JP2009028617A - Filter nonwoven fabric - Google Patents
Filter nonwoven fabric Download PDFInfo
- Publication number
- JP2009028617A JP2009028617A JP2007194113A JP2007194113A JP2009028617A JP 2009028617 A JP2009028617 A JP 2009028617A JP 2007194113 A JP2007194113 A JP 2007194113A JP 2007194113 A JP2007194113 A JP 2007194113A JP 2009028617 A JP2009028617 A JP 2009028617A
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- fiber
- filter
- layer
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明はフィルター不織布に係り、例えば主として内燃機関等に設けられた燃料タンクから燃料噴射装置へ燃料を供給する過程に用いられる燃料用のフィルター不織布に関するものである。 The present invention relates to a filter nonwoven fabric, and more particularly to a filter nonwoven fabric for fuel used in a process of supplying fuel from a fuel tank provided mainly in an internal combustion engine or the like to a fuel injection device.
内燃機関等において燃料噴射弁へ燃料を濾過して供給するため燃料フィルターが配設されているが、この燃料フィルターは燃料に混入した異物を通過させない濾過性能や流量特性,耐久性,耐薬品性など、様々な特性が要求される。 A fuel filter is provided to filter and supply fuel to the fuel injection valve in internal combustion engines, etc., but this fuel filter does not allow foreign matters mixed in the fuel to pass through, filtration performance, flow characteristics, durability, and chemical resistance. Various characteristics are required.
従来、かかる燃料フィルターは燃料が燃料タンクから燃料フィルター装置を経て燃料噴射弁に供給される過程において、燃料タンク内と燃料フィルター装置に設けられ、用いられるフィルター材には金網,焼結金属,ナイロンネット,不織布などが一般に使用されて来た。なかでも、近時、不織布を燃料フィルター材として使用するものが多く、合成樹脂からなる補強材と合成長繊維不織布を一体に接合したフィルター材(例えば特許文献1参照)や種々の繊度と目付の異なる複数の長繊維層を、粗層,中層,密層として積層し、一体化せしめたフィルター材(例えば特許文献2参照)などが提案されている。 Conventionally, such a fuel filter is provided in the fuel tank and in the fuel filter device in the process in which the fuel is supplied from the fuel tank to the fuel injection valve, and the filter material used is a wire mesh, sintered metal, nylon Nets and non-woven fabrics have been commonly used. Among them, many recently use nonwoven fabric as a fuel filter material, and a filter material (for example, refer to Patent Document 1) in which a reinforcing material made of a synthetic resin and a synthetic long-fiber nonwoven fabric are joined together, and various finenesses and basis weights. A filter material (see, for example, Patent Document 2) in which a plurality of different long fiber layers are laminated as a rough layer, a middle layer, and a dense layer and integrated is proposed.
しかし、燃料フィルター、特にガソリンフィルターの濾材では従来、濾紙が構成繊維径が細かいことから濾過性能が優れているし、かつ耐久性もよいことから主流となっており、不織布によるフィルター材では上記濾紙に比較し濾過性能が低く充分とは云えなかった。なお、一方、濾紙に使用する合成紙として、より薄く、目付が均一で、かつ高強力の合成紙が求められ、ナノ繊維を含有した合成紙をフィルターに使用することも提案されている。(例えば特許文献3参照)
しかし、上記ナノ繊維含有による合成紙のフィルター材は端緒についた状態であって、具体的構成を得るには至っていない。まして、ナノ繊維を合成紙でなく不織布に形成してフィルター材に使用することは検討段階の域を出ていない。 However, the synthetic fiber filter material containing nanofibers has just started, and has not yet achieved a specific configuration. Furthermore, forming nanofibers not on synthetic paper but on non-woven fabrics and using them as filter materials is not in the examination stage.
本発明は上述の如き実状に対処し、特にナノ繊維を活用したフィルター不織布に着目し、ナノ繊維の目付,繊度,繊度分布等を組み合わせることにより濾紙性能を上回る濾過性能を達成し、燃料フィルターとして好適なフィルター不織布を提供することを目的とするものである。 The present invention addresses the actual situation as described above, particularly focusing on filter nonwoven fabrics that utilize nanofibers, and achieves filtration performance that exceeds filter paper performance by combining nanofiber basis weight, fineness, fineness distribution, etc., as a fuel filter The object is to provide a suitable filter nonwoven fabric.
即ち、上記目的を達成する本発明の特徴は、ナノ繊維層を含む二層以上の積層体不織布において、該ナノ繊維の繊経が50〜900nmφで目付質量0.01〜1.0g/m2であって、該積層体不織布の通気度が1.0〜50cc/cm2/secであることを特徴とするフィルター不織布であり、より具体的には目付質量が20〜100g/m2のメッシュ,長繊維不織布又は短繊維層にバインダーを付与接着した短繊維不織布の何れかから選ばれた基材にエレクトロスピニング法により繊経が50〜900nmφで目付質量が0.01〜1.0g/m2のナノ繊維層を形成させ、得られたナノ繊維層形成基材のナノ繊維層形成面にメルトブロン不織布あるいはニードルパンチ法で得られた不織布の何れかを積層し、部分熱接着により一体化してなると共に、得られた該積層不織布の通気度が1.0〜50cc/cm2/secであるフィルター不織布よりなる。 That is, the feature of the present invention that achieves the above-described object is that, in a laminated nonwoven fabric of two or more layers including a nanofiber layer, the fiber diameter of the nanofiber is 50 to 900 nmφ and the basis weight is 0.01 to 1.0 g / m 2. A filter nonwoven fabric characterized in that the air permeability of the laminate nonwoven fabric is 1.0 to 50 cc / cm 2 / sec, more specifically, a mesh having a basis weight of 20 to 100 g / m 2 . A base material selected from either a long-fiber non-woven fabric or a short-fiber non-woven fabric obtained by attaching and bonding a binder to a short-fiber layer is electrospun to have a fiber diameter of 50 to 900 nmφ and a basis weight of 0.01 to 1.0 g / m. 2 nanofiber layers are formed, and either the melt-bron nonwoven fabric or the nonwoven fabric obtained by the needle punch method is laminated on the nanofiber layer forming surface of the resulting nanofiber layer forming substrate and integrated by partial thermal bonding In addition, the laminated nonwoven fabric obtained is made of a filter nonwoven fabric having an air permeability of 1.0 to 50 cc / cm 2 / sec.
ここで上記フィルター不織布における積層不織布の熱接着部分の融着面積比率は1.0〜15%であることが好ましい。なお、上記フィルター不織布でナノ繊維層形成基材に積層されるメルトブロン不織布の目付質量は20〜80g/m2であるか、またはニードルパンチ不織布の目付質量は100〜300g/m2であることが好ましく、フィルター使用に際しては濾過流入表面がメルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布であり、濾過流出表面が長繊維不織布がメッシュあるいは短繊維不織布に樹脂接着した基布の何れかであることが好適である。 Here, the fusion area ratio of the heat-bonded portion of the laminated nonwoven fabric in the filter nonwoven fabric is preferably 1.0 to 15%. In addition, the basis weight of the melt-blown nonwoven fabric laminated on the nanofiber layer forming substrate with the filter nonwoven fabric is 20 to 80 g / m 2 , or the basis weight of the needle punched nonwoven fabric is 100 to 300 g / m 2. Preferably, when the filter is used, the filtration inflow surface is a melt-bron nonwoven fabric or a short fiber nonwoven fabric obtained by a needle punch method, and the filtration outflow surface is either a mesh or a base fabric obtained by resin bonding to a short fiber nonwoven fabric. Is preferred.
上記本発明フィルター不織布によれば、従来のフィルターや濾紙あるいは濾紙にナノ繊維を含有させたものに比し濾過性能において向上が見られ、しかも濾紙にナノ繊維を含有させたものは一部ナノ繊維の破壊が見られたが、これらも改善され、耐久性にも優れていて燃料フィルター用として頗る良好な効果を有する。 According to the filter nonwoven fabric of the present invention, the filtration performance is improved as compared with the conventional filter, filter paper, or filter paper containing nanofibers, and some of the filter paper containing nanofibers is nanofibers. However, these are also improved and excellent in durability and have a good effect as a fuel filter.
以下、更に本発明フィルター不織布の具体的態様を詳述する。本発明フィルター不織布は前述の如くメッシュ,長繊維不織布,短繊維層にバインダーを付与接着した短繊維不織布から選ばれた基材にナノ繊維を形成した不織布を活用し、これにメルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布を積層し、部分的熱接着により一体化せしめた構成を基本とする。 Hereinafter, the specific aspect of this invention filter nonwoven fabric is explained in full detail. The filter nonwoven fabric of the present invention uses a nonwoven fabric in which nanofibers are formed on a base material selected from a mesh, a long-fiber nonwoven fabric, and a short-fiber nonwoven fabric obtained by attaching a binder to a short-fiber layer as described above. Basically, the short fiber nonwoven fabric obtained by the method is laminated and integrated by partial thermal bonding.
ここで基材はナノ繊維を保持するためのものであり、メッシュあるいは長繊維不織布,短繊維層に樹脂接着が施された短繊維不織布が用いられる。これは後述する濾過流出面に濾過材が流出しないことが重要であるためで、メッシュ、あるいは長繊維不織布は繊維端がなく繊維屑を発生しにくい。一方、短繊維不織布は短繊維端があるめために繊維屑を発生し易く、そのため繊維間を確実に接着しておく必要があり、樹脂接着が必須となる。接着繊維による繊維間の接着では不充分で好ましくない。 Here, the base material is for holding nanofibers, and a mesh, a long fiber nonwoven fabric, or a short fiber nonwoven fabric in which a resin bond is applied to the short fiber layer is used. This is because it is important that the filtering material does not flow out to the filtering outflow surface described later, and the mesh or the long-fiber nonwoven fabric has no fiber ends and hardly generates fiber waste. On the other hand, since the short fiber nonwoven fabric has short fiber ends, it is easy to generate fiber waste. Therefore, it is necessary to securely bond the fibers, and resin bonding is essential. Adhesion between fibers using adhesive fibers is insufficient and not preferable.
この基材は目付質量20〜100g/m2の範囲が良い。目付質量が20g/m2未満では繊維量が少ないため基材として薄く強度に欠け、濾過中に破損し易いので好ましくない。目付質量が100g/m2を超えると繊維量が多いためナノ繊維を付与した後の圧損が大きくなり易く濾過寿命が短くなり能力が低下し易いので好ましくない。また基材としての強度は十分にあるので過剰量となりコスト面からも好ましくない。 This substrate preferably has a basis weight of 20 to 100 g / m 2 . If the mass per unit area is less than 20 g / m 2 , the amount of fibers is small, so that the substrate is thin and lacks in strength, and is easily damaged during filtration. If the mass per unit area exceeds 100 g / m 2 , the amount of fibers is large, so that the pressure loss after applying nanofibers tends to be large, the filtration life is shortened, and the capacity tends to decrease, which is not preferable. Further, since the strength as a base material is sufficient, it becomes an excessive amount, which is not preferable from the viewpoint of cost.
そして、本発明は 上記基材に対し重要な構成としてナノ繊維層が形成される。ナノ繊維はナノレベルまで極細繊維化されたものであり、一般的な製造として、分割繊維法、エレクトロスピニング法、レーザー法等が挙げられる。例えばエレクトロスピニング法の場合、高分子を電解質溶液に溶解し、口金から押し出すとき、その高分子溶液に数千〜数万ボルトという高電圧を印加し、極細化する技術であり、この極細繊維を集束することで不織布として捕集される。この技術を用いると繊径で数10nmレベルのものが得られ、繊径の極細化が達成される。勿論、ナノ繊維を得る製法は特に限定されるものではない。ナノ繊維は基材に加工するが、その場合にメルトブロン(短繊維)に加工する場合も考えられる。 And this invention forms a nanofiber layer as an important structure with respect to the said base material. Nanofibers are made into ultrafine fibers down to the nano level. Examples of general production include a split fiber method, an electrospinning method, and a laser method. For example, in the case of the electrospinning method, when a polymer is dissolved in an electrolyte solution and extruded from a die, a high voltage of several thousand to several tens of thousands of volts is applied to the polymer solution to make it ultrafine. It is collected as a non-woven fabric by focusing. When this technique is used, a fine diameter of several tens of nanometers can be obtained, and the fineness of the fine diameter can be achieved. Of course, the production method for obtaining the nanofiber is not particularly limited. Nanofibers are processed into a base material, and in that case, processing into melt bron (short fibers) is also conceivable.
本発明において形成されるナノ繊維の繊径は50〜900nmφの範囲がよく、繊径が50nmφ未満では繊径が細くなり、強度が弱く破断が起き易く、その結果、異物の発生の原因となる。一方、繊径が900nmφを超えると太くなり繊維間で形成するサイズが大きくなり、濾過粒径の小さな異物を取ることができないので好ましくない。 The fine diameter of the nanofiber formed in the present invention is preferably in the range of 50 to 900 nmφ, and if the fine diameter is less than 50 nmφ, the fine diameter is small, the strength is weak and breakage easily occurs, and as a result, foreign matter is generated. . On the other hand, if the fine diameter exceeds 900 nmφ, it is not preferable because it becomes thick and the size formed between the fibers becomes large, and foreign matters having a small filtration particle diameter cannot be removed.
また、形成されるナノ繊維の目付質量の範囲は0.01〜1.0g/m2の範囲がよく、目付質量が0.01g/m2未満では繊維量が少ないため異物の保持ができず濾材を通過してしまうので十分な濾過ができない。一方、目付質量が1.0g/m2を超えると繊維量が多いため圧損が大きく、濾過寿命が短くなり、能力が低いので好ましくない。また過剰量になるのでコスト面からも好ましくない。 Also, the basis weight mass ranging from nano fiber formed may have a range of 0.01 to 1.0 g / m 2, it is less than the basis weight mass 0.01 g / m 2 can not hold foreign matter for a small amount of fibers Since it passes through the filter medium, sufficient filtration cannot be performed. On the other hand, when the mass per unit area exceeds 1.0 g / m 2 , the amount of fibers is large, so that the pressure loss is large, the filtration life is shortened, and the ability is low, which is not preferable. Moreover, since it becomes excessive amount, it is not preferable also from a cost surface.
本発明は以上のナノ繊維層形成基材に対しフィルターとして濾過流入表面がメルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布となり、濾過流出表面が長繊維不織布あるいはメッシュや短繊維不織布の樹脂接着としたもの、即ち、基材面となるように上記メルトブロン不織布あるいはニードルパンチ短繊維不織布を積層接着構成とする。層の構成としてはメルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布の何れか又は両方の不織布を使用する。これはフィルターの機構として粗層,中層,密層となすようにするためである。また、流出側に直接、ナノ繊維層を配置することは剥離が起こり易く、濾過性能を損なうので好ましくない。 In the present invention, the filtration inflow surface is a melt-bron nonwoven fabric or a short fiber nonwoven fabric obtained by a needle punch method as a filter for the nanofiber layer-forming substrate, and the filtration outflow surface is a resin adhesion of the long fiber nonwoven fabric or mesh or short fiber nonwoven fabric. In other words, the melt blown nonwoven fabric or needle punched short fiber nonwoven fabric is laminated and adhered so as to be the base material surface. As the constitution of the layer, either a melt-bron nonwoven fabric, a short fiber nonwoven fabric obtained by a needle punch method, or both nonwoven fabrics are used. This is because the filter mechanism is a coarse layer, a middle layer, and a dense layer. In addition, it is not preferable to dispose the nanofiber layer directly on the outflow side because peeling easily occurs and the filtration performance is impaired.
なお、流入側の不織布は粗層の役目をもち、前記の如くメルトブロン不織布やニードルパンチ不織布(短繊維不織布)が用いられる。この場合、メルトブロン不織布の目付質量としては20〜80g/m2の範囲が好適である。目付質量が20g/m2未満では繊維量が少ないため粗層としての役目が不十分となり好ましくなく、また、目付質量が80g/m2を超えると繊維量が多いために粗層の役目は十分であるが、不織布の厚さが厚くなり、フィルター構造のコンパクト化には不適であると共に、また過剰量となるのでコスト面からも好ましくない。一方、ニードルパンチ不織布の目付質量は100〜300g/m2が好ましい。 In addition, the nonwoven fabric on the inflow side has a role of a coarse layer, and as described above, a melt blown nonwoven fabric or a needle punched nonwoven fabric (short fiber nonwoven fabric) is used. In this case, the basis weight of the melt blown nonwoven fabric is preferably in the range of 20 to 80 g / m 2 . If the mass per unit area is less than 20 g / m 2 , the amount of fibers is small and the role as a coarse layer is insufficient, which is not preferable. If the mass per unit area exceeds 80 g / m 2 , the amount of fibers is large and the role of the coarse layer is sufficient. However, the thickness of the non-woven fabric is increased, which is not suitable for making the filter structure compact, and is excessively large, which is not preferable from the viewpoint of cost. On the other hand, the basis weight mass of needle-punched nonwoven fabric is preferably 100 to 300 g / m 2.
なお、上記接着を構成するナノ繊維を含む各層の高分子としては特に限定されるものではないが、例えば、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリエチレンオキサイド、ポリエチレングリコール、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリメタクリル酸、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリアリレート、ポリアセタール、ポリカーボネート、ポリスチレン、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、アラミド、ポリイミドベンザゾール、ポリベンゾイミダゾール、ポリグリコール酸、ポリ乳酸、ポリウレタン、セルロース化合物、ポリペプチド、ポリヌクレオシド、ポリヌクレオチド、タンパク質、酵素などを使用することができる。これらの以外の高分子化合物も使用可能であり、これらの高分子化合物を含め、2種以上の高分子化合物を混合して用いることも可能である。 The polymer of each layer containing the nanofibers constituting the above-mentioned adhesion is not particularly limited. For example, polyacrylonitrile, polyethylene, polypropylene, polyethylene oxide, polyethylene glycol, polyethylene terephthalate, polyethylene naphthalate, poly- m-phenylene terephthalate, poly-p-phenylene isophthalate, polymethacrylic acid, polymethyl methacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropyrene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, Polytetrafluoroethylene, polyvinyl alcohol, polyarylate, polyacetal, polycarbonate, polystyrene, polyphenylene sulfide, polyamide, polyimide, poly Midoimido, aramid, polyimide polybenzazole, polybenzimidazole, polyglycolic acid, polylactic acid, polyurethane, cellulose compounds, polypeptides, nucleosides, polynucleotides, proteins, enzymes and the like can be used. Polymer compounds other than these can also be used, and two or more kinds of polymer compounds including these polymer compounds can be mixed and used.
図1は上記積層接着された不織布の各層を示す構成例であり、濾過流入表面がメルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布3であり、濾過流出表面が長繊維不織布あるいはメッシュや短繊維不織布の樹脂接着としたものから選ばれた基材1となっており、中間にナノ繊維層2が形成配置されている。
FIG. 1 is a structural example showing each layer of the above laminated and bonded nonwoven fabric. The filtration inflow surface is a melt-bron nonwoven fabric or a short fiber
なお、上記不織布の積層接着はメッシュ,長繊維不織布か、あるいは短繊維層にバインダー接着した不織布の何れかからなる基材1にナノ繊維層2を形成させた不織布と、メルトブロン不織布あるいはニードルパンチ法で得られた短繊維不織布3を積層し、部分熱接着により一体化することが好ましい。この場合、層間の接着を粉末樹脂やバインダー(樹脂)で行うと、これら接着は層中の構造を変えたり、層間の接着が不十分となるので好ましくない。なお、部分熱接着の接着率としては、融着面積比率が1.0〜15%の範囲が好ましい。融着面積比率がが1.0%未満では接着量が少ないため層間の接着が不十分であり層間剥離を起こし、加工性,取扱性が劣るので好ましくない。一方、融着面積比率が15.0%を超えると接着量が多いため濾過面積が減少し濾過寿命が短くなり能力が低くなるので好ましくない。
The non-woven fabric is laminated and bonded by a nonwoven fabric in which a
かくして、以上により得られた積層されたフィルター不織布は、その特性として積層不織布の通気度が1.0〜50cc/cm2/secの範囲であることが好ましい。通気度が1.0cc/cm2/sec未満では濾過液の通液抵抗が高くなり濾過時の負荷が高くなり捕捉量が低下するので好ましくない。通気度が50.0cc/cm2/secを超えると濾液の通液抵抗は低いが濾過液中の微細塵埃を通過させるために濾過能力が低くなるので好ましくない。 Thus, it is preferable that the laminated filter nonwoven fabric obtained as described above has a permeability of the laminated nonwoven fabric in the range of 1.0 to 50 cc / cm 2 / sec. An air permeability of less than 1.0 cc / cm 2 / sec is not preferable because the resistance of the filtrate to be passed increases, the load during filtration increases, and the trapped amount decreases. If the air permeability exceeds 50.0 cc / cm 2 / sec, the flow resistance of the filtrate is low, but it is not preferable because the filtration capacity is low because fine dust in the filtrate is allowed to pass through.
以下、更に本発明の具体的実施例を比較例と共に説明する。 Hereinafter, specific examples of the present invention will be described together with comparative examples.
実施例1
スパンボンド法で作られた繊径14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材に繊径500nmφ、目付質量が0.4g/m2のナイロンのナノ繊維をエレクトロスピニング法で加工し積層構造体とし、ポリエステル短繊維繊径14.9μmで目付質量が200g/m2の短繊維不織布層を重ねてスパンボンド層側から超音波融着でピン間隔4mm、ピン列間隔40mmの2インチダイヤ模様で層接着をし融着面積比率が3.7%の積層体フィルター不織布を得た。この積層体フィルター不織布の通気度は7.1cc/cm2/secであった。
実施例2
スパンボンド法で作られた繊径14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材に繊径500nmφ、目付質量が0.4g/m2のナイロンのナノ繊維をエレクトロスピニング法で加工し積層構造体とし、ポリプロピレン繊維繊径3.5μmで目付質量が40g/m2のメルトブロン不織布を重ねてスパンボンド層側から超音波融着をピン間隔4mmでピン列間隔40mmの2インチダイヤ模様で層接着をし、融着面積比率が3.4%の積層体フィルター不織布を得た。この積層体フィルター不織布の通気度は10.2cc/cm2/secであった。
実施例3
スパンボンド法で作られた14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材に繊径500nmφ、目付質量が0.4g/m2のナイロンのナノ繊維をエレクトロスピニング法で加工し積層構造体とし、ポリプロピレン繊維繊径3.5μmで目付質量が40g/m2のメルトブロン不織布を重ね、さらにその上にポリエステル短繊維繊径14.9μmで目付質量が200g/m2の短繊維層を重ね、スパンボンド層側から超音波融着をピン間隔4mmでピン列間隔40mmの2インチダイヤ模様で層接着をし、融着面積比率が3.6%の積層体フィルター不織布を得た。積層体フィルター不織布の通気度は9.2cc/cm2/secであった。
実施例4
繊度2.2デシテックス、繊維長52mmのポリエステル繊維70重量%と、繊度1.4デシテックス、繊維長52mmのレーヨン繊維30重量%を均一混繊してカーディング後、ニードルパンチ加工し、さらにアクリル樹脂加工して短繊維不織布を得た。この短繊維不織布に繊径320nmφ、目付質量が0.40g/m2のナイロンナノ繊維をエレクトロスピニング法で加工して積層構造体とし、その上にポリプロピレン繊維繊径3.5μmで目付が40g/m2のメルトブロン不織布を重ねて短繊維層側から超音波融着をピン間隔4mm、ピン列間隔40mmの2インチダイヤ模様で層接着をし、融着面積比率が3.5%の積層体フィルター不織布を得た。積層体フィルター不織布の通気度は12.2cc/cm2/secであった。
比較例1
スパンボンド法で作られた14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材に繊径500nmφ、目付質量が0.4g/m2のナイロンのナノ繊維をエレクトロスピニング法で加工し積層構造体とし、ポリエステル短繊維繊径14.9μmで目付質量が200g/m2の短繊維層を重ねてナノ繊維側側から超音波融着でピン間隔4mm、ピン列間隔40mmの2インチダイヤ模様で層接着をし、融着面積比率が3.4%のフィルター不織布を得た。積層体フィルター不織布の通気度は8.0cc/cm2/secであった。
比較例2
スパンボンド法で作られた14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材にポリプロピレン繊維繊径3.5μmで目付質量が40g/m2のメルトブロン層を重ねてスパンボンド層側から超音波融着をピン間隔4mmでピン列間隔40mmの2インチダイヤ模様で層接着をし、融着面積比率が3.4%のフィルター不織布を得た。積層体フィルター不織布の通気度は24.0cc/cm2/secであった。
比較例3
セルロース繊維を主体として、ガラス繊維,ポリエステル繊維を混繊しフェノール樹脂で接着された濾紙で平均繊径7.0μm、目付質量が67.0g/m2であった。また、この濾紙の通気度は16.8cc/cm2/secであった
比較例4
スパンボンド法で作られた14.2μm、目付質量が60g/m2のポリエステル長繊維層からなる基材に繊径500nmφ、目付質量が0.4g/m2のナイロンのナノ繊維をエレクトロスピニング法で加工し積層構造体とし、ポリプロピレン繊維繊径3.5μmで目付質量が120g/m2のメルトブロン不織布を重ねてスパンボンド層側から超音波融着をピン間隔4mmでピン列間隔40mmの2インチダイヤ模様で層接着をし融着面積比率が3.4%の積層体フィルター不織布を得た。積層体フィルター不織布の通気度は0.83cc/cm2/secであった。
Example 1
Nylon nanofibers with a diameter of 500 nmφ and a basis weight of 0.4 g / m 2 are electrolyzed on a base material made of a polyester long fiber layer with a diameter of 14.2 μm and a basis weight of 60 g / m 2 made by the spunbond method. Processed by spinning method to form a laminated structure, a short fiber nonwoven fabric layer having a polyester short fiber diameter of 14.9 μm and a mass per unit area of 200 g / m 2 is layered, and the spunbond layer side is ultrasonically fused to pin spacing of 4 mm. Layer bonding was performed with a 2-inch diamond pattern with an interval of 40 mm to obtain a laminated filter nonwoven fabric with a fusion area ratio of 3.7%. The air permeability of this laminated filter nonwoven fabric was 7.1 cc / cm 2 / sec.
Example 2
Nylon nanofibers with a diameter of 500 nmφ and a basis weight of 0.4 g / m 2 are electrolyzed on a base material made of a polyester long fiber layer with a diameter of 14.2 μm and a basis weight of 60 g / m 2 made by the spunbond method. A laminated structure is processed by a spinning method, and a melt-blown nonwoven fabric having a polypropylene fiber diameter of 3.5 μm and a mass per unit area of 40 g / m 2 is stacked, and ultrasonic fusion is performed from the spunbond layer side with a pin interval of 4 mm and a pin row interval of 40 mm. Layer adhesion was performed with a 2-inch diamond pattern to obtain a laminated filter nonwoven fabric with a fusion area ratio of 3.4%. The laminated filter non-woven fabric had an air permeability of 10.2 cc / cm 2 / sec.
Example 3
Electrospinning of nylon nanofibers with a diameter of 500 nmφ and a basis weight of 0.4 g / m 2 on a base material made of a polyester long fiber layer of 14.2 μm and a basis weight of 60 g / m 2 made by the spunbond method And a laminated structure having a polypropylene fiber diameter of 3.5 μm and a fabric weight of 40 g / m 2 , and a polyester short fiber fiber diameter of 14.9 μm and a weight of 200 g / m 2 . A laminated filter nonwoven fabric with a fusion area ratio of 3.6% is formed by stacking short fiber layers, layering the ultrasonic bond from the spunbond layer side with a 2 inch diamond pattern with a pin spacing of 4 mm and a pin row spacing of 40 mm. Obtained. The air permeability of the multilayer filter nonwoven fabric was 9.2 cc / cm 2 / sec.
Example 4
70% by weight of polyester fiber with a fineness of 2.2 decitex and 52 mm in fiber length and 30% by weight of rayon fiber with a fineness of 1.4 decitex and fiber length of 52 mm are mixed and carded, then needle punched, and then acrylic resin A short fiber nonwoven fabric was obtained by processing. Nylon nanofibers with a diameter of 320 nmφ and a mass per unit area of 0.40 g / m 2 are processed by this electrospinning method into a laminated structure, and a polypropylene fiber diameter of 3.5 μm and a basis weight of 40 g / m 2 of Merutoburon nonwoven superposed short fiber layer side from the ultrasonic welding pins spacing 4 mm, and the
Comparative Example 1
Electrospinning of nylon nanofibers with a diameter of 500 nmφ and a basis weight of 0.4 g / m 2 on a base material made of a polyester long fiber layer of 14.2 μm and a basis weight of 60 g / m 2 made by the spunbond method In order to obtain a laminated structure, a short fiber layer having a polyester short fiber diameter of 14.9 μm and a mass per unit area of 200 g / m 2 is overlapped, and the pin interval is 4 mm and the pin row interval is 40 mm by ultrasonic fusion from the nanofiber side. The layers were bonded with a 2-inch diamond pattern to obtain a filter nonwoven fabric with a fusion area ratio of 3.4%. The air permeability of the laminated filter nonwoven fabric was 8.0 cc / cm 2 / sec.
Comparative Example 2
A base material consisting of a polyester long fiber layer of 14.2 μm and a basis weight of 60 g / m 2 made by a spunbond method is laminated with a melt bron layer having a polypropylene fiber diameter of 3.5 μm and a basis weight of 40 g / m 2. Ultrasonic fusion was bonded from the bond layer side with a 2-inch diamond pattern having a pin interval of 4 mm and a pin row interval of 40 mm to obtain a filter nonwoven fabric having a fusion area ratio of 3.4%. The air permeability of the laminated filter nonwoven fabric was 24.0 cc / cm 2 / sec.
Comparative Example 3
A filter paper composed mainly of cellulose fibers, mixed with glass fibers and polyester fibers and bonded with a phenol resin, had an average fiber diameter of 7.0 μm and a weight per unit area of 67.0 g / m 2 . Further, the air permeability of this filter paper was 16.8 cc / cm 2 / sec. Comparative Example 4
Electrospinning of nylon nanofibers with a diameter of 500 nmφ and a basis weight of 0.4 g / m 2 on a base material made of a polyester long fiber layer of 14.2 μm and a basis weight of 60 g / m 2 made by the spunbond method The laminated structure is processed into a laminate structure, and melt blown nonwoven fabrics having a polypropylene fiber diameter of 3.5 μm and a mass per unit area of 120 g / m 2 are stacked, and ultrasonic fusion is performed from the spunbond layer side by 2 mm with a pin interval of 4 mm and a pin row interval of 40 mm. A layered filter nonwoven fabric having a fused area ratio of 3.4% was obtained by layer bonding with a diamond pattern. The air permeability of the multilayer filter nonwoven fabric was 0.83 cc / cm 2 / sec.
かくして得られた上記実施例、比較例の各フィルター不織布について夫々、その濾過性能等について対比した。その結果を表1に示す。なお、表1中の各項目については夫々、下記要領に従って測定し、評価を行なった。
目付質量; g/m2
50cm×50cmの大きさを切り出し、そのときの重さを測定し、1m2当たりの重量に換算する。
厚さ; mm
15cm×15cmの大きさを切り出し、初荷重15g/cm2を掛けて、4隅の高さを測定し、その平均値で示す。
繊径; nmφ
不織布の部位を走査型電子顕微鏡(日立製作所製S−510)によって所定の倍率に拡大し、100ヶ所の繊維径を算出しその平均で示す。
見掛け密度; g/cc
目付量と厚さで算出する。
The filter performances of the filter nonwoven fabrics of the Examples and Comparative Examples thus obtained were compared. The results are shown in Table 1. Each item in Table 1 was measured and evaluated according to the following procedure.
Mass per unit area; g / m 2
A size of 50 cm × 50 cm is cut out, the weight at that time is measured, and converted to a weight per 1 m 2 .
Thickness: mm
A size of 15 cm × 15 cm is cut out, an initial load of 15 g / cm 2 is applied, the heights of the four corners are measured, and the average value is shown.
Fine diameter; nmφ
The portion of the nonwoven fabric is enlarged to a predetermined magnification by a scanning electron microscope (S-510, manufactured by Hitachi, Ltd.), and the fiber diameters at 100 locations are calculated and shown as the average.
Apparent density; g / cc
Calculate with the basis weight and thickness.
見掛け密度=(目付量/厚さ)g/cc
通気度; cc/cm2/sec
JIS L1096−1999の827.1のA法により測定した。
超音波融着の面積比率; %
不織布の超音波融着部位をマイクロスコープ(株式会社キーエンス製)によって25倍に拡大し、超音波融着の1ケの融着面積(S)を算出する。融着部をランダムに10個選んで平均融着面積(S)を求める。次に、不織布表面の5cm×5cm角の面積に存在する融着個数(n)を数え下記式に当てはめて超音波融着の面積比率(Ts)(%)とする。
Apparent density = (weight per unit area / thickness) g / cc
Air permeability: cc / cm 2 / sec
It was measured by A method of 827.1 of JIS L1096-1999.
Ultrasonic fusion area ratio:%
The ultrasonic fusion part of a nonwoven fabric is expanded 25 times with a microscope (made by Keyence Corporation), and one fusion area (S) of ultrasonic fusion is calculated. Ten fused portions are selected at random and the average fused area (S) is obtained. Next, the number of fusions (n) existing in the area of 5 cm × 5 cm square on the nonwoven fabric surface is counted and applied to the following formula to obtain the ultrasonic fusion area ratio (Ts) (%).
平均融着面積(s)=(Σsi/10)(cm2)
超音波融着の面積比率(Ts)=(S×n)/(5×5)×100(%)
濾過性能評価
ダストが一定濃度で混ざった水を流し、濁度計にて濁度を測定する濾過前濁度に対する濾過後の濁度の差を求め、濁度効率で評価した。
Average fusion area (s) = (Σsi / 10) (cm 2 )
Ultrasonic fusion area ratio (Ts) = (S × n) / (5 × 5) × 100 (%)
Evaluation of Filtration Performance Water in which dust was mixed at a constant concentration was flowed, and the difference in turbidity after filtration with respect to turbidity before filtration in which turbidity was measured with a turbidimeter was determined and evaluated by turbidity efficiency.
濁度効率(%)=(濾過前濁度−濾過後濁度)/濾過前濁度
評価条件
ダスト:JIS 8種粉体/JIS 11種粉体=50/50(重量%)
ダスト投入量:0.25g/1L(ダスト濃度0.025重量%)
試験液:蒸留水
テスト液量:所定圧損に達するまで継続
テスト液流量:200cc/min
評価
初期濾過効率は30sec後の濁度で評価(%)
捕集量は圧力損失2.0kPa到達までの捕捉量
耐久性
濾過評価前後のフィルター不織布の形態保持性を判定した。
Turbidity efficiency (%) = (Turbidity before filtration−Turbidity after filtration) / Turbidity before filtration Evaluation condition Dust: JIS 8 type powder / JIS 11 type powder = 50/50 (% by weight)
Dust input amount: 0.25 g / 1 L (dust concentration 0.025% by weight)
Test liquid: Distilled water Test liquid volume: Continue until the specified pressure loss is reached Test liquid flow rate: 200 cc / min
Evaluation Initial filtration efficiency is evaluated by turbidity after 30 seconds (%)
The amount collected was the amount until the pressure loss reached 2.0 kPa. Durability Durability The shape retention of the filter nonwoven fabric before and after the filtration evaluation was determined.
不織布間の剥離もなく変化なし ○
不織布間の剥離やナノ繊維が破壊している ×
No change without peeling between nonwoven fabrics ○
Peeling between nonwoven fabrics and nanofibers are broken ×
本発明フィルター不織布はガソリンフィルター,燃料フィルターに限らず、広く流体用フィルターに利用することが可能である。 The filter nonwoven fabric of the present invention is not limited to gasoline filters and fuel filters, and can be widely used for fluid filters.
1:基材
2:ナノ繊維層
3:メルトブロン不織布あるいはニードルパンチ不織布
1: Base material 2: Nanofiber layer 3: Melt bron nonwoven fabric or needle punched nonwoven fabric
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007194113A JP2009028617A (en) | 2007-07-26 | 2007-07-26 | Filter nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007194113A JP2009028617A (en) | 2007-07-26 | 2007-07-26 | Filter nonwoven fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009028617A true JP2009028617A (en) | 2009-02-12 |
Family
ID=40399760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007194113A Pending JP2009028617A (en) | 2007-07-26 | 2007-07-26 | Filter nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009028617A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010167384A (en) * | 2009-01-26 | 2010-08-05 | Toyo Roshi Kaisha Ltd | Cartridge filter for liquid filtration |
JP2011194389A (en) * | 2010-03-17 | 2011-10-06 | Nippon Air Filter Kk | Medium high performance filter |
KR101091049B1 (en) * | 2011-06-17 | 2011-12-08 | 주식회사 케이엠에프 | A fuel filter for fuel pump of automobile and method for preparing the same |
WO2011158324A1 (en) * | 2010-06-15 | 2011-12-22 | 東洋紡績株式会社 | Filter support body and filter using same |
JP2012517898A (en) * | 2009-02-17 | 2012-08-09 | フィルトロナ・ポーラス・テクノロジーズ・コーポレーション | Multilayer fluid permeable fiber structure comprising nanofibers and method for producing the structure |
WO2013035201A1 (en) | 2011-09-09 | 2013-03-14 | 旭化成せんい株式会社 | Filter material |
CN105803678A (en) * | 2016-04-18 | 2016-07-27 | 生纳科技(上海)有限公司 | Nanofiber membrane capable of filtering out impurities and preparation method and application thereof |
JP2016182595A (en) * | 2015-03-03 | 2016-10-20 | マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Filter medium, production method of the filter medium and filtration treatment member having the filter medium |
CN110678245A (en) * | 2017-05-24 | 2020-01-10 | 曼·胡默尔有限公司 | Filter medium, method for producing a filter medium and use of a filter medium in a filter element |
CN111051591A (en) * | 2017-09-06 | 2020-04-21 | 可隆材料株式公司 | Waterproof and breathable sheet and manufacturing method thereof |
JP2021007929A (en) * | 2019-07-02 | 2021-01-28 | 阿波製紙株式会社 | Multilayer composite filter medium and production method of the same |
CN114150437A (en) * | 2021-12-10 | 2022-03-08 | 东莞市利韬过滤材料有限公司 | PET dry method skeleton composite melt-blown purification non-woven fabric and preparation process thereof |
CN115090131A (en) * | 2022-07-21 | 2022-09-23 | 魏延生 | Composite membrane with micro-nano structure, preparation method and application thereof |
-
2007
- 2007-07-26 JP JP2007194113A patent/JP2009028617A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010167384A (en) * | 2009-01-26 | 2010-08-05 | Toyo Roshi Kaisha Ltd | Cartridge filter for liquid filtration |
JP2012517898A (en) * | 2009-02-17 | 2012-08-09 | フィルトロナ・ポーラス・テクノロジーズ・コーポレーション | Multilayer fluid permeable fiber structure comprising nanofibers and method for producing the structure |
US8939295B2 (en) | 2009-02-17 | 2015-01-27 | Essentra Porous Technologies Corp. | Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures |
JP2011194389A (en) * | 2010-03-17 | 2011-10-06 | Nippon Air Filter Kk | Medium high performance filter |
WO2011158324A1 (en) * | 2010-06-15 | 2011-12-22 | 東洋紡績株式会社 | Filter support body and filter using same |
KR101091049B1 (en) * | 2011-06-17 | 2011-12-08 | 주식회사 케이엠에프 | A fuel filter for fuel pump of automobile and method for preparing the same |
WO2013035201A1 (en) | 2011-09-09 | 2013-03-14 | 旭化成せんい株式会社 | Filter material |
JP2016182595A (en) * | 2015-03-03 | 2016-10-20 | マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Filter medium, production method of the filter medium and filtration treatment member having the filter medium |
CN105803678A (en) * | 2016-04-18 | 2016-07-27 | 生纳科技(上海)有限公司 | Nanofiber membrane capable of filtering out impurities and preparation method and application thereof |
CN110678245A (en) * | 2017-05-24 | 2020-01-10 | 曼·胡默尔有限公司 | Filter medium, method for producing a filter medium and use of a filter medium in a filter element |
CN111051591A (en) * | 2017-09-06 | 2020-04-21 | 可隆材料株式公司 | Waterproof and breathable sheet and manufacturing method thereof |
JP2021007929A (en) * | 2019-07-02 | 2021-01-28 | 阿波製紙株式会社 | Multilayer composite filter medium and production method of the same |
JP7321799B2 (en) | 2019-07-02 | 2023-08-07 | 阿波製紙株式会社 | Multilayer composite filter medium and manufacturing method thereof |
CN114150437A (en) * | 2021-12-10 | 2022-03-08 | 东莞市利韬过滤材料有限公司 | PET dry method skeleton composite melt-blown purification non-woven fabric and preparation process thereof |
CN115090131A (en) * | 2022-07-21 | 2022-09-23 | 魏延生 | Composite membrane with micro-nano structure, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009028617A (en) | Filter nonwoven fabric | |
JP5490680B2 (en) | Baghouse filters and media | |
JP4745815B2 (en) | Air filter material for internal combustion engines | |
JP6158958B2 (en) | Multilayer filter medium, filter manufacturing method and air filter | |
JP3134943U (en) | The present invention relates to a fuel filter used as a filter medium in the course of supplying fuel from a fuel tank provided in an internal combustion engine or the like to a nano fuel injection device. | |
KR101431346B1 (en) | Filtration cloth for dust collection machine | |
US20110210061A1 (en) | Compressed nanofiber composite media | |
KR20200014743A (en) | Spunbond Nonwoven Fabric for Filter and Manufacturing Method Thereof | |
JP7077515B2 (en) | Non-woven filter | |
JP2004301121A (en) | Nonwoven fabric air filter for internal combustion engine | |
US7153793B2 (en) | Multilayer nonwovens incorporating differential cross-sections | |
JP5823205B2 (en) | Cartridge filter | |
JP6614917B2 (en) | Nonwoven filter media | |
JP2005246162A (en) | Filter medium and filtering method | |
JP2005152769A (en) | Filter medium | |
JP6614919B2 (en) | Method for producing nonwoven filter material | |
JP4152756B2 (en) | In-tank filter material and manufacturing method thereof | |
JP7103871B2 (en) | Non-woven filter | |
KR102016342B1 (en) | A filter structure provided in a fuel pump | |
JP6832089B2 (en) | Filter material for automobile fuel | |
JP7047038B2 (en) | Filter material for automobile fuel | |
JP2019063751A (en) | Filter material for automobile fuel | |
JP3799262B2 (en) | Multilayer filter medium, filter element using the same, and manufacturing method thereof | |
WO2024173374A1 (en) | A fully synthetic polymeric filter media | |
JP2023084433A (en) | Filter material for fuel |