Nothing Special   »   [go: up one dir, main page]

JP2009091208A - Hydrogen storage material, and method for producing the same - Google Patents

Hydrogen storage material, and method for producing the same Download PDF

Info

Publication number
JP2009091208A
JP2009091208A JP2007264649A JP2007264649A JP2009091208A JP 2009091208 A JP2009091208 A JP 2009091208A JP 2007264649 A JP2007264649 A JP 2007264649A JP 2007264649 A JP2007264649 A JP 2007264649A JP 2009091208 A JP2009091208 A JP 2009091208A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage material
fine particles
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007264649A
Other languages
Japanese (ja)
Inventor
Hideo Abe
日出夫 安部
Yasuhito Tanaka
康仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SFC KK
Original Assignee
SFC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SFC KK filed Critical SFC KK
Priority to JP2007264649A priority Critical patent/JP2009091208A/en
Publication of JP2009091208A publication Critical patent/JP2009091208A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material having high productivity regarding a hydrogen storage material mainly used, e.g., for the storage and transport of energy in a fuel tank for a hydrogen automobile, a chemical heat pump or the like and a method for producing the same. <P>SOLUTION: Disclosed is the hydrogen storage material with a micro porous structure on the surface, which is composed of a structure essentially constituted of a trifunctional type fundamental unit expressed by general formula RSiO<SB>1.5</SB>(R denotes a methyl group or a phenyl group) and a tetrafunctional type fundamental unit expressed by SiO<SB>2</SB>. A micro porous structure is formed on the surface, and the micro porous structure has each macro hole, each meso hole formed within the macro hole, and each micro hole formed at least on the surface of the meso hole and adsorbing hydrogen atoms. Regarding the micro hole, a siloxane bond (-O-Si-O-) is inserted into two Si atoms, it has a tetracyclosiloxane structure, and hydrogen molecules are incorporated into the tetracyclosiloxane structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主に水素自動車用燃料タンク、ケミカルヒートポンプ等のエネルギーの貯蔵・輸送等に使用される水素貯蔵材料、およびその製造方法に関するものである。   The present invention relates to a hydrogen storage material mainly used for storing and transporting energy such as a fuel tank for a hydrogen automobile and a chemical heat pump, and a method for producing the same.

従来、水素貯蔵方法としては、既存の技術である高圧水素ボンベや液化水素ボンベ、水素吸蔵合金、炭素系材料、有機系材料等を現状では水素貯蔵媒体として用いている。水素貯蔵合金では、ランタンとニッケルの合金であるLaNiなどが精力的に研究されている(下記非特許文献1参照)。また、炭素系材料ではナノ構造グラファイトなどの研究が進められている(下記非特許文献2参照)。水素の貯蔵・輸送技術の利用の最も好適な例としては、燃料電池自動車における水素燃料タンクへの適用があげられる。燃料電池自動車のような移動媒体においては、電池に安定かつ安全に水素を供給することが要求されているが、高圧ボンベについては、爆発等の危険性があり、水素吸蔵合金については、合金の単位質量あたりの水素吸蔵量が少ないなど、実用化に向けて改善しなければならない点がある。 Conventionally, as a hydrogen storage method, a high-pressure hydrogen cylinder, a liquefied hydrogen cylinder, a hydrogen storage alloy, a carbon material, an organic material, or the like, which is an existing technology, is currently used as a hydrogen storage medium. As a hydrogen storage alloy, LaNi 5 which is an alloy of lanthanum and nickel has been energetically studied (see Non-Patent Document 1 below). In addition, research on nanostructured graphite and the like is underway for carbon-based materials (see Non-Patent Document 2 below). The most suitable example of utilization of hydrogen storage / transport technology is application to a hydrogen fuel tank in a fuel cell vehicle. In a moving medium such as a fuel cell vehicle, it is required to supply hydrogen stably and safely to a battery. However, a high-pressure cylinder has a risk of explosion and the like. There is a point that needs to be improved for practical use, such as a small amount of hydrogen storage per unit mass.

大角泰章:「水素エネルギー利用技術」第26頁、アグネ技術センター発行(2002年)。Yasuaki Osaku: “Hydrogen Energy Utilization Technology”, page 26, published by Agne Technology Center (2002). Zuttel,A.ら:MRS BULLETIN,27巻9号(2002年)第705頁。Zuttel, A. et al .: MRS BULLETIN, 27 (9) (2002), p.705.

しかしながら、現状では商用実績のある水素貯蔵合金を使用する場合でも、以下のような問題点がある。
1)高価である。
2)合金であるため重量が大きく、単位当たりの吸蔵量が小さい。
3)吸蔵−放出の繰り返しによる合金の微粉化や構造変化などの劣化を生じる。
4)希少金属を含む場合には将来にわたる資源確保が必要である。
However, there are the following problems even when using a hydrogen storage alloy with a commercial record at present.
1) It is expensive.
2) Since it is an alloy, its weight is large and the amount of occlusion per unit is small.
3) Degradation of the alloy due to repeated occlusion-release occurs, such as pulverization and structural changes.
4) When rare metals are included, it is necessary to secure resources for the future.

また炭素系材料、有機系材料等は商用実績がなく研究開発段階であるが、炭素系材料においては、液体窒素による冷却が必要であり、容器も耐圧性の高いものが必要である。   Carbon-based materials, organic-based materials, etc. have no commercial results and are in the research and development stage. However, carbon-based materials require cooling with liquid nitrogen, and containers with high pressure resistance are also required.

本発明は、上記の問題点に鑑みてなされたものであり、生産性の良い水素貯蔵材料を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a hydrogen storage material with good productivity.

本発明の一観点によれば、一般式RSiO1.5(Rはメチル基またはフェニル基を表す。)で表される3官能型の基本単位と、SiOで表される4官能型の基本単位と、を主体とする構造からなる、表面に微小なポーラス構造を有する水素貯蔵材料が提供される。 According to one aspect of the present invention, a trifunctional basic unit represented by the general formula RSiO 1.5 (R represents a methyl group or a phenyl group), a tetrafunctional basic unit represented by SiO 2 , and , A hydrogen storage material having a microporous structure on the surface is provided.

上記水素貯蔵材料により、3次元構造が密である堅い皮膜や成型品を形成することができる。但し本発明の上記液体状態とは、ペースト状、ゲル状など高粘度の物質状態も含むものであり、好ましくは粘度を100cps〜10000cps程度に調製したペースト状のものである。   The hydrogen storage material can form a hard film or a molded product having a dense three-dimensional structure. However, the liquid state of the present invention includes a high-viscosity substance state such as a paste or gel, and is preferably a paste having a viscosity adjusted to about 100 cps to 10000 cps.

前記ポーラス構造は、マクロ孔と、該マクロ孔内に形成されるメソ孔と、少なくとも該メソ孔の表面に形成され、水素分子を吸着するミクロ孔と、を有していることが好ましい。   The porous structure preferably includes macropores, mesopores formed in the macropores, and micropores formed on at least the surface of the mesopores and adsorbing hydrogen molecules.

前記ミクロ孔は、化学式(2)における左側と右側の2つのSi原子の間にシロキサン結合(−O−Si−O−)が挿入され、化学式(3)に示されるテトラシクロシロキサン構造を有しており、該テトラシクロシロキサン構造中に水素分子が取り込まれることを特徴とする。   The micropore has a tetracyclosiloxane structure represented by the chemical formula (3) in which a siloxane bond (—O—Si—O—) is inserted between the left and right Si atoms in the chemical formula (2). It is characterized in that hydrogen molecules are taken into the tetracyclosiloxane structure.

Figure 2009091208
Figure 2009091208

Figure 2009091208
但し、化学式(1)及び(2)において、Rはメチル基またはフェニル基を表す。
Figure 2009091208
However, in chemical formula (1) and (2), R represents a methyl group or a phenyl group.

このテトラシクロシロキサン構造の径は約0.4nmであり、これが本発明の水素吸蔵材料におけるミクロ孔に相当し、分子径約0.28nmの水素分子が主にこの孔に吸着されると考えられる。また本発明での水素の吸蔵は、主に水素分子の吸着によるものであるため、水素原子が化学結合を形成する方法と比較して、水素の吸蔵・放出を容易に行うことができる。   This tetracyclosiloxane structure has a diameter of about 0.4 nm, which corresponds to a micropore in the hydrogen storage material of the present invention, and it is considered that hydrogen molecules having a molecular diameter of about 0.28 nm are mainly adsorbed in this pore. . Further, since the occlusion of hydrogen in the present invention is mainly due to the adsorption of hydrogen molecules, the occlusion / release of hydrogen can be easily performed as compared with a method in which hydrogen atoms form a chemical bond.

前記水素貯蔵材料は、前記一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることが好ましい。 The hydrogen storage material has the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ 0.1). a number in the range of n ≦ 0.6, x and y are x + 2y = 4 and a number in the range of 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). It is preferable to contain metal or metal oxide-based fine particles in the precursor as the main agent.

また、前記金属または金属酸化物系の微粒子を含有させる割合は、好ましくは0.5〜20%、より好ましくは1〜10%であることが好ましい。前記シリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることにより、含有させない場合と比較して、水素貯蔵能力を向上させることができる。0.5%以下では含有する効果がほとんど無く、20%以上では本微粒子の主剤への分散が困難で、均一な混合物にならないためである。   The proportion of the metal or metal oxide fine particles is preferably 0.5 to 20%, more preferably 1 to 10%. By containing the metal or metal oxide fine particles in the precursor containing the silicone resin as a main agent, the hydrogen storage capacity can be improved as compared with the case where the precursor is not contained. When the content is less than 0.5%, there is almost no effect to be contained. When the content is more than 20%, it is difficult to disperse the fine particles in the main agent, and a uniform mixture cannot be obtained.

前記金属または金属酸化物系の微粒子が、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなることが好ましい。 The metal or metal oxide-based fine particles are preferably composed of one or more fine particles of Al, Ti, Si, Ag, alumina, titanium oxide, and SiO 2 .

上記に挙げた金属または金属酸化物系の微粒子は、前記のシリコーンレジンを主剤とする前駆体に混合させた場合、微粒子同士で凝集せずに、均一に分散して混同させることが可能なものである。   The metal or metal oxide-based fine particles listed above can be uniformly dispersed and confused without agglomeration among the fine particles when mixed with the above-mentioned precursor containing silicone resin as a main component. It is.

前記金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれることが好ましい。超微粒子の平均粒径は約1nm〜約50nmのもの、それ以外の微粒子としては平均粒径が約50nm〜約1mm程度のものが一般に市販されており本発明に利用できる。前記水素貯蔵材料は、少なくとも1回は、前記水素貯蔵材料が硬化する温度以下で真空加熱処理をしてなることを特徴とするものである。真空加熱処理は、230℃以下で、シリコーンレジンが液体状態になる温度であれば良いが、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度が用いられる。230℃以上では、液化したシリコーンレジンが熱硬化を開始する場合がある。60℃以下ではシリコーンレジンが液体状態にならない場合がある。真空排気は減圧であれば真空度が数1000Pa程度の低真空度でも構わないが、好ましくは真空度が1Pa〜100Pa程度の減圧下で行う。前記真空加熱処理により、原料の脱泡処理が十分に進み、水素貯蔵材料にした時に材料の表面の微小なポーラス構造の密度が増加すると考えられている。これにより真空加熱処理のない場合と比較して水素貯蔵能力を向上させることができる。   The metal or metal oxide fine particles preferably include ultrafine particles having an average particle diameter of about 1 nm to about 50 nm. Ultrafine particles having an average particle size of about 1 nm to about 50 nm and other fine particles having an average particle size of about 50 nm to about 1 mm are generally commercially available and can be used in the present invention. The hydrogen storage material is characterized by being vacuum-heated at least once at a temperature not higher than a temperature at which the hydrogen storage material is cured. The vacuum heat treatment may be performed at a temperature of 230 ° C. or lower and the silicone resin in a liquid state, but a temperature of 60 ° C. to 200 ° C., more preferably 60 to 160 ° C. is used. If it is 230 degreeC or more, the liquefied silicone resin may start thermosetting. If it is 60 ° C. or lower, the silicone resin may not be in a liquid state. The vacuum evacuation may be performed at a low vacuum with a degree of vacuum of about several thousand Pa as long as the pressure is reduced. It is believed that the vacuum heat treatment sufficiently advances the defoaming process of the raw material and increases the density of the microporous structure on the surface of the material when it is made into a hydrogen storage material. Thereby, hydrogen storage capacity can be improved compared with the case where there is no vacuum heat processing.

前記水素貯蔵材料は、0.05mm〜5mm程度、より好ましくは0.1mm〜2mm程度の粒径を有する粉体材料であることが好ましい。前記熱硬化させる工程の後に機械的な粉砕処理をしてなることを特徴とするものであり、熱硬化させる工程の後の材料は、乳鉢あるいはボールミルなどの機械的な粉砕処理をすることにより単位質量当たりの表面積が増大し、機械的な粉砕処理をしない場合と比較して水素貯蔵能力を向上させることができる。また粉砕処理をした材料は、使用方法に応じて粒度を分級して用いることが好ましい。好ましくは0.05mm〜5mm程度、より好ましくは0.1mm〜2mm程度の粒径が用いられる。一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることを特徴とする。 The hydrogen storage material is preferably a powder material having a particle size of about 0.05 mm to 5 mm, more preferably about 0.1 mm to 2 mm. The material after the thermosetting step is mechanically pulverized, and the material after the thermosetting step is a unit by mechanically pulverizing such as a mortar or a ball mill. The surface area per mass is increased, and the hydrogen storage capacity can be improved as compared with the case where no mechanical pulverization is performed. Moreover, it is preferable to classify and use the pulverized material according to the method of use. The particle size is preferably about 0.05 mm to 5 mm, more preferably about 0.1 mm to 2 mm. General formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0.6. And x, y is a number in the range of x + 2y = 4 and 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). It is characterized by containing fine particles of metal or metal oxide.

本発明の他の観点によれば、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体を準備する工程と、230℃以下の温度で液体状態に調整する工程と、200℃〜500℃の温度で熱硬化させる工程と、を有することを特徴とする水素貯蔵材料の製造方法が提供される。 According to another aspect of the present invention, the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0). .1 ≦ n ≦ 0.6, x and y are x + 2y = 4 and 0.2 ≦ x ≦ 1.5, z is an integer of z ≧ 25) A hydrogen comprising: a step of preparing a precursor containing a silicone resin as a main component; a step of adjusting to a liquid state at a temperature of 230 ° C. or lower; and a step of thermosetting at a temperature of 200 ° C. to 500 ° C. A method of manufacturing a storage material is provided.

前記一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることを特徴とする。前記金属または金属酸化物系の微粒子は、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなることが好ましい。 The general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0.6) The number of ranges, x and y are x + 2y = 4 and the number is in the range of 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). And metal or metal oxide fine particles. The metal or metal oxide fine particles are preferably composed of one or more fine particles of Al, Ti, Si, Ag, alumina, titanium oxide, and SiO 2 .

前記金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれることが好ましい。少なくとも1回は、前記シリコーンレジンを主剤とする前駆体が硬化する温度以下で真空加熱処理を行う工程を含むことが好ましい。前記熱硬化させる工程の後に、機械的な粉砕処理を行う工程を有することが好ましい。   The metal or metal oxide fine particles preferably include ultrafine particles having an average particle diameter of about 1 nm to about 50 nm. It is preferable to include a step of performing a vacuum heat treatment at least once at a temperature equal to or lower than a temperature at which the precursor containing the silicone resin as a main component is cured. It is preferable to have the process of performing a mechanical grinding | pulverization process after the said thermosetting process.

本発明では、本発明によれば、表面に微小なポーラス構造を有し、300℃以上の耐熱性を持ち、かつ、耐水性に優れた水素吸蔵材料を提供することができる。   According to the present invention, according to the present invention, it is possible to provide a hydrogen storage material having a fine porous structure on the surface, heat resistance of 300 ° C. or more, and excellent water resistance.

これにより、常温、常圧から大きく外れない条件で、効率良く水素貯蔵が可能でかつ安全に取り扱うことが可能な水素貯蔵材料を提供することができる。そのため、燃料電池自動車の電源である燃料電池への水素燃料タンクへの適用が高められることになり、その工業的な有益性は極めて大きい。   Accordingly, it is possible to provide a hydrogen storage material that can efficiently store hydrogen and can be safely handled under conditions that do not greatly deviate from normal temperature and normal pressure. Therefore, application to a hydrogen fuel tank for a fuel cell, which is a power source of a fuel cell vehicle, is enhanced, and its industrial benefit is extremely large.

以下、本発明の実施の形態による水素貯蔵材料の製造方法および水素貯蔵特性の測定方法について、図面を参照しながら説明を行う。前記水素貯蔵材料とは「水素を貯蔵しやすいように、材料と構造を工夫した材料」である。   Hereinafter, a method for producing a hydrogen storage material and a method for measuring hydrogen storage characteristics according to an embodiment of the present invention will be described with reference to the drawings. The hydrogen storage material is “a material in which the material and structure are devised so that hydrogen can be easily stored”.

本発明に係る水素貯蔵材料は、(3)で表される化学式で例示されるように、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体を、230℃以下の温度で液体状態に調整する工程と、200℃〜500℃の温度で熱硬化させる工程により形成される。 The hydrogen storage material according to the present invention is represented by the general formula (Si (Me m Ph n ) x O y ) z (where Me is a methyl group, Ph is phenyl, as exemplified by the chemical formula represented by (3)). M and n are numbers in the range of m + n = 1 and 0.1 ≦ n ≦ 0.6, and x and y are in the range of x + 2y = 4 and 0.2 ≦ x ≦ 1.5. And a step of adjusting a precursor containing a silicone resin as a main component represented by the formula (z, an integer of z ≧ 25) to a liquid state at a temperature of 230 ° C. or lower and a step of thermosetting at a temperature of 200 ° C. to 500 ° C. It is formed by.

Figure 2009091208
Figure 2009091208

ここで、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンは、一般には塗料用の展色材等に用いられシリコーンワニスと呼ばれる物質を100℃前後の温度で長時間、攪拌・脱気することにより得られる物質であり、水や酸素の透過をさえぎる物質である。これは通常室温で固体の物質であるため、230℃以下の温度に加熱して液体状態に調整した後、200℃〜500℃の温度で熱硬化させると、一般式RSiO1.5(Rはメチル基またはフェニル基で、上記一般式のx=1、y=1.5に相当)で表される3官能型と呼ばれる基本単位やSiO(上記一般式のx=0、y=2に相当)で表される4官能型と呼ばれる基本単位を主体とした、3次元構造が密である堅い皮膜や成型品を形成することができる。尚、一般式RSiO1.5は、例えば、化学式(4)により例示される。 Here, the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0. A silicone resin represented by a number in the range of 6, x, y is x + 2y = 4 and a number in the range of 0.2 ≦ x ≦ 1.5, z is an integer of z ≧ 25) is generally used as a paint. It is a substance obtained by stirring and degassing a substance called a silicone varnish used for color developing materials and the like at a temperature of around 100 ° C. for a long time, and is a substance that blocks the permeation of water and oxygen. Since this is usually a solid substance at room temperature, it is heated to a temperature of 230 ° C. or lower, adjusted to a liquid state, and then thermally cured at a temperature of 200 ° C. to 500 ° C. When the general formula RSiO 1.5 (R is a methyl group) Or a basic unit called a trifunctional type represented by a phenyl group and corresponding to x = 1, y = 1.5 in the above general formula) or SiO 2 (corresponding to x = 0, y = 2 in the above general formula) It is possible to form a hard film or a molded product having a dense three-dimensional structure mainly composed of a basic unit called a tetrafunctional type represented by In general formula RSiO 1.5, for example, are exemplified by the formula (4).

Figure 2009091208
(但し、III、IVの比率は、上記一般式のxの値と、熱硬化させる工程の温度と時間が反映され、xが小さいほど、また熱硬化させる工程の温度が高く時間が長いほど、IV、IIIの順で比率が小さくなる。)
Figure 2009091208
(However, the ratio of III and IV reflects the value of x in the above general formula and the temperature and time of the heat curing step. The smaller x, the higher the temperature of the heat curing step and the longer the time, (The ratio decreases in the order of IV and III.)

但し、上記液体状態とは、ペースト状、ゲル状など高粘度の物質状態も含むものであり、好ましくは粘度を100cps〜10000cps程度に調製したペースト状のものである。   However, the liquid state includes a high-viscosity material state such as a paste or gel, and is preferably a paste having a viscosity adjusted to about 100 cps to 10000 cps.

上記一般式の一例を構造式で表すと、上記化学式(3)(Rはメチル基またはフェニル基、IIは2官能型(RSiO)の基本構造、IIIは3官能型(RSiO1.5)の基本構造、IVは4官能型(SiO)の基本構造)のようになる。ここでII、III、IVの順序および比率などは、それぞれ適切に場合に決めることができる。尚、化学式(3)における、II、III、IVの比率は、上記一般式のxの値が反映され、xが小さいほど、IV、III、IIの順で比率が小さくなる。II、III、IVの順序は、特に一般的な規則は無い。 An example of the above general formula is represented by a structural formula. The chemical formula (3) (R is a methyl group or a phenyl group, II is a basic structure of bifunctional type (R 2 SiO), III is a trifunctional type (RSiO 1.5 ) Basic structure, IV is tetrafunctional type (SiO 2 ) basic structure). Here, the order and ratio of II, III, and IV can be appropriately determined in each case. The ratio of II, III, and IV in the chemical formula (3) reflects the value of x in the above general formula, and the smaller the x, the smaller the ratio in the order of IV, III, and II. The order of II, III, and IV is not particularly general.

本発明者らは、上記の熱硬化した後の皮膜や成型品が、表面に微小なポーラス構造を有し、300℃以上の耐熱性を持ちかつ耐水性に優れた水素吸蔵材料として得られることを知見し本発明に到達した。   The inventors of the present invention provide that the film or molded product after the above-mentioned thermosetting has a fine porous structure on the surface, has a heat resistance of 300 ° C. or more, and is obtained as a hydrogen storage material excellent in water resistance. As a result, the present invention was reached.

表面の微小なポーラス構造11は、一例を挙げれば、図2に示すようにグラファイト炭素系材料では>50nmのマクロ孔15の中にさらに2〜50nmのメソ孔17が存在し、それらの表面には<2nmのミクロ孔21が存在し、このミクロ孔中に水素分子が吸着すると考えられる。   As an example, the fine porous structure 11 on the surface has a mesopore 17 of 2 to 50 nm in the macropore 15 of> 50 nm in the graphite carbon-based material as shown in FIG. <2 nm micropores 21 exist, and it is considered that hydrogen molecules are adsorbed in the micropores.

但し、上記ミクロ孔はグラファイト炭素系材料ではアモルファスやカーボンナノチューブなどそれぞれの材料により構造が異なるが、本発明の水素吸蔵材料におけるミクロ孔は上記化学式(3)に示すようなものが考えられる。一般のポリシロキサン構造は上記化学式(2)のような構造であるが、本発明の水素吸蔵材料には、化学式(2)に示すように、左側と右側の2つのSi原子の間にシロキサン結合(−O−Si−O−)が挿入し、化学式(3)に示すようなテトラシクロシロキサン構造が多く含まれる構造になっている。このテトラシクロシロキサン構造の径は約0.4nmであり、これが本発明の水素吸蔵材料におけるミクロ孔に相当し、分子径約0.28nmの水素分子が主にこの孔に吸着されると考えられる。また本発明での水素の吸蔵は、主に水素分子の吸着によるものであるため、水素原子が化学結合を形成する方法と比較して、水素の吸蔵・放出が容易に行うことができる。   However, although the structure of the micropore differs depending on the material such as amorphous or carbon nanotube in the graphite carbon-based material, the micropore in the hydrogen storage material of the present invention may be as shown in the chemical formula (3). A general polysiloxane structure is a structure represented by the above chemical formula (2), but the hydrogen storage material of the present invention has a siloxane bond between two Si atoms on the left and right sides as shown in the chemical formula (2). (—O—Si—O—) is inserted to form a structure containing many tetracyclosiloxane structures as shown in chemical formula (3). This tetracyclosiloxane structure has a diameter of about 0.4 nm, which corresponds to a micropore in the hydrogen storage material of the present invention, and it is considered that hydrogen molecules having a molecular diameter of about 0.28 nm are mainly adsorbed in this pore. . Further, since the occlusion of hydrogen in the present invention is mainly due to the adsorption of hydrogen molecules, the occlusion / release of hydrogen can be easily performed as compared with a method in which hydrogen atoms form a chemical bond.

上記一般式のうち、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数である。また好ましくは、m+n=1でかつ0.2≦n≦0.4の範囲である数である。nが0.1以下、あるいは0.6以上の場合は、シリコーンレジンの耐熱性が劣化し表面の微小なポーラス構造が減少するため、200℃〜500℃の温度で熱硬化させる工程において十分な特性のある材料を得ることができなくなる場合がある。またx、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数である。xが0.2以下の場合、230℃以下の温度で液体状態に調整する工程で、固体のシリコーンレジンを次の熱硬化工程に必要な液体状態に調製できない場合がある。またxが1.5以上の場合、200℃〜500℃の温度で熱硬化させる工程において、熱硬化が不十分になり機械的強度が低下し、十分な特性のある材料を得ることができなくなる場合がある。またzはz≧25の整数である。zが25未満の場合、200℃〜500℃の温度で熱硬化させる工程において、熱硬化が不十分になり機械的強度が低下し、十分な特性のある材料を得ることができなくなる場合がある。   Among the above general formulas, m and n are numbers in the range of m + n = 1 and 0.1 ≦ n ≦ 0.6. Further, it is preferably a number in the range of m + n = 1 and 0.2 ≦ n ≦ 0.4. When n is 0.1 or less, or 0.6 or more, the heat resistance of the silicone resin is deteriorated and the fine porous structure on the surface is reduced, so that it is sufficient in the step of thermosetting at a temperature of 200 ° C. to 500 ° C. It may become impossible to obtain a material having characteristics. X and y are numbers that are in the range of x + 2y = 4 and 0.2 ≦ x ≦ 1.5. When x is 0.2 or less, the solid silicone resin may not be prepared in the liquid state necessary for the next thermosetting step in the step of adjusting to a liquid state at a temperature of 230 ° C. or less. Further, when x is 1.5 or more, in the step of thermosetting at a temperature of 200 ° C. to 500 ° C., the thermosetting becomes insufficient, the mechanical strength is lowered, and a material having sufficient characteristics cannot be obtained. There is a case. Z is an integer of z ≧ 25. When z is less than 25, in the step of thermosetting at a temperature of 200 ° C. to 500 ° C., the thermosetting becomes insufficient, the mechanical strength is lowered, and a material having sufficient characteristics may not be obtained. .

また230℃以下の温度で液体状態に調整する工程の温度は、230℃以下で、通常室温では固体のシリコーンレジンが液体状態になる温度であれば良いが、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度が用いられる。230℃以上では、液化したシリコーンレジンがさらに熱硬化を開始する場合がある。60℃以下ではシリコーンレジンが液体状態にならない場合がある。200℃〜500℃の温度で熱硬化させる工程の温度は、200℃〜500℃の範囲で硬化する温度であればよいが、好ましくは300℃〜450℃の温度が用いられる。200℃以下では硬化が十分に進まない場合があり、500℃以上では得られた材料が熱分解し、単体の炭素を遊離する場合がある。   Further, the temperature of the step of adjusting to a liquid state at a temperature of 230 ° C. or lower is 230 ° C. or lower, and usually a temperature at which a solid silicone resin becomes a liquid state at room temperature, but preferably 60 ° C. to 200 ° C. Preferably a temperature of 60-160 ° C is used. If it is 230 degreeC or more, the liquefied silicone resin may further start thermosetting. If it is 60 ° C. or lower, the silicone resin may not be in a liquid state. The temperature of the step of thermosetting at a temperature of 200 ° C. to 500 ° C. may be any temperature that cures in the range of 200 ° C. to 500 ° C., but a temperature of 300 ° C. to 450 ° C. is preferably used. If it is 200 ° C. or lower, curing may not proceed sufficiently, and if it is 500 ° C. or higher, the obtained material may be thermally decomposed to liberate single carbon.

また、上記水素貯蔵材料は、上記一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることもできる。 Further, the hydrogen storage material has the above general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0. A number in the range of 1 ≦ n ≦ 0.6, x and y are x + 2y = 4 and a number in the range of 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25) A precursor containing a resin as a main component may contain metal or metal oxide fine particles.

このシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることにより、含有させない場合と比較して、水素貯蔵能力を向上させることができる。含有させる割合は好ましくは0.5〜20%、より好ましくは1〜10%が用いられる。0.5%以下では含有する効果がほとんど無く、20%以上では本微粒子の主剤への分散が困難で、均一な混合物にならないためである。   By containing the metal or metal oxide fine particles in the precursor containing the silicone resin as a main component, the hydrogen storage capacity can be improved as compared with the case where the precursor is not included. The content ratio is preferably 0.5 to 20%, more preferably 1 to 10%. When the content is less than 0.5%, there is almost no effect to be contained. When the content is more than 20%, it is difficult to disperse the fine particles in the main agent, and a uniform mixture cannot be obtained.

上記水素貯蔵材料は、上記金属または金属酸化物系の微粒子が、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなるようにすると良い。この場合において、金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれる。超微粒子の平均粒径は、約1nm〜約50nmのもの、それ以外の微粒子としては平均粒径が約50nm〜約1mm程度のものが一般に市販されており入手が可能であり利用できる。 In the hydrogen storage material, the metal or metal oxide fine particles may be made of one or more fine particles of Al, Ti, Si, Ag, alumina, titanium oxide, and SiO 2 . In this case, the metal or metal oxide fine particles include ultrafine particles having an average particle diameter of about 1 nm to about 50 nm. Ultrafine particles having an average particle size of about 1 nm to about 50 nm and other fine particles having an average particle size of about 50 nm to about 1 mm are generally commercially available and can be used.

水素貯蔵材料は、少なくとも1回は、水素貯蔵材料が硬化する温度以下で真空加熱処理をすることを特徴とするものである。真空加熱処理は、230℃以下で、シリコーンレジンが液体状態になる温度であれば良いが、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度が用いられる。230℃以上では、液化したシリコーンレジンが熱硬化を開始する場合がある。60℃以下ではシリコーンレジンが液体状態にならない場合がある。真空排気は減圧であれば真空度が数1000Pa程度の低真空度でも構わないが、好ましくは真空度が1Pa〜100Pa程度の減圧下で行う。上記真空加熱処理により、原料の脱泡処理が十分に進み、水素貯蔵材料にした時に材料の表面の微小なポーラス構造の密度が増加すると考えられている。これにより真空加熱処理のない場合と比較して水素貯蔵能力を向上させることができる。   The hydrogen storage material is characterized in that the vacuum heat treatment is performed at least once at a temperature lower than a temperature at which the hydrogen storage material is cured. The vacuum heat treatment may be performed at a temperature of 230 ° C. or lower and the silicone resin is in a liquid state, but a temperature of 60 ° C. to 200 ° C., more preferably 60 to 160 ° C. is used. If it is 230 degreeC or more, the liquefied silicone resin may start thermosetting. If it is 60 ° C. or lower, the silicone resin may not be in a liquid state. The vacuum evacuation may be performed at a low vacuum with a degree of vacuum of about several thousand Pa as long as the pressure is reduced. It is believed that the vacuum heat treatment sufficiently advances the defoaming process of the raw material, and increases the density of the microporous structure on the surface of the material when the hydrogen storage material is formed. Thereby, hydrogen storage capability can be improved compared with the case where there is no vacuum heat processing.

上記水素貯蔵材料は、上記熱硬化させる工程の後に機械的な粉砕処理を行っても良い。熱硬化させる工程の後の材料は、乳鉢あるいはボールミルなどを用いて機械的な粉砕処理をすることにより、単位質量当たりの表面積が増大し、機械的な粉砕処理をしない場合と比較して水素貯蔵能力をさらに向上させることができる。   The hydrogen storage material may be mechanically pulverized after the thermosetting step. The material after the thermosetting process is mechanically pulverized using a mortar or ball mill, and the surface area per unit mass is increased. Compared to the case where no mechanical pulverization is performed, hydrogen storage is possible. The ability can be further improved.

また、粉砕処理をした材料は、使用方法に応じて粒度を分級して用いることが好ましい。好ましくは0.05mm〜5mm程度、より好ましくは0.1mm〜2mm程度の粒径が用いられる。   Moreover, it is preferable to classify and use the pulverized material according to the method of use. The particle size is preferably about 0.05 mm to 5 mm, more preferably about 0.1 mm to 2 mm.

次に、本実施の形態による水素貯蔵材料の製造方法について説明する。本実施の形態による製造方法は、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体を、230℃以下の温度で液体状態に調整する工程と、200℃〜500℃の温度で熱硬化させる工程と、を有することを特徴とする。ここで、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させる工程を追加しても良い。この際、金属または金属酸化物系の微粒子が、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなる。ここに列挙した金属または金属酸化物系の微粒子は、上記のシリコーンレジンを主剤とする前駆体に混合させた場合、微粒子同士で凝集せずに、均一に分散して混同させることが可能なものの例である。金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれる。 Next, the manufacturing method of the hydrogen storage material by this Embodiment is demonstrated. The manufacturing method according to this embodiment has a general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1, and 0. A number in the range of 1 ≦ n ≦ 0.6, x and y are x + 2y = 4 and a number in the range of 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25) It has the process of adjusting the precursor which makes a resin the main ingredient into a liquid state at the temperature of 230 degrees C or less, and the process of thermosetting at the temperature of 200 to 500 degreeC. Here, the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0. 6 is a precursor having a silicone resin as a main component, wherein x and y are x + 2y = 4 and 0.2 ≦ x ≦ 1.5, z is an integer of z ≧ 25) A step of incorporating metal or metal oxide fine particles into the body may be added. At this time, the metal or metal oxide-based fine particles are composed of one or more fine particles of Al, Ti, Si, Ag, alumina, titanium oxide, and SiO 2 . The metal or metal oxide-based fine particles listed here can be dispersed and confused evenly when they are mixed with the above-mentioned precursor containing the silicone resin as the main agent, without agglomerating among the fine particles. It is an example. The metal or metal oxide fine particles include ultrafine particles having an average particle diameter of about 1 nm to about 50 nm.

以下に、本発明の実施例について、より具体的に説明する。
図1は、本発明の形態による、水素貯蔵特性評価用容器の一例の概略構成を示す図である。図1に示す水素貯蔵特性評価用容器において、耐圧容器1には、秤量された水素貯蔵材料を充填した後、本水素貯蔵特性評価用容器を秤量する。また耐圧容器1は図示していないが、冷却装置などにより必要に応じて一定温度に冷却するようにしても良い。耐圧容器1にはバルブ2を通じて、図示していないが水素ボンベを接続し、バルブ2を開けて白抜き矢印の向きより水素ガスが所定の圧力まで充填される。圧力は圧力計3によって測定され、所定の圧力において所定の時間保持した後、バルブ2を閉じる。次に水素ボンベをとりはずした後、本水素貯蔵特性評価用容器を秤量し、水素通気前の重量との差から水素貯蔵量を求め、水素貯蔵能力を算出する。
Hereinafter, examples of the present invention will be described more specifically.
FIG. 1 is a diagram showing a schematic configuration of an example of a container for evaluating hydrogen storage characteristics according to an embodiment of the present invention. In the container for evaluating hydrogen storage characteristics shown in FIG. 1, the pressure resistant container 1 is filled with a weighed hydrogen storage material, and then the container for evaluating hydrogen storage characteristics is weighed. Further, although the pressure vessel 1 is not shown, it may be cooled to a constant temperature as required by a cooling device or the like. A hydrogen cylinder (not shown) is connected to the pressure vessel 1 through a valve 2, and the valve 2 is opened, and hydrogen gas is filled up to a predetermined pressure from the direction of the white arrow. The pressure is measured by the pressure gauge 3, and after holding at a predetermined pressure for a predetermined time, the valve 2 is closed. Next, after removing the hydrogen cylinder, this hydrogen storage characteristic evaluation container is weighed, and the hydrogen storage capacity is calculated from the difference from the weight before hydrogen aeration, and the hydrogen storage capacity is calculated.

本実施例では、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジン、もしくはこれに金属または金属酸化物系の微粒子を含有させたものを前駆体として用いる。 In this example, the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1, and 0.1 ≦ n ≦ A number in the range of 0.6, x and y are x + 2y = 4 and a number in the range of 0.2 ≦ x ≦ 1.5, z is an integer of z ≧ 25), or this A material containing metal or metal oxide fine particles is used as a precursor.

上記前駆体は、通常上記一般式においてm、nはm+n=1でかつ0.1≦n≦0.6程度、x、yはx+2y=4でかつ1≦x≦2程度、zは3000≧z≧20程度で表されるシリコーンレジンもしくはこれをトルエンやキシレン等の有機溶媒に溶解した溶液、もしくはこれに金属または金属酸化物系の微粒子を加えたものを原料として、230℃以下で、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度で数時間〜数10時間加熱し、溶媒を蒸発させながら縮重合反応させ、もしくはその間に少なくとも1回は真空加熱処理を、230℃以下で、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度で、真空度は数1000Pa程度の低真空度でも構わないが、好ましくは真空度が100Pa〜1Pa程度の減圧下で行うことによって得られる。トルエンやキシレン等の有機溶媒に溶解した溶液を用いる場合、上記前駆体にはシリコーンレジンの主剤以外に約10%以下の有機溶媒が残存する場合があるが、得られる水素貯蔵材料の特性を劣化させるものではない。   The precursor is usually m in the above general formula, n is m + n = 1 and about 0.1 ≦ n ≦ 0.6, x and y are x + 2y = 4 and 1 ≦ x ≦ 2, and z is 3000 ≧. Preferably, a silicone resin represented by z ≧ 20 or a solution obtained by dissolving this in an organic solvent such as toluene or xylene, or a material obtained by adding metal or metal oxide fine particles thereto to 230 ° C. or lower is preferable. Is heated at a temperature of 60 ° C. to 200 ° C., more preferably 60 to 160 ° C. for several hours to several tens of hours, and a condensation polymerization reaction is carried out while evaporating the solvent, or at least once during that time, a vacuum heat treatment is performed at In the following, the temperature is preferably 60 ° C. to 200 ° C., more preferably 60 ° C. to 160 ° C., and the degree of vacuum may be as low as several thousand Pa, but the degree of vacuum is preferably 100 Pa to 1P. Obtained by performing a reduced pressure of degree. When a solution dissolved in an organic solvent such as toluene or xylene is used, about 10% or less of the organic solvent may remain in the precursor in addition to the main component of the silicone resin, but the characteristics of the obtained hydrogen storage material are deteriorated. It doesn't let you.

次に上記の前駆体を、230℃以下の温度で液体状態に調整する工程では、230℃以下で、通常室温では固体のシリコーンレジンが液体状態になる温度であれば良いが、好ましくは60℃〜200℃、より好ましくは60〜160℃の温度に保ち、好ましくは粘度を100cps〜10000cps程度のペースト状に調製する。   Next, in the step of adjusting the precursor to a liquid state at a temperature of 230 ° C. or lower, it may be a temperature at which the solid silicone resin is in a liquid state at 230 ° C. or lower and usually at room temperature, preferably 60 ° C. It is maintained at a temperature of ˜200 ° C., more preferably 60 ° C. to 160 ° C., and a viscosity is preferably prepared as a paste of about 100 cps to 10000 cps.

次に上記の粘度調製した前駆体を任意の型にディスペンサー、またはスプレー、またはスクリーン印刷等の公知の方法により注型し、200℃〜500℃の温度で熱硬化させる。   Next, the precursor prepared with the above viscosity is cast into an arbitrary mold by a known method such as a dispenser, spray, or screen printing, and thermally cured at a temperature of 200 ° C to 500 ° C.

200℃〜500℃の温度で熱硬化させる工程の温度は、200℃〜500℃の範囲で硬化する温度であればよいが、好ましくは300℃〜450℃の温度が用いられる。上記の前駆体に金属または金属酸化物系の微粒子を加えない場合は300℃前後、金属または金属酸化物系の微粒子を加えた場合は400℃前後が一般に用いられる。   The temperature of the step of thermosetting at a temperature of 200 ° C. to 500 ° C. may be any temperature that cures in the range of 200 ° C. to 500 ° C., but a temperature of 300 ° C. to 450 ° C. is preferably used. In the case where metal or metal oxide fine particles are not added to the precursor, generally around 300 ° C. is used, and in the case where metal or metal oxide fine particles are added, around 400 ° C. is generally used.

前記熱硬化させる工程により水素貯蔵材料が得られる。その後、使用方法によるが前記熱硬化させる工程の後に、機械的な粉砕処理により粒状にして用いられる。乳鉢あるいはボールミルなどの機械的な粉砕処理した材料は、使用方法に応じて粒度を分級して用いる。好ましくは0.05mm〜5mm程度、より好ましくは0.1mm〜2mm程度の粒径が用いられる。最終的に得られた粒状の材料を、所定のボンベに充填し所望の装置に組み込んで使用することができる。   A hydrogen storage material is obtained by the thermosetting step. Then, although it depends on the method of use, it is used after being granulated by mechanical pulverization after the step of thermosetting. A mechanically pulverized material such as a mortar or ball mill is used after classifying the particle size according to the method of use. The particle size is preferably about 0.05 mm to 5 mm, more preferably about 0.1 mm to 2 mm. The granular material finally obtained can be used by being filled in a predetermined cylinder and incorporated in a desired apparatus.

以下に、好ましい実施例を挙げて、本発明をさらに詳述するが、本発明はこれら実施例に限定されるものではなく、本発明の目的が達成される範囲内での各要素の置換や設計変更、工程順の変更がなされたものをも包含する。   Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, the present invention is not limited to these examples, and each element may be replaced or replaced within a range in which the object of the present invention is achieved. Also includes those in which design changes and process order changes have been made.

(実施例1)
(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.3、x、yはx+2y=4でかつxが約1.3、zは約20〜80程度の整数で表されるシリコーンレジン120gを、トルエン80gに溶解した溶液を、120℃に加熱しながらトルエンを蒸発させ、約10時間縮重合反応させる。次いで、この反応生成物を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空度が1Pa程度、ホットプレートの温度140℃で60分間、脱泡処理を行う。これにより(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.3、x、yはx+2y=4でかつxが約0.7、zはz≧25の整数で表されるシリコーンレジンを主剤とする前駆体を得る。次いで、ホットプレートを冷却しながら雰囲気を大気に戻した後、100℃に再度加熱し、粘度数100cpsのペースト状の前駆体にした。このペースト状の前駆体を厚さ5mmのテフロンシート上に、べた印刷塗布し、焼成炉に入れて大気中一度220℃で1時間加熱した後、300℃に昇温しさらに1時間焼成し厚さ約2mmのひび割れの無いシート状の膜を作成した。次いで、得られた膜を乳鉢で機械的に粉砕処理し、得られた粒状の材料を、ふるいにより粒度を約0.1mm〜1mmに分級した。次いで、最終的に得られた粒状の材料を40g秤量し、耐圧容器1に充填して水素貯蔵特性を評価した。測定は前記の図1(本発明の形態による、水素貯蔵特性評価用容器の一例の概略構成を示す図)の説明のようにして行った。ここで耐圧容器1は、冷却装置により−20℃に冷却した。耐圧容器1にはバルブ2を開けて白抜き矢印の向きより水素ガスを0.8MPaの圧力まで充填した。圧力は圧力計3によって測定され、0.8MPaの圧力において30分間保持した後、バルブ2を閉じた。次に水素ボンベをとりはずした後、本水素貯蔵特性評価用容器を秤量し、水素通気前の重量との差から水素貯蔵量を求め、水素貯蔵能力を算出した。測定結果を表1に示す。
(Example 1)
(Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1 and n is about 0.3, x and y are x + 2y = 4 and x is about 1.3 and z is an integer of about 20 to 80. A solution of 120 g of a silicone resin dissolved in 80 g of toluene is heated to 120 ° C. to evaporate the toluene, and about 10 hours. A condensation polymerization reaction is performed. Next, the reaction product is transferred onto a hot plate in a vacuum chamber and evacuated while the hot plate is heated. Defoaming is performed at a vacuum degree of about 1 Pa in a vacuum chamber and a hot plate temperature of 140 ° C. for 60 minutes. As a result, (Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1, and n is about 0.3, x and y are A precursor based on a silicone resin in which x + 2y = 4, x is about 0.7, and z is an integer of z ≧ 25 is obtained. Next, the atmosphere was returned to the atmosphere while cooling the hot plate, and then heated again to 100 ° C. to obtain a paste-like precursor having a viscosity of 100 cps. This paste-like precursor was solid-printed on a 5 mm thick Teflon sheet, placed in a firing furnace, heated once in the atmosphere at 220 ° C. for 1 hour, then heated to 300 ° C. and fired for another 1 hour. A sheet-like film having no crack of about 2 mm was prepared. Next, the obtained film was mechanically pulverized in a mortar, and the obtained granular material was classified to about 0.1 mm to 1 mm by a sieve. Next, 40 g of the finally obtained granular material was weighed and filled in the pressure vessel 1 to evaluate the hydrogen storage characteristics. The measurement was performed as described above with reference to FIG. 1 (a diagram showing a schematic configuration of an example of a container for evaluating hydrogen storage characteristics according to an embodiment of the present invention). Here, the pressure vessel 1 was cooled to −20 ° C. by a cooling device. The pressure vessel 1 was opened with a valve 2 and filled with hydrogen gas to a pressure of 0.8 MPa from the direction of the white arrow. The pressure was measured by a pressure gauge 3 and maintained at a pressure of 0.8 MPa for 30 minutes, and then the valve 2 was closed. Next, after removing the hydrogen cylinder, the container for evaluating hydrogen storage characteristics was weighed, the amount of hydrogen stored was determined from the difference from the weight before hydrogen aeration, and the hydrogen storage capacity was calculated. The measurement results are shown in Table 1.

(実施例2)
(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.5、x、yはx+2y=4でかつxが約1.9、zは約1000〜2000程度の整数で表されるシリコーンレジン100gを、キシレン100gに溶解した溶液を、100℃に加熱しながらキシレンを蒸発させ、約10時間縮重合反応させる。次いで、この反応生成物を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空度が1Pa程度、ホットプレートの温度120℃で60分間、脱泡処理を行う。これにより(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.5、x、yはx+2y=4でかつxが約1.0、zはz≧1000の整数で表されるシリコーンレジンを主剤とする前駆体を得る。次いで、ホットプレートを冷却しながら雰囲気を大気に戻した後、120℃に再度加熱し、粘度数100cpsのペースト状の前駆体にした。このペースト状の前駆体を厚さ5mmのテフロンシート上にべた印刷塗布し、焼成炉に入れて大気中一度220℃で1時間加熱した後、350℃に昇温しさらに1時間焼成し厚さ約2mmのひび割れの無いシート状の膜を作成した。次いで、得られた膜を乳鉢で機械的に粉砕処理し、得られた粒状の材料を、ふるいにより粒度を約0.1mm〜1mmに分級した。次いで、最終的に得られた粒状の材料を30g秤量し、耐圧容器1に充填して実施例1と同様にして水素貯蔵特性を評価した。測定結果を表1に示す。
(Example 2)
(Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1 and n is about 0.5, x and y are x + 2y = 4 and x is about 1.9, z is about 1000 to 2000, and a solution of 100 g of a silicone resin dissolved in 100 g of xylene is heated to 100 ° C. to evaporate xylene for about 10 hours. A condensation polymerization reaction is performed. Next, the reaction product is transferred onto a hot plate in a vacuum chamber and evacuated while the hot plate is heated. Defoaming is performed for 60 minutes at a vacuum degree of about 1 Pa and a hot plate temperature of 120 ° C. As a result, (Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1, and n is about 0.5, x and y are A precursor based on a silicone resin in which x + 2y = 4, x is about 1.0, and z is an integer of z ≧ 1000 is obtained. Next, the atmosphere was returned to the atmosphere while cooling the hot plate, and then heated again to 120 ° C. to obtain a paste-like precursor having a viscosity of 100 cps. This paste-like precursor was applied by solid printing onto a 5 mm thick Teflon sheet, placed in a baking furnace, heated once in the atmosphere at 220 ° C. for 1 hour, then heated to 350 ° C. and further baked for 1 hour. A sheet-like film having no cracks of about 2 mm was prepared. Next, the obtained film was mechanically pulverized in a mortar, and the obtained granular material was classified into about 0.1 mm to 1 mm by a sieve. Next, 30 g of the finally obtained granular material was weighed and filled in the pressure vessel 1, and the hydrogen storage characteristics were evaluated in the same manner as in Example 1. The measurement results are shown in Table 1.

(実施例3)
(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.3、x、yはx+2y=4でかつxが約1.3、zは約20〜80程度の整数で表されるシリコーンレジン120gを、トルエン80gに溶解し、この溶液に平均粒径約12nmの超微粒子状シリカ(SiO)(商品名:アエロジル デグッサ社商品)4gを加え、この溶液を120℃に加熱しながらトルエンを蒸発させ、約10時間縮重合反応させる。次いで、この反応生成物を真空チャンバー中のホットプレート上に移し、ホットプレートを加熱しながら真空排気を行う。真空チャンバーの真空度が1Pa程度、ホットプレートの温度140℃で60分間、脱泡処理を行う。これにより(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.3、x、yはx+2y=4でかつxが約0.7、zはz≧25の整数で表されるシリコーンレジンを主剤とし超微粒子状シリカを含有させた前駆体を得る。次いで、ホットプレートを冷却しながら雰囲気を大気に戻した後、100℃に再度加熱し、粘度数100cpsのペースト状の前駆体にした。このペースト状の前駆体を厚さ5mmのテフロンシート上に、べた印刷塗布し、焼成炉に入れて大気中一度220℃で1時間加熱した後、400℃に昇温しさらに1時間焼成し厚さ約2mmのひび割れの無いシート状の膜を作成した。次いで、得られた膜を乳鉢で機械的に粉砕処理し、得られた粒状の材料を、ふるいにより粒度を約0.1mm〜1mmに分級した。次いで、最終的に得られた粒状の材料を40g秤量し、耐圧容器1に充填して実施例1と同様にして水素貯蔵特性を評価した。測定結果を表1に示す。
(Example 3)
(Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1 and n is about 0.3, x and y are x + 2y = 4 and a silicone resin 120 g represented by an integer of about 1.3 to about 80 and z is dissolved in 80 g of toluene, and ultrafine silica (SiO 2) having an average particle size of about 12 nm is dissolved in this solution. ) (Trade name: Aerosil Degussa Co., Ltd.) 4 g is added and toluene is evaporated while this solution is heated to 120 ° C. and subjected to a condensation polymerization reaction for about 10 hours. Next, the reaction product is transferred onto a hot plate in a vacuum chamber and evacuated while the hot plate is heated. Defoaming is performed at a vacuum degree of about 1 Pa in a vacuum chamber and a hot plate temperature of 140 ° C. for 60 minutes. As a result, (Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1, and n is about 0.3, x and y are A precursor containing ultrafine silica particles with a silicone resin represented by an integer of x + 2y = 4, x being about 0.7, and z being an integer of z ≧ 25 is obtained. Next, the atmosphere was returned to the atmosphere while cooling the hot plate, and then heated again to 100 ° C. to obtain a paste-like precursor having a viscosity of 100 cps. This paste-like precursor was solid-printed on a 5 mm thick Teflon sheet, placed in a firing furnace, heated once in the atmosphere at 220 ° C. for 1 hour, then heated to 400 ° C. and fired for an additional hour. A sheet-like film having no crack of about 2 mm was prepared. Next, the obtained film was mechanically pulverized in a mortar, and the obtained granular material was classified to about 0.1 mm to 1 mm by a sieve. Next, 40 g of the finally obtained granular material was weighed and filled in a pressure vessel 1 and evaluated for hydrogen storage characteristics in the same manner as in Example 1. The measurement results are shown in Table 1.

(実施例4)
(Si(MePh(ただし、Meはメチル基、Phはフェニル基)で、m、nはm+n=1でかつnが約0.3、x、yはx+2y=4でかつxが約1.3、zは約20〜80程度の整数で表されるシリコーンレジン120gを、トルエン80gに溶解し、この溶液に平均粒径約20μmのシリカ微粒子20gを加えた以外は実施例3と同様にして本発明の水素貯蔵材料を作成し、水素貯蔵特性を評価した。測定結果を表1に示す。
Example 4
(Si (Me m Ph n ) x O y ) z (where Me is a methyl group and Ph is a phenyl group), m and n are m + n = 1 and n is about 0.3, x and y are x + 2y = 4 except that 120 g of a silicone resin represented by an integer of about 1.3 and z is about 20 to 80 is dissolved in 80 g of toluene, and 20 g of silica fine particles having an average particle size of about 20 μm are added to this solution. Prepared the hydrogen storage material of the present invention in the same manner as in Example 3, and evaluated the hydrogen storage characteristics. The measurement results are shown in Table 1.

次に、規格例について説明する。
(比較例)
市販の粒状活性炭を40g秤量し、耐圧容器1に充填して実施例1と同様にして水素貯蔵特性を評価した。測定結果を表1に示す。
Next, a standard example will be described.
(Comparative example)
40 g of commercially available granular activated carbon was weighed and filled in a pressure vessel 1 and evaluated for hydrogen storage characteristics in the same manner as in Example 1. The measurement results are shown in Table 1.

Figure 2009091208
Figure 2009091208

以上の例より、市販の活性炭と比較して、本発明の水素貯蔵材料では格段に大きな水素貯蔵能力を示した。さらにシリコーンレジンを主剤とする前駆体に、金属酸化物系の微粒子を含有させた場合(実施例3、4)は、含有させない場合(実施例1、2)と比較して水素貯蔵能力が向上した。   From the above examples, the hydrogen storage material of the present invention showed a significantly larger hydrogen storage capacity than the commercially available activated carbon. Furthermore, when the metal resin-based fine particles are contained in a precursor mainly composed of a silicone resin (Examples 3 and 4), the hydrogen storage capacity is improved as compared with the case where they are not contained (Examples 1 and 2). did.

本発明では、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体を、230℃以下の温度で液体状態に調整する工程と、200℃〜500℃の温度で熱硬化させる工程により形成することで、表面に微小なポーラス構造を有し、300℃以上の耐熱性を持ちかつ耐水性に優れた水素吸蔵材料を提供することができる。 In the present invention, the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0. .6, x and y are x + 2y = 4 and 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). By forming the precursor into a liquid state at a temperature of 230 ° C. or lower and a step of thermosetting at a temperature of 200 ° C. to 500 ° C., the surface has a fine porous structure, and has a temperature of 300 ° C. or higher. A hydrogen storage material having heat resistance and excellent water resistance can be provided.

これにより常温、常圧から大きく外れない条件で、効率良く水素貯蔵が可能でかつ安全に取り扱うことが可能な水素貯蔵材料を提供することができる。そのため、燃料電池自動車の電源である燃料電池への水素燃料タンクへの適用が高められることになり、その工業的な有益性は極めて大きい。   Accordingly, it is possible to provide a hydrogen storage material that can efficiently store hydrogen and can be safely handled under conditions that do not greatly deviate from normal temperature and normal pressure. Therefore, application to a hydrogen fuel tank for a fuel cell, which is a power source of a fuel cell vehicle, is enhanced, and its industrial benefit is extremely large.

また、常温、常圧から大きく外れない条件で、効率良く水素貯蔵が可能でかつ安全に取り扱うことが可能な水素貯蔵材料を提供することができる。   Further, it is possible to provide a hydrogen storage material that can efficiently store hydrogen and can be handled safely under conditions that do not greatly deviate from normal temperature and normal pressure.

本発明は、水素貯蔵材料として用いることができる。   The present invention can be used as a hydrogen storage material.

本発明に使用できる、水素貯蔵特性評価用容器の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the container for hydrogen storage characteristic evaluation which can be used for this invention. 本実施の形態による水素貯蔵材料の表面におけるミクロ孔に対応する構造を示す図である。It is a figure which shows the structure corresponding to the micropore in the surface of the hydrogen storage material by this Embodiment.

符号の説明Explanation of symbols

1‥耐圧容器、2‥バルブ、3‥圧力計。 1 ... pressure vessel, 2 ... valve, 3 ... pressure gauge.

Claims (14)

一般式RSiO1.5(Rはメチル基またはフェニル基を表す。)で表される3官能型の基本単位と、SiOで表される4官能型の基本単位と、を主体とする構造からなる、表面に微小なポーラス構造を有する水素貯蔵材料。 It has a structure mainly composed of a trifunctional basic unit represented by the general formula RSiO 1.5 (R represents a methyl group or a phenyl group) and a tetrafunctional basic unit represented by SiO 2 . A hydrogen storage material having a microporous structure on the surface. 前記ポーラス構造は、マクロ孔と、該マクロ孔内に形成されるメソ孔と、少なくとも該メソ孔の表面に形成され、水素分子を吸着するミクロ孔と、を有していることを特徴とする請求項1に記載の水素貯蔵材料。   The porous structure includes macropores, mesopores formed in the macropores, and micropores formed at least on the surface of the mesopores and adsorbing hydrogen molecules. The hydrogen storage material according to claim 1. 前記ミクロ孔は、化学式(1)における左側と右側の2つのSi原子の間にシロキサン結合(−O−Si−O−)が挿入され、化学式(2)に示されるテトラシクロシロキサン構造を有しており、該テトラシクロシロキサン構造中に水素分子が取り込まれることを特徴とする請求項2に記載の水素貯蔵材料。
Figure 2009091208
Figure 2009091208
The micropore has a tetracyclosiloxane structure represented by the chemical formula (2) in which a siloxane bond (—O—Si—O—) is inserted between the left and right Si atoms in the chemical formula (1). The hydrogen storage material according to claim 2, wherein hydrogen molecules are taken into the tetracyclosiloxane structure.
Figure 2009091208
Figure 2009091208
前記水素貯蔵材料は、一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることを特徴とする請求項1から3までのいずれか1項に記載の水素貯蔵材料。 The hydrogen storage material has the general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n) ≦ 0.6 number, x and y are x + 2y = 4 and 0.2 ≦ x ≦ 1.5, z is an integer of z ≧ 25) The hydrogen storage material according to any one of claims 1 to 3, wherein the precursor is made to contain metal or metal oxide fine particles. 前記金属または金属酸化物系の微粒子を含有させる割合は、好ましくは0.5〜20%、より好ましくは1〜10%であることを特徴とする請求項4に記載の水素貯蔵材料。   The hydrogen storage material according to claim 4, wherein the proportion of the metal or metal oxide-based fine particles is preferably 0.5 to 20%, more preferably 1 to 10%. 前記金属または金属酸化物系の微粒子が、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなることを特徴とする請求項5に記載の水素貯蔵材料。 Particles of the metal or metal oxide system, Al, Ti, Si, Ag, alumina, hydrogen storage of claim 5, characterized in that it consists of any one or more of the fine particles of titanium oxide and SiO 2 material. 前記金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれることを特徴とする請求項6に記載の水素貯蔵材料。   The hydrogen storage material according to claim 6, wherein the metal or metal oxide-based fine particles include ultra fine particles having an average particle diameter of about 1 nm to about 50 nm. 前記水素貯蔵材料は、0.05mm〜5mm程度、より好ましくは0.1mm〜2mm程度の粒径を有する粉体材料であることを特徴とする請求項1から7までのいずれか1項に記載の水素貯蔵材料。   The hydrogen storage material is a powder material having a particle size of about 0.05 mm to 5 mm, more preferably about 0.1 mm to 2 mm, according to any one of claims 1 to 7. Hydrogen storage material. 一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体を準備する工程と、230℃以下の温度で液体状態に調整する工程と、200℃〜500℃の温度で熱硬化させる工程と、を有することを特徴とする水素貯蔵材料の製造方法。 General formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0.6. And x, y is a number in the range of x + 2y = 4 and 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). And a step of adjusting to a liquid state at a temperature of 230 ° C. or lower, and a step of thermosetting at a temperature of 200 ° C. to 500 ° C. 前記一般式(Si(MePh(ただし、Meはメチル基、Phはフェニル基を表し、m、nはm+n=1でかつ0.1≦n≦0.6の範囲である数、x、yはx+2y=4でかつ0.2≦x≦1.5の範囲である数、zはz≧25の整数)で表されるシリコーンレジンを主剤とする前駆体に、金属または金属酸化物系の微粒子を含有させることを特徴とする請求項9に記載の水素貯蔵材料の製造方法。 The general formula (Si (Me m Ph n ) x O y ) z (where Me represents a methyl group, Ph represents a phenyl group, m and n are m + n = 1 and 0.1 ≦ n ≦ 0.6) The number of ranges, x and y are x + 2y = 4 and the number is in the range of 0.2 ≦ x ≦ 1.5, and z is an integer of z ≧ 25). The method for producing a hydrogen storage material according to claim 9, further comprising metal or metal oxide fine particles. 前記金属または金属酸化物系の微粒子は、Al、Ti、Si、Ag、アルミナ、チタン酸化物およびSiOのいずれか1つ以上の微粒子からなることを特徴とする請求項9又は10に記載の水素貯蔵材料の製造方法。 11. The metal or metal oxide-based fine particle according to claim 9, wherein the metal or metal oxide-based fine particle includes one or more fine particles of Al, Ti, Si, Ag, alumina, titanium oxide, and SiO 2 . A method for producing a hydrogen storage material. 前記金属または金属酸化物系の微粒子には、平均粒径約1nm〜約50nmの超微粒子が含まれることを特徴とする請求項11に記載の水素貯蔵材料の製造方法。   12. The method for producing a hydrogen storage material according to claim 11, wherein the metal or metal oxide fine particles include ultra fine particles having an average particle diameter of about 1 nm to about 50 nm. 少なくとも1回は、前記シリコーンレジンを主剤とする前駆体が硬化する温度以下で真空加熱処理を行う工程を含むことを特徴とする請求項9から12までのいずれか1項に記載の水素貯蔵材料の製造方法。   The hydrogen storage material according to any one of claims 9 to 12, comprising a step of performing a vacuum heat treatment at least once at a temperature not higher than a temperature at which the precursor containing the silicone resin as a main ingredient is cured. Manufacturing method. 前記熱硬化させる工程の後に、機械的な粉砕処理を行う工程を有することを特徴とする請求項9から13までのいずれか1項に記載の水素貯蔵材料の製造方法。   The method for producing a hydrogen storage material according to any one of claims 9 to 13, further comprising a step of performing mechanical pulverization after the step of thermosetting.
JP2007264649A 2007-10-10 2007-10-10 Hydrogen storage material, and method for producing the same Pending JP2009091208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264649A JP2009091208A (en) 2007-10-10 2007-10-10 Hydrogen storage material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264649A JP2009091208A (en) 2007-10-10 2007-10-10 Hydrogen storage material, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009091208A true JP2009091208A (en) 2009-04-30

Family

ID=40663562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264649A Pending JP2009091208A (en) 2007-10-10 2007-10-10 Hydrogen storage material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009091208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012989A1 (en) * 2012-07-19 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispersion, method for coating objects with this dispersion, and use of the dispersion
WO2019211300A1 (en) * 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504394A (en) * 1992-09-28 1996-05-14 アライド−シグナル・インコーポレーテッド Hydrogen storage
JPH10139964A (en) * 1996-09-11 1998-05-26 Nec Corp Flame-retardant resin composition
JP2001198431A (en) * 2000-01-20 2001-07-24 Toray Ind Inc Permeable membrane, method for preparing zeolite membrane, fuel cell system, steam reforming apparatus, electrolytic capacitor and separating method
JP2001321425A (en) * 2000-05-17 2001-11-20 Osaka Prefecture Adsorbent and adsorbing material for volatile organic compound or the like
JP2005177590A (en) * 2003-12-18 2005-07-07 Kurita Water Ind Ltd Treatment method for oxidizing component-containing water
WO2005068058A1 (en) * 2004-01-15 2005-07-28 Sfc Co., Ltd. Hydrogen or helium permeation membrane and storage membrane and process for producing the same
JP2007254538A (en) * 2006-03-22 2007-10-04 Dow Corning Toray Co Ltd Gelling agent, gelly composition and cosmetic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504394A (en) * 1992-09-28 1996-05-14 アライド−シグナル・インコーポレーテッド Hydrogen storage
JPH10139964A (en) * 1996-09-11 1998-05-26 Nec Corp Flame-retardant resin composition
JP2001198431A (en) * 2000-01-20 2001-07-24 Toray Ind Inc Permeable membrane, method for preparing zeolite membrane, fuel cell system, steam reforming apparatus, electrolytic capacitor and separating method
JP2001321425A (en) * 2000-05-17 2001-11-20 Osaka Prefecture Adsorbent and adsorbing material for volatile organic compound or the like
JP2005177590A (en) * 2003-12-18 2005-07-07 Kurita Water Ind Ltd Treatment method for oxidizing component-containing water
WO2005068058A1 (en) * 2004-01-15 2005-07-28 Sfc Co., Ltd. Hydrogen or helium permeation membrane and storage membrane and process for producing the same
JP2007254538A (en) * 2006-03-22 2007-10-04 Dow Corning Toray Co Ltd Gelling agent, gelly composition and cosmetic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012989A1 (en) * 2012-07-19 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispersion, method for coating objects with this dispersion, and use of the dispersion
CN104471002A (en) * 2012-07-19 2015-03-25 弗兰霍菲尔运输应用研究公司 Dispersion, method for coating objects with this dispersion, and use of the dispersion
US10689545B2 (en) 2012-07-19 2020-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispersion, method for coating objects with this dispersion, and use of the dispersion
WO2019211300A1 (en) * 2018-05-02 2019-11-07 Hysilabs, Sas Hydrogen carrier compounds
WO2019211301A1 (en) * 2018-05-02 2019-11-07 Hysilabs, Sas Process for producing and regenerating hydrogen carrier compounds

Similar Documents

Publication Publication Date Title
Wang et al. Thin‐sheet carbon nanomesh with an excellent electrocapacitive performance
JP5176198B2 (en) Method for producing ceramic porous body having macroporous communication holes
Brun et al. Hybrid foams, colloids and beyond: From design to applications
US20200102220A1 (en) Three-dimensional hierarchical porous carbon foams for supercapacitors
Huo et al. Ultrastrong hierarchical porous materials via colloidal assembly and oxidation of metal particles
Jung et al. M13 virus aerogels as a scaffold for functional inorganic materials
WO2015109272A1 (en) Material and method of manufacture of electrodes and porous filters formed of ice-templated graphene-oxide and carbon nanotube composite, and applications thereof
JP2012528787A (en) Carbon-containing matrix containing functional pores
JP2007039289A (en) Spherical porous carbon particle powder and method for producing the same
Zhang et al. Nanocasting in ball mills–combining ultra-hydrophilicity and ordered mesoporosity in carbon materials
Qiao et al. Hydrophobic, Pore‐Tunable Polyimide/Polyvinylidene Fluoride Composite Aerogels for Effective Airborne Particle Filtration
Betke et al. Micro‐Macroporous Composite Materials: SiC Ceramic Foams Functionalized With the Metal Organic Framework HKUST‐1
Luo et al. Functionalized graphene oxide/carboxymethyl chitosan composite aerogels with strong compressive strength for water purification
Li et al. Formation, Structure and Properties of Freeze‐Cast Kaolinite–Silica Nanocomposites
JP2009091208A (en) Hydrogen storage material, and method for producing the same
TW202039359A (en) Method for producing granular boron nitride and granular boron nitride
JP5582731B2 (en) Heat resistant seal
JP5481648B2 (en) Hydrogen storage method, hydrogen storage device, and carbon material for hydrogen storage
JP2006265686A (en) Production method of metal/carbon nanotube-compound sintered compact
JP7374530B2 (en) Porous ceramic sintered body and applications using it
CN110980636A (en) Magnesium hydride hydrogen storage composite material containing porous material and preparation method thereof
Liu et al. Hierarchically porous graphitic carbon monoliths containing nickel nanoparticles as magnetically separable adsorbents for dyes
TWI566819B (en) Making carbon articles from coated particles
JP2009011899A (en) Hydrogen occluding material and its manufacturing method
Xu et al. Self-assembled boron nitride nanosheet-based aerogels as support frameworks for efficient thermal energy storage phase change materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204