と外周部との温度差が小さくなるため、熱膨張差により発生する熱応力を低減し、コア20の破損が発生しにくい金属触媒担体10を構成することができる。   As a result, the temperature difference between the central portion and the outer peripheral portion of the core 20 that is in contact with the shell 30 is reduced, so that the thermal stress generated by the thermal expansion difference is reduced, and the metal catalyst carrier 10 that does not easily break the core 20 is configured. can do.

また、シェル30が波形形状を有することで、真円、楕円または長楕円形状と比較して径方向の剛性が小さくなる。そのため、熱膨張・収縮によるコア20における径方向の応力を吸収できる。   Further, since the shell 30 has a corrugated shape, the radial rigidity is reduced as compared with a perfect circle, ellipse, or oblong shape. Therefore, the radial stress in the core 20 due to thermal expansion / contraction can be absorbed.

また、シェル30の内周側が波形形状を有するので、コア20との接触部分の面積が小さくなることにより、シェル30とコア20とを接合させるためのロウ材の量が少なくてすむ。これにより、金属触媒担体10の製造コストを小さくできる。   Further, since the inner peripheral side of the shell 30 has a corrugated shape, the area of the contact portion with the core 20 is reduced, so that the amount of brazing material for joining the shell 30 and the core 20 can be reduced. Thereby, the manufacturing cost of the metal catalyst carrier 10 can be reduced.

また、シェル30の波形形状は、前述のように板厚の0.5倍から2倍程度とするので、金属触媒担体10の断面積のうちシェル30が占める断面積は、真円、楕円または長楕円形状と比較しても、その増加分はわずかである。従って、金属触媒担体10におけるコア20の断面積を減少させることがなく、触媒の容量を低下させることがない。   Further, since the corrugated shape of the shell 30 is about 0.5 to 2 times the plate thickness as described above, the cross-sectional area occupied by the shell 30 in the cross-sectional area of the metal catalyst carrier 10 is a perfect circle, an ellipse or Compared to the oval shape, the increase is slight. Therefore, the cross-sectional area of the core 20 in the metal catalyst carrier 10 is not reduced, and the capacity of the catalyst is not reduced.

<第2の実施形態>
次に、第2の実施形態の金属触媒担体10について説明する。
<Second Embodiment>
Next, the metal catalyst carrier 10 of the second embodiment will be described.

前述の第1の実施形態では、金属触媒担体10を、周方向の波形形状を有するシェル30と最外周部が平板21であるコア20とによって構成した。   In the first embodiment described above, the metal catalyst carrier 10 is configured by the shell 30 having a circumferential corrugated shape and the core 20 whose outermost peripheral portion is the flat plate 21.

これに対して第2の実施形態では、金属触媒担体10を、周方向の波形形状を有するシェル30と最外周部が波形形状である波板22であるコア20とによって構成した。なお、第1の実施の形態と同一の構成には同一の符号を付し、その説明は省略する。   On the other hand, in the second embodiment, the metal catalyst carrier 10 is constituted by a shell 30 having a corrugated shape in the circumferential direction and a core 20 which is a corrugated plate 22 having an outermost peripheral portion having a corrugated shape. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the description is abbreviate | omitted.

図5は、本発明の第2の実施の形態の金属触媒担体10の要部の説明図である。   FIG. 5 is an explanatory diagram of a main part of the metal catalyst carrier 10 according to the second embodiment of the present invention.

シェル30は、前述の第1の実施の形態と同様の形状を有する。すなわち、周方向の波形形状を有する円筒状の板材31を円筒状に折り曲げ加工し、長辺方向の両端部を互いにロウ接合することによって、周方向の波形形状を有する略円筒形状のシェル30が構成される。   The shell 30 has the same shape as that of the first embodiment described above. That is, the cylindrical plate member 31 having a circumferential corrugated shape is bent into a cylindrical shape, and both ends in the long side direction are joined to each other by brazing, whereby the substantially cylindrical shell 30 having the circumferential corrugated shape is obtained. Composed.

一方、コア20は、その最外周部が波形形状を有する。すなわち、平板21と波板22とを多重に巻き回し、コア20の最外周部が波板22となるように構成した。   On the other hand, the outermost peripheral part of the core 20 has a waveform shape. That is, the flat plate 21 and the corrugated plate 22 are wound in multiple layers so that the outermost peripheral portion of the core 20 becomes the corrugated plate 22.

そして、シェル30の波形形状の内周側のピッチ(波形形状の隆起部の間隔)が、コア20の最外周部の波板22のピッチ(波形形状の隆起部の間隔)の整数倍となるように、より好ましくはピッチが同一となるように、シェル30及びコア20を構成した。   The pitch on the inner peripheral side of the corrugated shape of the shell 30 (interval of the corrugated ridges) is an integral multiple of the pitch of the corrugated plate 22 on the outermost peripheral part of the core 20 (interval of the corrugated ridges). As described above, the shell 30 and the core 20 are more preferably configured to have the same pitch.

一般的に、コア20をシェル30に組み付ける工程では、まず、コア20の平板21及び波板22を巻締めてシェル30に挿入する。そして、この巻締めを解いて、平板21及び波板22の弾性によりコア20をシェル30に密着させる。その後、シェル30とコア20とをロウ接合する。   In general, in the process of assembling the core 20 to the shell 30, first, the flat plate 21 and the corrugated plate 22 of the core 20 are wound and inserted into the shell 30. Then, the winding is released and the core 20 is brought into close contact with the shell 30 by the elasticity of the flat plate 21 and the corrugated plate 22. Thereafter, the shell 30 and the core 20 are brazed.

この工程において、図5に示すように、シェル30の内周側の波形形状の陥没部分(凹部分)に、コア20の波板22の隆起部分(凸部分)が係合することにより、コア20がシェル30の周方向に確実に固定されることとなり、組み付け時の作業性が向上するのである。   In this step, as shown in FIG. 5, the raised portion (convex portion) of the corrugated plate 22 of the core 20 is engaged with the depressed portion (recessed portion) of the corrugated shape on the inner peripheral side of the shell 30, thereby 20 will be reliably fixed to the circumferential direction of the shell 30, and workability | operativity at the time of an assembly | attachment will improve.

以上のように、本発明の第2の実施形態の金属触媒担体10は、前述の第1の実施形態と同様の構成によって、前述の第1の実施の形態と同様の効果を奏する。   As described above, the metal catalyst carrier 10 of the second embodiment of the present invention has the same effects as those of the first embodiment described above, by the same configuration as that of the first embodiment.

そしてさらに、シェル30の内周側の波形形状の陥没部分に、コア20の波板22の隆起部分が係合する。これによって、シェル30とコア20とが確実に固定されるため、組み付け時の作業性が向上し、金属触媒担体10の製造コストが低下する。   Further, the raised portion of the corrugated plate 22 of the core 20 is engaged with the depressed portion of the corrugated shape on the inner peripheral side of the shell 30. As a result, the shell 30 and the core 20 are securely fixed, so that workability at the time of assembly is improved and the manufacturing cost of the metal catalyst carrier 10 is reduced.

なお、本発明の金属触媒担体10は自動車に限定されるものではなく、さまざまな内燃機関の排気ガスの浄化に用いることができる。   The metal catalyst carrier 10 of the present invention is not limited to an automobile, and can be used for purifying exhaust gas from various internal combustion engines.

本発明の第1の実施形態の金属触媒担体の斜視図である。1 is a perspective view of a metal catalyst carrier according to a first embodiment of the present invention. 本発明の第1の実施形態のシェルの斜視図である。It is a perspective view of the shell of the 1st Embodiment of this invention. 本発明の第1の実施形態のシェルを構成する板材の斜視図である。It is a perspective view of the board | plate material which comprises the shell of the 1st Embodiment of this invention. 本発明の第1の実施形態のシェルを構成する板材の説明図である。It is explanatory drawing of the board | plate material which comprises the shell of the 1st Embodiment of this invention. 本発明の第2の実施形態の金属触媒担体の説明図である。It is explanatory drawing of the metal catalyst carrier of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 金属触媒担体
20 コア
21 平板
22 波板
30 シェル
31 板材
10 Metal catalyst carrier 20 Core 21 Flat plate 22 Corrugated plate 30 Shell 31 Plate material

Claims (3)

平板(21)と波板(22)とが多重に巻回されて構成されたコア(20)と、前記コア(20)を内装する円筒形状のシェル(30)と、を備え、
前記シェル(30)は、その外周が、周方向の波形形状を有することを特徴とする金属触媒担体。
A core (20) configured by multiply winding a flat plate (21) and a corrugated plate (22), and a cylindrical shell (30) that houses the core (20),
The metal catalyst carrier according to claim 1, wherein the outer periphery of the shell (30) has a corrugated shape in a circumferential direction.
請求項1に記載の金属触媒担体において、
前記シェル(30)は、その内周が、周方向の波形形状を有し、
前記コア(20)の外周は、前記シェル(30)の内周面に、前記波形形状の隆起部で接することを特徴とする金属触媒担体。
The metal catalyst support according to claim 1, wherein
The inner periphery of the shell (30) has a circumferential waveform.
The metal catalyst carrier according to claim 1, wherein an outer periphery of the core (20) is in contact with an inner peripheral surface of the shell (30) by the corrugated raised portion.
請求項2に記載の金属触媒担体において、
前記コア(20)は、その最外周側に前記波板(22)が配置され、
前記シェル(30)の内周面の波形形状の間隔が、前記コア(30)の最外周側の波板(22)の波形形状の間隔の整数倍であることを特徴とする金属触媒担体。
The metal catalyst support according to claim 2,
The core (20) has the corrugated plate (22) disposed on the outermost peripheral side thereof,
The metal catalyst carrier characterized in that the interval of the corrugated shape of the inner peripheral surface of the shell (30) is an integral multiple of the interval of the corrugated shape of the corrugated plate (22) on the outermost peripheral side of the core (30).
JP2007325642A 2007-12-18 2007-12-18 Metallic catalyst carrier Pending JP2009142798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325642A JP2009142798A (en) 2007-12-18 2007-12-18 Metallic catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325642A JP2009142798A (en) 2007-12-18 2007-12-18 Metallic catalyst carrier

Publications (1)

Publication Number Publication Date
JP2009142798A true JP2009142798A (en) 2009-07-02

Family

ID=40914071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325642A Pending JP2009142798A (en) 2007-12-18 2007-12-18 Metallic catalyst carrier

Country Status (1)

Country Link
JP (1) JP2009142798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166603A (en) * 2013-02-28 2014-09-11 Ihi Corp Reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166603A (en) * 2013-02-28 2014-09-11 Ihi Corp Reactor

Similar Documents

Publication Publication Date Title
US5278125A (en) Support structure for an exhaust gas purifying catalyst
JP3589078B2 (en) Catalyst carrier holding device for catalytic converter
JP2011156505A (en) Catalyst carrier
US7258843B2 (en) Assembly having a honeycomb body and a shortened, slit, inner casing tube
JP2015029928A (en) Catalytic converter
US7241427B2 (en) Catalyst carrier body with sleeve and shortened tubular jacket and catalytic converter having the catalyst carrier body
US7691340B2 (en) Catalytic converter
JP2009142798A (en) Metallic catalyst carrier
US6660402B2 (en) Metal substrate
WO1996037691A1 (en) Exhaust emission control device for internal combustion engines
JP2007315368A (en) Vehicle exhaust pipe
US20040156761A1 (en) Honeycomb assembly having a honeycomb body with an expansion-compensating mounting, especially for an exhaust-gas catalytic converter
EP1036920A2 (en) Monolith supporting structure for use in catalytic converter
JP4122772B2 (en) Catalytic converter
JP2011043085A (en) Catalyst carrier holding structure
JP2000051711A (en) Catalyst carrier for purification of exhaust gas and its production
JP3271716B2 (en) Metal carrier for exhaust gas purification catalyst
JP7525419B2 (en) Catalytic converter
JP2600899B2 (en) Metal carrier for exhaust gas purification catalyst
JP4459070B2 (en) Tubular member structure
JP5334637B2 (en) Metal carrier for exhaust gas purification catalyst
JP2005171823A (en) Catalyst carrier, catalyst device, and engine exhaust device
JPH03165842A (en) Metallic carrier for race track type automobile exhaust gas cleanup catalyst having thermal stress resistance and thermal fatigue resistance
JPH0621551Y2 (en) Metal carrier for exhaust gas purification catalyst
JP5541074B2 (en) Exhaust purification device