JP2009083566A - Method for mounting battery for traveling on hybrid car - Google Patents
Method for mounting battery for traveling on hybrid car Download PDFInfo
- Publication number
- JP2009083566A JP2009083566A JP2007253066A JP2007253066A JP2009083566A JP 2009083566 A JP2009083566 A JP 2009083566A JP 2007253066 A JP2007253066 A JP 2007253066A JP 2007253066 A JP2007253066 A JP 2007253066A JP 2009083566 A JP2009083566 A JP 2009083566A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- traveling
- hybrid car
- voltage
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Secondary Cells (AREA)
- Hybrid Electric Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、ハイブリッドカーに走行用バッテリを搭載する方法に関し、とくに走行用バッテリをメモリ効果で実質容量を減少して搭載する方法に関する。 The present invention relates to a method for mounting a traveling battery in a hybrid car, and more particularly to a method for mounting a traveling battery with a substantial reduction in capacity due to a memory effect.
ハイブリッドカーは、走行用バッテリを充放電しながらモータとエンジンの両方で走行する。モータは、エンジン効率の悪い領域、たとえば加速時や低速走行時に駆動されて燃費を向上する。モータを駆動するための走行用バッテリは、モータに電力を供給して放電され、また、エンジンに駆動される発電機で充電され、また回生制動のエネルギーで発電機を駆動して充電される。この状態で走行用バッテリは、充放電を繰り返しながら所定のSOC(残容量)範囲で充放電される。走行用バッテリに使用されるニッケル水素電池は、過充電と過放電で著しく劣化する性質がある。また、過充電や過放電の領域に近づくにしたがって劣化する程度が大きくなる。このことから、ニッケル水素電池は、完全に放電されてSOCを0%とする状態から、満充電されてSOCを100%とする範囲、すなわちSOCを0〜100%とする範囲に充放電すると寿命が短くなる。ハイブリッドカーの走行用バッテリは、極めて長い寿命が要求されることから、充放電するSOCの範囲を50%を中心とする範囲に制限している。 The hybrid car runs on both the motor and the engine while charging and discharging the battery for running. The motor is driven in a region where engine efficiency is poor, for example, during acceleration or low-speed driving, and improves fuel consumption. The battery for driving the motor is discharged by supplying electric power to the motor, charged by a generator driven by the engine, and charged by driving the generator with regenerative braking energy. In this state, the traveling battery is charged and discharged in a predetermined SOC (remaining capacity) range while repeating charging and discharging. A nickel metal hydride battery used for a battery for traveling has the property of being significantly deteriorated by overcharge and overdischarge. Further, the degree of deterioration increases as the area approaches the overcharge or overdischarge region. From this, a nickel metal hydride battery has a life when charged and discharged from a state where the SOC is completely discharged and the SOC is 0% to a range where the SOC is fully charged and the SOC is 100%, that is, the SOC is 0 to 100%. Becomes shorter. Since a battery for traveling of a hybrid car is required to have a very long life, the SOC range for charging and discharging is limited to a range centering on 50%.
このことを実現するために、走行用バッテリの電池電圧を検出し、電池電圧があらかじめ設定している最高電圧よりも高くなると充電を停止し、また制御している最低電圧よりも低くなると放電を停止するように充放電を制御している。すなわち、ハイブリッドカーは、制御回路でもって走行用バッテリの電池電圧を検出し、この電池電圧を設定電圧範囲に制限しながら充放電させている。充放電を許容する最高電圧と最低電圧の設定電圧範囲が広くなると、充放電によって変化するSOCの範囲を広くして、放電できる容量と充電できる容量が大きくなる。すなわち、モータで走行できるエネルギーが大きくなり、また回生制動などで充電できる容量も大きくなる。ただ、設定電圧範囲を広くして、変化するSOCの範囲を広くすると、走行用バッテリが過充電領域と過放電領域に近づくことになって寿命が短くなる。反対に、走行用バッテリの寿命特性を重要視して、設定電圧範囲を狭くして変化するSOCの範囲を狭くすると、実質的に放電できる容量と充電できる容量が小さくなって、ハイブリッドカーのモータによるメリットが少なくなる。このことから、ハイブリッドカーは走行用バッテリの寿命と、モータのメリットの両方を考慮し、さらに車両のタイプ等で設定電圧範囲を最適値としている。また、走行状態によっても、SOCの範囲を最適値に変更する技術も開発されている。(特許文献1参照)
ハイブリッドカーに搭載される走行用バッテリは、以上のようにSOCを所定の範囲に制限して充放電させることから、ニッケル水素電池に特有のメモリ効果が発生する。メモリ効果は、所定の設定電圧範囲に制限して充放電を繰り返すとき、実質的に充放電できる容量が減少する特性である。図1は、ニッケル水素電池を設定電圧範囲に制限して充放電を繰り返すと、充放電できるSOCが変化する状態を曲線Aに示している。この図は、充電している電池の電圧が1.4Vになると充電を停止して放電に切り換え、放電している電池の電圧が1.1Vになると放電を停止して充電に切り換える状態を繰り返して、SOCが変化する状態を示している。 As described above, the traveling battery mounted on the hybrid car charges and discharges with the SOC limited to a predetermined range, so that a memory effect peculiar to the nickel metal hydride battery occurs. The memory effect is a characteristic that the capacity that can be substantially charged and discharged decreases when charging and discharging are repeated within a predetermined set voltage range. FIG. 1 shows a curve A in which the SOC that can be charged and discharged changes when charging and discharging are repeated with the nickel-metal hydride battery limited to a set voltage range. In this figure, when the voltage of the charging battery reaches 1.4V, the charging is stopped and switched to discharging, and when the discharging battery voltage reaches 1.1V, the discharging is stopped and switched to charging repeatedly. The state in which the SOC changes is shown.
メモリ効果の発生する前のニッケル水素電池は、1.4Vまで充電すると電池のSOCは約85%となり、1.1Vまで放電すると電池のSOCは25%となる。したがって、この電池は、25%〜85%、すなわち満充電容量の60%を実質容量として充放電できる。この電池にメモリ効果が発生すると、1.4Vまで充電してSOCが55%、1.1Vまで放電してSOCは45%となる。したがって、同じ設定電圧範囲で充放電しながら、充放電できるSOCは45%〜55%となって、実質容量は満充電容量の10%に減少する。この図において、電池のSOCは充放電電流を積算して演算できる。 When the nickel hydride battery before the memory effect is generated is charged to 1.4V, the SOC of the battery is about 85%, and when discharged to 1.1V, the SOC of the battery is 25%. Therefore, this battery can be charged and discharged with a substantial capacity of 25% to 85%, that is, 60% of the full charge capacity. When the memory effect occurs in the battery, the battery is charged to 1.4V and discharged to 55%, and discharged to 1.1V and the SOC becomes 45%. Therefore, the SOC that can be charged and discharged while charging and discharging in the same set voltage range is 45% to 55%, and the real capacity is reduced to 10% of the full charge capacity. In this figure, the SOC of the battery can be calculated by integrating the charge / discharge current.
この図に示すように、電池の電圧が設定電圧範囲となるように充放電を繰り返すと、ニッケル水素電池は、メモリ効果によって実質的に充放電できる実質容量が減少する。したがって、ニッケル水素電池からなる走行用バッテリは、車両に搭載された最初にはメモリ効果がなく、充放電できる実質容量を大きく、たとえば、図1においては、SOCを約25%〜85%の範囲で充放電できる。しかしながら、充放電を繰り返すにしたがって、同じ設定電圧範囲で充放電するにもかかわらず、メモリ効果によって充放電できる実質容量、すなわちSOCの範囲が45%〜55%と狭くなる。さらに、図1の破線Bは、充電を停止する最高電圧を一定として、放電を停止する最低電圧を高く設定し、電池電圧が最高電圧まで高くなると充電を停止して、電池電圧が最低電圧まで低下するか、あるいは、SOCの20%分が放電されるという条件のいずれかを満たすと放電を停止する充放電を繰り返してSOCが変化する特性を示している。さらにまた、図1の一点鎖線Cは、放電を停止する最低電圧を一定として、充電を停止する最高電圧を低く設定し、電池電圧が最定電圧まで低くなると放電を停止して、電池電圧が最高電圧まで高くなるか、あるいは、SOCの20%分が充電されるという条件のいずれかを満たすと充電を停止する充放電を繰り返してSOCが変化する特性を示している。メモリ効果で破線Bの特性となったニッケル水素電池は、SOCが50%から大きい方向にずれた状態となる。したがって、この走行用バッテリは放電容量を大きくできる。すなわち、モータに電力を供給して走行できるエネルギーを大きくできる。ただ、充電できる容量は少なくなるので、たとえば長い坂道を下って回生制動が続く状態で充電できる容量は少なくなる。この状態は、モータで走行するのに有利な状態となる。反対に、メモリ効果で一点鎖線Cの特性となったニッケル水素電池は、SOCが50%から小さい方向にずれた状態となる。したがって、この走行用バッテリは充電できる容量を大きくできるが、放電できる容量が小さくなる。したがって、モータに電力を供給して走行できるエネルギーが小さくなるが、長い坂道を下って回生制動が続く状態で充電できる容量は大きくなる。すなわち、回生制動に有利な状態となる。 As shown in this figure, when charging / discharging is repeated so that the voltage of the battery falls within the set voltage range, the nickel-metal hydride battery has a substantial capacity that can be substantially charged / discharged due to the memory effect. Therefore, the battery for running made of nickel metal hydride battery does not have a memory effect when it is first mounted on the vehicle, and has a large substantial capacity that can be charged and discharged. For example, in FIG. 1, the SOC is in the range of about 25% to 85%. Can be charged and discharged. However, as charging / discharging is repeated, the range of the substantial capacity that can be charged / discharged by the memory effect, that is, the SOC, becomes 45% to 55% in spite of charging / discharging in the same set voltage range. Furthermore, the broken line B in FIG. 1 sets the maximum voltage for stopping charging constant, sets the minimum voltage for stopping discharging high, stops charging when the battery voltage increases to the maximum voltage, and the battery voltage reaches the minimum voltage. It shows the characteristic that the SOC changes by repeatedly charging / discharging to stop the discharge when either of the conditions that it is reduced or 20% of the SOC is discharged is satisfied. Furthermore, the alternate long and short dash line C in FIG. 1 sets the minimum voltage for stopping discharge constant, sets the maximum voltage for stopping charging low, stops the discharge when the battery voltage decreases to the maximum voltage, and the battery voltage It shows a characteristic in which the SOC changes by repeating charging / discharging to stop charging when either the maximum voltage is reached or 20% of the SOC is charged. The nickel metal hydride battery having the characteristics indicated by the broken line B due to the memory effect is in a state where the SOC is shifted from 50% in a larger direction. Therefore, this traveling battery can increase the discharge capacity. That is, the energy that can be driven by supplying electric power to the motor can be increased. However, since the capacity that can be charged is reduced, for example, the capacity that can be charged in a state where regenerative braking continues down a long slope is reduced. This state is advantageous for traveling with a motor. On the other hand, the nickel-metal hydride battery that has the characteristics of the alternate long and short dash line C due to the memory effect is in a state where the SOC is shifted from 50% in a smaller direction. Therefore, the battery for traveling can have a large chargeable capacity, but a small capacity can be discharged. Therefore, the energy that can be driven by supplying electric power to the motor is reduced, but the capacity that can be charged in a state where regenerative braking continues down a long slope is increased. That is, it becomes a state advantageous for regenerative braking.
以上のように、ニッケル水素電池は、メモリ効果による有利な特性が変化する。したがって、メモリ効果で変化する特性が、ハイブリッドカーに搭載された状態で、制御回路が充放電を制御する特性に必ずしも最適な状態とはならないことがある。たとえば、メモリ効果で図1の破線Bとなった走行用バッテリは、回生制動を長くして充電する容量を大きくするように制御するハイブリッドカーにあっては、最適な使用状態とならず、充電によって走行用バッテリの劣化が大きくなる。このことは、長寿命が要求される走行用バッテリの寿命を短くする。反対に、メモリ効果で一点鎖線Cとなった走行用バッテリが、モータに電力を供給する容量を大きく制御するハイブリッドカーに搭載されると寿命が短くなる。 As described above, advantageous characteristics of the nickel metal hydride battery change due to the memory effect. Therefore, the characteristics that change due to the memory effect may not necessarily be optimal for the characteristics in which the control circuit controls charge / discharge in a state where the characteristics are mounted on the hybrid car. For example, a battery for traveling that has become a broken line B in FIG. 1 due to the memory effect is not optimally used in a hybrid car that is controlled to increase the capacity to be charged by extending regenerative braking. As a result, deterioration of the battery for traveling increases. This shortens the life of a traveling battery that requires a long life. On the other hand, when the battery for traveling that has become the one-dot chain line C due to the memory effect is mounted on a hybrid car that largely controls the capacity for supplying electric power to the motor, the life is shortened.
本発明の目的は、メモリ効果のある走行用バッテリの寿命を長くしながら、走行用バッテリをハイブリッドカーの制御に最適な状態として搭載できるハイブリッドカーに走行用バッテリを搭載する方法を提供することにある。 An object of the present invention is to provide a method for mounting a traveling battery in a hybrid car that can be mounted in an optimal state for controlling the hybrid car while extending the life of the traveling battery having a memory effect. is there.
本発明のハイブリッドカーに走行用バッテリを搭載する方法は、車両を走行させる走行用のモータ3と、このモータ3に電力を供給するニッケル水素電池2からなる走行用バッテリ1と、この走行用バッテリ1を充電する発電機4と、走行用バッテリ1の充放電を電池の電圧を検出してコントロールする制御回路5とを備えるハイブリッドカーに、走行用バッテリ1を搭載する方法である。この搭載方法は、ハイブリッドカーに搭載する走行用バッテリ1を、メモリ効果によって実質容量を定格容量の70%以下に減少させた状態でハイブリッドカーに搭載する。
ただし、本明細書において電池の「実質容量」とは、走行用バッテリを1.4V/セルから1.1V/セルまで放電して実質的に放電できる容量を意味するものとする。
A method for mounting a traveling battery in a hybrid car according to the present invention includes a traveling
However, in this specification, the “substantial capacity” of the battery means a capacity that can substantially discharge the battery for traveling from 1.4 V / cell to 1.1 V / cell.
本発明の請求項2のハイブリッドカーに走行用バッテリを搭載する方法は、走行用バッテリ1を、実質容量を定格容量の50%以下に減少してハイブリッドカーに搭載する。 According to the method of mounting the traveling battery in the hybrid car of the second aspect of the present invention, the traveling battery 1 is mounted on the hybrid car with a substantial capacity reduced to 50% or less of the rated capacity.
本発明の請求項3のハイブリッドカーに走行用バッテリを搭載する方法は、ハイブリッドカーに搭載する走行用バッテリ1を、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%となるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載する。 According to the third aspect of the present invention, the battery for traveling is mounted on the hybrid car in a state in which the battery for charging 1 mounted on the hybrid car is charged / discharged within the set voltage range of the highest voltage or the lowest voltage. The actual capacity is reduced by the memory effect so that the center is 50%, and it is mounted on the hybrid car.
本発明の請求項4のハイブリッドカーに走行用バッテリを搭載する方法は、ハイブリッドカーに搭載する走行用バッテリ1を、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%よりも高く70%よりも低くなるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載する。 According to a fourth aspect of the present invention, a method for mounting a traveling battery on a hybrid car is performed by charging and discharging the traveling battery 1 mounted on the hybrid car in a state where the voltage is charged / discharged within a set voltage range of a maximum voltage or a minimum voltage. The actual capacity is reduced by the memory effect so that the center is higher than 50% and lower than 70%, and is mounted on the hybrid car.
本発明の請求項5のハイブリッドカーに走行用バッテリを搭載する方法は、ハイブリッドカーに搭載する走行用バッテリ1を、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%よりも低く40%よりも高くなるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載する。 According to the fifth aspect of the present invention, there is provided a method for mounting a traveling battery on a hybrid car, in a state in which the traveling battery 1 mounted on the hybrid car is charged and discharged within a set voltage range of a maximum voltage or a minimum voltage. The actual capacity is reduced by the memory effect so that the center is lower than 50% and higher than 40%, and is mounted on the hybrid car.
本発明の請求項6のハイブリッドカーに走行用バッテリを搭載する方法は、制御回路5が、電池の充電を制限又は停止する最高電圧を記憶すると共に、この最高電圧を経時的に低下させて、走行用バッテリ1の充電電流をコントロールする。
In the method of mounting the running battery in the hybrid car according to
本発明の請求項7のハイブリッドカーに走行用バッテリを搭載する方法は、制御回路5が、電池の放電を制限又は停止する最低電圧を記憶すると共に、この最低電圧を経時的に上昇させて、走行用バッテリ1の放電電流をコントロールする。
In the method for mounting a running battery in a hybrid car according to claim 7 of the present invention, the
本発明は、メモリ効果のある走行用バッテリの寿命を長くしながら、走行用バッテリをハイブリッドカーの制御に最適な状態として搭載できる特徴がある。それは、走行用バッテリをハイブリッドカーに搭載する状態で最適なメモリ効果にコントロールして搭載するからである。たとえば、回生制動を大きくするように制御するハイブリッドカーやSOCの小さい領域で充放電して寿命の長い電池にあっては、メモリ効果によって設定電圧範囲で充放電して変化するSOCの範囲を50%よりも小さい領域とし、反対に、モータに供給する電力量を大きくするように制御し、あるいはSOCの大きい領域で寿命の長い電池にあっては、メモリ効果によって、設定電圧範囲で充放電して変化するSOCの範囲を50%よりも大きい領域として、電池の寿命を長く、ハイブリッドカーに最適な状態で充放電できる。 The present invention is characterized in that the traveling battery can be mounted in an optimum state for controlling the hybrid car while extending the life of the traveling battery having a memory effect. This is because the battery for traveling is controlled and mounted to the optimum memory effect in a state where it is mounted on the hybrid car. For example, in a hybrid car that is controlled to increase regenerative braking or a battery that has a long life by charging and discharging in a small SOC region, the SOC range that changes by charging and discharging in the set voltage range due to the memory effect is 50. If the battery is controlled to increase the amount of power supplied to the motor, or conversely has a long SOC and a long life, it is charged and discharged within the set voltage range due to the memory effect. Thus, the range of SOC that changes in this way is set to an area larger than 50%, so that the life of the battery can be extended, and charging and discharging can be performed in an optimum state for a hybrid car.
本発明の請求項2の方法は、走行用バッテリの実質容量を定格容量の50%以下に減少してハイブリッドカーに搭載する。この方法によると、ハイブリッドカーに搭載される状態で、走行用バッテリは、メモリ効果によって、設定電圧範囲において充放電されるSOCの範囲が特定され、ハイブリッドカーの制御に適した状態、あるいはニッケル水素電池の特性に適した状態となって、電池の寿命を長くできる。
According to the method of
また、本発明の請求項3の方法は、ハイブリッドカーに搭載する走行用バッテリを、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%となるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載する。この方法は、設定電圧範囲に充放電してSOCの中心を50%とするので、バランスよく充放電し、また50%の近傍で長い寿命に最適に使用できる。
Further, according to the method of
また、本発明の請求項4の方法は、ハイブリッドカーに搭載する走行用バッテリを、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%よりも高く70%よりも低くなるようにメモリ効果で実質容量を減少している。この方法によると、モータに供給する電力量を大きくしながら電池の寿命を長くできる。 According to a fourth aspect of the present invention, the center of the SOC is higher than 50% and 70 in the state where the battery for driving mounted in the hybrid car is charged / discharged within the set voltage range of the highest voltage to the lowest voltage. The real capacity is reduced by the memory effect so as to be lower than%. According to this method, the battery life can be extended while increasing the amount of power supplied to the motor.
さらに、本発明の請求項5の方法は、ハイブリッドカーに搭載する走行用バッテリを、電圧が最高電圧ないし最低電圧の設定電圧範囲で充放電する状態において、SOCの中心が50%よりも低く40%よりも高くなるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載する。この方法によると、回生制動による走行用バッテリの充電容量を大きくしながら、走行用バッテリの寿命を長くできる。
Further, according to the method of
さらに、本発明の請求項6の方法は、制御回路が、電池の充電を制限又は停止する最高電圧を記憶すると共に、この最高電圧を経時的に低下させて、走行用バッテリの充電電流をコントロールする。この方法によると、電池を充放電するSOCの範囲を次第に狭く制限するので、電池の寿命をさらに長くできる。
Furthermore, according to the method of
また、本発明の請求項7の方法は、制御回路が、電池の放電を制限又は停止する最低電圧を記憶すると共に、この最低電圧を経時的に上昇させて、走行用バッテリの放電電流をコントロールする。この方法によっても、電池の寿命をさらに長くできる。 According to the method of claim 7 of the present invention, the control circuit stores the minimum voltage for limiting or stopping the discharge of the battery and increases the minimum voltage over time to control the discharge current of the traveling battery. To do. This method can further extend the battery life.
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するためのハイブリッドカーに走行用バッテリを搭載する方法を例示するものであって、本発明はハイブリッドカーに走行用バッテリを搭載する方法を以下の方法に特定しない。 Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a method of mounting a traveling battery on a hybrid car for embodying the technical idea of the present invention, and the present invention mounts the traveling battery on the hybrid car. The method is not specified as the following method.
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。 Further, in this specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.
図2は、走行用バッテリ1を搭載するハイブリッドカーのブロック図を示す。この図のハイブリッドカーは、車両を走行させる走行用のモータ3と、このモータ3に電力を供給するニッケル水素電池2からなる走行用バッテリ1と、この走行用バッテリ1を充電する発電機4と、走行用バッテリ1の充放電を電池の電圧を検出してコントロールする制御回路5とを備える。走行用バッテリ1は、インバータ6を介してモータ3と発電機4に接続される。ハイブリッドカーは、エンジン(図示せず)とモータ3で走行する。モータ3は、車両を加速するとき、あるいは低速走行のときに駆動されて、車両を走行させる。モータ3は、走行用バッテリ1から電力が供給される。モータ3を駆動すると、走行用バッテリ1はSOCが減少して電圧が低下する。制御回路5は、走行用バッテリ1の電池電圧を検出して、電圧でモータ3に供給する電力を制御する。また、走行用バッテリ1のSOCが小さくなって電圧が低下すると、発電機4が駆動される。発電機4はエンジンで駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、走行用バッテリ1を充電する。充電される走行用バッテリ1は、電圧が上昇してSOCが大きくなる。制御回路5は、電池電圧を検出して充電電流も制御する。制御回路5は、走行状態からエンジンとモータ3の出力バランスをコントロールし、また、走行用バッテリ1の電圧でモータ3の充放電を制御する。
FIG. 2 is a block diagram of a hybrid car equipped with the traveling battery 1. The hybrid car in this figure includes a traveling
この制御回路5は、走行用バッテリ1のSOCが設定範囲となるように充放電を制御する。また制御回路5は、走行用バッテリ1の電池電圧を検出して、充放電の電流をコントロールする。走行用バッテリ1の電池電圧を検出する制御回路5は、走行用バッテリ1のトータル電圧を検出し、あるいは走行用バッテリ1を構成する各々のニッケル水素電池2の電圧を検出し、あるいは又複数のニッケル水素電池を直列に接続している電池モジュールの電圧を検出して、走行用バッテリ1の充放電を制御する。
The
ハイブリッドカーの走行用バッテリは、たとえば10年という極めて長い寿命が要求される。多数の電池を有することから製造コストが高く、交換の経費が極めて高くなるからである。寿命を長くするために、走行用バッテリは、充放電によって変化するSOCの範囲、すなわち実質的に充放電する実質容量を狭い設定範囲に制御している。ところが、この使用条件は、ニッケル水素電池のメモリ効果を助長する使用条件となる。メモリ効果は、同じ設定電圧範囲で充放電しながら、実質的に充放電できる実質容量を小さくする。ニッケル水素電池は、完全に放電された状態と満充電された状態、すなわち、SOCが0%〜100%に変化するように充放電して、メモリ効果を防止できる。ただ、この状態で使用すると走行用バッテリの寿命が短くなる。したがって、ハイブリッドカーは、走行用バッテリの寿命を長くするために、充放電させるSOCの範囲を狭く制限している。このため、車両に搭載される走行用バッテリは、電池をニッケル水素電池とするかぎり、メモリ効果による実質容量の低下を阻止できない。 A battery for running a hybrid car is required to have a very long life of, for example, 10 years. This is because the manufacturing cost is high because of having a large number of batteries, and the replacement cost becomes extremely high. In order to extend the life, the traveling battery controls the SOC range that changes due to charging / discharging, that is, the substantial capacity for substantial charging / discharging to a narrow setting range. However, this use condition is a use condition that promotes the memory effect of the nickel metal hydride battery. The memory effect reduces the substantial capacity that can be substantially charged and discharged while charging and discharging in the same set voltage range. The nickel-metal hydride battery can be charged and discharged so that the SOC is fully charged, that is, fully charged, that is, the SOC changes from 0% to 100%, thereby preventing the memory effect. However, when used in this state, the life of the traveling battery is shortened. Therefore, the hybrid car restricts the range of SOC to be charged and discharged narrowly in order to extend the life of the traveling battery. For this reason, as long as the battery for driving | running | working mounted in a vehicle is a nickel metal hydride battery, the fall of the real capacity by a memory effect cannot be prevented.
メモリ効果によって、走行用バッテリは、同じ設定電圧範囲で充放電しながら、実質的に充放電できる実質容量が小さくなる。したがって、従来のハイブリッドカーは、新車の状態から走行用バッテリの実質容量が次第に小さくなる。さらに、メモリ効果で実質容量が小さくなる走行用バッテリは、メモリ効果が発生するまでに充放電させる条件で特性が変化する。すなわち、充放電を許容する設定電圧範囲を同じにしても、充放電できるSOCの範囲が変化する。SOCの大きな領域、いいかえると満充電に近い領域で充放電が繰り返された走行用バッテリは、設定電圧範囲を同じにして変化するSOCの範囲が大きくなる。反対に、SOCの小さい領域で充放電すると、設定電圧範囲を同じにして変化するSOCの範囲が小さくなる。 Due to the memory effect, the traveling battery has a substantial capacity that can be substantially charged and discharged while charging and discharging in the same set voltage range. Therefore, in the conventional hybrid car, the actual capacity of the traveling battery gradually decreases from the state of the new car. Further, the characteristics of the battery for traveling, whose actual capacity is reduced by the memory effect, change under the condition of charging / discharging before the memory effect occurs. That is, even if the set voltage range in which charging / discharging is allowed to be the same, the SOC range that can be charged / discharged changes. A traveling battery in which charging and discharging are repeated in a region where the SOC is large, in other words, a region close to full charge, has a large SOC range that changes with the same set voltage range. On the other hand, if the charge / discharge is performed in a region where the SOC is small, the range of the SOC that changes with the same set voltage range is reduced.
図1は、メモリ効果でSOCが変化する特性を曲線A、破線B、一点鎖線Cで示している。曲線Aは、最低電圧1.1V〜最高電圧1.4Vの設定電圧範囲で充放電を繰り返してメモリ効果の発生したニッケル水素電池の特性を示している。また、破線Bは、1.4Vの最高電圧を一定にして最低電圧を1.1Vより高くし、電池電圧が最高電圧まで高くなると充電を停止して、電池電圧が最低電圧まで低下するか、あるいは、SOCの20%分が放電されるという条件のいずれかを満たすと放電を停止する充放電を繰り返してメモリ効果の発生したニッケル水素電池の特性を示している。さらにまた、一点鎖線Cは、1.1Vの最低電圧を一定にして最高電圧を1.4Vより高くし、電池電圧が最低電圧まで低くなると放電を停止して、電池電圧が最高電圧まで高くなるか、あるいは、SOCの20%分が充電されるという条件のいずれかを満たすと充電を停止する充放電を繰り返してメモリ効果の発生したニッケル水素電池の特性を示している。この図に示すように、走行用バッテリは、充放電の条件を変更することで、メモリ効果で実質容量が減少した状態において、同じ設定電圧範囲で充放電して、SOCが変化する範囲を変化できる。 FIG. 1 shows a characteristic that the SOC changes due to the memory effect by a curve A, a broken line B, and a one-dot chain line C. Curve A shows the characteristics of a nickel-metal hydride battery in which the memory effect is generated by repeatedly charging and discharging in the set voltage range of the lowest voltage 1.1V to the highest voltage 1.4V. In addition, the broken line B indicates that the maximum voltage of 1.4 V is constant and the minimum voltage is higher than 1.1 V, and charging is stopped when the battery voltage increases to the maximum voltage, and the battery voltage decreases to the minimum voltage, Alternatively, the characteristics of the nickel-metal hydride battery in which the memory effect is generated by repeating charge / discharge that stops discharge when 20% of the SOC is discharged are satisfied. Furthermore, the alternate long and short dash line C makes the minimum voltage of 1.1V constant and the maximum voltage higher than 1.4V. When the battery voltage decreases to the minimum voltage, the discharge stops and the battery voltage increases to the maximum voltage. Alternatively, the characteristics of the nickel-metal hydride battery in which the memory effect is generated by repeating charging / discharging for stopping charging when either of the conditions that 20% of SOC is charged are satisfied. As shown in this figure, the battery for traveling is charged / discharged in the same set voltage range in a state where the real capacity is reduced due to the memory effect by changing the charging / discharging conditions, thereby changing the range in which the SOC changes. it can.
メモリ効果で、破線Bで示す特性となった走行用バッテリは、同じ設定電圧範囲で充放電して、SOCの中心を50%よりも高い領域に設定できる。この走行用バッテリは、SOCを0%とする完全放電するまでの放電容量を大きくできることから、モータに供給できる電力量を大きくするように制御するハイブリッドカーに適している。ハイブリッドカーは、アクセルを踏んでエンジンとモータで車両を加速するとき、走行用バッテリからモータに電力を供給して、走行用バッテリを放電する。このとき、モータの出力を長く続ける制御回路は、走行用バッテリの放電電力量が大きくなる。このため、この状態で走行用バッテリを制御するハイブリッドカーは、放電できる電力量が大きくなる。したがって、このハイブリッドカーに搭載される走行用バッテリは、破線Bで示すように、メモリ効果によって、設定電圧範囲で充放電してSOCの中心が50%よりも大きくなるように充放電し、メモリ効果で実質容量の減少した状態としてハイブリッドカーに搭載する。このハイブリッドカーに搭載される走行用バッテリは、電圧を1.4V/セルないし1.1V/セルの設定電圧範囲で充放電する状態において、SOCの中心を50%よりも高く70%よりも低くなるようにメモリ効果で実質容量を減少して、モータの出力を大きくしながら、走行用バッテリの寿命を長くできる。 Due to the memory effect, the traveling battery having the characteristics indicated by the broken line B can be charged / discharged in the same set voltage range, and the center of the SOC can be set to a region higher than 50%. This battery for traveling is suitable for a hybrid car that is controlled so as to increase the amount of electric power that can be supplied to the motor because the discharge capacity until complete discharge with SOC of 0% can be increased. When a hybrid car steps on an accelerator and accelerates the vehicle with an engine and a motor, the hybrid car supplies power from the running battery to the motor and discharges the running battery. At this time, in the control circuit that keeps the output of the motor long, the discharge power amount of the traveling battery becomes large. For this reason, the hybrid car that controls the traveling battery in this state increases the amount of electric power that can be discharged. Therefore, as shown by the broken line B, the battery for driving mounted in this hybrid car is charged / discharged so that the center of the SOC becomes larger than 50% by charging / discharging in the set voltage range due to the memory effect, Installed in a hybrid car as a result of a substantial reduction in capacity. The battery for driving mounted on this hybrid car has a SOC center higher than 50% and lower than 70% in a state where the voltage is charged / discharged within a set voltage range of 1.4 V / cell to 1.1 V / cell. Thus, the life of the traveling battery can be extended while increasing the output of the motor by reducing the substantial capacity by the memory effect.
したがって、モータに供給する電力量を大きくするように制御するハイブリッドカーにあっては、走行用バッテリを、設定電圧範囲で充放電させる状態でSOCの中心を約50%以上であって70%よりも低くし、かつメモリ効果によって実質容量を定格容量の70%以下、好ましくは50%以下、さらに好ましくは30%以下に減少させた後、ハイブリッドカーに搭載する。 Therefore, in a hybrid car that controls to increase the amount of electric power supplied to the motor, the center of the SOC is about 50% or more and more than 70% in a state where the traveling battery is charged / discharged in the set voltage range. The actual capacity is reduced to 70% or less, preferably 50% or less, more preferably 30% or less of the rated capacity by the memory effect, and then mounted on the hybrid car.
走行用バッテリは、メモリ効果によって実質容量を小さくしてハイブリッドカーに搭載するが、実質容量を小さくするほど、ハイブリッドカーに最適な状態で搭載できる。ただ、実質容量を小さくするほど、走行用バッテリを充放電する回数が多くなる。したがって、走行用バッテリは、ハイブリッドカーに搭載するまでの充放電の回数と、要求されるメモリ効果を考慮して、実質容量を最適値としてハイブリッドカーに搭載する。 The battery for traveling is mounted on the hybrid car with a substantial capacity reduced by the memory effect, but the battery can be mounted in an optimal state on the hybrid car as the substantial capacity is decreased. However, the smaller the actual capacity is, the more times the traveling battery is charged and discharged. Therefore, in consideration of the number of times of charging / discharging until the battery is mounted on the hybrid car and the required memory effect, the traveling battery is mounted on the hybrid car with the actual capacity as an optimum value.
また、メモリ効果で一点鎖線Cで示す特性となった走行用バッテリは、同じ設定電圧範囲で充放電して、SOCの中心を50%よりも低い領域に設定できる。この走行用バッテリは、SOCを100%とする満充電までの充電容量を大きくできることから、回生制動などにおいて、走行用バッテリの充電容量を大きく、すなわち長い回生制動のエネルギーを効率よく走行用バッテリに蓄えるように制御するハイブリッドカーに適している。ハイブリッドカーは、ブレーキを踏んで回生制動するとき、発電機で走行用バッテリを充電する。このとき、ブレーキを長く踏み続けて、回生制動のエネルギーで走行用バッテリの充電容量を大きくするように制御する制御回路は、走行用バッテリの充電電力量が大きくなる。このため、この状態で走行用バッテリを制御するハイブリッドカーは、充電できる電力量が大きくなる。したがって、このハイブリッドカーに搭載される走行用バッテリは、一点鎖線Cで示すように、メモリ効果によって、設定電圧範囲で充放電してSOCの中心が50%よりも小さくなるように充放電し、メモリ効果で実質容量の減少した状態としてハイブリッドカーに搭載する。 Moreover, the battery for driving | running | working which became the characteristic shown with the dashed-dotted line C by the memory effect can be charged / discharged in the same setting voltage range, and can set the center of SOC to the area | region lower than 50%. Since this traveling battery can increase the charging capacity up to full charge with an SOC of 100%, the charging capacity of the traveling battery is increased in regenerative braking or the like, that is, the energy of long regenerative braking is efficiently supplied to the traveling battery. Suitable for hybrid cars that are controlled to store. When a hybrid car steps on a brake and performs regenerative braking, a battery for traveling is charged by a generator. At this time, in the control circuit that continues to step on the brake and increases the charging capacity of the traveling battery with the energy of regenerative braking, the charging power amount of the traveling battery increases. For this reason, the amount of electric power that can be charged by the hybrid car that controls the battery for traveling in this state increases. Therefore, as shown by the alternate long and short dash line C, the battery for traveling mounted on this hybrid car is charged / discharged by the memory effect so that the center of the SOC becomes less than 50% by charging / discharging in the set voltage range, Installed in a hybrid car as the actual capacity is reduced due to the memory effect.
この走行用バッテリは、電圧が1.4V/セルないし1.1V/セルの設定電圧範囲で充放電する状態において、SOCの中心が50%よりも低く40%よりも高くなるようにメモリ効果で実質容量を減少してハイブリッドカーに搭載して、回生制動による走行用バッテリの充電容量を大きくしながら、走行用バッテリの寿命を長くできる。 This battery for traveling has a memory effect such that the center of the SOC is lower than 50% and higher than 40% in a state where the voltage is charged / discharged in the set voltage range of 1.4 V / cell to 1.1 V / cell. It is possible to extend the life of the traveling battery while increasing the charging capacity of the traveling battery by regenerative braking by reducing the substantial capacity and mounting the hybrid car.
したがって、回生制動の充電容量を大きくするように制御するハイブリッドカーにあっては、走行用バッテリを、設定電圧範囲で充放電させる状態でSOCの中心を約50%よりも低く40%よりも高くし、かつメモリ効果によって実質容量を定格容量の70%以下、好ましくは50%以下、さらに好ましくは30%以下に減少させた後、ハイブリッドカーに搭載する。 Therefore, in a hybrid car that is controlled so as to increase the charging capacity of regenerative braking, the center of the SOC is lower than about 50% and higher than 40% in a state where the traveling battery is charged and discharged within the set voltage range. In addition, the actual capacity is reduced to 70% or less, preferably 50% or less, more preferably 30% or less of the rated capacity by the memory effect, and then mounted on the hybrid car.
さらにまた、メモリ効果で曲線Aで示す特性となった走行用バッテリは、同じ設定電圧範囲で充放電して、SOCの中心を50%に設定できる。この走行用バッテリは、SOCを0%とするまで完全に放電する放電容量と、SOCを100%とする満充電までの充電容量とをバランスよくできることから、モータに供給する電力量と、回生制動によって走行用バッテリを充電する容量とをバランスよく制御するハイブリッドカーに適している。したがって、モータに供給する電力量と回生制動の充電容量とをバランスよく制御するハイブリッドカーにあっては、走行用バッテリを、設定電圧範囲で充放電させる状態でSOCの中心を約50%とし、かつメモリ効果によって実質容量を定格容量の70%以下、好ましくは50%以下、さらに好ましくは30%以下に減少させた後、ハイブリッドカーに搭載する。 Furthermore, the traveling battery having the characteristic indicated by the curve A due to the memory effect can be charged and discharged within the same set voltage range, and the center of the SOC can be set to 50%. Since this battery for traveling can balance the discharge capacity for completely discharging until the SOC becomes 0% and the charging capacity until the SOC is 100%, the amount of electric power supplied to the motor and regenerative braking This is suitable for a hybrid car that controls the capacity for charging the battery for traveling in a well-balanced manner. Therefore, in a hybrid car that controls the amount of power supplied to the motor and the regenerative braking charge capacity in a well-balanced manner, the center of the SOC is set to about 50% in a state where the battery is charged / discharged within the set voltage range, In addition, the actual capacity is reduced to 70% or less, preferably 50% or less, more preferably 30% or less of the rated capacity by the memory effect, and then mounted on the hybrid car.
1…走行用バッテリ
2…ニッケル水素電池
3…モータ
4…発電機
5…制御回路
6…インバータ
DESCRIPTION OF SYMBOLS 1 ... Battery for driving | running | working 2 ... Nickel
Claims (7)
ハイブリッドカーに搭載される走行用バッテリ(1)が、メモリ効果によって実質容量を定格容量の70%以下に減少させた状態でハイブリッドカーに搭載されることを特徴とするハイブリッドカーに走行用バッテリを搭載する方法。 A traveling motor (3) for traveling the vehicle, a traveling battery (1) composed of a nickel metal hydride battery (2) for supplying electric power to the motor (3), and power generation for charging the traveling battery (1) A battery for traveling in a hybrid car comprising a machine (4) and a control circuit (5) for detecting and controlling the voltage of the battery for charging and discharging of the battery for traveling (1),
The battery for traveling (1) mounted on the hybrid car is mounted on the hybrid car in a state where the actual capacity is reduced to 70% or less of the rated capacity due to the memory effect. How to install.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007253066A JP5078525B2 (en) | 2007-09-28 | 2007-09-28 | How to install a running battery in a hybrid car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007253066A JP5078525B2 (en) | 2007-09-28 | 2007-09-28 | How to install a running battery in a hybrid car |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009083566A true JP2009083566A (en) | 2009-04-23 |
JP5078525B2 JP5078525B2 (en) | 2012-11-21 |
Family
ID=40657580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007253066A Expired - Fee Related JP5078525B2 (en) | 2007-09-28 | 2007-09-28 | How to install a running battery in a hybrid car |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5078525B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101382306B1 (en) * | 2010-12-02 | 2014-05-07 | 현대자동차주식회사 | Systen for battery management of hybrid vehicle and method thereof |
US9562949B2 (en) | 2014-03-12 | 2017-02-07 | Toyota Jidosha Kabushiki Kaisha | Battery monitoring device |
CN114094204A (en) * | 2020-04-27 | 2022-02-25 | 朴力美电动车辆活力株式会社 | Method for manufacturing secondary battery |
WO2022220507A1 (en) * | 2021-04-12 | 2022-10-20 | 이흥우 | Method for replacing battery pack of hybrid electric vehicle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003047108A (en) * | 2001-08-03 | 2003-02-14 | Toyota Motor Corp | Battery control device |
-
2007
- 2007-09-28 JP JP2007253066A patent/JP5078525B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003047108A (en) * | 2001-08-03 | 2003-02-14 | Toyota Motor Corp | Battery control device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101382306B1 (en) * | 2010-12-02 | 2014-05-07 | 현대자동차주식회사 | Systen for battery management of hybrid vehicle and method thereof |
US9562949B2 (en) | 2014-03-12 | 2017-02-07 | Toyota Jidosha Kabushiki Kaisha | Battery monitoring device |
CN114094204A (en) * | 2020-04-27 | 2022-02-25 | 朴力美电动车辆活力株式会社 | Method for manufacturing secondary battery |
CN114094204B (en) * | 2020-04-27 | 2024-05-28 | 朴力美电动车辆活力株式会社 | Method for manufacturing secondary battery |
WO2022220507A1 (en) * | 2021-04-12 | 2022-10-20 | 이흥우 | Method for replacing battery pack of hybrid electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP5078525B2 (en) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3706565B2 (en) | Power supply for hybrid cars | |
CN105936248B (en) | Power supply system | |
JP5608747B2 (en) | Storage capacity management device | |
US8589009B2 (en) | Method for controlling the state of charge of an electrical energy store | |
JP6119725B2 (en) | Charger | |
JP2011230618A (en) | Power supply device | |
US10377261B2 (en) | Method and device for charging an electric energy storage system in a vehicle | |
JP2015133858A (en) | Vehicle power supply system | |
CN105191057A (en) | Charging system for vehicle and vehicle including same | |
JP5078525B2 (en) | How to install a running battery in a hybrid car | |
JP6112023B2 (en) | Vehicle power supply system | |
JP2024028397A (en) | Vehicle travel system and vehicle | |
JP6131533B2 (en) | Vehicle power supply control method and apparatus | |
JP3880924B2 (en) | Power supply control device and control method thereof | |
JP2013252016A (en) | Power supply control method and device for vehicle | |
KR100460893B1 (en) | The battery management method of hybrid electric vehicle and method thereof | |
JP5783051B2 (en) | Secondary battery and secondary battery remaining capacity calculation device | |
JP6295942B2 (en) | Charger | |
JP2017220376A (en) | Fuel cell system | |
JP2010133333A (en) | Control device for cargo handling machine and control method for cargo handling machine | |
JP2013216257A (en) | Charge/discharge control device of electric storage means | |
JP6034734B2 (en) | Power system | |
JP4615771B2 (en) | Assembled battery | |
JP2010246230A (en) | Power supply device for vehicle | |
US20240123840A1 (en) | Electric power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120828 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |