JP2009013847A - Exhaust fuel addition control device for internal combustion engine - Google Patents
Exhaust fuel addition control device for internal combustion engine Download PDFInfo
- Publication number
- JP2009013847A JP2009013847A JP2007175597A JP2007175597A JP2009013847A JP 2009013847 A JP2009013847 A JP 2009013847A JP 2007175597 A JP2007175597 A JP 2007175597A JP 2007175597 A JP2007175597 A JP 2007175597A JP 2009013847 A JP2009013847 A JP 2009013847A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- fuel addition
- fuel
- exhaust fuel
- addition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
この発明は、排気燃料添加弁を備えバイオ燃料を使用可能な内燃機関の排気燃料添加制御装置に関し、更に詳しくは、バイオ燃料濃度が高い時であっても排気燃料添加弁の詰まりを容易に抑制することができる内燃機関の排気燃料添加制御装置に関する。 The present invention relates to an exhaust fuel addition control device for an internal combustion engine equipped with an exhaust fuel addition valve and capable of using biofuel, and more particularly, easily suppresses clogging of the exhaust fuel addition valve even when the biofuel concentration is high. The present invention relates to an exhaust fuel addition control device for an internal combustion engine.
近年、自動車等に搭載される内燃機関では、排気エミッションを向上させることが要求されている。すなわち、内燃機関から排気ガスを大気中に放出する前に、排気ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等のガス成分を浄化若しくは除去することを要求されている。 In recent years, internal combustion engines mounted on automobiles and the like have been required to improve exhaust emission. That is, before releasing exhaust gas from the internal combustion engine to the atmosphere, gas components such as carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) contained in the exhaust gas are purified or removed. It is requested that.
ディーゼルエンジンや、希薄燃焼可能なガソリンエンジンでは、高い空燃比(リーン雰囲気)の混合気を燃焼に供して機関運転を行う運転領域が、全運転領域の大部分を占める。この種のエンジンでは一般に、リーン雰囲気でNOxを吸収することのできるNOx触媒が排気系に備えられている。 In a diesel engine or a gasoline engine capable of lean combustion, an operation region in which an engine operation is performed by using a high air-fuel ratio (lean atmosphere) mixture for combustion occupies most of the entire operation region. In this type of engine, the exhaust system is generally provided with a NOx catalyst that can absorb NOx in a lean atmosphere.
NOx触媒は、排気中の還元成分濃度が低い状態ではNOxを吸収し、排気中の還元成分濃度が高い状態ではNOxを放出する特性を有している。排気中に放出されたNOxは、排気中にHCやCO等の還元成分が存在していれば、それらと速やかに反応して窒素に還元される。 The NOx catalyst has a characteristic of absorbing NOx when the reducing component concentration in the exhaust gas is low and releasing NOx when the reducing component concentration in the exhaust gas is high. The NOx released into the exhaust reacts quickly with the reducing components such as HC and CO in the exhaust and is reduced to nitrogen.
また、NOx触媒が吸蔵できるNOxの量には限界量(飽和量)が存在し、当該触媒がその飽和量を上回るNOxを吸蔵している場合には、排気中の還元成分濃度が低い状態にあってもそれ以上NOxを吸収しなくなる。 Further, there is a limit amount (saturation amount) in the amount of NOx that can be stored by the NOx catalyst, and when the catalyst stores NOx exceeding the saturation amount, the concentration of the reducing component in the exhaust gas becomes low. Even if it exists, it no longer absorbs NOx.
そこで、従来の内燃機関の排気浄化装置にあっては、内燃機関の排気系に還元剤(内燃機関の燃料の一部)を供給するための排気燃料添加弁を備え、当該NOx触媒のNOx吸蔵量が所定量に達する前に、当該NOx触媒に流入する排気に還元剤としての燃料を所定インターバルで繰り返し添加する排気燃料添加制御が行われている。 Therefore, a conventional exhaust gas purification device for an internal combustion engine includes an exhaust fuel addition valve for supplying a reducing agent (a part of the fuel of the internal combustion engine) to the exhaust system of the internal combustion engine, and stores the NOx in the NOx catalyst. Before the amount reaches a predetermined amount, exhaust fuel addition control is performed in which fuel as a reducing agent is repeatedly added to the exhaust gas flowing into the NOx catalyst at predetermined intervals.
このように排気燃料添加弁を通じて排気系に所定タイミングで還元剤が供給されると、その還元剤は排気中の還元成分濃度を高め、NOx触媒に吸蔵されているNOxを放出および還元浄化するとともに、NOx触媒のNOx吸収能力を回復させる。したがって、NOx触媒に流入する排気中の還元成分を所望の時期に増量することができ、NOx触媒の排気浄化効率を常に高く維持することが可能となる。 Thus, when the reducing agent is supplied to the exhaust system at a predetermined timing through the exhaust fuel addition valve, the reducing agent increases the concentration of reducing components in the exhaust, and releases and reduces and purifies NOx stored in the NOx catalyst. The NOx absorption capacity of the NOx catalyst is recovered. Therefore, the amount of reducing components in the exhaust gas flowing into the NOx catalyst can be increased at a desired time, and the exhaust gas purification efficiency of the NOx catalyst can always be kept high.
特に、軽油を燃料とする圧縮着火式のディーゼルエンジンでは、上記CO、HC、NOx等に加え、排気ガス中に含まれる煤や,SOF(Sol bule Organic Fraction)等の粒子状物質(PM:Particulate Matter)を浄化若しくは除去することを要求されている。 In particular, in a compression ignition type diesel engine using light oil as fuel, in addition to the above-mentioned CO, HC, NOx, etc., soot contained in exhaust gas, particulate matter such as SOF (Sol bule Organic Fraction) (PM: Particulate) Matter) is required to be purified or removed.
したがって、上記排気燃料添加弁の噴孔がデポジットによって詰まることは、これらの排気浄化作用に重大な支障を来すこととなるため、排気燃料添加弁の詰まりを抑制するための種々の技術が提供されている。 Therefore, clogging of the nozzle holes of the exhaust fuel addition valve due to deposits causes a serious hindrance to these exhaust purification actions, and therefore various technologies for suppressing clogging of the exhaust fuel addition valve are provided. Has been.
たとえば、燃料が燃料タンクから内燃機関に供給されるまでの経路における当該燃料タンクとインジェクタとの間に、燃料中に含まれる金属や金属イオンを燃料から分離除去する金属イオン除去手段を備え、インジェクタ内での金属の析出・堆積を防止し、インジェクタを長期間安定に駆動させる技術が提案されている(たとえば、特許文献1参照)。 For example, the injector includes a metal ion removing unit that separates and removes metal and metal ions contained in the fuel from the fuel tank and the injector in the path from the fuel tank to the internal combustion engine. There has been proposed a technique for preventing deposition and deposition of metal in the interior and driving the injector stably for a long period of time (see, for example, Patent Document 1).
また、上記のような排気燃料添加弁の詰まりを抑制する技術としてつぎのようなものも提案されている(たとえば、特許文献2参照)。すなわち、内燃機関の排気通路に設けられ還元剤の存在下で窒素酸化物を還元するNOx触媒と、NOx触媒に還元剤を供給する還元剤供給装置と、還元剤供給装置の噴射孔の詰まる時期を推定する詰まり推定手段と、詰まり推定手段により推定された詰まり時期よりも前に噴射孔の詰まりを抑制するための還元剤を少量噴射させる詰まり抑制手段と、を備え、還元剤が固化すると推定された時期以前に還元剤を噴射させて還元剤供給装置の詰まりを抑制するものである。 In addition, the following has been proposed as a technique for suppressing clogging of the exhaust fuel addition valve as described above (see, for example, Patent Document 2). That is, a NOx catalyst that is provided in an exhaust passage of an internal combustion engine and reduces nitrogen oxides in the presence of a reducing agent, a reducing agent supply device that supplies the NOx catalyst with a reducing agent, and a timing when an injection hole of the reducing agent supply device is clogged A clogging estimating means for estimating the clogging time estimated by the clogging estimating means, and a clogging suppressing means for injecting a small amount of a reducing agent for suppressing clogging of the injection hole before the clogging timing estimated by the clogging estimating means. The reducing agent is injected before the time when the reducing agent is supplied to suppress clogging of the reducing agent supply device.
また、近年では、エネルギー対策や環境対策等の観点から、ガソリンや軽油等の標準燃料に対する代替燃料としてアルコールや、いわゆるバイオ燃料等の含酸素燃料も注目されており、これらの燃料を使用可能な内燃機関の開発も要請されている。 In recent years, alcohol and oxygen-containing fuels such as so-called biofuels have attracted attention as alternative fuels to standard fuels such as gasoline and light oil from the viewpoint of energy and environmental measures, and these fuels can be used. Development of an internal combustion engine is also required.
しかしながら、このようなバイオ燃料であるバイオ軽油(たとえば、RME、廃食油等)は、標準軽油に比べて蒸発性が非常に悪いという特徴がある。たとえば図11に示すように、バイオ軽油は、標準軽油が90容量%蒸発する温度(約330℃)であっても、10容量%以下しか蒸発しない。ここで、図11は、標準軽油とバイオ軽油の蒸留特性とを示す説明図である。 However, biodiesel (for example, RME, waste cooking oil, etc.), which is such a biofuel, has a feature that evaporability is very poor compared to standard diesel oil. For example, as shown in FIG. 11, the bio diesel oil evaporates only 10 volume% or less even at a temperature (about 330 ° C.) at which the standard diesel oil evaporates by 90 volume%. Here, FIG. 11 is explanatory drawing which shows the distillation characteristic of standard light oil and bio light oil.
上記特許文献1に係る従来技術にあっては、バイオ軽油濃度については考慮されていないため、バイオ燃料と軽油との混合燃料を当該内燃機関(たとえば、ディーゼルエンジン)に使用する場合、バイオ燃料濃度が高くなるほど、排気燃料添加弁には未蒸発の燃料残渣が残り易く、この残渣が核となってデポジットへと発達していく。このため、バイオ燃料濃度が高くなるほど、排気燃料添加弁が詰まり易くなるという課題があった。
In the related art according to
また、排気燃料添加の休止期間中は、排気燃料添加弁近傍の温度が高くなり、燃料添加によるデポジット洗浄もできないため、排気燃料添加弁のデポジットは、当該休止期間中に最も形成され易く、このデポジットが排気燃料添加弁の詰まりの主因となっていた。 In addition, during the suspension period of the exhaust fuel addition, the temperature in the vicinity of the exhaust fuel addition valve becomes high, and deposit cleaning due to fuel addition cannot be performed, so the deposit of the exhaust fuel addition valve is most easily formed during the suspension period. Deposits were the main cause of clogging of the exhaust fuel addition valve.
更に、排気燃料添加弁が詰まると、NOx還元やPM再生、硫黄被毒再生ができなくなってしまい、車両走行に支障を来す虞もあった。 Furthermore, when the exhaust fuel addition valve is clogged, NOx reduction, PM regeneration, and sulfur poisoning regeneration cannot be performed, which may cause a problem in vehicle travel.
この発明は、上記に鑑みてなされたものであって、バイオ燃料濃度が高い時であっても排気燃料添加弁の詰まりを容易に抑制することができる内燃機関の排気燃料添加制御装置を提供することを目的とする。 The present invention has been made in view of the above, and provides an exhaust fuel addition control device for an internal combustion engine that can easily suppress clogging of an exhaust fuel addition valve even when the biofuel concentration is high. For the purpose.
上述した課題を解決し、目的を達成するために、この発明の請求項1に係る内燃機関の排気燃料添加制御装置は、内燃機関の排気系に設けられ、排気ガス中の還元成分濃度が高くなるとNOxの還元反応を促す特性を備えたNOx触媒と、前記排気系を通じて前記NOx触媒に流入する前記排気ガス中に使用燃料の一部を還元剤として噴射添加する排気燃料添加弁と、前記排気燃料添加弁の詰まりを抑制する制御を行う添加弁詰まり抑制手段と、を備えた内燃機関の排気燃料添加制御装置において、更に前記使用燃料としてのバイオ燃料の濃度を検知または推定するバイオ燃料濃度検知手段を備え、前記バイオ燃料濃度検知手段により検知または推定されたバイオ燃料濃度が所定値以上の場合には、当該バイオ燃料濃度に応じて、少なくとも前記添加弁詰まり抑制手段による詰まり抑制制御の実行頻度を高め、前記添加弁詰まり抑制手段による詰まり抑制制御の能力を高めることを特徴とするものである。
In order to solve the above-described problems and achieve the object, an exhaust fuel addition control device for an internal combustion engine according to
また、この発明の請求項2に係る内燃機関の排気燃料添加制御装置は、請求項1に記載の発明において、前記詰まり抑制制御は、前記排気燃料添加弁からの燃料添加頻度を高めることを特徴とするものである。 According to a second aspect of the present invention, there is provided the exhaust fuel addition control device for an internal combustion engine according to the first aspect, wherein the clogging suppression control increases the frequency of fuel addition from the exhaust fuel addition valve. It is what.
また、この発明の請求項3に係る内燃機関の排気燃料添加制御装置は、請求項1または2に記載の発明において、前記排気燃料添加弁からの燃料添加圧力を調節する添加圧力調節手段を更に備え、前記詰まり抑制制御は、前記添加圧力調節手段によって前記排気燃料添加弁からの燃料添加圧力を増加することを特徴とするものである。 According to a third aspect of the present invention, the exhaust fuel addition control device for an internal combustion engine according to the first or second aspect further comprises addition pressure adjusting means for adjusting the fuel addition pressure from the exhaust fuel addition valve. The clogging suppression control is characterized in that the fuel addition pressure from the exhaust fuel addition valve is increased by the addition pressure adjusting means.
また、この発明の請求項4に係る内燃機関の排気燃料添加制御装置は、請求項1または2に記載の発明において、前記排気燃料添加弁の温度を低下させる添加弁冷却手段を更に備え、前記詰まり抑制制御は、前記添加弁冷却手段によって前記排気燃料添加弁の温度を低下させることを特徴とするものである。 According to a fourth aspect of the present invention, the exhaust fuel addition control device for an internal combustion engine according to the first or second aspect further comprises an addition valve cooling means for lowering the temperature of the exhaust fuel addition valve, The clogging suppression control is characterized in that the temperature of the exhaust fuel addition valve is lowered by the addition valve cooling means.
この発明に係る内燃機関の排気燃料添加制御装置(請求項1)によれば、バイオ燃料が所定の高濃度であっても、詰まり抑制制御の実行頻度を高めたり、詰まり抑制制御の能力を高めることにより、排気燃料添加弁近傍の温度を低下させることができるとともに、未蒸発の燃料残渣も添加燃料によって洗浄され易くなるため、排気燃料添加弁の噴孔にデポジットが形成しにくくなり、排気燃料添加弁の詰まりを抑制することができる。また、この詰まりが抑制されることにより、NOx還元やPM再生、硫黄被毒再生を支障なく行うことができる。 According to the exhaust fuel addition control device for an internal combustion engine according to the present invention (Claim 1), even if the biofuel is at a predetermined high concentration, the execution frequency of the clogging suppression control is increased or the capability of the clogging suppression control is increased. As a result, the temperature in the vicinity of the exhaust fuel addition valve can be lowered, and unevaporated fuel residue can be easily washed with the added fuel, so that it is difficult for deposits to be formed in the nozzle holes of the exhaust fuel addition valve. Clogging of the addition valve can be suppressed. Further, by suppressing this clogging, NOx reduction, PM regeneration, and sulfur poisoning regeneration can be performed without any trouble.
また、この発明に係る内燃機関の排気燃料添加制御装置(請求項2)によれば、バイオ燃料が所定の高濃度であっても、詰まり抑制制御までの添加なしの期間を短く設定することによって排気燃料添加弁の噴孔にデポジットが形成しにくくなるので、排気燃料添加弁の詰まりを抑制することができる。 Further, according to the exhaust fuel addition control device for an internal combustion engine according to the present invention (Claim 2), even if the biofuel has a predetermined high concentration, by setting a short period of no addition until the clogging suppression control. Since it becomes difficult to form deposits in the nozzle holes of the exhaust fuel addition valve, clogging of the exhaust fuel addition valve can be suppressed.
また、この発明に係る内燃機関の排気燃料添加制御装置(請求項3)によれば、バイオ燃料が所定の高濃度であっても、詰まり抑制制御時において燃料添加圧力を添加圧力調節手段により増加することによって、排気燃料添加弁の噴孔にデポジットを形成しにくくし、排気燃料添加弁の詰まりを抑制することができる。 Further, according to the exhaust fuel addition control device for an internal combustion engine according to the present invention (Claim 3), even when the biofuel has a predetermined high concentration, the fuel addition pressure is increased by the addition pressure adjusting means during the clogging suppression control. By doing so, it is difficult to form deposits in the nozzle holes of the exhaust fuel addition valve, and clogging of the exhaust fuel addition valve can be suppressed.
また、この発明に係る内燃機関の排気燃料添加制御装置(請求項4)によれば、排気燃料添加弁を冷却媒体等の添加弁冷却手段によって冷却可能に構成することで、排気燃料添加弁の噴孔近傍の温度を低下させ、未蒸発の燃料残渣がデポジットへと発達していくのを抑制し、排気燃料添加弁の詰まりを抑制することができる。 According to the exhaust fuel addition control device for an internal combustion engine according to the present invention (Claim 4), the exhaust fuel addition valve is configured to be cooled by the addition valve cooling means such as a cooling medium. The temperature in the vicinity of the nozzle hole can be lowered to suppress the development of non-evaporated fuel residues into deposits, and clogging of the exhaust fuel addition valve can be suppressed.
以下に、この発明に係る内燃機関の排気燃料添加制御装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, an embodiment of an exhaust fuel addition control device for an internal combustion engine according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
図1は、この発明の実施例1に係る内燃機関の排気燃料添加制御装置を適用したディーゼルエンジンシステムを示す概略構成図である。図1に示すように、内燃機関(以下、エンジンと記す。)1は、燃料供給系10、燃焼室20、燃焼室20内に供給される吸入空気の通路(吸気通路)を形成する吸気系30、各燃焼室20から排出される排気ガスの通路(排気通路)を形成する排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。
1 is a schematic configuration diagram showing a diesel engine system to which an exhaust fuel addition control device for an internal combustion engine according to
燃料供給系10は、バイオ燃料を貯留する燃料タンク18、メイン燃料通路P0、燃料フィルタ18a、サプライポンプ11、コモンレール12、燃料噴射弁13、遮断弁14、排気燃料添加弁17、機関燃料通路P1および添加燃料通路P2等を備えて構成されている。
The
また、燃料タンク18には、燃料のバイオ濃度を検知するバイオ濃度センサ(バイオ燃料濃度検知手段)19が設けられている。なお、このバイオ濃度センサ19は、たとえば燃料の粘度や温度等の計測値からバイオ燃料濃度を検知または推定できるように構成されていればよく、その検知・推定原理は問わない。
The
サプライポンプ11は、燃料タンク18からメイン燃料通路P0を介して汲み上げた燃料を高圧にし、機関燃料通路P1を経てコモンレール12に供給する。コモンレール12は、サプライポンプ11から供給された高圧燃料を所定圧力に蓄圧し、各燃料噴射弁13に分配する。電磁弁である燃料噴射弁13は、所定時期に燃焼室20内に燃料を噴射供給する。
The
また、サプライポンプ11は、燃料タンク18から汲み上げた燃料の一部を添加燃料通路P2を介して排気燃料添加弁17に供給する。遮断弁14は、必要時に添加燃料通路P2を遮断し、燃料供給を停止する。
Further, the
なお、添加燃料通路P2には調量弁(図示せず)も設けられている。この調量弁は、排気燃料添加弁17に供給する燃料の圧力(燃圧)を制御する。また、電磁弁である排気燃料添加弁17は、還元剤として機能する燃料を、適宜量、適宜タイミングで後述する触媒コンバータ41a,41b上流に添加供給する。
A metering valve (not shown) is also provided in the added fuel passage P2. This metering valve controls the pressure (fuel pressure) of the fuel supplied to the exhaust
また、エンジン1には、その排気により吸気を過給するターボチャージャ50を備えている。ターボチャージャ50に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。このインタークーラ31よりも下流に設けられたスロットル弁32は、いわゆる電子スロットルであり、吸入空気の供給量を調整する。
Further, the
また、エンジン1には、吸気系30と排気系40をバイパスし、排気の一部を吸気系30に戻すEGR通路60が設けられている。EGR通路60には、排気流量を調整するEGR弁61と、排気を冷却するためのEGRクーラ62が設けられている。なお、EGRクーラ62の上流側には、図示しない触媒が設けられている。
Further, the
また、排気系40は、吸蔵還元型NOx触媒を担体に担持したNSR(NOx Storage Reduction)触媒コンバータ41aと、多孔質セラミック構造体にNOx吸蔵還元触媒が担持され構成されるDPNR(Diesel Particulate NOx Reduction)触媒コンバータ41bと、その下流側に設けられた酸化触媒コンバータ42とを備えている。
The
これらの触媒コンバータ41a,41bは、排気ガスの空燃比がリーンのときにNOxを吸蔵し、排気ガス中の酸素濃度が低下するとともに還元雰囲気で吸蔵したNOxを放出し還元するためのものである。
These
特に、DPNR触媒コンバータ41bは、上記吸蔵還元型NOx触媒が、PMを補足するフィルターの役割をする多孔質セラミック構造体に担持されて構成されているので、リーン燃焼時には、PMが多孔質構造のセラミック構造体に一時的に捕集され、排出ガス中の酸素により酸化される。
In particular, the DPNR
また、NOxはリーン燃焼時に触媒に一旦吸蔵され、その後瞬間的にリッチ燃焼が行われる際に、還元浄化される。リッチ燃焼時には、吸蔵されたNOxが還元される際に発生する酸素により、PMが酸化浄化される。 Further, NOx is temporarily stored in the catalyst during lean combustion, and then reduced and purified when rich combustion is instantaneously performed. During rich combustion, PM is oxidized and purified by oxygen generated when the stored NOx is reduced.
なお、上記触媒コンバータ41a,41bの温度が比較的低い場合等においては、排気燃料添加弁17による添加燃料が触媒コンバータ41a,41bをすり抜けてしまう場合があるが、酸化触媒コンバータ42によりこれを確実に酸化することができる。
When the temperature of the
また、エンジン1の各部位には、吸気量を検出するエアフロメータ72、排気中の酸素濃度を検出する空燃比センサ73、DPNR触媒コンバータ41bの上流側と下流側の排気温度を検出する排気温センサ74a,74b、NSR触媒コンバータ41aおよびDPNR触媒コンバータ41bの上流側と下流側との圧力差を検出する圧力センサ75が設けられている。
Further, each part of the
また、図示を省略するが、エンジン1の各部位には、コモンレール12内の燃料の温度と圧力を検出する温度センサおよび圧力センサ、エンジン1のクランク軸回転を検出するクランクポジションセンサ、吸気温度を検出する吸気温センサ、吸気圧力を検出する吸気圧センサ、アクセルペダルの踏込み量(アクセル開度)を検出するアクセル開度センサ、スロットル弁32の開度を検出するスロットルポジションセンサ、エンジン1の冷却水温を検出する水温センサ等が設けられている。
Although not shown, each part of the
図示しない電子制御装置であるECUは、上記各種センサの検出信号を外部入力回路を介して入力し、これらの信号に基づき燃料噴射弁13や排気燃料添加弁17の開閉制御等、エンジン1の運転状態に関する各種制御を実施し、また添加弁詰まり抑制手段および排気燃料添加制御装置として機能するものである。
An ECU (not shown) receives detection signals from the various sensors via an external input circuit, and controls the operation of the
つぎに、本実施例1に係る制御方法について図2に基づいて図1、図3、図4を参照しつつ説明する。ここで、図2は、制御方法を示すフローチャート、図3は、バイオ燃料低濃度時および燃料が軽油のみの場合における燃料添加なしの期間TAを示す説明図、図4は、バイオ燃料高濃度時における燃料添加なしの期間TBを示す説明図である。図3および図4に示す添加なしの期間TAと期間TBは、TA>TBの関係を有している。 Next, the control method according to the first embodiment will be described with reference to FIGS. 1, 3, and 4 based on FIG. Here, FIG. 2 is a flowchart showing a control method, FIG. 3 is an explanatory diagram showing a period TA without addition of fuel when the biofuel is at a low concentration and when the fuel is only light oil, and FIG. 4 is at a high concentration of the biofuel. It is explanatory drawing which shows the period TB without fuel addition in. The period TA and the period TB without addition shown in FIGS. 3 and 4 have a relationship of TA> TB.
本制御は、図示しない上記ECUによって実行される。図2に示すように、先ず、バイオ燃料濃度をバイオ濃度センサ19によって検知する(ステップS10)。つぎに、検知されたバイオ燃料濃度が所定値WLを超えているか否かを判断する(ステップS20)。 This control is executed by the ECU (not shown). As shown in FIG. 2, first, the biofuel concentration is detected by the bioconcentration sensor 19 (step S10). Next, it is determined whether or not the detected biofuel concentration exceeds a predetermined value WL (step S20).
この所定値WLは、排気燃料添加弁17の詰まり抑制制御の際に、使用燃料が通常の軽油のみ若しくは所定の低濃度の場合に設定されている限度値としての「添加なしの期間TA」を、詰まり抑制の効果を維持できるようにこれよりも短い「添加なしの期間TB」に設定する時の判断閾値であり、予め実験等により求めたものである。
This predetermined value WL is a “non-addition period TA” as a limit value set when the fuel used is only ordinary light oil or a predetermined low concentration during the clogging suppression control of the exhaust
図3に示すように、使用燃料が通常の軽油のみ若しくは所定の低濃度(所定値WL未満)の場合には、排気燃料添加弁17からは還元剤としての燃料が、NOx還元やPM再生、硫黄被毒再生のために所定のタイミングで添加され、更に「添加なしの期間TA」を経た後に、詰まり抑制(図3,4中には、「詰まり防止」と記してある。)のために再度燃料添加されることとなる。これらの添加制御は、必要時に一定のタイミングで繰り返し実行される。
As shown in FIG. 3, when the fuel used is only ordinary light oil or a predetermined low concentration (less than a predetermined value WL), fuel as a reducing agent is supplied from the exhaust
一方、使用燃料がバイオ燃料であって所定の高濃度(所定値WL以上)の場合には、図4に示す「添加なしの期間TB」が選択され、排気燃料添加制御が実行されることとなる。 On the other hand, when the fuel used is biofuel and has a predetermined high concentration (predetermined value WL or more), the “non-addition period TB” shown in FIG. 4 is selected and the exhaust fuel addition control is executed. Become.
すなわち、バイオ燃料が混合された軽油の場合であって、バイオ燃料濃度が所定値WLを超えているならば(ステップS20肯定)、燃料添加なしの期間をTB(<TA)とし(ステップS30)、従来の排気燃料添加制御を実施して(ステップS50)、制御を終了する。この添加なしの期間TBを図4に示す。なお、排気燃料添加制御は、従来と同様の制御内容であるので、説明を省略する。 That is, in the case of light oil mixed with biofuel and the biofuel concentration exceeds the predetermined value WL (Yes at Step S20), the period without fuel addition is set to TB (<TA) (Step S30). Then, the conventional exhaust fuel addition control is performed (step S50), and the control is terminated. The period TB without this addition is shown in FIG. Note that the exhaust fuel addition control has the same control content as the conventional one, and thus the description thereof is omitted.
バイオ燃料が所定の高濃度であっても、軽油のみ等の場合よりも短い間隔での燃料添加により、排気燃料添加弁17近傍の温度を低下させることができるとともに、未蒸発の燃料残渣も添加燃料によって洗浄され易くなるため、排気燃料添加弁17の噴孔にデポジットが形成しにくくなり、排気燃料添加弁17の詰まりが抑制されることとなる。また、この詰まりが抑制されることにより、NOx還元やPM再生、硫黄被毒再生も支障なく行われる。
Even when the biofuel has a predetermined high concentration, the temperature in the vicinity of the exhaust
一方、バイオ燃料濃度が所定値WLを超えていないならば(ステップS20否定)、詰まり抑制の効果は、軽油のみの場合と同様に維持されると考えられるので、燃料添加なしの期間を、軽油のみ等の場合のTAとし(ステップS40)、排気燃料添加制御を実施して(ステップS50)、制御を終了する。 On the other hand, if the biofuel concentration does not exceed the predetermined value WL (No in step S20), the clogging suppression effect is considered to be maintained in the same manner as in the case of light oil alone, so In the case of only TA (step S40), exhaust fuel addition control is performed (step S50), and the control is terminated.
以上のように、この実施例1に係る内燃機関の排気燃料添加制御装置によれば、バイオ燃料が所定の高濃度であっても、詰まり抑制制御までの添加なしの期間を短く設定することによって排気燃料添加弁17の噴孔にデポジットが形成しにくくなるので、排気燃料添加弁17の詰まりを抑制することができる。また、この詰まりが抑制されることにより、NOx還元やPM再生、硫黄被毒再生を支障なく行なうことができる。
As described above, according to the exhaust fuel addition control device for an internal combustion engine according to the first embodiment, even if the biofuel has a predetermined high concentration, by setting a short period without addition until the clogging suppression control. Since it becomes difficult to form deposits in the nozzle holes of the exhaust
図5は、この発明の実施例2に係る制御方法を示すフローチャート、図6は、バイオ燃料濃度に応じて設定された添加なしの期間の一例を示すマップである。なお、以下の説明において、すでに説明した部材またはステップ番号と同一若しくは相当するものには、同一の符号を付して重複説明を省略または簡略化する。 FIG. 5 is a flowchart showing a control method according to Embodiment 2 of the present invention, and FIG. 6 is a map showing an example of a period without addition set according to the biofuel concentration. In the following description, the same or corresponding parts as those already described or the step numbers are denoted by the same reference numerals, and redundant description is omitted or simplified.
本実施例2のシステム構成は、上記実施例1の図1で示した構成と同様である。上記実施例1では、検知されたバイオ燃料濃度の判定閾値を1つのWLにて判断し、かつ、添加なしの期間を2種類(TAおよびTB)とした(図2のステップS20〜S40を参照)。これに対して本実施例2では、図6のマップに示すように、たとえばバイオ燃料濃度10%毎に添加なしの期間を設定したものである。 The system configuration of the second embodiment is the same as the configuration shown in FIG. In the first embodiment, the determination threshold value of the detected biofuel concentration is determined by one WL, and the period without addition is set to two types (TA and TB) (see steps S20 to S40 in FIG. 2). ). On the other hand, in the present Example 2, as shown in the map of FIG. 6, the period without addition is set for every 10% of biofuel concentration, for example.
つまり、本実施例2では、図5に示すように、ステップS10で検知されたバイオ燃料濃度と、ステップS15で読み込まれた図6のマップとから、当該バイオ燃料濃度に応じた、よりきめ細かな添加なしの期間を設定し(ステップS25)、排気燃料添加制御を実施するものである(ステップS50)。 That is, in the second embodiment, as shown in FIG. 5, from the biofuel concentration detected in step S10 and the map of FIG. 6 read in step S15, a more detailed response according to the biofuel concentration is obtained. A period without addition is set (step S25), and exhaust fuel addition control is performed (step S50).
したがって、この実施例2に係る内燃機関の排気燃料添加制御装置によれば、バイオ燃料濃度に応じたきめ細かな添加なしの期間に基づいて排気燃料添加制御を実施することができ、排気燃料添加弁17の詰まりを更に効果的に抑制することができる。 Therefore, according to the exhaust fuel addition control device for an internal combustion engine according to the second embodiment, the exhaust fuel addition control can be performed based on the period without fine addition according to the biofuel concentration. 17 can be more effectively suppressed.
図7は、この発明の実施例3に係る内燃機関の排気燃料添加制御装置を適用したディーゼルエンジンシステムを示す概略構成図、図8は、制御方法を示すフローチャートである。
FIG. 7 is a schematic configuration diagram showing a diesel engine system to which an exhaust fuel addition control device for an internal combustion engine according to
本実施例3は、バイオ燃料濃度が所定値まで高くなった場合には、上記添加なしの期間が続いた後の排気燃料添加時(詰まり防止ないし抑制のための添加時)において燃料添加圧力を高く設定することによって、排気燃料添加弁17の噴孔にデポジットを形成しにくくし、排気燃料添加弁17の詰まりを抑制することができるようにしたものである。
In the third embodiment, when the biofuel concentration is increased to a predetermined value, the fuel addition pressure is set at the time of exhaust fuel addition (at the time of addition for preventing or suppressing clogging) after the non-addition period continues. By setting it high, it is difficult to form deposits in the nozzle holes of the exhaust
図7に示すように、本実施例3のシステム構成は、上記実施例1の図1で示した構成とつぎの点で異なる。すなわち、サプライポンプ(添加圧力調節手段)11を圧力可変のものとし、添加燃料通路P2に圧力センサ(添加圧力調節手段)81を設けることで、排気燃料添加弁17の目標添加圧力を上記ECUの指令によって変更できるようにしたものである。
As shown in FIG. 7, the system configuration of the third embodiment is different from the configuration shown in FIG. That is, the supply pump (addition pressure adjusting means) 11 is variable in pressure, and the pressure sensor (addition pressure adjusting means) 81 is provided in the added fuel passage P2, so that the target added pressure of the exhaust
また、添加燃料通路P2が所定の高圧となった時にその圧力を低下させるために、添加燃料通路P2および燃料タンク18に連通する燃料リターン通路(添加圧力調節手段)P3と、添加燃料通路P2と燃料リターン通路P3の接続部に設けられ、開弁することにより所定量の燃料を燃料リターン通路P3を介して燃料タンク18に戻して低圧化を図るための電磁リリーフ弁(添加圧力調節手段)80とを備えている。
Further, in order to reduce the pressure when the added fuel passage P2 becomes a predetermined high pressure, a fuel return passage (addition pressure adjusting means) P3 communicating with the added fuel passage P2 and the
つぎに、本実施例3に係る制御方法について図8に基づいて図7を参照しつつ説明する。以下の制御も上記ECUによって実行される。図8に示すように、先ず、バイオ燃料濃度をバイオ濃度センサ19によって検知し(ステップS10)、その検知されたバイオ燃料濃度が所定値WLを超えているか否かを判断する(ステップS20)。 Next, a control method according to the third embodiment will be described with reference to FIG. 7 based on FIG. The following control is also executed by the ECU. As shown in FIG. 8, first, the biofuel concentration is detected by the bioconcentration sensor 19 (step S10), and it is determined whether or not the detected biofuel concentration exceeds a predetermined value WL (step S20).
この所定値WLは、燃料の添加圧力を通常圧力の目標値PAから高圧目標値PB(>PA)に変更を要するか否かを判断するための閾値であり、予め実験等により求めたものである。 The predetermined value WL is a threshold value for determining whether or not the fuel addition pressure needs to be changed from the normal pressure target value PA to the high pressure target value PB (> PA), and is obtained in advance through experiments or the like. is there.
バイオ燃料濃度が所定値WLを超えているならば(ステップS20肯定)、添加圧力を高圧目標値PBに設定し(ステップS35)、その高圧目標値PBとなるように圧力センサ81の出力値を参照しながらサプライポンプ11を作動させ、排気燃料添加制御を実施する(ステップS50)。
If the biofuel concentration exceeds the predetermined value WL (Yes at Step S20), the addition pressure is set to the high pressure target value PB (Step S35), and the output value of the
なお、本実施例3の特徴は、添加圧力の目標値をバイオ燃料濃度に応じて可変設定することであり、その目標値に基づいた排気燃料添加制御の方法は従来と同様であるので、説明を省略する。 The feature of the third embodiment is that the target value of the addition pressure is variably set according to the biofuel concentration, and the exhaust fuel addition control method based on the target value is the same as the conventional method. Is omitted.
一方、バイオ燃料濃度が所定値WLを超えていないならば(ステップS20否定)、添加圧力を通常圧力の目標値PAに設定し(ステップS45)、その高圧目標値PAとなるように圧力センサ81の出力値を参照しながらサプライポンプ11を作動させ、排気燃料添加制御を実施する(ステップS50)。
On the other hand, if the biofuel concentration does not exceed the predetermined value WL (No in step S20), the addition pressure is set to the target value PA of the normal pressure (step S45), and the
上述したように、本実施例3は、バイオ燃料濃度が所定値まで高くなった場合に、上記添加なしの期間が続いた後の排気燃料添加時(詰まり防止ないし抑制のための添加時)において燃料添加圧力を高く設定し、排気燃料添加弁17の詰まりを抑制するものである。この詰まり抑制制御以外の制御、すなわち、NOx還元やPM再生、硫黄被毒再生のための燃料添加制御時には、添加圧力は基本設定(通常圧力の目標値PAに設定)のままにしておき、上記触媒コンバータ41a,41b等の過熱やエミッションへの悪影響を抑制する必要がある。そこで、上記ステップS50に続いて、以下の制御を行う。
As described above, in the third embodiment, when the biofuel concentration is increased to a predetermined value, the exhaust fuel is added after the non-addition period continues (at the time of addition for preventing or suppressing clogging). The fuel addition pressure is set high to prevent clogging of the exhaust
排気燃料添加弁17の詰まりを抑制するための燃料添加が終了したか否かを判断する(ステップS60)。燃料添加が終了していなければ終了するまで待機し(ステップS60否定)、終了したならば(ステップS60肯定)、排気燃料添加弁17への燃料供給圧力(添加圧力)が通常圧力の目標値PAを超えているか否かを判断する(ステップS70)。
It is determined whether or not fuel addition for suppressing clogging of the exhaust
燃料供給圧力が通常圧力の目標値PAを超えているならば(ステップS70肯定)、電磁リリーフ弁80を開弁調整することにより所定量の燃料を燃料リターン通路P3を介して燃料タンク18に戻し、燃料供給圧力を通常圧力の目標値PA(基本設定値)に落とす(ステップS80)。
If the fuel supply pressure exceeds the target value PA of the normal pressure (Yes at Step S70), the predetermined amount of fuel is returned to the
そして、この通常圧力の目標値PAに基づいて、NOx還元やPM再生、硫黄被毒再生等の通常の触媒制御(燃料添加制御)を実施する(ステップS90)。このように、燃料供給圧力を必要時以外は基本設定値に戻すことにより、上記触媒コンバータ41a,41b等の過熱やエミッションへの悪影響が抑制される。
Then, based on the normal pressure target value PA, normal catalyst control (fuel addition control) such as NOx reduction, PM regeneration, sulfur poisoning regeneration, and the like is performed (step S90). Thus, by returning the fuel supply pressure to the basic setting value except when necessary, the
一方、燃料供給圧力が通常圧力の目標値PAを超えていないならば(ステップS70否定)、基本設定圧力のままで上記通常の触媒制御(燃料添加制御)を実施すればよい(ステップS90)。なお、上記通常の触媒制御の方法は従来と同様であるので、説明を省略する。 On the other hand, if the fuel supply pressure does not exceed the target value PA of the normal pressure (No at Step S70), the normal catalyst control (fuel addition control) may be performed while maintaining the basic set pressure (Step S90). In addition, since the said normal catalyst control method is the same as that of the past, description is abbreviate | omitted.
以上のように、この実施例3に係る内燃機関の排気燃料添加制御装置によれば、バイオ燃料濃度が所定値まで高くなった場合には、詰まり抑制制御時において燃料添加圧力を高く設定することによって、排気燃料添加弁17の噴孔にデポジットを形成しにくくし、排気燃料添加弁17の詰まりを抑制することができる。
As described above, according to the exhaust fuel addition control device for an internal combustion engine according to the third embodiment, when the biofuel concentration increases to a predetermined value, the fuel addition pressure is set high during the clogging suppression control. Therefore, it is difficult to form deposits in the nozzle holes of the exhaust
また、詰まり抑制制御以外の制御、すなわち、NOx還元やPM再生、硫黄被毒再生のための燃料添加制御時には、添加圧力を基本設定(通常圧力)のままにしておくことができるので、上記触媒コンバータ41a,41b等の過熱やエミッションへの悪影響を抑制することができる。
In addition to the clogging suppression control, that is, the fuel addition control for NOx reduction, PM regeneration, and sulfur poisoning regeneration, the addition pressure can be kept at the basic setting (normal pressure). The adverse effects on overheating and emission of the
図9は、この発明の実施例4に係る制御方法を示すフローチャート、図10は、バイオ燃料濃度に応じて設定された添加圧力の一例を示すマップである。 FIG. 9 is a flowchart showing a control method according to Embodiment 4 of the present invention, and FIG. 10 is a map showing an example of the addition pressure set according to the biofuel concentration.
本実施例4のシステム構成は、上記実施例3の図7で示した構成と同様である。上記実施例3では、検知されたバイオ燃料濃度の判定閾値を1つのWLにて判断し、かつ、設定する添加圧力を2種類(PAおよびPB)とした(図8のステップS20、S35、S45を参照)。これに対して本実施例4では、図10のマップに示すように、たとえばバイオ燃料濃度10%毎に添加圧力を設定したものである。 The system configuration of the fourth embodiment is the same as the configuration shown in FIG. In Example 3 described above, the determination threshold of the detected biofuel concentration is determined by one WL, and two types of addition pressures (PA and PB) are set (Steps S20, S35, and S45 in FIG. 8). See). On the other hand, in the present Example 4, as shown in the map of FIG. 10, for example, the addition pressure is set for every 10% of the biofuel concentration.
すなわち、本実施例4では、図9に示すように、ステップS10で検知されたバイオ燃料濃度と、ステップS16で読み込まれた図10のマップとから、当該バイオ燃料濃度に応じた、よりきめ細かな添加圧力を設定し(ステップS26)、排気燃料添加制御を実施するものである(ステップS50)。なお、その他の制御方法(ステップS60〜S90)は、上記実施例3の場合と同様であるので、重複説明を省略する。 That is, in the fourth embodiment, as shown in FIG. 9, from the biofuel concentration detected in step S10 and the map of FIG. 10 read in step S16, a finer detail according to the biofuel concentration is obtained. An addition pressure is set (step S26), and exhaust fuel addition control is performed (step S50). The other control methods (steps S60 to S90) are the same as in the case of the third embodiment, and a duplicate description is omitted.
したがって、この実施例4に係る内燃機関の排気燃料添加制御装置によれば、バイオ燃料濃度に応じたきめ細かな添加圧力に基づいて排気燃料添加制御を実施することができ、排気燃料添加弁17の詰まりを更に効果的に抑制することができる。 Therefore, according to the exhaust fuel addition control device for an internal combustion engine according to the fourth embodiment, the exhaust fuel addition control can be performed based on the fine addition pressure corresponding to the biofuel concentration. Clogging can be further effectively suppressed.
なお、上記実施例1〜4においては、直列4気筒のディーゼルエンジンシステムを例にして説明したが、これに限定されず、他のエンジンシステムに適用してもよく、同様の効果を期待できる。 In the first to fourth embodiments, an in-line four-cylinder diesel engine system has been described as an example. However, the present invention is not limited to this and may be applied to other engine systems, and the same effect can be expected.
また、上記実施例1〜4のいずれかどうしを適宜組み合わせて、すなわち、バイオ燃料濃度に応じて、添加なしの期間および添加圧力の設定値を変更して排気燃料添加制御を実施してもよい。 Further, the exhaust fuel addition control may be performed by appropriately combining any of the above-described Examples 1 to 4, that is, according to the biofuel concentration, by changing the set value of the non-addition period and the addition pressure. .
また、上記実施例3および4においては、バイオ燃料濃度が所定値以上の場合に添加圧力を増加することにより詰まり抑制制御の能力を高めるものとして説明したが、これに限定されず、詰まり抑制制御の能力を高める手段であれば、詰まり抑制制御がいずれの手段であってもよい。この場合も上記各実施例と組み合わせて実施してもよい。 Moreover, in the said Example 3 and 4, although demonstrated as what raises the capability of clogging suppression control by increasing addition pressure when biofuel concentration is more than predetermined value, it is not limited to this, Clogging suppression control The clogging suppression control may be any means as long as it is a means for improving the ability. Also in this case, it may be carried out in combination with the above embodiments.
すなわち、たとえば、排気燃料添加弁17の温度を低下させる手段であってもよく、排気燃料添加弁17を冷却媒体等によって冷却可能に構成することで、排気燃料添加弁17の噴孔近傍の温度を低下させ、未蒸発の燃料残渣がデポジットへと発達していくのを抑制し、排気燃料添加弁17の詰まりを抑制することができる。
That is, for example, a means for lowering the temperature of the exhaust
以上のように、この発明に係る内燃機関の排気燃料添加制御装置は、排気燃料添加弁を備えバイオ燃料を使用可能な内燃機関に有用であり、特に、バイオ燃料濃度が高い時であっても排気燃料添加弁の詰まりを容易に抑制することを目指す内燃機関に適している。 As described above, the exhaust fuel addition control device for an internal combustion engine according to the present invention is useful for an internal combustion engine that is equipped with an exhaust fuel addition valve and can use biofuel, even when the biofuel concentration is high. It is suitable for an internal combustion engine aiming at easily suppressing clogging of an exhaust fuel addition valve.
1 エンジン(内燃機関)
10 燃料供給系
11 サプライポンプ(添加圧力調節手段)
17 排気燃料添加弁
18 燃料タンク
18a 燃料フィルタ
19 バイオ濃度センサ(バイオ燃料濃度検知手段)
20 燃焼室
30 吸気系
40 排気系
41a NSR触媒コンバータ(NOx触媒)
41b DPNR触媒コンバータ(NOx触媒)
42 酸化触媒コンバータ
73 空燃比センサ
74a、74b 排気温センサ
80 電磁リリーフ弁(添加圧力調節手段)
81 圧力センサ(添加圧力調節手段)
P0 メイン燃料通路
P1 機関燃料通路
P2 添加燃料通路
P3 燃料リターン通路(添加圧力調節手段)
1 engine (internal combustion engine)
10
17 Exhaust
20
41b DPNR catalytic converter (NOx catalyst)
42 Oxidation
81 Pressure sensor (addition pressure adjusting means)
P0 Main fuel passage P1 Engine fuel passage P2 Addition fuel passage P3 Fuel return passage (addition pressure adjusting means)
Claims (4)
前記排気系を通じて前記NOx触媒に流入する前記排気ガス中に使用燃料の一部を還元剤として噴射添加する排気燃料添加弁と、
前記排気燃料添加弁の詰まりを抑制する制御を行う添加弁詰まり抑制手段と、
を備えた内燃機関の排気燃料添加制御装置において、
更に前記使用燃料としてのバイオ燃料の濃度を検知または推定するバイオ燃料濃度検知手段を備え、
前記バイオ燃料濃度検知手段により検知または推定されたバイオ燃料濃度が所定値以上の場合には、当該バイオ燃料濃度に応じて、少なくとも前記添加弁詰まり抑制手段による詰まり抑制制御の実行頻度を高め、前記添加弁詰まり抑制手段による詰まり抑制制御の能力を高めることを特徴とする内燃機関の排気燃料添加制御装置。 A NOx catalyst that is provided in an exhaust system of an internal combustion engine and has a characteristic that promotes a reduction reaction of NOx when the concentration of a reducing component in the exhaust gas increases;
An exhaust fuel addition valve for injecting and adding a part of the used fuel as a reducing agent into the exhaust gas flowing into the NOx catalyst through the exhaust system;
Addition valve clogging suppression means for performing control to suppress clogging of the exhaust fuel addition valve;
An exhaust fuel addition control device for an internal combustion engine comprising:
Furthermore, a biofuel concentration detection means for detecting or estimating the concentration of biofuel as the fuel used is provided,
When the biofuel concentration detected or estimated by the biofuel concentration detection means is a predetermined value or more, according to the biofuel concentration, at least increase the execution frequency of the clogging suppression control by the addition valve clogging suppression means, An exhaust fuel addition control device for an internal combustion engine characterized by enhancing the ability of clogging suppression control by the addition valve clogging suppression means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007175597A JP4978344B2 (en) | 2007-07-03 | 2007-07-03 | Exhaust fuel addition control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007175597A JP4978344B2 (en) | 2007-07-03 | 2007-07-03 | Exhaust fuel addition control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009013847A true JP2009013847A (en) | 2009-01-22 |
JP4978344B2 JP4978344B2 (en) | 2012-07-18 |
Family
ID=40355047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007175597A Expired - Fee Related JP4978344B2 (en) | 2007-07-03 | 2007-07-03 | Exhaust fuel addition control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4978344B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010242664A (en) * | 2009-04-08 | 2010-10-28 | Toyota Motor Corp | Control device for internal combustion engine |
US8785520B2 (en) | 2010-02-02 | 2014-07-22 | Kao Corporation | Process for production of polylactic acid resin composition |
CN103939186A (en) * | 2013-01-23 | 2014-07-23 | 罗伯特·博世技术与业务解决方案公司 | Method and apparatus for adjusting regeneration frequency of exhaust gas catalytic converter in vehicle |
CN104564262A (en) * | 2013-10-10 | 2015-04-29 | 康明斯排放处理公司 | System and apparatus for reducing reductant deposit formation in exhaust aftertreatment systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003222019A (en) * | 2002-01-29 | 2003-08-08 | Toyota Motor Corp | Reducing agent supply apparatus |
JP2003328744A (en) * | 2002-05-17 | 2003-11-19 | Toyota Motor Corp | Exhaust emission control device of internal-combustion engine |
JP2006177313A (en) * | 2004-12-24 | 2006-07-06 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
-
2007
- 2007-07-03 JP JP2007175597A patent/JP4978344B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003222019A (en) * | 2002-01-29 | 2003-08-08 | Toyota Motor Corp | Reducing agent supply apparatus |
JP2003328744A (en) * | 2002-05-17 | 2003-11-19 | Toyota Motor Corp | Exhaust emission control device of internal-combustion engine |
JP2006177313A (en) * | 2004-12-24 | 2006-07-06 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010242664A (en) * | 2009-04-08 | 2010-10-28 | Toyota Motor Corp | Control device for internal combustion engine |
US8785520B2 (en) | 2010-02-02 | 2014-07-22 | Kao Corporation | Process for production of polylactic acid resin composition |
CN103939186A (en) * | 2013-01-23 | 2014-07-23 | 罗伯特·博世技术与业务解决方案公司 | Method and apparatus for adjusting regeneration frequency of exhaust gas catalytic converter in vehicle |
CN104564262A (en) * | 2013-10-10 | 2015-04-29 | 康明斯排放处理公司 | System and apparatus for reducing reductant deposit formation in exhaust aftertreatment systems |
Also Published As
Publication number | Publication date |
---|---|
JP4978344B2 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4709220B2 (en) | Particulate filter regeneration method | |
JP4432917B2 (en) | Exhaust gas purification device for internal combustion engine | |
US7047726B2 (en) | Method of purifying exhaust gas of an internal combustion engine | |
JP5804544B2 (en) | Exhaust treatment device for internal combustion engine | |
JP2009250135A (en) | Exhaust emission control device | |
JP4978344B2 (en) | Exhaust fuel addition control device for internal combustion engine | |
JP2005256715A (en) | Exhaust emission control device for internal combustion engine | |
JP2009144553A (en) | Exhaust fuel addition control device for internal combustion engine | |
JP2005155500A (en) | Exhaust gas control apparatus for internal combustion engine | |
JP4941079B2 (en) | Exhaust gas recirculation control device for internal combustion engine | |
JP4357241B2 (en) | Exhaust purification equipment | |
JP2009127486A (en) | Exhaust fuel addition control device of internal combustion engine | |
JP2009133279A (en) | Fuel supply control device and fuel supply control method | |
JP2008069663A (en) | Exhaust emission control device of internal combustion engine | |
JP4894615B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2012077189A1 (en) | Exhaust gas purification system for internal combustion engine | |
JP4506546B2 (en) | Exhaust gas purification system for internal combustion engine | |
JP2006037857A (en) | Exhaust emission control device | |
JP5304402B2 (en) | Control device for internal combustion engine | |
JP2008274891A (en) | Exhaust emission control device of internal combustion engine | |
JP2007107474A (en) | Exhaust emission control device for internal combustion engine | |
JP2009002179A (en) | Exhaust emission control device for internal combustion engine | |
JP2004340069A (en) | Exhaust emission control system for internal combustion engine | |
JP2006194183A (en) | Exhaust emission cleaning device for internal combustion engine | |
JP2009174340A (en) | Exhaust emission control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120403 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4978344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |