JP2009091209A - Discharge tube for ozone generation - Google Patents
Discharge tube for ozone generation Download PDFInfo
- Publication number
- JP2009091209A JP2009091209A JP2007264678A JP2007264678A JP2009091209A JP 2009091209 A JP2009091209 A JP 2009091209A JP 2007264678 A JP2007264678 A JP 2007264678A JP 2007264678 A JP2007264678 A JP 2007264678A JP 2009091209 A JP2009091209 A JP 2009091209A
- Authority
- JP
- Japan
- Prior art keywords
- quartz tube
- cooling water
- ozone
- tube
- quartz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
本発明は、気体中の放電によりオゾンを発生させるオゾン発生器の放電部に関するものである。 The present invention relates to a discharge part of an ozone generator that generates ozone by discharge in gas.
無声放電法によるオゾン発生器が普及している。これは金属と固体誘電体の間もしくは固体誘電体と固体誘電体の間もしくは固体誘電体を被覆した金属と金属の間に酸素含有気体を流しつつ、放電を生じさせてオゾンを発生する。 Ozone generators using the silent discharge method have become widespread. This generates ozone by generating an electric discharge while flowing an oxygen-containing gas between the metal and the solid dielectric, or between the solid dielectric and the solid dielectric, or between the metal and the metal coated with the solid dielectric.
例えばステンレス管の内側に内面を電気伝導性物質で被覆したガラス管を配置し、ステンレス管とガラス管内面の電気伝導性物質の間に乾燥空気または酸素等のオゾン発生用気体を送り、同時にステンレス管とガラス管内面の電気伝導性物質の間に電圧実効値5〜10kV、周波数50〜5000Hz程度の交流高電圧を負荷してオゾン発生用気体中に放電を生ぜしめてオゾンを発生させる。 For example, a glass tube whose inner surface is coated with an electrically conductive material is placed inside a stainless steel tube, and a gas for generating ozone such as dry air or oxygen is sent between the stainless tube and the electrically conductive material on the inner surface of the glass tube. An alternating current high voltage having a voltage effective value of 5 to 10 kV and a frequency of 50 to 5000 Hz is loaded between the tube and the inner surface of the glass tube to generate discharge in the ozone generating gas to generate ozone.
特に金属粉塵の発生を伴わない純度の高いオゾンを生成するために石英2重管構造の放電管も実用化されている。このような放電管の構造例はたとえば特開平06−048707に記載されている。この構造は中心軸を共有する2本の石英管の内側管の内面に電気伝導性物質を接合して電圧実効値8〜15kV、周波数1000〜20000Hz程度の交流高電圧を負荷し、外側管の外面を水冷して接地電位に保持する構造である。 In particular, a discharge tube having a quartz double tube structure has been put into practical use in order to generate high-purity ozone without generating metal dust. An example of the structure of such a discharge tube is described in, for example, Japanese Patent Laid-Open No. 06-048707. In this structure, an electrically conductive material is bonded to the inner surface of the inner tube of two quartz tubes sharing the central axis, and an AC high voltage having a voltage effective value of 8 to 15 kV and a frequency of about 1000 to 20000 Hz is loaded. The outer surface is cooled with water and held at the ground potential.
ところでこのような従来のステンレスとガラスの2重管構造あるいは石英2重管構造の無声放電法オゾン発生器用放電管は電気伝導性皮膜でガラス管もしくは石英管の一部を被覆するものであり、廃却時には産業廃棄物として処理されるのが通例であり、環境上の問題を有する。 By the way, such a conventional stainless steel and glass double tube structure or a quartz double tube structure silent discharge ozone generator discharge tube covers a part of a glass tube or a quartz tube with an electrically conductive film. At the time of disposal, it is usually treated as industrial waste, which has environmental problems.
このような問題を解決する目的を持つ発明として特開2004−269326に石英三重管構造の放電管が出願されている。
この発明によれば放電管の主要部分が全て石英であり、リサイクル可能と言う利点がある。ところでこの発明では放電管の内面を水冷し、外面を空冷すると言う冷却方法を採用している。すなわち最も内側の石英管の内部に冷却水を流通させて冷却し、また外側の石英管と中間の石英管の間に電解液を封入し、その電解液を外面より強制空冷している。
Japanese Patent Application Laid-Open No. 2004-269326 has filed an application for a discharge tube having a quartz triple tube structure as an invention having an object to solve such problems.
According to the present invention, all the main parts of the discharge tube are made of quartz, which has the advantage of being recyclable. By the way, this invention employs a cooling method in which the inner surface of the discharge tube is water-cooled and the outer surface is air-cooled. That is, cooling water is circulated through the innermost quartz tube to cool it, and an electrolytic solution is sealed between the outer quartz tube and the intermediate quartz tube, and the electrolytic solution is forcibly air-cooled from the outer surface.
この場合放電の出力を高めていくと電解液が加熱されて沸騰を始めるため放電管の規模に応じて一定の限度の出力の範囲内で使用する必要がある。またその結果オゾン発生量にも一定の限界がある。
例えば最も外側の石英管の径を25mm、長さを158mm、中間の石英管の径を18mm、長さを200mm、最も内側の石英管の径を15mm、長さを230mmとした放電管を用いて放電部に投入出来る電力の限界は250W程度であり、その電力により発生するオゾン発生量は酸素5l/minを用いて15g/hr程度である。
For example, a discharge tube in which the diameter of the outermost quartz tube is 25 mm, the length is 158 mm, the diameter of the intermediate quartz tube is 18 mm, the length is 200 mm, the diameter of the innermost quartz tube is 15 mm, and the length is 230 mm is used. The limit of power that can be supplied to the discharge unit is about 250 W, and the amount of ozone generated by the power is about 15 g / hr using 5 l / min of oxygen.
本発明は石英部に電気伝導性皮膜を被覆せず、石英部と他の部分を容易に解体できて石英部をリサイクル可能で、且つ従来の内面水冷、外面空冷の石英三重管構造と同様の規模でより多くのオゾンを発生可能な両面水冷の石英製放電管を提供することを課題とするものである。 The present invention does not cover the quartz part with an electrically conductive film, the quartz part and other parts can be easily disassembled and the quartz part can be recycled, and is the same as the conventional quartz triple tube structure with internal water cooling and external air cooling. An object of the present invention is to provide a double-sided water-cooled quartz discharge tube capable of generating more ozone on a scale.
本発明は上記の課題を解決するために、石英三重管構造の放電管を採用し、冷却は内側及び外側ともに水冷式とするが、特に高電圧側の冷却水は絶縁性の配管を通じて供給、排出する。 In order to solve the above problems, the present invention employs a quartz triple tube discharge tube, and the cooling is water-cooled on both the inside and the outside, but the cooling water on the high voltage side is supplied through an insulating pipe. Discharge.
すなわち外側石英管1と中間石英管2の間の間隙6に冷却水を流通させ、且つ内側石英管3の内部13に冷却水を流通させ、双方の冷却水の間に交流高電圧を負荷し、内側石英管3と中間石英管2の間の間隙25に交流高電界を形成し、無声放電を生ぜしめることによってオゾンを発生させる。
That is, the cooling water is circulated through the gap 6 between the outer quartz tube 1 and the intermediate quartz tube 2, and the cooling water is circulated through the
特に高電圧の負荷される冷却水の部分6には冷却水を含む電気抵抗が1MΩ以上ある絶縁性の配管20、21を通じて冷却水を供給、排出する。
In particular, the cooling water portion 6 to which high voltage is loaded is supplied and discharged through
本発明により放電管のどの部分にも導電性皮膜を被覆せず、容易に解体して石英部をリサイクル使用可能で且つ従来の特開2004−269326記載の内側水冷、外側空冷の石英三重管方式と同一規模で約1.7倍のオゾン発生量を可能とする放電管が実現した。 According to the present invention, no portion of the discharge tube is covered with a conductive film, and can be easily disassembled and the quartz portion can be recycled, and the conventional water-cooled and outer-air-cooled quartz triple tube system described in Japanese Patent Application Laid-Open No. 2004-269326 A discharge tube capable of generating 1.7 times the amount of ozone on the same scale was realized.
発明の効果に関する附加説明:実施例におけるオゾン発生量
電気出力(電源損失を含む)として500W及び1000Wの実施例についてのオゾン発生量はそれぞれ25g/hr及び50g/hrを得ている。次にそれらの実施例のやや詳細を記す。
Additional explanation regarding the effects of the invention: Ozone generation amount in the examples The ozone generation amounts for the examples of 500 W and 1000 W as the electrical output (including power loss) are 25 g / hr and 50 g / hr, respectively. Next, some details of these examples will be described.
500Wの実施例では図1の外側石英管1の径を25mm、長さを158mm、中間石英管2の径を18mm、長さを200mm、内側石英管の径を15mm、長さを230mmとした放電管を用いて、周波数20kHz、電圧実効値9kV、電気出力500w(電源の損失を含む、以下同様)で、流量5リットル毎分の酸素を原料として25g/hrのオゾン発生量を得ている。 In the embodiment of 500 W, the diameter of the outer quartz tube 1 in FIG. 1 is 25 mm, the length is 158 mm, the diameter of the intermediate quartz tube 2 is 18 mm, the length is 200 mm, the diameter of the inner quartz tube is 15 mm, and the length is 230 mm. Using a discharge tube, an ozone generation amount of 25 g / hr is obtained using oxygen as a raw material at a flow rate of 5 liters at a frequency of 20 kHz, an effective voltage value of 9 kV, and an electric output of 500 w (including power loss, the same applies hereinafter). .
1000Wの実施例では図1の外側石英管1の径を25mm、長さを316mm、中間石英管2の径を18mm、長さを360mm、内側石英管の径を15mm、長さを390mmとした放電管を用いて、周波数20kHz、電圧実効値9kV、電気出力1000Wで、流量10リットル毎分の酸素を原料として25g/hrのオゾン発生量を得ている。 In the example of 1000 W, the diameter of the outer quartz tube 1 in FIG. 1 is 25 mm, the length is 316 mm, the diameter of the intermediate quartz tube 2 is 18 mm, the length is 360 mm, the diameter of the inner quartz tube is 15 mm, and the length is 390 mm. Using a discharge tube, an ozone generation amount of 25 g / hr was obtained with a frequency of 20 kHz, a voltage effective value of 9 kV, and an electrical output of 1000 W, using oxygen per a flow rate of 10 liters as a raw material.
なお既存の特開2004−269326記載の内側水冷、外側空冷の場合では前記500Wの実施例と同一規模の放電管で周波数15kHz、電圧実効値7kV、出力250Wで、流量5リットル毎分の酸素を原料として15g/hrのオゾン発生量である。 In the case of the existing water cooling and outer air cooling described in Japanese Patent Application Laid-Open No. 2004-269326, a discharge tube of the same scale as the above 500 W embodiment has a frequency of 15 kHz, a voltage effective value of 7 kV, an output of 250 W, and oxygen of 5 liters per minute. The amount of ozone generated is 15 g / hr as a raw material.
ここで放電管の規模が同じであるのにも関らず、本発明では電気出力が500Wの電源を用いるのに対して特開2004−269326記載の内側水冷、外側空冷の場合では電気出力を250Wとした理由は、それ以上の出力に上昇すると第一石英管と第二石英管の間の水が沸騰を始める恐れがあるためである。この点本発明の両面水冷の場合は500Wとしても沸騰することはなく、そのためにより高いオゾン発生量を得ることが可能である。 Although the discharge tubes are of the same scale, the present invention uses a power supply with an electric output of 500 W, whereas the electric output is increased in the case of inner water cooling and outer air cooling described in JP-A-2004-269326. The reason why the power is set to 250 W is that the water between the first quartz tube and the second quartz tube may start boiling when the output is further increased. In this respect, in the case of double-sided water cooling according to the present invention, boiling does not occur even when 500 W is set, and therefore, a higher ozone generation amount can be obtained.
本発明は外側石英管1と中間石英管2の間の冷却水及び内側石英管3の内部の冷却水のいずれに高電圧を負荷するかにより2つの形態がある。 The present invention has two forms depending on whether the cooling water between the outer quartz tube 1 and the intermediate quartz tube 2 or the cooling water inside the inner quartz tube 3 is loaded with a high voltage.
内側放電管の内部の冷却水に高電圧を負荷する場合を形態1とし、外側石英管1と中間石英管2の間の冷却水に高電圧を負荷する場合を形態2とする。形態1及び形態2はそれぞれ本発明の請求項1及び請求項2に関る形態を示すものである。なお、以下の説明においては外側放電管1、中間放電管2、内側放電管3をそれぞれ第一放電管1、第二放電管2、第三放電管3と呼ぶ。 A case where a high voltage is applied to the cooling water inside the inner discharge tube is referred to as a first embodiment, and a case where a high voltage is applied to the cooling water between the outer quartz tube 1 and the intermediate quartz tube 2 is referred to as a second embodiment. Forms 1 and 2 show forms related to Claims 1 and 2 of the present invention, respectively. In the following description, the outer discharge tube 1, the intermediate discharge tube 2, and the inner discharge tube 3 are referred to as a first discharge tube 1, a second discharge tube 2, and a third discharge tube 3, respectively.
形態1(請求項1に関る形態):本発明の実施の形態を図1により説明する。
形態1における構造:中心軸を共有して配置された3本の石英管(1、2、3:以下外側より第一石英管、第二石英管、第三石英管と称す)を備え第一石英管1は両端部4a、4bにおいて第二石英管2の表面に溶接されている。
第二石英管2は両端部5a、5bにおいて第三石英管3の表面に溶接されている。
Form 1 (form relating to claim 1): An embodiment of the present invention will be described with reference to FIG.
Structure in Embodiment 1: First provided with three quartz tubes (1, 2, 3: hereinafter referred to as a first quartz tube, a second quartz tube, and a third quartz tube) arranged in common with the central axis The quartz tube 1 is welded to the surface of the second quartz tube 2 at both ends 4a and 4b.
The second quartz tube 2 is welded to the surface of the third quartz tube 3 at both end portions 5a and 5b.
第一石英管1と第二石英管の間隙部にステンレス線等の固体電気伝導物15が導入されていて、その固体電気伝導物15は交流高電圧電源24のアース側端子22に接続されている。
第三石英管3の内部にステンレス等の固体電気伝導物14が導入されていて、その固体電気伝導物14は交流高電圧電源24の高電圧側端子23に接続されている。
A solid
A solid
第一石英管1の両端近傍に冷却水の入口11及び出口12が設けられている。
第二石英管2の両端近傍にオゾン発生用原料気体の入口7及びオゾン含有気体出口8が設けられている。
An
In the vicinity of both ends of the second quartz tube 2, an ozone generation source gas inlet 7 and an ozone-containing gas outlet 8 are provided.
第三石英管3の両端近傍に第三石英管の内部に冷却水を導入排出するための絶縁性の配管20、21が接続されている。
その配管の断面積及び長さは、これらの配管に冷却水を満たした時の配管の両端の間の電気抵抗が1MΩ以上であるように選定される。
Insulating
The cross-sectional area and the length of the pipe are selected so that the electrical resistance between both ends of the pipe when the pipe is filled with cooling water is 1 MΩ or more.
実施例では外径4mm、内径2mm、長さ500mmのフッ素樹脂性配管を使用し、冷却水として水道水を用いた場合に5MΩ以上の電気抵抗を得ている。 In the examples, fluororesin piping having an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 500 mm is used, and when tap water is used as cooling water, an electric resistance of 5 MΩ or more is obtained.
形態1における使用方法:冷却水の入口11より冷却水を第一石英管1と第二石英管2の間隙6に導入し、冷却水の出口12より冷却水を排出する。
絶縁性の配管の一方20を通じて冷却水を第三石英管の内部に導入し、他方の配管21を通じて排出する。
Method of use in embodiment 1: Cooling water is introduced into the gap 6 between the first quartz tube 1 and the second quartz tube 2 from the
Cooling water is introduced into the third quartz tube through one of the insulating pipes 20 and discharged through the
オゾン発生用原料気体の入口7よりオゾン発生用原料気体を第二石英管2と第三石英管3の間の間隙25に導入する。
交流高電圧電源24を起動することにより、第一石英管1と第二石英管2の間隙の固体電気伝導物15及び第三石英管の内部の固体電気伝導物14の間に交流高電圧を負荷することにより第二石英管2と第三石英管3の間のオゾン発生用原料気体中に放電を生ぜしめ、オゾンを発生させ、オゾン含有気体出口8よりオゾン含有気体を外部に取り出す。
The ozone generating source gas is introduced into the gap 25 between the second quartz tube 2 and the third quartz tube 3 from the inlet 7 of the ozone generating source gas.
By activating the AC high voltage power supply 24, an AC high voltage is applied between the solid
形態2(請求項2に関る形態):本発明の実施の形態を図2により説明する。
形態2における構造:形態1における構造との相違は第一石英管1の両端近傍に第一石英管1と第二石英管2の間隙に冷却水を導入排出するための絶縁性の配管20、21が接続されていて、第三石英管1の両端近傍に冷却水の入口9及び出口10が設けられている点である。これは交流高電圧電源の高電圧側端子とアース側端子の放電管との接続が形態1と逆になったためである。
その他の点については形態1と同様である。
Embodiment 2 (Embodiment 2): An embodiment of the present invention will be described with reference to FIG.
Structure in form 2: The difference from the structure in form 1 is that an insulating pipe 20 for introducing and discharging cooling water into and between the first quartz tube 1 and the second quartz tube 2 in the vicinity of both ends of the first quartz tube 1; 21 is connected, and the
Other points are the same as in the first embodiment.
形態2における使用方法:前記の形態1との構造上の相違に基づく点を除き、形態1と同様の使用方法による。 Method of use in Form 2: Except for points based on structural differences from Form 1 above, the method of use is the same as in Form 1.
発明の形態に関する附加説明:絶縁性配管が冷却水で満たされた時の電気抵抗を1MΩ以上とした理由
本発明の放電管で問題となるのは冷却水を放電管の高電圧側に導く配管20、21における電力の損失である。その2本の配管での電力の損失WPは次の(式1)で評価される。
WP=2×V×V/R (式1)
ここでVは高電圧の電圧実効値、Rは1本の配管に冷却水を満たした状態での電気抵抗、係数2は配管が供給側と排出側の2本あるため、2倍している意味である。
Additional explanation regarding the form of the invention: Reason why the electrical resistance when the insulating pipe is filled with cooling water is 1 MΩ or more The problem with the discharge tube of the present invention is that the pipe for guiding the cooling water to the high voltage side of the discharge tube This is a power loss at 20 and 21. The power loss WP in the two pipes is evaluated by the following (Equation 1).
WP = 2 × V × V / R (Formula 1)
Where V is the effective voltage value of the high voltage, R is the electrical resistance in a state where one pipe is filled with cooling water, and the coefficient 2 is doubled because there are two pipes on the supply side and the discharge side. Meaning.
実用上の観点から上記の2本の配管の部分の損失を最大で全出力の3分の1まで許容するものとする。
すなわち
WP=WT/3 (式2)
ここでWTは全出力である。
上記(式1)及び(式2)より次の式が導かれる。
R=6×V×V/WT (式3)
From a practical point of view, the maximum loss of the above two pipe portions is allowed up to one third of the total output.
That is, WP = WT / 3 (Formula 2)
Here, WT is the total output.
From the above (Formula 1) and (Formula 2), the following formula is derived.
R = 6 × V × V / WT (Formula 3)
ここでV=9000V、WT=500Wとすると、R=972000Ωであり、ほぼ1MΩとなる。
請求項1及び請求項2において、配管の部分が冷却水で満たされた場合の電気抵抗の上限を1MΩとした理由はこのような評価によるものである。
Here, when V = 9000V and WT = 500W, R = 972000Ω, which is almost 1MΩ.
In the first and second aspects, the reason why the upper limit of the electrical resistance when the pipe portion is filled with cooling water is 1 MΩ is based on such evaluation.
当然のことながら全出力WTが500Wより大きい場合には(式3)にて評価されるRも大きくなる。例えばWT=1000WとすればRはほぼ500kΩとなる。
しかし配管部での電気抵抗を1MΩ程度とすることは比較的容易である。冷却水を用いた実施例では内径2mm、長さ100mmの配管で1MΩ以上が得られている。内径4mmとすれば長さ400mmで1MΩ以上が得られる。
敢えて1MΩ以下の抵抗で使用することは全出力の大小に関らず省エネルギーの観点から望ましくないため、本発明の請求項においては配管の冷却水に満たされた状態での電気抵抗の上限を1MΩと設定した。
Naturally, when the total output WT is larger than 500 W, R evaluated by (Equation 3) also becomes large. For example, if WT = 1000 W, R is approximately 500 kΩ.
However, it is relatively easy to set the electrical resistance in the piping to about 1 MΩ. In the example using cooling water, 1 MΩ or more is obtained with a pipe having an inner diameter of 2 mm and a length of 100 mm. If the inner diameter is 4 mm, a length of 400 mm and 1 MΩ or more can be obtained.
Since it is not desirable to use with a resistance of 1 MΩ or less regardless of the magnitude of the total output from the viewpoint of energy saving, in the claims of the present invention, the upper limit of the electrical resistance when the piping is filled with cooling water is set to 1 MΩ. Was set.
なお前記実施例ではその配管の部分の電気抵抗が5MΩ以上であり、高電圧の実効電圧実効値9kVとして電力損失が1本の配管について16W以下であり、2本で32W以下と評価される。これは損失が全出力500Wの7%以下という事となる。 In the above-described embodiment, the electrical resistance of the pipe portion is 5 MΩ or more, the effective voltage effective value of high voltage is 9 kV, the power loss is 16 W or less for one pipe, and it is evaluated that two are 32 W or less. This means that the loss is 7% or less of the total output 500W.
本発明によるオゾン発生用放電管を用いることによりコンパクトでオゾン発生量が高く、また接ガス部が石英のみであるため高純度のオゾン発生が可能なオゾン発生器を構成できる。このようなオゾン発生器は、半導体製造、半導体洗浄、上水殺菌、排水処理、池水浄化等種々の分野に利用可能である。 By using the discharge tube for generating ozone according to the present invention, an ozone generator capable of generating high-purity ozone can be configured because the ozone generation amount is compact and the ozone generation amount is high, and the gas contact part is only quartz. Such an ozone generator can be used in various fields such as semiconductor manufacturing, semiconductor cleaning, clean water sterilization, waste water treatment, pond water purification and the like.
1 第一石英管(外側石英管)
2 第二石英管(中間石英管)
3 第三石英管(内側石英管)
4a石英管溶接部
4b石英管溶接部
5a石英管溶接部
5b石英管溶接部
6 第一石英管と第二石英管の間隙
7 オゾン発生用原料気体導入口
8 オゾン含有気体排出口
9 冷却水入口
10 冷却水出口
11 冷却水入口
12 冷却水出口
13 第三石英管の内部
14 固体電気伝導物
15 固体電気伝導物
16 エル型継ぎ手
17 ティー型継ぎ手
18 ティー型継ぎ手
19 エル型継ぎ手
20 電気絶縁性配管
21 電気絶縁性配管
22 アース側端子
23 高電圧側端子
24 交流高電圧電源
25 第二石英管と第三石英管の間隙
1 First quartz tube (outer quartz tube)
2 Second quartz tube (intermediate quartz tube)
3 Third quartz tube (inner quartz tube)
4a quartz tube welded portion 4b quartz tube welded portion 5a quartz tube welded portion 5b quartz tube welded portion 6 gap between first quartz tube and second quartz tube 7 raw material gas inlet for ozone generation 8 ozone-containing
Claims (2)
(a)中心軸を共有して配置された3本の石英管(1、2、3:以下外側より第一石英管、第二石英管、第三石英管と称す)を備える。
(b)第一石英管1は両端部4a、4bにおいて第二石英管2の表面に溶接されている。
(c)第二石英管2は両端部5a、5bにおいて第三石英管3の表面に溶接されている。
(d)第一石英管1と第二石英管の間隙部にステンレス線等の固体電気伝導物15が導入されていて、その固体電気伝導物15は交流高電圧電源24のアース側端子22に接続されている。
(e)第三石英管3の内部にステンレス等の固体電気伝導物14が導入されていて、その固体電気伝導物14は交流高電圧電源24の高電圧側端子23に接続されている。
(f)第一石英管1の両端近傍に冷却水の入口11及び出口12が設けられている。
(g)第二石英管2の両端近傍にオゾン発生用原料気体の入口7及びオゾン含有気体出口8が設けられている。
(h)第三石英管3の両端近傍に第三石英管3の内部13に冷却水を導入排出するための電気絶縁性の配管20、21が接続されている。
ここで、これらの配管の流路の断面積及び長さはその流路に冷却水を満たした時の配管の両端の間の電気抵抗が1MΩ以上であるように選定されている。
(i)前記(f)の冷却水の入口11より冷却水を第一石英管1と第二石英管2の間隙6に導入し、冷却水の出口12より冷却水を排出する。
(j)前記(h)の電気絶縁性の配管の一方20を通じて冷却水を第三石英管の内部に導入し、他方の配管21を通じて排出する。
(k)前記(g)のオゾン発生用原料気体の入口7よりオゾン発生用原料気体を第二石英管2と第三石英管3の間の間隙25に導入する。
(l)交流高電圧電源24を起動することにより、前記(d)の固体電気伝導物15及び(e)の固体電気伝導物14の間に交流高電圧を負荷することにより第二石英管と第三石英管の間のオゾン発生用原料気体中に放電を生ぜしめ、オゾンを発生させ、オゾン含有気体出口8よりオゾン含有気体を外部に取り出す。 A discharge tube for a silent discharge type ozone generator that generates ozone by applying an alternating high voltage to a gap, and has the following structures (a) to (h), and uses (i) to (l): Ozone generating discharge tube that generates ozone by means of
(A) Three quartz tubes (1, 2, 3, which are hereinafter referred to as a first quartz tube, a second quartz tube, and a third quartz tube from the outside) arranged to share the central axis are provided.
(B) The first quartz tube 1 is welded to the surface of the second quartz tube 2 at both ends 4a and 4b.
(C) The second quartz tube 2 is welded to the surface of the third quartz tube 3 at both ends 5a and 5b.
(D) A solid electric conductor 15 such as a stainless steel wire is introduced into the gap between the first quartz tube 1 and the second quartz tube, and the solid electric conductor 15 is connected to the ground side terminal 22 of the AC high voltage power supply 24. It is connected.
(E) A solid electric conductor 14 such as stainless steel is introduced into the third quartz tube 3, and the solid electric conductor 14 is connected to a high voltage side terminal 23 of an AC high voltage power supply 24.
(F) An inlet 11 and an outlet 12 for cooling water are provided near both ends of the first quartz tube 1.
(G) An ozone generating raw material gas inlet 7 and an ozone-containing gas outlet 8 are provided near both ends of the second quartz tube 2.
(H) Electrically insulating pipes 20 and 21 for introducing and discharging cooling water to and from the inside 13 of the third quartz tube 3 are connected near both ends of the third quartz tube 3.
Here, the cross-sectional areas and the lengths of the flow paths of these pipes are selected so that the electrical resistance between both ends of the pipes when the flow path is filled with cooling water is 1 MΩ or more.
(I) Cooling water is introduced into the gap 6 between the first quartz tube 1 and the second quartz tube 2 from the cooling water inlet 11 of (f), and the cooling water is discharged from the cooling water outlet 12.
(J) Cooling water is introduced into the third quartz tube through one of the electrically insulating pipes (h) and discharged through the other pipe 21.
(K) The ozone generating source gas is introduced into the gap 25 between the second quartz tube 2 and the third quartz tube 3 from the inlet 7 of the ozone generating source gas in (g).
(L) By activating the AC high-voltage power supply 24, the AC quartz is loaded between the solid electrical conductor 15 of (d) and the solid electrical conductor 14 of (e), and the second quartz tube A discharge is generated in the raw material gas for ozone generation between the third quartz tubes to generate ozone, and the ozone-containing gas is taken out from the ozone-containing gas outlet 8 to the outside.
(a)中心軸を共有して配置された3本の石英管(1、2、3:以下外側より第一石英管、第二石英管、第三石英管と称す)を備える。
(b)第一石英管1は両端部4a、4bにおいて第二石英管2の表面に溶接されている。
(c)第二石英管2は両端部5a、5bにおいて第三石英管3の表面に溶接されている。
(d)第一石英管1と第二石英管の間隙部にステンレス線等の固体電気伝導物15が導入されていて、その固体電気伝導物15は交流高電圧電源24の高電圧側端子23に接続されている。
(e)第三石英管3の内部にステンレス等の固体電気伝導物14が導入されていて、その固体電気伝導物14は交流高電圧電源24のアース側端子22に接続されている。
(f)第一石英管1の両端近傍に第一石英管1と第二石英管2の間隙に冷却水を導入排出するための電気絶縁性の配管20、21が接続されている。
ここで、これらの配管の流路の断面積及び長さはその流路に冷却水を満たした時の配管の両端の間の電気抵抗が1MΩ以上であるように選定されている。
(g)第二石英管2の両端近傍にオゾン発生用原料気体の入口7及びオゾン含有気体出口8が設けられている。
(h)第三石英管1の両端近傍に冷却水の入口9及び出口10が設けられている。
(i)前記(f)の電気絶縁性の配管の一方20を通じて冷却水を第一石英管1と第二石英管2の間隙6に導入し、他方の配管21を通じて排出する。
(j)前記(h)の冷却水の入口9より冷却水を第三石英管の内部に導入し、冷却水の出口10より冷却水を排出する。
(k)前記(g)のオゾン発生用原料気体の入口7よりオゾン発生用原料気体を第二石英管2と第三石英管3の間の間隙25に導入する。
(l)交流高電圧電源24を起動することにより、前記(d)の固体電気伝導物及び(e)の固体電気伝導物の間に交流高電圧を負荷することにより第二石英管と第三石英管の間のオゾン発生用原料気体中に放電を生ぜしめ、オゾンを発生させ、オゾン含有気体出口8よりオゾン含有気体を外部に取り出す。 A discharge tube for a silent discharge type ozone generator that generates ozone by applying an alternating high voltage to a gap, and has the following structures (a) to (h), and uses (i) to (l): Ozone generating discharge tube that generates ozone by means of
(A) Three quartz tubes (1, 2, 3, which are hereinafter referred to as a first quartz tube, a second quartz tube, and a third quartz tube from the outside) arranged to share the central axis are provided.
(B) The first quartz tube 1 is welded to the surface of the second quartz tube 2 at both ends 4a and 4b.
(C) The second quartz tube 2 is welded to the surface of the third quartz tube 3 at both ends 5a and 5b.
(D) A solid electric conductor 15 such as a stainless steel wire is introduced into the gap between the first quartz tube 1 and the second quartz tube, and the solid electric conductor 15 is connected to the high voltage side terminal 23 of the AC high voltage power supply 24. It is connected to the.
(E) A solid electric conductor 14 such as stainless steel is introduced into the third quartz tube 3, and the solid electric conductor 14 is connected to the ground side terminal 22 of the AC high voltage power supply 24.
(F) Near the both ends of the first quartz tube 1, electrically insulating pipes 20 and 21 for introducing and discharging cooling water into and between the first quartz tube 1 and the second quartz tube 2 are connected.
Here, the cross-sectional areas and the lengths of the flow paths of these pipes are selected so that the electrical resistance between both ends of the pipes when the flow path is filled with cooling water is 1 MΩ or more.
(G) An ozone generating raw material gas inlet 7 and an ozone-containing gas outlet 8 are provided near both ends of the second quartz tube 2.
(H) In the vicinity of both ends of the third quartz tube 1, an inlet 9 and an outlet 10 for cooling water are provided.
(I) Cooling water is introduced into the gap 6 between the first quartz tube 1 and the second quartz tube 2 through one of the electrically insulating pipes (f) and discharged through the other pipe 21.
(J) Cooling water is introduced into the third quartz tube from the cooling water inlet 9 of (h), and the cooling water is discharged from the cooling water outlet 10.
(K) The ozone generating source gas is introduced into the gap 25 between the second quartz tube 2 and the third quartz tube 3 from the inlet 7 of the ozone generating source gas in (g).
(L) By activating the AC high voltage power source 24, an AC high voltage is applied between the solid electrical conductor (d) and the solid electrical conductor (e), and the second quartz tube and the third A discharge is generated in the raw material gas for ozone generation between the quartz tubes to generate ozone, and the ozone-containing gas is taken out from the ozone-containing gas outlet 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007264678A JP2009091209A (en) | 2007-10-10 | 2007-10-10 | Discharge tube for ozone generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007264678A JP2009091209A (en) | 2007-10-10 | 2007-10-10 | Discharge tube for ozone generation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009091209A true JP2009091209A (en) | 2009-04-30 |
Family
ID=40663563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007264678A Pending JP2009091209A (en) | 2007-10-10 | 2007-10-10 | Discharge tube for ozone generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009091209A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144425A (en) * | 2010-12-21 | 2012-08-02 | Toshiba Corp | Ozone-generating device |
CN108330469A (en) * | 2018-01-30 | 2018-07-27 | 太原理工大学 | Chemical vapour deposition technique is in FeS2Surface grows MoS2Cooling system |
-
2007
- 2007-10-10 JP JP2007264678A patent/JP2009091209A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144425A (en) * | 2010-12-21 | 2012-08-02 | Toshiba Corp | Ozone-generating device |
CN108330469A (en) * | 2018-01-30 | 2018-07-27 | 太原理工大学 | Chemical vapour deposition technique is in FeS2Surface grows MoS2Cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105848397B (en) | A kind of plasma disinfecting-sterilizing device of flexible discharge electrode structure | |
KR101266157B1 (en) | Apparatus for generating underwater capillary plasma with gas channel | |
KR101605070B1 (en) | Low-temperature water discharge plasma generating device | |
JPS61275107A (en) | Ozonator | |
KR101349488B1 (en) | Ozone generator | |
WO2015072049A1 (en) | Liquid treatment device and liquid treatment method | |
CA2104355C (en) | Method and apparatus for ozone generation and treatment of water | |
KR100407447B1 (en) | Apparatus for generating ozone in high concentration | |
JP2009114003A (en) | Ozone production device | |
JP2009091209A (en) | Discharge tube for ozone generation | |
KR101354145B1 (en) | Ozone generator | |
CA2461223A1 (en) | Apparatus for generating ozone and/or o1 using a high energy plasma discharge | |
KR101337047B1 (en) | Atomspheric pressure plasma apparatus | |
JP4897696B2 (en) | Ballast and lamp combination with optional integrated cooling circuit | |
KR100813475B1 (en) | Ozone generator using water-filled dielectric tube electrode | |
JP2000119005A (en) | Ozonizer | |
JP3974057B2 (en) | Ozone generating discharge tube | |
Wang et al. | Voltage-fed pulse density and pulse width modulation resonant inverter for silent discharge type ozonizer | |
US20020048539A1 (en) | Ozone generator with water cooled glass dielectric | |
JP2008230918A (en) | Discharge tube for ozone generation | |
JP5879530B2 (en) | Liquid processing equipment | |
JPH10338503A (en) | Ozonizer | |
Fujishima et al. | Ozone generation properties of screw-type electrode ozonizer by divided outer electrodes | |
JPH11209105A (en) | Ozonizer | |
JP2009102177A (en) | Ozone generating electrode and ozone generating device |