Nothing Special   »   [go: up one dir, main page]

JP2009032567A - Fuse - Google Patents

Fuse Download PDF

Info

Publication number
JP2009032567A
JP2009032567A JP2007196165A JP2007196165A JP2009032567A JP 2009032567 A JP2009032567 A JP 2009032567A JP 2007196165 A JP2007196165 A JP 2007196165A JP 2007196165 A JP2007196165 A JP 2007196165A JP 2009032567 A JP2009032567 A JP 2009032567A
Authority
JP
Japan
Prior art keywords
metal material
point metal
fuse
melting point
fusible body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007196165A
Other languages
Japanese (ja)
Inventor
Shizuyasu Yoshida
静安 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2007196165A priority Critical patent/JP2009032567A/en
Publication of JP2009032567A publication Critical patent/JP2009032567A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress temperature-rising in a rated current and reduce a cut-off current at the time of fusion by maintaining a current-limiting performance. <P>SOLUTION: A linear or belt-like fuse-element 3 is wound around the outer periphery of an inner cylinder 1, and an integrated body of the inner cylinder 1 and the fuse-element 3 is housed in an insulator cylindrical body 6, while an arc extinguishing sand 7 is filled between the outer wall of the inner cylinder 1 and the inner wall of the cylindrical body 6, and both end apertures of the cylindrical body 6 are sealed with terminals 5. The fuse-element 3 has a structure in which on the outer peripheral face of a round wire 10 or belt-like wires 20 composed of high melting point metal materials and metal covering materials 11, 21 composed of low melting point metal materials are covered. As the high melting point metal material, tungsten or molybdenum is used, and as the low melting point material, lead, zinc, tin, cadmium, aluminum, copper, silver, or alloy of these is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力用の高圧回路に適用可能なヒューズに関する。   The present invention relates to a fuse applicable to a high voltage circuit for electric power.

図4は、従来の3〜22kVの高圧回路に適用される高圧ヒューズの構成例を示す断面図である。磁器性の断面星形の内筒1の両端部に金属性の止め輪2が巻き付け固定されている。内筒1の外周面に線又は帯状の可溶体3がラップしない様に間隔を明けて巻回されていて、可溶体3の両端部が止め輪2にスポット溶接されている。止め輪2には接続片4の一端がつながっており、その他端は、金属性の端子5にスポット溶接されている。可溶体3が巻回された内筒1は磁器性の円筒体6の内部に隙間を保った状態で収納されていて、その隙間に消弧砂7が充填されている。   FIG. 4 is a cross-sectional view showing a configuration example of a high-voltage fuse applied to a conventional high-voltage circuit of 3 to 22 kV. A metallic retaining ring 2 is wound around and fixed to both ends of a porcelain star-shaped inner cylinder 1. The wire or belt-like fusible body 3 is wound around the outer peripheral surface of the inner cylinder 1 with an interval so as not to wrap, and both end portions of the fusible body 3 are spot-welded to the retaining ring 2. One end of a connection piece 4 is connected to the retaining ring 2, and the other end is spot welded to a metallic terminal 5. The inner cylinder 1 around which the fusible body 3 is wound is stored in a porcelain cylindrical body 6 with a gap maintained therein, and arc-extinguishing sand 7 is filled in the gap.

図5は、図4のX−X断面図である。内筒1外周の軸方向に複数の突条1aが形成されている。複数の突条1aの存在によって、装置の電流遮断容量および通電性能を向上させている。可溶体3は突条1aの先端で直線状に引っ張られた状態で内筒1の外周に巻回されている。周方向に隣接する突条1a間に形成された凹み部にも消弧砂7が充填されている。これにより可溶体3の両面に消弧砂7が接する様にすることができる。電流は端子5から接続片4と止め輪2を介して可溶体3に流れるが、過電流が流れると可溶体3が溶断し、電流が遮断される。消弧砂7は可溶体3が溶断する時に生じる電流アークを消弧させる役目を担う。消弧砂7には一般に珪砂が使用される。   FIG. 5 is a cross-sectional view taken along the line XX of FIG. A plurality of ridges 1 a are formed in the axial direction of the outer periphery of the inner cylinder 1. Due to the presence of the plurality of protrusions 1a, the current interruption capacity and the energization performance of the device are improved. The fusible body 3 is wound around the outer periphery of the inner cylinder 1 in a state of being pulled linearly at the tip of the protrusion 1a. Arc-extinguishing sand 7 is also filled in the recesses formed between the protrusions 1a adjacent in the circumferential direction. Thereby, the arc-extinguishing sand 7 can be in contact with both surfaces of the fusible body 3. The current flows from the terminal 5 to the fusible body 3 through the connecting piece 4 and the retaining ring 2, but when an overcurrent flows, the fusible body 3 is melted and the current is cut off. The arc-extinguishing sand 7 serves to extinguish a current arc generated when the fusible body 3 is melted. As the arc-extinguishing sand 7, quartz sand is generally used.

高圧ヒューズが可溶体3の定格電流を超える印加電流を受けると、この過度の電流は、可溶体3が溶融温度に達するに十分な抵抗加熱を生じさせる。可溶体3の溶融または気化はその長さに沿って生じ、その際に電気アークが可溶体3の溶融領域の各々で発孤する。発孤が生じると、可溶体3または金属蒸気は、消弧砂7の砂間中に入り、この中で消弧砂7への伝熱現象を介して凝縮し、その結果、消弧砂内に機械的に分散し、導通が得られなくなる。またアークで生じる熱やイオン化されるガスも消弧砂7の砂間中で冷却されることから、ヒューズ内での導通が完全に遮断される。   When the high-voltage fuse receives an applied current that exceeds the rated current of the fusible body 3, this excessive current causes resistance heating sufficient for the fusible body 3 to reach the melting temperature. Melting or vaporization of the fusible body 3 occurs along its length, in which case an electric arc is isolated in each of the melting regions of the fusible body 3. When the isolation occurs, the fusible body 3 or the metal vapor enters between the sands of the arc-extinguishing sand 7 and condenses through the heat transfer phenomenon to the arc-extinguishing sand 7. Dispersed mechanically, no conduction can be obtained. Further, since heat generated by the arc and ionized gas are cooled between the sands of the arc-extinguishing sand 7, conduction in the fuse is completely interrupted.

以上のような高圧ヒューズの可溶体材料として、アルミニウム、銅、スズ、亜鉛、カドミニウムまたは、これらの合金が用いられるが、特に銀が好ましい材料である。また限流性能の優れたモリブデンやタングステン等の高融点金属材料も用いられる。この高融点金属材料は、温度上昇による抵抗増加が大きいため、過電流が可溶体に流れると温度上昇により、抵抗値が上昇し、可溶体の溶融前での電流量が低下し、溶断時の遮断電流を小さくすることができる。このため、短絡での過大電流や電力供給側および負荷側でのリアクトル分から発生する遮断に伴う跳ね返り電圧を低く抑えることが可能となる。   Aluminum, copper, tin, zinc, cadmium, or an alloy thereof is used as the fusible material of the high-voltage fuse as described above, and silver is a particularly preferable material. A high melting point metal material such as molybdenum or tungsten having excellent current limiting performance is also used. This refractory metal material has a large increase in resistance due to temperature rise, so when overcurrent flows through the fusible body, the resistance value increases due to the temperature rise, the current amount before melting of the fusible body decreases, Breaking current can be reduced. For this reason, it becomes possible to suppress the rebound voltage accompanying the interruption | blocking which generate | occur | produces from the excessive current by a short circuit, and the reactor part on the electric power supply side and load side.

可溶体に使用される金属材料の一つである銅や銀は電気導電性が良好であるため限流効果が小さい。そこで可溶体の形状を工夫したり銅および銀を用いた合金が使われるが、これらの材料においても比較的電気導電性が良いため、定格電流量でのヒューズの自己発熱は小さい。一方、高融点金属材料であるタングステンやモリブデンを可溶体としたヒューズでは、常温および温度上昇による抵抗の増大が大きいため、定格電流量内であってもヒューズから発熱し、温度の上昇が著しくヒューズ表面の温度が200℃以上に達するものもある。   Copper or silver, which is one of the metal materials used for the fusible body, has a small current limiting effect because of its good electrical conductivity. Therefore, the shape of the fusible body is devised, or an alloy using copper and silver is used. However, since these materials also have relatively good electrical conductivity, the self-heating of the fuse at the rated current amount is small. On the other hand, fuses with fusible materials such as tungsten or molybdenum, which is a refractory metal material, have a large increase in resistance due to room temperature and temperature rise, so the fuse generates heat even within the rated current and the temperature rises significantly. Some have surface temperatures of 200 ° C. or higher.

また、主可溶体に可溶素子を付加し、この可溶素子を過電流領域において溶断後、主可溶体を溶断かつ限流し遮断特性を向上するものがある(例えば、特許文献1、特許文献2)。
特公昭60−35439号公報 特公平7−7634号公報
In addition, there is a device in which a fusible element is added to the main fusible body, and after the fusible element is blown in the overcurrent region, the main fusible body is blown and current-limited to improve the cut-off characteristics (for example, Patent Document 1 and Patent Document). 2).
Japanese Patent Publication No. 60-35439 Japanese Patent Publication No. 7-7634

しかしながら、可溶体に高融点金属材料であるタングステンやモリブデンを用いた高圧ヒューズは、定格電流量内であっても可溶体の抵抗が高いため、発熱が生じ、それらは消弧砂の温度上昇よる遮断特性の低下や電流変化による負荷側での電圧変動を招く恐れがあった。ヒューズ外周部での温度上昇はヒューズ収納装置内の温度上昇を招くので、装置内機器の耐熱性維持が必要となるばかりか、多数本の高圧ヒューズを用いた場合には装置冷却性能の低下を招いた。また高圧ヒューズの使われる雰囲気、例えばオゾナイザーの様な発生機においては、この温度上昇により、生成したガス成分が分解し、生成効率の低下も生じるといった問題があった。   However, high-voltage fuses that use high-melting-point metal materials such as tungsten and molybdenum as the fusible body generate heat due to the high resistance of the fusible body, even within the rated current, and they are caused by the temperature rise of the arc-extinguishing sand. There is a risk of voltage fluctuation on the load side due to a drop in the breaking characteristics or a current change. The temperature rise at the outer periphery of the fuse causes the temperature inside the fuse storage device to rise, so it is necessary not only to maintain the heat resistance of the equipment in the device, but also to reduce the cooling performance of the device when multiple high-voltage fuses are used. invited. Further, in an atmosphere in which a high-voltage fuse is used, for example, a generator such as an ozonizer, there is a problem that the generated gas component is decomposed and the generation efficiency is lowered due to this temperature rise.

一方、タングステンやモリブデンを用いた高圧ヒューズは、通電時と非通電時での温度変化が大きいことから、円筒体6に接続される端子5との接合部において、これらの熱膨張係数差と温度差から気密および接合が維持できないことがあった。   On the other hand, a high-voltage fuse using tungsten or molybdenum has a large temperature change during energization and non-energization. Therefore, at the junction with the terminal 5 connected to the cylindrical body 6, the difference between these thermal expansion coefficients and the temperature. Due to the difference, airtightness and bonding could not be maintained.

また、特許文献1又は特許文献2に記載のように、可溶素子を過電流領域において溶断後、主可溶体を溶断して遮断特性を向上させたものは、可溶体の構造が複雑で施工し難いといった問題があった。   Moreover, as described in Patent Document 1 or Patent Document 2, after the fusible element is melted in the overcurrent region, the main fusible body is melted to improve the shut-off characteristics, and the structure of the fusible body is complicated. There was a problem that it was difficult.

本発明は、かかる点に鑑みてなされたものであり、定格電流内での温度上昇を抑制できると共に限流性能を維持して溶断時の遮断電流を小さくすることができ、周辺装置への温度上昇の影響を無くし、信頼性を向上させることのできるヒューズを提供することを目的とする。   The present invention has been made in view of the above points, and can suppress a temperature rise within the rated current, maintain current-limiting performance, reduce the breaking current during fusing, and reduce the temperature to the peripheral device. An object of the present invention is to provide a fuse that can eliminate the influence of the rise and improve the reliability.

本発明のヒューズは、絶縁物からなる内筒と前記内筒に巻回された可溶体とを有し、過電流により前記可溶体が溶断するヒューズにおいて、前記可溶体は、温度上昇により電気抵抗が増加する高融点金属材料を前記高融点金属材料に比べて電気抵抗が小さい低融点金属材料で被覆した構造を有することを特徴とする。   The fuse of the present invention has an inner cylinder made of an insulator and a fusible body wound around the inner cylinder. In the fuse in which the fusible body is blown by an overcurrent, the fusible body has an electric resistance due to a temperature rise. It is characterized by having a structure in which a high melting point metal material having an increased resistance is coated with a low melting point metal material having a smaller electric resistance than the high melting point metal material.

この構成によれば、ヒューズに流れる電流が定格電流範囲では、可溶体の表面層に配置される低融点金属材料からなる電気伝導性の高い層に流れる電流が支配的となる。従って、高融点金属材料を単独で可溶体として用いた高圧ヒューズに比較し、定格電流範囲での温度上昇は低く抑えられる。一方、過電流が生じると、可溶体に流れる電流により、温度が上昇するが、その温度が高融点金属材料の表面に被覆された低融点金属材料の融点以上に達すると、この被覆された低融点金属材料が溶けて蒸気化し、高融点金属材料表面から脱離する。その結果、高融点金属材料の線または帯状となり、可溶体の電流の流れる断面積が小さくなるとともに、低電気抵抗である低融点金属材料が無くなるため、電流が抵抗の高い高融点金属材料に集中し流れることとなる。電流が高融点金属材料に集中することにより、可溶体に流れる電流の増加と可溶体の断面積低下が同時期に起きることから、瞬時に温度上昇と温度上昇に伴う抵抗増加が起きて電流が低減されると共に、更に電流が流れることにより、高融点金属材料が溶断して電流が遮断される。従って、高融点金属材料の表面に低電気抵抗の低融点金属材料を被覆することにより、定格電流容量内でのヒューズの温度上昇を低減し、過電流領域での電流は瞬時に限流し、過負荷および異常電流を遮断するができる。   According to this configuration, when the current flowing through the fuse is in the rated current range, the current flowing through the layer having high electrical conductivity made of the low melting point metal material disposed on the surface layer of the fusible body is dominant. Therefore, the temperature rise in the rated current range can be kept low compared to a high-voltage fuse using a refractory metal material alone as a fusible element. On the other hand, when an overcurrent occurs, the temperature rises due to the current flowing through the fusible body, but when the temperature reaches or exceeds the melting point of the low melting point metal material coated on the surface of the high melting point metal material, The melting point metal material melts and vaporizes, and desorbs from the surface of the refractory metal material. As a result, the refractory metal material becomes a line or a band, and the cross-sectional area through which the current flows through the fusible body is reduced. Will flow. Since the current concentrates on the refractory metal material, the current flowing in the fusible body increases and the cross-sectional area of the fusible body decreases at the same time. In addition to being reduced, when a current further flows, the refractory metal material is melted and the current is interrupted. Therefore, by covering the surface of the refractory metal material with a low-melting-point metal material having low electrical resistance, the temperature rise of the fuse within the rated current capacity is reduced, and the current in the overcurrent region is instantaneously limited. Can cut off load and abnormal current.

また本発明は、上記ヒューズにおいて、前記可溶体が巻回された前記内筒を絶縁物からなるハウジングに収納し、前記内筒と前記ハウジングの内壁との間の隙間に消弧体を充填し、前記消弧体は水ガラスを浸透させて前記隙間に固着化した消弧砂からなることを特徴とする。   According to the present invention, in the fuse, the inner cylinder around which the fusible body is wound is housed in a housing made of an insulating material, and an arc extinguishing body is filled in a gap between the inner cylinder and the inner wall of the housing. The arc extinguishing body is made of arc extinguishing sand fixed in the gap by infiltrating water glass.

この構成により、水ガラスは可溶体が溶断時に発生する熱により吸熱反応を起こし、これにより可溶体の溶融物の高温度化を抑制して過熱を防止するとともに、アークの消弧時間を短くする。その結果、ヒューズの内部圧力の急激な増加を抑え、ヒューズ外管の熱ショック及び過圧力による割れ・破壊を防止することができる。しかも、水ガラスが高温の可溶体の溶融物とガラス化反応し、不導体化物を作るので、再導通化が防止され、ヒューズの完全な遮断化が実現される。   With this configuration, the water glass undergoes an endothermic reaction due to the heat generated when the fusible body melts, thereby preventing overheating by suppressing the temperature rise of the melt of the fusible body and shortening the arc extinguishing time. . As a result, it is possible to suppress a rapid increase in the internal pressure of the fuse, and to prevent cracking and destruction of the fuse outer tube due to heat shock and overpressure. In addition, the water glass reacts with the melt of the high-temperature soluble material to form a non-conductive material, so that re-conduction is prevented and complete disconnection of the fuse is realized.

上記ヒューズにおいて、前記可溶体は、タングステン又はモリブデンからなる高融点金属材料の丸線又は帯状体の表面に、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金からなる低融点金属材料を被覆した構成とすることができる。   In the above fuse, the fusible body has a low melting point made of lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof on the surface of a round wire or strip of a high melting point metal material made of tungsten or molybdenum. It can be set as the structure coat | covered with the metal material.

本発明によれば、定格電流内での温度上昇を抑制できると共に限流性能を維持して溶断時の遮断電流を小さくすることができ、周辺装置への温度上昇の影響を無くし、信頼性を向上させることができる。   According to the present invention, the temperature rise within the rated current can be suppressed, the current limiting performance can be maintained, the breaking current at the time of fusing can be reduced, the influence of the temperature rise on the peripheral device can be eliminated, and the reliability can be improved. Can be improved.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
本実施の形態に係る高圧ヒューズの基本構造は、可溶体の構造及び消弧砂の固定方法を除いて、図4及び図5に示す高圧ヒューズと同様である。すなわち、断面星型をなす内筒1の外周にラップしないように線状又は帯状の可溶体3を巻回し、当該内筒1と可溶体3の一体物を絶縁物のハウジングとなる円筒体6に収納し、内筒1外壁と円筒体6内壁との間に消弧体としての消弧砂7を充填し、円筒体6の両端開口部を端子5にて封じている。内筒1及び円筒体6は絶縁性と耐熱性に優れたセラミック又は高耐熱性樹脂から構成される。消弧体は消弧砂7に限定されるものではない。可溶体3の溶断時の金属蒸気の凝縮・分散化、アーク熱やイオン化ガスの冷却化による、ヒューズ内の導通遮断機能を実現できるものであれば他の材料であっても良い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
The basic structure of the high-voltage fuse according to the present embodiment is the same as that of the high-voltage fuse shown in FIGS. 4 and 5 except for the structure of the fusible body and the method for fixing the arc-extinguishing sand. That is, a linear or belt-like fusible body 3 is wound so as not to wrap around the outer circumference of the inner cylinder 1 having a star-shaped cross section, and the integral body of the inner cylinder 1 and the fusible body 3 serves as an insulating housing 6. The arc-extinguishing sand 7 serving as an arc extinguishing body is filled between the outer wall of the inner cylinder 1 and the inner wall of the cylindrical body 6, and both ends of the cylindrical body 6 are sealed with terminals 5. The inner cylinder 1 and the cylindrical body 6 are made of ceramic or high heat resistant resin having excellent insulation and heat resistance. The arc extinguishing body is not limited to the arc extinguishing sand 7. Other materials may be used as long as they can realize the conduction cutoff function in the fuse by condensing / dispersing the metal vapor at the time of melting the fusible body 3 and cooling the arc heat or ionized gas.

図1は線状に構成した可溶体3の断面図である。同図に示す線状の可溶体3は、高融点金属材料からなる丸線10の外周面に低融点金属材料からなる金属被覆材11を被覆した構造をしている。高融点金属材料の特性は既述した通りである。低融点金属材料は、高融点金属材料に比べて定格電流域での電気抵抗が小さく、しかも融点が低い金属材料で構成される。例えば、丸線10を構成する高融点金属材料としてタングステン又はモリブデンを用いることができ、金属被覆材11を構成する低融点金属材料として、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金を用いることができる。   FIG. 1 is a cross-sectional view of a fusible body 3 configured in a linear shape. The linear fusible body 3 shown in the figure has a structure in which the outer peripheral surface of a round wire 10 made of a high melting point metal material is covered with a metal coating material 11 made of a low melting point metal material. The characteristics of the refractory metal material are as described above. The low melting point metal material has a lower electrical resistance in the rated current region than the high melting point metal material and is composed of a metal material having a low melting point. For example, tungsten or molybdenum can be used as the high melting point metal material constituting the round wire 10, and the low melting point metal material constituting the metal coating material 11 can be lead, zinc, tin, cadmium, aluminum, copper, silver, or These alloys can be used.

本例では、高融点金属材料であるタングステン又はモリブデンの丸線10の表面に、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金からなる低融点金属材料を電気メッキ法により被覆している。ただし、本発明は電気メッキ法による被覆に限らず、高融点金属材料の丸線10に、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金を張り合わせて、クラッド構造としても良い。又は、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金を蒸着することにより、高融点金属材料表面に低融点金属材料からなる金属被覆材11を形成することもできる。   In this example, a low melting point metal material made of lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof is electroplated on the surface of a round wire 10 of tungsten or molybdenum which is a high melting point metal material. It is covered. However, the present invention is not limited to the coating by the electroplating method, and lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof may be bonded to the round wire 10 of the refractory metal material to form a clad structure. good. Alternatively, by depositing lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof, the metal coating material 11 made of a low melting point metal material can be formed on the surface of the high melting point metal material.

図2及び図3は帯状に構成した可溶体3の断面図である。図2は可溶体3の長手方向に切断した断面図であり、図3は可溶体3を長手方向と直交する方向に切断した断面図である。図1に示す線状の可溶体3に代えて、図2及び図3に示す帯状の可溶体3を用いることができる。帯状の可溶体3は、高融点金属材料で構成される帯状線20の表面に、低融点金属材料からなる金属被覆材21を形成した構成である。高融点金属材料としてタングステン又はモリブデンを用いることができ、低融点金属材料として、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金を用いることができる。   2 and 3 are sectional views of the fusible body 3 configured in a band shape. FIG. 2 is a cross-sectional view of the fusible body 3 cut in the longitudinal direction, and FIG. 3 is a cross-sectional view of the fusible body 3 cut in a direction orthogonal to the longitudinal direction. Instead of the linear soluble body 3 shown in FIG. 1, the belt-like soluble body 3 shown in FIGS. 2 and 3 can be used. The band-shaped fusible body 3 has a configuration in which a metal coating material 21 made of a low-melting-point metal material is formed on the surface of a band-shaped wire 20 made of a high-melting-point metal material. Tungsten or molybdenum can be used as the high melting point metal material, and lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof can be used as the low melting point metal material.

このように、本実施の形態では可溶体3を断面で見ると、高融点金属材料(10、20)を芯とし、その周辺に低温の溶融温度を有する低融点金属材料(11,21)の被覆が形成される。電気伝導性は、高融点金属材料(10、20)とその周辺の低融点金属材料(11、21)とに二分され、ヒューズの可溶体3に流れる電流も高融点金属材料(10、20)と低融点金属材料(11、21)とに2分される。高融点金属材料(10、20)の断面積および低融点金属材料(11、21)の断面積は、高圧ヒューズの容量、電流遮断特性により、任意に設定される。   As described above, in the present embodiment, when the fusible body 3 is viewed in cross section, the low melting point metal material (11, 21) having the high melting point metal material (10, 20) as a core and having a low melting temperature in the periphery thereof. A coating is formed. The electrical conductivity is divided into a high melting point metal material (10, 20) and a peripheral low melting point metal material (11, 21), and the current flowing through the fusible body 3 of the fuse is also high melting point metal material (10, 20). And the low melting point metal material (11, 21). The cross-sectional area of the refractory metal material (10, 20) and the cross-sectional area of the low-melting metal material (11, 21) are arbitrarily set depending on the capacity of the high-voltage fuse and the current interruption characteristics.

上記可溶体3をラップしない様に間隔を空けて内筒1の外周に巻回する。内筒1の外周に巻回した可溶体3の両端部は、内筒1の両端部に巻き付け固定された金属性の止め輪2にスポット溶接する。このように可溶体3が設置された断面星形の内筒1を円筒体6の内部に収納すると共に、内筒1外壁と円筒体6内壁との間に消孤砂7を充填する。   The fusible body 3 is wound around the outer periphery of the inner cylinder 1 with an interval so as not to wrap. Both ends of the fusible body 3 wound around the outer periphery of the inner cylinder 1 are spot-welded to a metallic retaining ring 2 wound around and fixed to both ends of the inner cylinder 1. In this way, the star-shaped inner cylinder 1 in which the fusible body 3 is installed is housed in the cylindrical body 6, and the sand 7 is filled between the outer wall of the inner cylinder 1 and the inner wall of the cylindrical body 6.

ここで、本実施の形態では、消孤砂7を固定するために水ガラスを浸透して乾燥させている。消孤砂7は浸透した水ガラスにより管壁に固定され、飛散防止が図られている。水ガラスの主成分は、珪酸ナトリウムであるので高温になるとガラス成分になる。このため、高温の可溶体3の溶融物とガラス化反応し、完全な絶縁物ではないが不導体化物を作り、再導通化を防止するように作用する。   Here, in the present embodiment, water glass is infiltrated and dried in order to fix the extinct sand 7. The extinct sand 7 is fixed to the tube wall by the permeated water glass to prevent scattering. Since the main component of water glass is sodium silicate, it becomes a glass component at high temperatures. For this reason, it vitrifies and reacts with the melt of the high-temperature fusible body 3 to produce a non-conductor but a non-conductive material and to prevent re-conduction.

以下、図1に示す高融点金属材料からなる丸線10に低融点金属材料からなる金属被覆材11を形成してなる可溶体3を用いた場合の作用効果について説明する。なお、図2及び図3に示す帯状の可溶体3を用いた場合も同様の作用効果を奏することができる。   Hereinafter, the operation and effect when the fusible body 3 formed by forming the metal coating material 11 made of the low melting point metal material on the round wire 10 made of the high melting point metal material shown in FIG. 1 will be described. In addition, when using the strip | belt-shaped soluble body 3 shown in FIG.2 and FIG.3, there can exist the same effect.

以上のように構成された可溶体3を備えた高圧ヒューズを負荷回路に設置する。定格電流範囲では、可溶体3に流れる電流は、高融点金属材料の丸線10とその表面に被覆された低融点金属材料の金属被覆材11に2分され、特に可溶体3の表面層に配置された電気伝導性の高い層となる低融点金属材料の金属被覆材11に電流の流れが支配的となる。従って、高融点金属材料の丸線10を単独で可溶体3として用いた高圧ヒューズに比較し、温度上昇は少ない。   A high-voltage fuse including the fusible body 3 configured as described above is installed in the load circuit. In the rated current range, the current flowing through the fusible body 3 is divided into two parts, a high melting point metal material round wire 10 and a low melting point metal material covering material 11 coated on the surface thereof. The current flow is dominant in the metal covering material 11 of the low melting point metal material which becomes the arranged layer having high electrical conductivity. Therefore, the temperature rise is smaller than that of the high-voltage fuse using the refractory metal material round wire 10 alone as the fusible element 3.

一方、負荷回路の二次側に接続された機器又は回路の短絡や過負荷により過電流が流れた場合の作用は次のようになる。高圧ヒューズに過電流が流れる場合、可溶体3に被覆された低融点金属材料の金属被覆材11と高融点金属材料の丸線10に電流が流れ、これらの抵抗及び流れる電流量に応じて可溶体3が発熱する。最初に、可溶体3に被覆された低融点金属材料の金属被覆材11が溶融する。   On the other hand, the operation when an overcurrent flows due to a short circuit or overload of a device or circuit connected to the secondary side of the load circuit is as follows. When an overcurrent flows through the high-voltage fuse, a current flows through the metal cover 11 of the low-melting-point metal material and the round wire 10 of the high-melting-point metal material that are covered with the fusible body 3, and can be changed depending on the resistance and the amount of current flowing. The solution 3 generates heat. First, the metal coating material 11 of the low melting point metal material coated on the fusible body 3 is melted.

低融点金属材料の金属被覆材11の溶融により可溶体3の断面積が低下し、その過電流は高融点金属材料の丸線10に集中するが、高融点金属材料の丸線10の抵抗値が高いため、流れる電流が制限される。更に電流が流れると高融点金属材料の丸線10の高抵抗により瞬時に可溶体3の温度が上昇し、高融点金属材料の丸線10の酸化及び溶融温度に達して導通が遮断される。   Although the cross-sectional area of the fusible body 3 decreases due to the melting of the metal coating material 11 of the low melting point metal material, the overcurrent concentrates on the round wire 10 of the high melting point metal material, but the resistance value of the round wire 10 of the high melting point metal material. The current flowing is limited. When a current further flows, the temperature of the fusible body 3 instantaneously rises due to the high resistance of the round wire 10 of the refractory metal material, reaches the oxidation and melting temperature of the round wire 10 of the refractory metal material, and the conduction is cut off.

このとき、消弧砂7に浸透させた水ガラスは、可溶体3が溶断時に発生する熱により、自己分解や水の放出等の反応(吸熱反応)を起こす。これにより、可溶体3の溶融物の高温度化を抑制して過熱を防止するとともに、アークの消弧時間を短くする。その結果、ヒューズの内部圧力の急激な増加を抑え、ヒューズ外管の熱ショック及び過圧力による割れ・破壊を防止することができる。しかも、水ガラスが高温の可溶体3の溶融物とガラス化反応し、不導体化物を作るので、再導通化が防止され、ヒューズの完全な遮断化が実現される。   At this time, the water glass infiltrated into the arc-extinguishing sand 7 causes a reaction (endothermic reaction) such as self-decomposition or release of water by heat generated when the fusible body 3 is blown. Thereby, while raising the temperature of the melt of the soluble body 3 is suppressed and overheating is prevented, the arc extinguishing time is shortened. As a result, it is possible to suppress a rapid increase in the internal pressure of the fuse, and to prevent cracking and destruction of the fuse outer tube due to heat shock and overpressure. Moreover, the water glass reacts with the melt of the high-temperature fusible body 3 to form a non-conductive material, so that re-conduction is prevented and complete disconnection of the fuse is realized.

このように本実施の形態によれば、定格電流範囲では、可溶体3の低融点金属材料からなる金属被覆材11の低抵抗部で電流が流れるため、可溶体3およびヒューズ本体での温度上昇を抑制でき、周辺装置への温度上昇の影響を軽減し、信頼性を向上することができる。また、過電流領域では、低融点金属材料からなる金属被覆材11の溶融と可溶体3表面からの離脱により、過電流が抵抗の高い高融点金属材料からなる丸線10に集中し、かつ温度上昇による抵抗増加で電流制限が大きくなることから、大きな限流効果を得ることができる。   As described above, according to the present embodiment, in the rated current range, a current flows in the low resistance portion of the metal covering material 11 made of the low melting point metal material of the fusible body 3, so that the temperature rises in the fusible body 3 and the fuse body. Can be suppressed, the influence of the temperature rise on the peripheral device can be reduced, and the reliability can be improved. Further, in the overcurrent region, overcurrent concentrates on the round wire 10 made of a high-melting-point metal material having a high resistance due to melting of the metal coating material 11 made of a low-melting-point metal material and detachment from the surface of the fusible body 3, and the temperature Since the current limit increases as the resistance increases due to the increase, a large current limiting effect can be obtained.

なお、被覆される低抵抗の低融点金属材料(11,21)は、ヒューズの容量、制限電流特性により選択されるが、金属被覆材の融点が低い程、過電流時の温度上昇を低く抑えることが出来る。また、過電流時の可溶体3の温度上昇過程で低い温度で金属被覆材(11,21)が溶融するため、限流効果をより速い時間で得ることが出来る。   The low resistance low melting point metal material (11, 21) to be coated is selected depending on the capacity of the fuse and the current limiting characteristic. The lower the melting point of the metal coating material, the lower the temperature rise during overcurrent. I can do it. Moreover, since the metal coating material (11, 21) melts at a low temperature in the process of increasing the temperature of the fusible body 3 at the time of overcurrent, the current limiting effect can be obtained in a faster time.

以上の実施の形態は高圧ヒューズについて説明したが、高圧ヒューズの様に可溶体(芯線部分)の表面に低融点金属材料を被覆した構造は、一般の電力ヒューズにおいても適用出来、可溶体である銅や銀からなる芯線部の表面に低融点金属材料である鉛、亜鉛、スズ、カドミニウム、アルミニウムを被覆することにより、その可溶体3の芯線部に被覆された低融点金属材料が過電流の初期時に溶融および飛散し、可溶体3の電流の流れる断面積が低下することにより、可溶体3での抵抗値が増加し、急峻な温度上昇となり、過電流に対する溶断時間が短縮される効果もある。   Although the above embodiments have been described for the high-voltage fuse, the structure in which the surface of the fusible body (core wire portion) is covered with a low melting point metal material like the high-voltage fuse can be applied to a general power fuse and is a fusible body. By covering the surface of the core portion made of copper or silver with lead, zinc, tin, cadmium, or aluminum, which is a low melting point metal material, the low melting point metal material coated on the core portion of the fusible body 3 is overcurrent. It melts and scatters at the initial stage, and the cross-sectional area through which the current of the fusible body 3 flows decreases, so that the resistance value of the fusible body 3 increases, the temperature rises sharply, and the fusing time against overcurrent is shortened. is there.

本発明は、3〜22kVの高圧回路に使用される高圧ヒューズ又は一般の電力ヒューズに適用可能である。   The present invention is applicable to a high-voltage fuse or a general power fuse used in a high-voltage circuit of 3 to 22 kV.

実施の形態に係る高圧ヒューズにおける可溶体の断面図Sectional drawing of the fusible body in the high voltage fuse which concerns on embodiment 上記実施の形態の変形例に係る高圧ヒューズにおける可溶体の長手方向の断面図Sectional drawing of the longitudinal direction of the fusible body in the high voltage fuse which concerns on the modification of the said embodiment 図2に示す可溶体の長手方向と直交する方向の断面図Sectional drawing of the direction orthogonal to the longitudinal direction of the fusible body shown in FIG. 高圧ヒューズの構成例を示す断面図Sectional view showing a configuration example of a high-voltage fuse 図4に示すX-X線断面図XX sectional view shown in FIG.

符号の説明Explanation of symbols

1…内筒、1a…突条、2…止め輪、3…可溶体、4…接続片、5…端子、6…円筒体、7…消弧砂、10…丸線(高融点金属材料)、11…金属被覆材(低融点金属材料)、20…帯状線(高融点金属材料)、21…金属被覆材(低融点金属材料)

DESCRIPTION OF SYMBOLS 1 ... Inner cylinder, 1a ... Projection, 2 ... Retaining ring, 3 ... Soluble body, 4 ... Connection piece, 5 ... Terminal, 6 ... Cylindrical body, 7 ... Arc-extinguishing sand, 10 ... Round wire (refractory metal material) 11 ... Metal coating material (low melting point metal material), 20 ... Strip line (high melting point metal material), 21 ... Metal coating material (low melting point metal material)

Claims (3)

絶縁物からなる内筒と前記内筒に巻回された可溶体とを有し、過電流により前記可溶体が溶断するヒューズにおいて、
前記可溶体は、温度上昇により電気抵抗が増加する高融点金属材料を前記高融点金属材料に比べて電気抵抗が小さい低融点金属材料で被覆した構造を有することを特徴とするヒューズ。
In a fuse having an inner cylinder made of an insulator and a fusible body wound around the inner cylinder, the fusible body is blown by overcurrent,
The fusible body has a structure in which a high-melting-point metal material whose electrical resistance increases with a temperature rise is covered with a low-melting-point metal material whose electrical resistance is smaller than that of the high-melting-point metal material.
前記可溶体が巻回された前記内筒を絶縁物からなるハウジングに収納し、前記内筒と前記ハウジングの内壁との間の隙間に消弧体を充填し、前記消弧体は水ガラスを浸透させて前記隙間に固着化した消弧砂からなることを特徴とする請求項1記載のヒューズ。   The inner cylinder around which the fusible body is wound is housed in a housing made of an insulating material, and an arc extinguishing body is filled in a gap between the inner cylinder and the inner wall of the housing. 2. The fuse according to claim 1, wherein the fuse is made of arc-extinguishing sand that has penetrated and is fixed in the gap. 前記可溶体は、タングステン又はモリブデンからなる高融点金属材料の丸線又は帯状体の表面に、鉛、亜鉛、スズ、カドミニウム、アルミニウム、銅、銀、又はこれらの合金からなる低融点金属材料を被覆してなることを特徴とする請求項1又は請求項2記載のヒューズ。
The fusible body is coated with a low melting point metal material made of lead, zinc, tin, cadmium, aluminum, copper, silver, or an alloy thereof on the surface of a round wire or strip of a high melting point metal material made of tungsten or molybdenum. The fuse according to claim 1 or 2, wherein the fuse is formed.
JP2007196165A 2007-07-27 2007-07-27 Fuse Pending JP2009032567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196165A JP2009032567A (en) 2007-07-27 2007-07-27 Fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196165A JP2009032567A (en) 2007-07-27 2007-07-27 Fuse

Publications (1)

Publication Number Publication Date
JP2009032567A true JP2009032567A (en) 2009-02-12

Family

ID=40402870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196165A Pending JP2009032567A (en) 2007-07-27 2007-07-27 Fuse

Country Status (1)

Country Link
JP (1) JP2009032567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543612A (en) * 2012-01-13 2012-07-04 东莞市贝特电子科技有限公司 Fuse wire, device for manufacturing fuse wire and manufacturing method of fuse wire
JP2013239405A (en) * 2012-05-17 2013-11-28 Nec Schott Components Corp Fuse element for protective element and circuit protection element utilizing the same
CN110534383A (en) * 2019-09-09 2019-12-03 广东中贝能源科技有限公司 A kind of integral type is from being in harmony high density intelligent fuse
WO2022095279A1 (en) * 2020-11-03 2022-05-12 上海维安电子有限公司 Self-fusing unit and protective element applying same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233122A (en) * 1990-12-07 1992-08-21 Avx Corp Dual element fuse device
JPH06325682A (en) * 1992-07-02 1994-11-25 Fuji Electric Co Ltd Power fuse and manufacture thereof
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233122A (en) * 1990-12-07 1992-08-21 Avx Corp Dual element fuse device
JPH06325682A (en) * 1992-07-02 1994-11-25 Fuji Electric Co Ltd Power fuse and manufacture thereof
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543612A (en) * 2012-01-13 2012-07-04 东莞市贝特电子科技有限公司 Fuse wire, device for manufacturing fuse wire and manufacturing method of fuse wire
JP2013239405A (en) * 2012-05-17 2013-11-28 Nec Schott Components Corp Fuse element for protective element and circuit protection element utilizing the same
CN104303255A (en) * 2012-05-17 2015-01-21 恩益禧肖特电子零件有限公司 Fuse element for protection element, and circuit protection element using fuse element for protection element
CN110534383A (en) * 2019-09-09 2019-12-03 广东中贝能源科技有限公司 A kind of integral type is from being in harmony high density intelligent fuse
WO2022095279A1 (en) * 2020-11-03 2022-05-12 上海维安电子有限公司 Self-fusing unit and protective element applying same

Similar Documents

Publication Publication Date Title
US6614340B2 (en) Full-range high voltage current limiting fuse
JPS6235215B2 (en)
JP2014501435A (en) A device that combines a thermal fuse and a resistor
US6590490B2 (en) Time delay fuse
JPH0244101B2 (en)
JP2013077583A (en) Fuse
JP2004071264A (en) Fuse
US3243552A (en) Current limiting fuse
TWI620739B (en) Melamine-coated-steatite foam filler for use in fuse and method of making the fuse
JP2009032567A (en) Fuse
US3437971A (en) Current limiting fuse
TW201832344A (en) Fuse, method of manufacturing the same and fusible element
US3913050A (en) Fuse assembly for current limiting fuses
US11621138B2 (en) High-voltage fusing apparatus
US4319212A (en) Fuse supporting means having notches containing a gas evolving material
JP5346705B2 (en) Current fuse
US3294936A (en) Current limiting fuse
JP6247002B2 (en) A device that can be integrated into a contactor to protect an electrical circuit supplied with alternating current
US3733572A (en) Current limiting fuse
RU196396U1 (en) THERMAL FUSE FOR TUBULAR ELECTRIC HEATER
JP2013037929A (en) Fusible link
US20160189904A1 (en) Protection Device Comprising a Plurality of Vacuum Fuses
GB2126808A (en) Fusible element assembly and a high voltage current limiting fuselink incorporating same
US2453397A (en) Fuse link
US12002642B2 (en) Electric fuse with a melting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110