Nothing Special   »   [go: up one dir, main page]

JP2009072712A - Method for producing adsorbent for removing microingredient in hydrocarbon oil and adsorbent - Google Patents

Method for producing adsorbent for removing microingredient in hydrocarbon oil and adsorbent Download PDF

Info

Publication number
JP2009072712A
JP2009072712A JP2007244933A JP2007244933A JP2009072712A JP 2009072712 A JP2009072712 A JP 2009072712A JP 2007244933 A JP2007244933 A JP 2007244933A JP 2007244933 A JP2007244933 A JP 2007244933A JP 2009072712 A JP2009072712 A JP 2009072712A
Authority
JP
Japan
Prior art keywords
adsorbent
carbonization
molding
binder
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007244933A
Other languages
Japanese (ja)
Other versions
JP4817075B2 (en
Inventor
Yasuhiro Toida
康宏 戸井田
Seiji Kumagai
誠治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Eneos Corp
Original Assignee
Japan Energy Corp
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, Akita Prefectural University filed Critical Japan Energy Corp
Priority to JP2007244933A priority Critical patent/JP4817075B2/en
Publication of JP2009072712A publication Critical patent/JP2009072712A/en
Application granted granted Critical
Publication of JP4817075B2 publication Critical patent/JP4817075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which is made of hard active carbon having a high specific surface area and a high bulk density and efficiently adsorbs/removes microingredients in hydrocarbon oil, a method for producing the adsorbent, a method for removing the microingredients in the hydrocarbon oil using the adsorbent, and a fuel battery system. <P>SOLUTION: The method for producing the adsorbent includes the molding carbonization treatment process in which a binder made of saccharide is added into vegetable biomass or a vegetable biomass preliminary carbonization treatment product, and the mixture, after being kneaded and molded, is carbonized to obtain a molded carbonization treatment product and the activation treatment process in which the obtained molded carbonization treatment product, after being impregnated with the binder, is activated to obtain a molded activation treatment product. The adsorbent for removing the microingredients in the hydrocarbon oil containing an activation treatment product which is obtained by the above method and has a specific surface area of at least 600 m<SP>2</SP>/g and a mean micropore width of at least 1.0 nm, the method for removing the mictoingredients in the hydrocarbon oil using the adsorbent, or the fuel battery system provided with the adsorbent are disclosed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭化水素油中の微量成分、例えば硫黄化合物や多環芳香族化合物を吸着除去する吸着剤の製造方法、及び該製造方法で得られた吸着剤、並びに該吸着剤を用いる炭化水素油中の微量成分の除去方法及び該吸着剤を装備した燃料電池システムに関する。   The present invention relates to a method for producing an adsorbent that adsorbs and removes trace components in hydrocarbon oil, such as sulfur compounds and polycyclic aromatic compounds, an adsorbent obtained by the production method, and a hydrocarbon using the adsorbent. The present invention relates to a method for removing trace components in oil and a fuel cell system equipped with the adsorbent.

地球温暖化ガスであるCOガスや、NO等の自動車排出ガスの排出量を削減する観点から、燃料内に含まれる硫黄分の一層の低減が、社会から強く望まれている。我が国では、近い将来には、ガソリン及び軽油に含まれる硫黄分は10質量ppm以下に規制されると言われている。一方、昨今の燃料電池の技術革新には目を見張るものがある。水素源を石油系燃料に求めた場合、燃料油中に含まれる硫黄分をppbレベルまで低減しなければ、燃料電池の改質器及び電極部の触媒が硫黄分により被毒され、燃料電池システムの機能が低下し、所望する寿命が得られない。このような背景から、超低硫黄分の石油系燃料油を得る脱硫技術が盛んに研究されている。 And CO 2 gas as a greenhouse gas, from the viewpoint of reducing the emissions of automotive exhaust gases, such as NO X, further reduction of sulfur content in the fuel, it is strongly desired by society. In Japan, it is said that in the near future, the sulfur content in gasoline and light oil will be regulated to 10 mass ppm or less. On the other hand, recent technological innovations in fuel cells are remarkable. When the hydrogen source is determined for petroleum-based fuel, if the sulfur content in the fuel oil is not reduced to the ppb level, the fuel cell reformer and the electrode catalyst are poisoned by the sulfur content, and the fuel cell system Thus, the desired life is not obtained. Against this background, desulfurization technology for obtaining ultra-low sulfur petroleum fuel oil has been actively researched.

従来の水素化脱硫方法で除去が難しい難脱硫化合物の大部分は、ベンゾチオフェン類及びジベンゾチオフェン類である。灯油の場合、特にベンゾチオフェン類の割合が大きく、全硫黄化合物に対するベンゾチオフェン類の割合は、硫黄分として70%以上であることが多い。しかしながら、含有量の少ないジベンゾチオフェン類の方が除去は困難であり、特にアルキル基を多く有するアルキルジベンゾチオフェン類の除去が非常に困難である。一方で、簡単な操作で、容易に効率的に脱硫できる方法が求められており、例えば、還元処理や水素を必要とせず、また、加圧を必要としないで、かつ室温から150℃程度までの比較的低い温度下で、ジベンゾチオフェン類を効率的に除去できる脱硫剤が熱望されている。脱硫剤は、製油所等で大量に使用するには、除去性能だけでなく、安価で経済性も優れていなければならない。   Most of the difficult desulfurization compounds that are difficult to remove by conventional hydrodesulfurization methods are benzothiophenes and dibenzothiophenes. In the case of kerosene, the ratio of benzothiophenes is particularly large, and the ratio of benzothiophenes to the total sulfur compounds is often 70% or more as the sulfur content. However, dibenzothiophenes with a low content are more difficult to remove, and in particular, alkyl dibenzothiophenes having a large number of alkyl groups are very difficult to remove. On the other hand, there is a demand for a method that can be easily and efficiently desulfurized by a simple operation. For example, no reduction treatment or hydrogen is required, no pressure is required, and room temperature to about 150 ° C. Therefore, a desulfurization agent that can efficiently remove dibenzothiophenes at a relatively low temperature is desired. In order to use a large amount of a desulfurizing agent in a refinery or the like, not only the removal performance but also the cost and economy must be excellent.

特定の細孔構造を有する活性炭、特に繊維状活性炭は、軽油や灯油に含まれるジベンゾチオフェン類に対して高い除去性能を有することが報告されている(特許文献1)。しかし、繊維状活性炭は綿状であるために充填密度を高くできないため、単位容積当たりの吸着性能が高くないこと、製造工程が複雑で製造コストが極めて高く経済的ではないという課題が存在する。   Activated carbon having a specific pore structure, particularly fibrous activated carbon, has been reported to have high removal performance with respect to dibenzothiophenes contained in light oil and kerosene (Patent Document 1). However, since the fibrous activated carbon is cotton-like, the packing density cannot be increased. Therefore, there are problems that the adsorption performance per unit volume is not high, the manufacturing process is complicated, the manufacturing cost is extremely high, and it is not economical.

本発明者等は、植物系バイオマスを減圧下にて300〜900℃で炭化処理することにより、又は減圧下及び/又は不活性雰囲気下に200〜900℃で炭化した後に、さらに賦活処理することにより得られた、比表面積200m/g以上、平均細孔幅2.0nm以上である炭化処理物又は賦活処理物は、炭化水素油中の微量成分の除去に好適に使用できること、特に籾殻を原料として上記にようにして得られる活性炭に燃料油中の難脱硫化合物であるジベンゾチオフェン類の吸着能力に優れていることを見出している(特許文献2)。しかし、炭化・賦活処理を経由した籾殻活性炭は非常に脆く、流通式の硫黄分吸着除去装置で使用した場合、流動圧により容易に粉砕されてしまうことから、後続の設備に悪影響を及ぼさないように粉砕された活性炭をフィルター等の設備で取り除くなど、余計な設備の設置を余儀なくされる。これを防ぐためには、少なくとも脱硫中に粉砕されない程度に活性炭の強度を上げるか、硬い粒状などに成形する等の改善が望まれている。
国際公開第WO2003/097771号パンフレット 特願2007−66492号
The present inventors perform further activation treatment after carbonizing plant biomass at 300 to 900 ° C. under reduced pressure, or after carbonizing at 200 to 900 ° C. under reduced pressure and / or inert atmosphere. The carbonized product or activated product having a specific surface area of 200 m 2 / g or more and an average pore width of 2.0 nm or more obtained by the above can be suitably used for removing trace components in hydrocarbon oil, It has been found that the activated carbon obtained as described above as a raw material has an excellent ability to adsorb dibenzothiophenes, which are hardly desulfurized compounds in fuel oil (Patent Document 2). However, rice husk activated carbon that has undergone carbonization and activation treatment is very brittle, and when used in a flow-type sulfur content adsorption removal device, it is easily pulverized by fluid pressure, so that it does not adversely affect subsequent equipment. It is necessary to install extra equipment, such as removing the activated carbon that has been crushed with a filter or other equipment. In order to prevent this, an improvement such as increasing the strength of the activated carbon to such an extent that it is not pulverized during desulfurization or forming it into a hard granule is desired.
International Publication No. WO2003 / 097771 Pamphlet Japanese Patent Application No. 2007-66492

本発明は係る状況下においてなされたものであり、比表面積を高くでき、硬くかつかさ密度の高い活性炭からなり、炭化水素油中の微量成分を効率的に吸着除去する吸着剤を製造する方法を提供することを課題とする。また、本発明は、斯かる製造方法で得られた吸着剤、並びに該吸着剤を用いる炭化水素油中の微量成分の除去方法及び燃料電池システムを提供することを課題とする。   The present invention has been made under such circumstances, and a method for producing an adsorbent that can increase the specific surface area, is composed of hard and high bulk density activated carbon, and efficiently adsorbs and removes trace components in hydrocarbon oil. The issue is to provide. Another object of the present invention is to provide an adsorbent obtained by such a production method, a method for removing trace components in hydrocarbon oil using the adsorbent, and a fuel cell system.

本発明者等は、上記の目的を達成するため、炭化水素油中の微量成分を除去する吸着剤の主要材料である活性炭の炭素源と適切なバインダーの選択、及び、その添加量、炭化・賦活温度などの製造条件を鋭意検討した結果、高い成形性を実現して、形状維持性に優れつつ、単位体積当たりの吸着能力、特にジベンゾチオフェン類に対する吸着能力に秀でた成形籾殻活性炭に代表される成形賦活処理物からなる吸着剤を製造する方法を見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have selected a carbon source and an appropriate binder of activated carbon, which is the main material of the adsorbent for removing trace components in hydrocarbon oil, and their addition amount, As a result of earnest examination of manufacturing conditions such as activation temperature, it is representative of molded rice husk activated carbon that realizes high moldability, excellent shape retention, and excellent adsorption capacity per unit volume, especially adsorption capacity for dibenzothiophenes The present inventors have found a method for producing an adsorbent comprising a molded activation treatment product, and have completed the present invention.

即ち、本発明は、以下の発明を包含する。
(1) 活性炭を含む吸着剤の製造方法において、植物系バイオマスに糖類からなる成形用バインダーを加えて混練して成形した後、炭化処理して成形炭化処理物を得る成形炭化処理工程、及び得られた成形炭化処理物に糖類からなる含浸用バインダーを加えて含浸させた後、賦活処理して活性炭である比表面積600m/g以上の成形賦活処理物を得る賦活処理工程を含む炭化水素油中の微量成分を除去する吸着剤の製造方法。
That is, the present invention includes the following inventions.
(1) In a method for producing an adsorbent containing activated carbon, a molding carbonization step of obtaining a molded carbonized product by carbonizing after adding a molding binder made of saccharides to a plant biomass and kneading and molding, and obtaining A hydrocarbon oil comprising an activation treatment step of adding a binder for impregnation made of saccharides to the obtained molded carbonized product and impregnating it, followed by activation treatment to obtain a molded activation processed product having a specific surface area of 600 m 2 / g or more which is activated carbon A method for producing an adsorbent that removes trace components therein.

(2) さらに、成形賦活処理物に、再び糖類からなる含浸用バインダーを含浸させ第2の賦活処理を行い比表面積600m/g以上の第2の成形賦活処理物を得る第2の賦活処理工程を含む上記(1)に記載の吸着剤の製造方法。
(3) さらに、成形炭化処理工程の前に、植物系バイオマスに糖類からなる含浸用バインダーを含浸させ炭化処理を行う含浸炭化処理工程を含む上記(1)又は(2)に記載の吸着剤の製造方法。
(4) さらに、植物系バイオマスを予備炭化して予備炭化処理物を得る予備炭化処理工程を含む(1)〜(3)の何れかに記載の吸着剤の製造方法。
(5) 予備炭化処理が、不活性雰囲気下、200〜600℃で、0.01〜2時間実施され、含浸炭化処理及び成形炭化処理が、それぞれ不活性雰囲気下、200〜900℃で、0.01〜2時間実施され、かつ、賦活処理及び第2の賦活処理が、それぞれ二酸化炭素雰囲気下、800〜900℃で、0.1〜4時間実施される上記(1)〜(4)の何れかに記載の吸着剤の製造方法。
(6) 植物系バイオマスが、イネの籾殻である上記(1)〜(5)の何れかに記載の吸着剤の製造方法。
(7) 糖類が、甜菜糖、黒糖及び甘しゃ糖から選択される少なくとも1種である上記(1)〜(6)の何れかに記載の吸着剤の製造方法。
(2) Furthermore, the second activation treatment is performed by impregnating the molded activation treatment product again with a binder for impregnation made of saccharides to obtain a second molding activation treatment product having a specific surface area of 600 m 2 / g or more. The manufacturing method of the adsorption agent as described in said (1) including a process.
(3) The adsorbent according to (1) or (2), further including an impregnation carbonization step of impregnating a plant biomass with an impregnation binder composed of a saccharide and performing carbonization before the shaping carbonization step. Production method.
(4) The method for producing an adsorbent according to any one of (1) to (3), further comprising a preliminary carbonization treatment step of pre-carbonizing plant biomass to obtain a pre-carbonized product.
(5) The preliminary carbonization treatment is performed at 200 to 600 ° C. in an inert atmosphere for 0.01 to 2 hours, and the impregnation carbonization treatment and the forming carbonization treatment are performed at 0 to 200 ° C. in an inert atmosphere, respectively. The above (1) to (4) are carried out for 0.01 to 2 hours, and the activation treatment and the second activation treatment are each carried out at 800 to 900 ° C. for 0.1 to 4 hours in a carbon dioxide atmosphere. The manufacturing method of the adsorption agent in any one.
(6) The method for producing an adsorbent according to any one of (1) to (5), wherein the plant biomass is rice husk.
(7) The method for producing an adsorbent according to any one of the above (1) to (6), wherein the saccharide is at least one selected from sugar beet sugar, brown sugar and sugar sucrose.

(8) 上記(1)〜(7)の何れかに記載の吸着剤の製造方法で得られた、比表面積が600m/g以上、平均細孔幅が1.0nm以上である賦活処理物及び/又は第2の成形賦活処理物を含む炭化水素油中の微量成分を除去する吸着剤。 (8) Activation treatment product obtained by the method for producing an adsorbent according to any one of (1) to (7), having a specific surface area of 600 m 2 / g or more and an average pore width of 1.0 nm or more. And / or an adsorbent that removes trace components in the hydrocarbon oil containing the second molding activation treatment product.

(9) 上記(8)に記載の吸着剤を用い、炭化水素油中に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去することを特徴とする炭化水素油中の微量成分の除去方法。
(10) 炭化水素油が灯油又は軽油である上記(9)に記載の除去方法。
(11) 150℃以下の温度において硫黄化合物を吸着除去する上記(9)又は(10)に記載の除去方法。
(9) Removal of trace components in hydrocarbon oil, characterized by adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oil using the adsorbent according to (8) above Method.
(10) The removal method according to (9), wherein the hydrocarbon oil is kerosene or light oil.
(11) The removal method according to (9) or (10), wherein the sulfur compound is adsorbed and removed at a temperature of 150 ° C. or lower.

(12) 上記(8)に記載の吸着剤を装備したことを特徴とする燃料電池システム。 (12) A fuel cell system equipped with the adsorbent according to (8).

本発明の製造方法によれば、植物系バイオマス、特にイネから得られる籾殻の炭化物と、糖類からなるバインダーとを混練して成形した後、炭化処理して成形炭化処理物を得、該成形炭化処理物に糖類からなるバインダーを含浸し、賦活処理して得られた活性炭からなる吸着剤であるから、比表面積を高くでき、形状維持性に優れ、かさ密度も比較的高い吸着剤を提供することができる。このため、本発明の吸着剤は、単位体積(容量)当たりの吸着性能が高く、炭化水素油、特には硫黄化合物としてジベンゾチオフェン類を含む、あるいは多環芳香族化合物を含む灯油や軽油などの炭化水素油と、還元処理や水素添加を行わず、室温から150℃程度までの温度で、液相状態で接触させることにより、効率的に吸着除去することができる。また、微量成分の硫黄化合物及び/又は多環芳香族化合物を吸着除去する際に、形状維持性に優れているため、吸着剤が粉砕されることによる目詰まりや装置の閉塞が発生する虞が低減される。このため、フィルター等の余計な設備を省くこともでき、従来のものよりコンパクトで、かつ、より低廉なコストの設備で除去することが可能となる。さらに、燃料電池の原燃料である灯油などの脱硫に適用した場合には、起動やメンテナンスが比較的容易であり、また燃料電池のシステムを簡略化することが可能である。   According to the production method of the present invention, a charcoal of rice husk obtained from plant biomass, particularly rice, and a binder made of saccharide are kneaded and molded, and then carbonized to obtain a molded carbonized product. Since it is an adsorbent made of activated carbon obtained by impregnating a treated substance with a binder made of saccharide and activated, it provides an adsorbent with a high specific surface area, excellent shape retention, and a relatively high bulk density. be able to. For this reason, the adsorbent of the present invention has high adsorption performance per unit volume (volume), and includes hydrocarbon oils, particularly kerosene and light oil containing dibenzothiophenes as sulfur compounds or containing polycyclic aromatic compounds. Adsorption and removal can be efficiently carried out by contacting the hydrocarbon oil with liquid oil at a temperature from room temperature to about 150 ° C. without performing reduction treatment or hydrogenation. In addition, when adsorbing and removing a trace amount of sulfur compounds and / or polycyclic aromatic compounds, it is excellent in shape maintenance, so that there is a possibility that clogging or clogging of the apparatus may occur due to pulverization of the adsorbent. Reduced. For this reason, extra equipment such as a filter can be omitted, and the equipment can be removed with equipment that is more compact and less expensive than the conventional one. Furthermore, when applied to desulfurization of kerosene or the like, which is the raw fuel of the fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified.

〔植物系バイオマス〕
本発明に使用し、炭化処理工程、賦活処理工程を経て、成形賦活処理物となる植物系バイオマスとしては、木材、ヤシ殻、イナワラ、籾殻、パルプ廃液などが挙げられるが、特にイネから得られる籾殻が好ましく用いられる。籾殻から得られた成形賦活処理物はいわゆる活性炭の1種であり、これからなる吸着剤は炭化水素油中に含まれる硫黄化合物及び/又は多環芳香族化合物の除去性能に優れた性能を発揮する。植物系バイオマス、特に籾殻の場合には、含有するシリカなどの無機成分が、メソ孔やマクロ孔を発達させているものと推察される。さらに、籾殻は毎年安定量産出され、安定的に供給可能であるという利点を有し、また、殆どが焼却処分されていることから資源の有効活用にも資する。
[Plant biomass]
Plant biomass used in the present invention, which is subjected to a carbonization treatment step and an activation treatment step and becomes a molded activation treatment product, includes wood, coconut husk, rice straw, rice husk, pulp waste liquor, etc., but particularly obtained from rice. Rice husk is preferably used. The molded activation treatment product obtained from rice husk is one kind of so-called activated carbon, and the adsorbent comprising this exhibits excellent performance in removing sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oil. . In the case of plant biomass, particularly rice husks, it is presumed that the inorganic components such as silica contained develop mesopores and macropores. Furthermore, rice husks have the advantage that they are produced in a stable amount each year and can be supplied stably, and most of them are incinerated, which contributes to the effective use of resources.

〔糖類からなるバインダー〕
本発明に使用するバインダーには、糖類からなるバインダーを使用する。
糖類としては、甜菜絞り汁、甘しゃ(さとうきび)絞り汁、甜菜糖、甘しゃ糖、糖蜜、廃糖蜜、含蜜糖、分蜜糖、黒糖、砂糖、ショ糖、デンプン、オリゴ糖などが挙げられる。これらは、主にセルロース、糖類、でんぷんなどの炭水化物系の成分で構成され、活性炭の原料である植物系バイオマスと主成分が同じ炭水化物であるせいか、馴染み(親和性、構造類似性)がよく、両者の混合性が良好であり、得られる活性炭の強度は高くなり、また、比表面積も向上する。これらのなかでも、比較的容易に入手できる甜菜絞り汁、甘しゃ絞り汁、甜菜糖、甘しゃ糖、黒糖、デンプンが好ましく、甜菜絞り汁、甜菜糖が特に好ましい。
[Binder made of sugar]
As the binder used in the present invention, a binder composed of saccharides is used.
Sugars include sugar beet juice, sugar cane juice, sugar beet sugar, sugar cane sugar, molasses, molasses, molasses, molasses sugar, brown sugar, sugar, sucrose, starch, oligosaccharide, etc. It is done. These are mainly composed of carbohydrate-based components such as cellulose, saccharides and starch, and are familiar (affinity, structural similarity) because the main component is the same carbohydrate as the plant-based biomass that is the raw material of activated carbon. The mixing property between the two is good, the strength of the obtained activated carbon is increased, and the specific surface area is also improved. Among these, sugar beet juice, sweet squeezed juice, sugar beet sugar, sugar cane sugar, brown sugar and starch, which are relatively easily available, are preferred, and sugar beet juice and sugar beet sugar are particularly preferred.

上記の糖類は、乾燥状態では粘着性を持たないので、バインダーとして使用するには、例えば絞り汁などのように液状となっている場合はそのまま用いることもできるが、煮詰めて濃縮し粘性を高めて用いることが好ましい。また、上記の糖類は、水分含有量を減じた固形状ないし粉末状で取り扱われることが多い。糖類がこのような固体状態、乾燥状態の場合は、水に溶かして用いるか、絞り汁などと同様に必要によっては、煮詰めて濃縮して用いても良い。   Since the above saccharides are not sticky in the dry state, they can be used as they are when they are in liquid form, such as juice, for use as a binder. Are preferably used. In addition, the saccharide is often handled in a solid or powder form with a reduced water content. When the saccharide is in such a solid state or dry state, it may be used after being dissolved in water, or may be boiled and concentrated as necessary, like juice.

バインダーは、ここで、成形加工しにくい植物系バイオマス又は炭化処理物と混ぜ合わせバインダーの粘着力を利用して固めて成形炭化処理物などを得るために用いる成形用バインダーと、炭化処理物や成形炭化処理物の比表面積や強度を改善するために、炭化処理をする前に又は賦活処理をする前に植物系バイオマス又は炭化処理物に含浸させて用いる含浸用バインダーがある。   Here, the binder is mixed with a plant-based biomass or carbonized product that is difficult to be molded and hardened by using the adhesive force of the binder to obtain a molded carbonized product, and a carbonized product or molded product. In order to improve the specific surface area and strength of the carbonized product, there is an impregnation binder used by impregnating plant biomass or carbonized product before carbonization treatment or before activation treatment.

成形用バインダーは、粉末状又は固形状の糖類にほぼ同じ質量の水を加えて撹拌して均一な糖の水溶液を調製する。このとき、熱すると溶解性が高くなり、速く溶解することができる。さらに、沸騰させると、強力な撹拌効果も加わり、効率よく均一な糖の水溶液を得ることができる。穏やかな沸騰を続けて水分を蒸発すると、成形用バインダーに好適に用いることができる、粘性のあるシロップ状態の液体(糖水溶液)を得ることができる。成形用バインダーは、吸着剤として用いるのに好適な形状に、炭素材料などの成分同士を強力に結合するために、また、その成形加工をしやすくするために用いる。水分の割合が多過ぎると成形できなくなったりして加工の効率が損なわれる。少な過ぎる場合には混合ないし混練中に水を追加して調整することができるので、適度に粘性のある、例えばゆるい蜂蜜程度の粘度を有するシロップ状の糖水溶液を用いることが好ましい。粘度は水分量によって調整することができる。粘度を高くする場合、一旦多めの量の水を添加して十分均一な組成の糖水溶液を調製した後、加熱して水分を蒸発させて、所望の粘度のシロップ状の糖水溶液に調製することが好ましい。   The molding binder is prepared by adding approximately the same mass of water to a powdered or solid saccharide and stirring it to prepare a uniform saccharide aqueous solution. At this time, when heated, the solubility becomes high, and it can be dissolved quickly. In addition, when the mixture is boiled, a strong stirring effect is added, and a uniform aqueous sugar solution can be obtained efficiently. When the water is evaporated by continuing gentle boiling, a viscous syrupy liquid (aqueous sugar solution) that can be suitably used as a molding binder can be obtained. The molding binder is used for strongly bonding components such as a carbon material in a shape suitable for use as an adsorbent and for facilitating the molding process. If the moisture content is too high, molding may not be possible and processing efficiency may be impaired. If the amount is too small, it can be adjusted by adding water during mixing or kneading. Therefore, it is preferable to use a syrup-like sugar aqueous solution having moderate viscosity, for example, having a viscosity of about loose honey. The viscosity can be adjusted by the amount of moisture. To increase the viscosity, add a large amount of water once to prepare a sugar solution with a sufficiently uniform composition, and then evaporate the water by heating to prepare a syrup-like sugar solution with the desired viscosity. Is preferred.

成形用バインダーの使用量は、植物系バイオマス又は炭化処理物が所望の形状に成形することができる量を配合すればよく、特に限定しないが、成形加工する乾燥させた植物系バイオマス又は炭化処理物100質量部に対して、5〜200質量部程度使用することが好ましい。なお、上記のバインダーの使用量は、水分を除いた残量を基準(乾燥基準)とする。   The amount of the binder used for molding is not particularly limited as long as the amount that the plant-based biomass or carbonized product can be molded into a desired shape is not particularly limited, but the dried plant-based biomass or carbonized product to be molded is processed. It is preferable to use about 5 to 200 parts by mass with respect to 100 parts by mass. In addition, the usage-amount of said binder is based on the residual amount except a water | moisture content (dry standard).

含浸用バインダーとしては、粉末状の糖類を1〜20倍の質量の水に約60℃で均一に溶解した、成形用バインダーよりもはるかに低粘度な糖水溶液を用いることができる。
炭化処理物及び賦活処理物あるいは乾燥させた植物系バイオマス又は予備炭化処理物に対するこれらバインダーの使用量は、特に限定するものではないが、これらの処理物100質量部に対して、5〜200質量部程度(乾燥基準)使用することが好ましく、より好ましくは20〜100質量部である。5質量部よりも少ないと、得られる活性炭の強度が低くなる。また、200質量部よりも多いと、籾殻などの活性炭の特長である細孔構造が十分に得られなくなる。
As the impregnation binder, an aqueous sugar solution having a viscosity much lower than that of the molding binder, in which powdered saccharides are uniformly dissolved in water having a mass of 1 to 20 times at about 60 ° C. can be used.
Although the usage-amount of these binders with respect to carbonized material and activation processed material or dried plant biomass or pre-carbonized material is not specifically limited, 5-200 mass with respect to 100 mass parts of these processed materials. It is preferable to use about part (dry basis), more preferably 20 to 100 parts by mass. When the amount is less than 5 parts by mass, the strength of the obtained activated carbon is lowered. On the other hand, when the amount is more than 200 parts by mass, the pore structure which is a feature of activated carbon such as rice husk cannot be obtained sufficiently.

〔予備炭化処理工程〕
植物系バイオマスは、まず、不活性雰囲気下において、加熱し炭化処理を行うことが好ましい。炭化処理温度は、200〜600℃といった比較的低い温度で行うことが好ましい。そこで、ここでは、この比較的低い温度でおこなう炭化を予備炭化と呼ぶ。この予備炭化処理を行うことによって、水分や上記の温度で揮発する揮発成分が取り除かれ、以後の炭化処理工程や賦活処理工程において、これらの揮発成分による処理物の割れなどの不具合や、炭化炉並びに賦活炉の不要な汚れを防止することができ、また、取扱性も格段に向上する。
[Pre-carbonization process]
The plant-based biomass is preferably first heated and carbonized in an inert atmosphere. The carbonization temperature is preferably a relatively low temperature such as 200 to 600 ° C. Therefore, here, carbonization performed at a relatively low temperature is referred to as preliminary carbonization. By performing this preliminary carbonization treatment, moisture and volatile components that volatilize at the above-mentioned temperature are removed. In the subsequent carbonization treatment process and activation treatment process, problems such as cracks in the processed products due to these volatile components, and the carbonization furnace In addition, unnecessary fouling of the activation furnace can be prevented, and the handleability is greatly improved.

不活性雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気や真空雰囲気などが挙げられるが、経済性等の観点から、窒素雰囲気下に予備炭化処理を行うことが好ましい。なお、予備炭化処理の炭化時間は0.01〜2時間程度行うことが好ましい。
予備炭化処理を行うにあたって植物系バイオマスは、取り扱いやすい大きさに整えておくことが好ましい。例えば、籾殻はそのままでかまわないが、木材、ヤシ殻、イナワラなどは5cm程度のいわゆる木材チップや爪楊枝程度のなかたちに整えておくことが好ましい。
予備炭化処理は、不活性雰囲気下に炭化処理を行えるものであれば特に限定されないが、雰囲気炉、ロータリーキルンなどの炉を用いて行うことができる。
Examples of the inert atmosphere include an inert gas atmosphere such as nitrogen and argon, and a vacuum atmosphere. From the viewpoint of economy and the like, it is preferable to perform a preliminary carbonization treatment in a nitrogen atmosphere. In addition, it is preferable to perform the carbonization time of the preliminary carbonization treatment for about 0.01 to 2 hours.
In performing the preliminary carbonization treatment, the plant-based biomass is preferably arranged in a size that is easy to handle. For example, the rice husk may be left as it is, but wood, coconut husk, rice straw etc. are preferably arranged in the form of a so-called wood chip or toothpick of about 5 cm.
The preliminary carbonization treatment is not particularly limited as long as the carbonization treatment can be performed in an inert atmosphere, but can be performed using a furnace such as an atmospheric furnace or a rotary kiln.

〔成形炭化処理工程(成形炭化処理物を得る工程)〕
植物系バイオマスをそのまま成形炭化処理工程に用いる場合は、予め乾燥して使用する。例えば、50〜150℃、好ましくは80〜130℃で1〜24時間程度乾燥する。
上記の乾燥させた植物系バイオマス(乾燥植物系バイオマスと言うことがある)又は予備炭化処理物を1〜500μm程度、好ましくは5〜50μm、に粉砕して、これに、糖類からなる上記の成形用バインダーを加えて、十分に混合する。成形用バインダーの配合量は特に限定するものではないが、乾燥植物系バイオマス又は予備炭化処理物100質量部に対して成形用バインダーを5〜200質量部(乾燥基準の糖分量として)均一に混合させることが好ましい。成形用バインダーは、乾燥植物系バイオマス又は予備炭化処理物の粉砕物と攪拌機、混合機、混練機、捏和機など市販の各種の混合用機械を用いて十分均一に混合することができる。混合物は、適宜の成形機を用いて成形物に成形する。混合物の状態が、パサパサであったり、ゆるゆるのペースト状の場合、加圧成形できないことがある。パサパサの場合は、水を加えて、含浸炭化処理物と成形用バインダー中の糖類との混合比率変えることなく、調整することができる。ゆるいペースト状の場合、含浸炭化処理物の配合量を増やすと前記の混合比率が変化する。したがって、成形用バインダーはこのようなことが生じない程度に糖類の含有量が高いシロップ状の糖水溶液を調製しておくことが好ましい。
[Molding carbonization process (process to obtain a molded carbonized product)]
When plant-based biomass is used as it is for the forming carbonization process, it is dried before use. For example, it is dried at 50 to 150 ° C., preferably 80 to 130 ° C. for about 1 to 24 hours.
The dried plant biomass (sometimes referred to as dried plant biomass) or a pre-carbonized product is pulverized to about 1 to 500 μm, preferably 5 to 50 μm, and the above-mentioned molding comprising saccharides Add binder and mix thoroughly. The blending amount of the molding binder is not particularly limited, but 5 to 200 parts by mass of the molding binder (as a dry basis sugar content) is uniformly mixed with 100 parts by mass of the dried plant biomass or the pre-carbonized product. It is preferable to make it. The molding binder can be sufficiently uniformly mixed using a pulverized product of dried plant biomass or a pre-carbonized product and various commercially available mixing machines such as a stirrer, a mixer, a kneader, and a kneader. The mixture is formed into a molded product using an appropriate molding machine. When the state of the mixture is crumbly or a loose paste, it may not be pressure molded. In the case of papasa, it can be adjusted without changing the mixing ratio of the impregnated carbonized product and the saccharide in the molding binder by adding water. In the case of a loose paste, the mixing ratio changes when the amount of the impregnated carbonized product is increased. Therefore, it is preferable to prepare a syrup-like sugar aqueous solution having a high sugar content to such an extent that the molding binder does not cause this.

成形物の形状は、特に限定するものでないが、球状、粒状、柱状(断面は円、角又は四つ葉などの異形など)、筒状、ペレット状、ハニカム状などが挙げられる。脱硫剤として用いるとき、硫黄化合物の濃度勾配を大きくするため、流通式の場合には脱硫吸着剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状が好ましい。球状の場合の大きさは、直径は0.5〜5mmが好ましく、1〜3mmが特に好ましい。円柱状の場合、直径は0.1〜4mmが好ましく、特に好ましくは0.2〜2mmであり、長さは直径の0.5〜5倍が好ましく、1〜4倍が特に好ましい。このような形状の成形物の成形方法は特に限定するものではなく、市販の各種の押出し成形機、プレス成形機、打錠機、錠剤機などを用いて行うことができる。さらに、ニーダーと押出機を組み合わせてペレット状や柱状の成形物を得ることもできる。   The shape of the molded product is not particularly limited, and examples thereof include a spherical shape, a granular shape, a columnar shape (the cross section has a deformed shape such as a circle, a corner, or a four-leaf shape), a cylindrical shape, a pellet shape, and a honeycomb shape. When used as a desulfurization agent, in order to increase the concentration gradient of the sulfur compound, in the case of a flow type, a small shape, particularly a spherical shape, is preferable so long as the differential pressure before and after the vessel filled with the desulfurization adsorbent does not increase. In the case of a spherical shape, the diameter is preferably 0.5 to 5 mm, particularly preferably 1 to 3 mm. In the case of a cylindrical shape, the diameter is preferably 0.1 to 4 mm, particularly preferably 0.2 to 2 mm, and the length is preferably 0.5 to 5 times the diameter, particularly preferably 1 to 4 times. The molding method of the molded product having such a shape is not particularly limited, and can be performed using various commercially available extrusion molding machines, press molding machines, tableting machines, tablet machines, and the like. Further, a pellet or columnar molded product can be obtained by combining a kneader and an extruder.

このようにして得られた乾燥植物系バイオマス又は予備炭化処理物と成形用バインダーとの成形された混合物は、炭化処理に先立って、例えば、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥する。   Prior to carbonization, the molded mixture of the dried plant biomass or pre-carbonized product thus obtained and the molding binder thus obtained is, for example, 100 to 150 ° C, preferably 105 to 130 ° C. Dry for about 2 hours.

次いで、不活性雰囲気下にて好ましくは200〜900℃で、0.01〜2時間炭化処理を行い、成形炭化処理物を得る。不活性雰囲気は、予備炭化処理の場合と同様に、窒素、アルゴン等の不活性ガス雰囲気や真空雰囲気などが挙げられるが、経済性等の観点から、窒素気流下に行うことが好ましい。適宜の量の窒素ガスを流すことによって、成形物から発生する水分や揮発成分を除去するとともに、炭化炉内の雰囲気を均一にすることができる。炭化処理温度は、400〜900℃がより好ましく、さらに好ましくは500〜900℃であり、特に好ましくは700〜900℃である。後述の含浸後の炭化処理(含浸炭化処理)の温度と同じか又はより高い温度で行うことが好ましく、後述の賦活処理の温度と同じ温度で行うことが特に好ましい。また、炭化時間は、0.03〜1時間がより好ましく、さらに好ましくは0.05〜0.2時間である。   Next, carbonization is preferably performed at 200 to 900 ° C. for 0.01 to 2 hours in an inert atmosphere to obtain a molded carbonized product. As in the case of the preliminary carbonization treatment, the inert atmosphere includes an inert gas atmosphere such as nitrogen and argon, a vacuum atmosphere, and the like, but it is preferably performed in a nitrogen stream from the viewpoint of economy and the like. By flowing an appropriate amount of nitrogen gas, moisture and volatile components generated from the molded product can be removed and the atmosphere in the carbonization furnace can be made uniform. The carbonization temperature is more preferably 400 to 900 ° C, still more preferably 500 to 900 ° C, and particularly preferably 700 to 900 ° C. It is preferable to carry out at a temperature equal to or higher than the temperature of carbonization treatment (impregnation carbonization treatment) after impregnation described below, and it is particularly preferable to carry out at the same temperature as the temperature of activation treatment described later. The carbonization time is more preferably 0.03 to 1 hour, and further preferably 0.05 to 0.2 hour.

なお、成形炭化処理を行う前に、乾燥植物系バイオマス又は予備炭化処理物に、糖類からなる含浸用バインダーを含浸して炭化処理(含浸炭化処理)をしておくことが、細孔構造の局所的なムラを少なく、且つ、比表面積を大きくできることから好ましい。このときの成形炭化処理は、その原料として、乾燥植物系バイオマス又は予備炭化処理物でなく、乾燥植物系バイオマス又は予備炭化処理物に含浸用バインダーを含浸して炭化処理(含浸炭化処理)して得た含浸炭化処理物を使用する以外は、上記の乾燥植物系バイオマス又は予備炭化処理物を用いる場合と全く同じ方法で行うことができる。   In addition, before carrying out shaping | molding carbonization, it is impregnating the carbonization process (impregnation carbonization process) by impregnating the binder for impregnation which consists of saccharides into dry plant biomass or a preliminary carbonization processed material. This is preferable because it can reduce general unevenness and increase the specific surface area. In this case, the carbonization treatment is performed by impregnating a dry plant biomass or a pre-carbonized product with a binder for impregnation, not a dry plant biomass or a pre-carbonized product, as a raw material (carbonization treatment). Except for using the obtained impregnated carbonized product, the same method as in the case of using the dried plant biomass or the pre-carbonized product can be used.

含浸法としては、公知の方法、例えばスプレー法、浸漬法、蒸発乾固法などを使用できる。操作の容易さの観点から、スプレー法、浸漬法が好ましい。例えば、スプレー法の場合、乾燥植物系バイオマス又は予備炭化処理物に含浸用バインダーを満遍なく吹き付けてできるだけ均一に含浸させる。バインダーの含浸量は、乾燥植物系バイオマス又は予備炭化処理物100質量部に対して、5〜200質量部程度(乾燥基準)使用することが好ましい。一度のスプレーで所望量含浸できない場合には、一旦乾燥して再度含浸用バインダーを吹き付けることによって、さらに必要によりこの操作を繰り返すことによって、所望量のバインダーを含浸することができる。浸漬して含浸させる場合も、浸漬と乾燥の操作を繰り返すことによって、所望量含浸することができる。バインダーの含浸量は、乾燥しても糖類の乾燥基準の質量は変化しないので、含浸後の質量とバインダーの糖類濃度から含浸するたびに求めたそれぞれの含浸量を積算して把握することができる。   As the impregnation method, a known method such as a spray method, a dipping method, or an evaporation to dryness method can be used. From the viewpoint of ease of operation, the spray method and the dipping method are preferable. For example, in the case of the spray method, the impregnation binder is uniformly sprayed on the dried plant biomass or the pre-carbonized product so as to be impregnated as uniformly as possible. The impregnation amount of the binder is preferably about 5 to 200 parts by mass (dry basis) with respect to 100 parts by mass of the dried plant biomass or the pre-carbonized product. If the desired amount cannot be impregnated by a single spray, the desired amount of binder can be impregnated by once drying and spraying the impregnating binder again, and by repeating this operation as necessary. In the case of dipping and impregnation, a desired amount can be impregnated by repeating the dipping and drying operations. The amount of impregnation of the binder can be grasped by adding up the respective impregnation amounts obtained each time impregnation from the mass after impregnation and the saccharide concentration of the binder, since the dry basis mass of the saccharide does not change even when dried. .

バインダーの含浸後、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥し、不活性雰囲気下にて炭化処理(含浸炭化処理)を行い、含浸炭化処理物を得る。この乾燥植物系バイオマス又は予備炭化処理物の含浸、乾燥後の炭化処理(含浸炭化処理)は、200〜900℃で、0.01〜2時間行う。炭化処理温度は、400〜900℃がより好ましく、さらに好ましくは500〜900℃であり、特に好ましくは700〜900℃である。また、炭化時間は、0.03〜1時間がより好ましく、さらに好ましくは0.05〜0.2時間である。   After impregnation with the binder, drying is performed at 100 to 150 ° C., preferably 105 to 130 ° C. for about 1 to 2 hours, and carbonization treatment (impregnation carbonization treatment) is performed in an inert atmosphere to obtain an impregnated carbonized product. The impregnation of the dried plant biomass or the pre-carbonized product and the carbonization treatment after the drying (impregnation carbonization treatment) are performed at 200 to 900 ° C. for 0.01 to 2 hours. The carbonization temperature is more preferably 400 to 900 ° C, still more preferably 500 to 900 ° C, and particularly preferably 700 to 900 ° C. The carbonization time is more preferably 0.03 to 1 hour, and further preferably 0.05 to 0.2 hour.

以上より、植物系バイオマスの処理は、後述の賦活処理工程で賦活処理する前に、予備炭化処理工程、含浸炭化処理工程及び成形炭化処理工程の組み合わせにおいて、次のような形態で処理することができる。
(1)植物系バイオマスに成形用バインダーを加えて炭化処理して成形炭化処理物を得る(成形炭化処理工程のみ)
(2)植物系バイオマスに含浸用バインダーを含浸させ炭化処理した後、得られた含浸炭化処理物に成形用バインダーを加えて成形炭化処理して成形炭化処理物を得る(含浸炭化処理工程+成形炭化処理工程)
(3)植物系バイオマスを予備炭化して得た予備炭化処理物に成形用バインダーを加えて炭化処理して成形炭化処理物を得る(予備炭化処理工程+成形炭化処理工程)
(4)植物系バイオマスを予備炭化して得た予備炭化処理物に含浸用バインダーを含浸させ炭化処理した後、得られた含浸炭化処理物に成形用バインダーを加えて成形炭化処理して成形炭化処理物を得る(予備炭化処理工程+含浸炭化処理工程+成形炭化処理工程)
From the above, the plant biomass can be treated in the following form in the combination of the preliminary carbonization treatment step, the impregnation carbonization treatment step and the shaping carbonization treatment step before the activation treatment in the activation treatment step described later. it can.
(1) Adding a molding binder to plant biomass and carbonizing to obtain a molded carbonized product (molded carbonization process only)
(2) After impregnating the plant biomass with a binder for impregnation and carbonizing, the molding carbonized product is added to the resulting impregnated carbonized product to obtain a molded carbonized product (impregnated carbonized process + molding) Carbonization process)
(3) A molding binder is added to a pre-carbonized product obtained by pre-carbonizing plant-based biomass and carbonized to obtain a molded carbon-treated product (pre-carbonized process + molded carbonized process)
(4) A pre-carbonized product obtained by pre-carbonizing plant biomass is impregnated with a binder for impregnation and carbonized. Then, a molding binder is added to the obtained carbonized product for impregnation, and carbonization is performed by molding carbonization. Obtain processed material (pre-carbonization process + impregnation carbonization process + molding carbonization process)

〔賦活処理工程(成形賦活処理物を得る工程)〕
上記のようにして得られた成形炭化処理物に、糖類からなるバインダー(含浸用バインダー)を含浸させ、乾燥した後、賦活処理を行い、吸着剤に用いる活性炭としての成形賦活処理物を得る。
[Activation treatment step (step of obtaining a molded activation treatment product)]
The molded carbonized product obtained as described above is impregnated with a saccharide binder (impregnation binder), dried, and then subjected to activation treatment to obtain a molded activated product as activated carbon used for the adsorbent.

含浸法としては、公知の方法、例えばスプレー法、浸漬法、蒸発乾固法など、上記の乾燥植物系バイオマス又は予備炭化処理物を含浸した方法を使用することができる。これらのなかで、操作の容易さの観点から、スプレー法、浸漬法が好ましい。1回の含浸操作で所望量の含浸用バインダーを含浸させることができない場合、一旦乾燥させた後、再度含浸操作を行い、バインダーの含浸量を増量することができる。これを繰り返すことよって所望の量の成形用バインダーを含浸させることができる。   As the impregnation method, a known method such as a spray method, a dipping method, an evaporation to dryness method or the like can be used which is impregnated with the above-mentioned dried plant biomass or pre-carbonized product. Among these, the spray method and the dipping method are preferable from the viewpoint of ease of operation. When a desired amount of the binder for impregnation cannot be impregnated by one impregnation operation, the impregnation operation can be performed again after drying once to increase the impregnation amount of the binder. By repeating this, a desired amount of the molding binder can be impregnated.

バインダーを含浸した成形炭化処理物は、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥し、賦活処理を行う。賦活処理としては、ガス賦活、水蒸気賦活、薬剤賦活などが挙げられる。薬剤賦活の場合、賦活処理後に、賦活処理に用いた薬剤(KOH、NaOH、ZnCl、HSOなど)を賦活処理物から取り除く後処理を要するので面倒であり、手間がかかる。一方、ガス賦活又は水蒸気賦活は、ガス雰囲気下又は水蒸気雰囲気に熱処理を行えばよく、薬剤を取り除く余計な煩雑な操作を必要としない。したがって、水蒸気賦活又はガス賦活が好ましい。 The molded carbonized product impregnated with the binder is dried at 100 to 150 ° C., preferably 105 to 130 ° C. for about 1 to 2 hours, and subjected to activation treatment. Examples of the activation treatment include gas activation, water vapor activation, and drug activation. In the case of drug activation, after the activation process, a post-treatment that removes the drug (KOH, NaOH, ZnCl 2 , H 2 SO 4, etc.) used in the activation process from the activation process is required, which is troublesome and takes time. On the other hand, gas activation or water vapor activation may be performed by heat treatment in a gas atmosphere or water vapor atmosphere, and does not require an extra complicated operation for removing the drug. Therefore, steam activation or gas activation is preferred.

水蒸気賦活及びガス賦活に用いるガスとしては、水蒸気、炭酸ガス、空気、燃焼ガスなどが挙げられるが、二酸化炭素を用いるガス賦活を行うことが、賦活条件の制御が容易であり、ガスの取扱い並びに賦活後の後処理が容易であるので好ましい。具体的には、バインダーを含浸させ、乾燥した成形炭化処理物を、二酸化炭素雰囲気下に、好ましくは800〜900℃の賦活温度で、0.1〜4時間、より好ましくは0.5〜3時間、さらに好ましくは0.7〜2.3時間熱処理する。なお、二酸化炭素雰囲気とは、成形炭化処理物を収納する炉内の賦活ガスが二酸化炭素であることをいい、100%の二酸化炭素を用いても良いが、窒素ガス、アルゴンガスなどの不活性ガスや、燃焼ガス、水蒸気などに二酸化炭素を混合したガスを用いることが好ましい。   Examples of the gas used for steam activation and gas activation include water vapor, carbon dioxide gas, air, combustion gas, etc., but it is easy to control activation conditions by performing gas activation using carbon dioxide, This is preferable because post-treatment after activation is easy. Specifically, the molded carbonized product impregnated with the binder and dried is placed in a carbon dioxide atmosphere, preferably at an activation temperature of 800 to 900 ° C., for 0.1 to 4 hours, more preferably 0.5 to 3 The heat treatment is performed for a time, more preferably 0.7 to 2.3 hours. Note that the carbon dioxide atmosphere means that the activation gas in the furnace containing the molded carbonized product is carbon dioxide, and 100% carbon dioxide may be used, but inert gases such as nitrogen gas and argon gas are used. It is preferable to use a gas, a combustion gas, a gas obtained by mixing carbon dioxide with water vapor, or the like.

上記のように含浸用バインダーを含浸させた後、賦活処理して得られた賦活処理物に、再度、含浸用バインダーを含浸させて賦活処理(2段階賦活処理)することもできる。2段階賦活処理によると、得られた2段階賦活処理物は比表面積並びに全細孔容積が比較的大きく、さらに、かさ密度も比較的大きなものが得られるので好ましい。2段階賦活処理における含浸、乾燥、熱処理は上記賦活処理の場合と全く同じ条件下で行うことができる。   After impregnating the binder for impregnation as described above, the activation treatment product obtained by the activation treatment can be impregnated again with the binder for impregnation to carry out the activation treatment (two-stage activation treatment). According to the two-stage activation treatment, the obtained two-stage activation treatment product is preferable because a product having a relatively large specific surface area and total pore volume and a relatively large bulk density can be obtained. The impregnation, drying, and heat treatment in the two-stage activation treatment can be performed under exactly the same conditions as in the activation treatment.

〔吸着剤〕
本発明の吸着剤は、賦活処理物及び/又は2段階賦活処理物(以後、単に活性炭ともいう)をそのまま吸着剤として用いることができるし、あるいは後述するように、ゼオライトなどと混練、成形して用いることも、また活性金属を活性炭に担持し性能を向上させて用いることもできる。灯油や軽油などの炭化水素油に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去するとき、粉末状、粒子状、又は球状、ディスク状、円柱状等の成形品など、上述の成形炭化処理工程のおける成形物の形状と同様にいずれの形ででも使用することが可能である。炭化水素油の処理量、設備の状況にあわせて好適な形状の吸着剤を選択、使用すればよい。
[Adsorbent]
As the adsorbent of the present invention, an activated product and / or a two-stage activated product (hereinafter simply referred to as activated carbon) can be used as an adsorbent as it is, or, as described later, kneaded and molded with zeolite or the like. The active metal can be supported on activated carbon and the performance can be improved. When adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oils such as kerosene and light oil, the above-mentioned moldings such as powdered, particulate, or spherical, disc-shaped, cylindrical molded products, etc. It can be used in any form as well as the shape of the molded product in the carbonization process. An adsorbent having a suitable shape may be selected and used in accordance with the processing amount of hydrocarbon oil and the situation of equipment.

粉末状や粒子状で用いる場合には、活性炭を公知の適当な粉砕機で粉砕後、公知の適当な分級機で分級し、平均粒径0.5μm〜0.1mm程度の粉末状、平均粒径0.1〜5mm程度の粒子状の活性炭に篩い分けて、それぞれの活性炭を使用条件に応じて、適宜使用することができる。   When used in powder or particulate form, the activated carbon is pulverized with a known appropriate pulverizer and then classified with a known appropriate classifier to obtain a powder or average particle having an average particle diameter of about 0.5 μm to 0.1 mm. The activated carbon can be appropriately used according to use conditions by sieving it into particulate activated carbon having a diameter of about 0.1 to 5 mm.

吸着剤に炭化水素油を連続的に供給、通油して使用する場合、さらに劣化した吸着剤を再生して繰り返し使用する場合には、活性炭を成形品として使用することが好ましい。本発明の活性炭は、成形炭化処理物を賦活処理するので、そのままでも好適に使用できる。したがって、成形炭化処理物を得る成形炭化処理工程の成形過程で、処理対象の炭化水素油やその処理条件等の用途条件に適した形状に予め成形しておき、賦活処理後さらには金属担持後もその形状を保持することが好ましい。なお、賦活処理後、活性炭を粉砕しゼオライトなどの無機物や担持金属を混合した後、適宜の形状に成形してもよい。   When the hydrocarbon oil is continuously supplied and passed through the adsorbent and used, and when the deteriorated adsorbent is regenerated and used repeatedly, it is preferable to use activated carbon as a molded article. Since the activated carbon of the present invention activates the molded carbonized product, it can be suitably used as it is. Therefore, in the molding process of the molding carbonization process to obtain a molded carbonized product, it is pre-molded into a shape suitable for the application conditions such as the hydrocarbon oil to be processed and its processing conditions, and after activation treatment and after metal loading It is preferable to maintain the shape. After the activation treatment, the activated carbon may be pulverized and mixed with an inorganic substance such as zeolite or a supported metal, and then shaped into an appropriate shape.

成形品の形状としては、硫黄化合物など、除去する微量成分の濃度勾配を大きくするため、流通式の場合には吸着剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状が好ましい。球状の場合、大きさは、直径が0.1〜5mm、特には0.3〜3mmが好ましい。円柱状の場合には、直径が0.1〜4mm、特には0.12〜2mmで、長さは直径の0.5〜5倍、特には1〜4倍が好ましい。成形品は、吸着剤として使用中に割れを生じないように、0.5kg/ペレット以上、特には1.0kg/ペレット以上の破壊強度を有することが好ましい。なお、破壊強度は、例えば、木屋式錠剤破壊強度測定器(富山産業株式会社製、TH−203MP)等の圧縮強度測定器により測定される。   As the shape of the molded product, in order to increase the concentration gradient of trace components to be removed, such as sulfur compounds, in the case of flow-through type, the shape is small, especially spherical, so long as the differential pressure before and after the container filled with the adsorbent does not increase. Is preferred. In the case of a spherical shape, the size is preferably 0.1 to 5 mm, particularly 0.3 to 3 mm. In the case of a cylindrical shape, the diameter is preferably 0.1 to 4 mm, particularly 0.12 to 2 mm, and the length is preferably 0.5 to 5 times, particularly 1 to 4 times the diameter. The molded article preferably has a breaking strength of 0.5 kg / pellet or more, particularly 1.0 kg / pellet or more so as not to crack during use as an adsorbent. The breaking strength is measured, for example, by a compressive strength measuring device such as a Kiya tablet breaking strength measuring device (manufactured by Toyama Sangyo Co., Ltd., TH-203MP).

本発明の吸着剤に使用する活性炭は、活性炭が吸着しにくい硫黄化合物などの吸着性能を向上するために、及び/又はメソ孔及びマクロ孔の存在量を増やして硫黄化合物などの拡散速度を向上するために、炭化処理、成形、賦活処理の途中又は後で、シリカ、アルミナ、ゼオライトなどの無機物を混合しても良い。   The activated carbon used in the adsorbent of the present invention improves the diffusion rate of sulfur compounds and the like in order to improve the adsorption performance of sulfur compounds and the like that are difficult for activated carbon to adsorb and / or increase the abundance of mesopores and macropores. In order to do so, inorganic substances such as silica, alumina and zeolite may be mixed during or after the carbonization treatment, molding and activation treatment.

また、銀、水銀、銅、カドミウム、鉛、モリブデン、亜鉛、コバルト、マンガン、ニッケル、白金、パラジウム、鉄などの金属及び/又は金属酸化物との複合化、すなわちこれらの金属を担持することにより吸着性能を向上させることもできる。安全性や経済性などから、好ましいのは銅、銀、マンガン、亜鉛、ニッケルの酸化物である。中でも銅は、安価な上に、常温付近から300℃程度の広い温度範囲で、また還元処理を行わない酸化銅の状態のまま、且つ、水素非存在下でも硫黄化合物の吸着に優れた性能を示すので特に好ましい。   Also, by combining with metals and / or metal oxides such as silver, mercury, copper, cadmium, lead, molybdenum, zinc, cobalt, manganese, nickel, platinum, palladium, iron, etc., that is, by supporting these metals The adsorption performance can also be improved. From the viewpoint of safety and economy, the oxides of copper, silver, manganese, zinc, and nickel are preferable. Among these, copper is inexpensive and has excellent performance for adsorption of sulfur compounds in a wide temperature range from near room temperature to about 300 ° C., in the state of copper oxide without reduction treatment, and in the absence of hydrogen. This is particularly preferable.

金属の好ましい担持量は、特に限定するものでなく、金属の種類によっても異なるが、仕上がりの吸着剤に対する金属基準で、貴金属の場合0.1〜20質量%、特には0.5〜5質量%担持することが好ましい。0.1質量%よりも少ないと担持効果が少なく、20質量%よりも多いと経済的でない。銅及びその他の金属の場合0.1〜60質量%、特には3〜20質量%担持することが好ましい。0.1質量%よりも少ないと担持効果が少なく、60質量%より多いと担体である活性炭との結合が弱い金属が多くなることから、金属成分が脱離する可能性がある。金属担持量が多いと活性炭が吸着しにくいチオフェン類やベンゾチオフェン類などの硫黄化合物の吸着性能をより向上することができる。   The preferred amount of metal supported is not particularly limited, and varies depending on the type of metal, but is 0.1 to 20% by mass, particularly 0.5 to 5% by mass in the case of noble metal, based on the metal based on the finished adsorbent. % Loading is preferred. If it is less than 0.1% by mass, the supporting effect is small, and if it is more than 20% by mass, it is not economical. In the case of copper and other metals, it is preferable to carry 0.1 to 60 mass%, particularly 3 to 20 mass%. If the amount is less than 0.1% by mass, the supporting effect is small. If the amount is more than 60% by mass, the amount of the metal having a weak bond with the activated carbon that is the carrier increases, so that the metal component may be detached. When the amount of metal supported is large, the adsorption performance of sulfur compounds such as thiophenes and benzothiophenes that are difficult to adsorb activated carbon can be further improved.

これらの金属の担持方法は、特に限定するものでなく、所望量の金属が担持され、所望の性能を発揮するどのような方法で行ってもよい。例えば、成形賦活処理物(活性炭)に金属の水酸化物や硝酸化物の水溶液をスプレー法、浸漬法で含浸し、あるいは、活性炭を粉砕し、金属の水酸化物や硝酸化物の水溶液を練り込んで成形し、乾燥後、炭素成分を失わないようにさらに熱して水分、あるいは硝酸分を除去して本発明の吸着剤を得ることができる。   The method for supporting these metals is not particularly limited, and any method that supports a desired amount of metal and exhibits desired performance may be used. For example, a molded activation treatment product (activated carbon) is impregnated with an aqueous solution of metal hydroxide or nitrate by spraying or dipping, or the activated carbon is crushed and an aqueous solution of metal hydroxide or nitrate is kneaded. After forming and drying, the adsorbent of the present invention can be obtained by further heating and removing moisture or nitric acid so as not to lose the carbon component.

本発明の吸着剤の比表面積、平均細孔幅、細孔容積などの細孔特性は、脱硫などの吸着性能に大きく影響する。本発明の吸着剤の比表面積は、600〜4,000m/gが好ましく、さらには700〜3,000m/g、特には800〜2,000m/gが好ましい。また、平均細孔幅は細孔容量に比例し、比表面積に反比例する。平均細孔幅が大きすぎると、細孔容量が大きすぎて十分な密度が得られなくなり、単位体積当たりの吸着容量が低くなる。また、平均細孔幅が大きすぎると、比表面積が小さすぎて十分な吸着サイトが得られなくなり、やはり吸着容量が低くなる。本発明の吸着剤の平均細孔幅は、1.0〜4.0nmが好ましく、さらには1.0〜2.0nmが好ましく、特には1.0〜1.5nmが好ましい。細孔容量は、比表面積とも関係があるが、0.30cm/g以上が好ましく、さらには0.40cm/g以上、特には0.50cm/g以上が好ましい。また、本発明の吸着剤は、成形賦活処理物又は第2の成形賦活処理物がそのまま使用されることがあるので、成形賦活処理物及び第2の成形賦活処理物の比表面積、平均細孔幅、細孔容積などの細孔特性は、吸着剤に関する上記の範囲と同じ細孔特性を適用することができる。 The pore characteristics such as the specific surface area, average pore width and pore volume of the adsorbent of the present invention greatly affect the adsorption performance such as desulfurization. The specific surface area of the adsorbent of the present invention is preferably from 600 to 4,000 m 2 / g, more preferably from 700 to 3,000 m 2 / g, particularly preferably from 800 to 2,000 m 2 / g. The average pore width is proportional to the pore volume and inversely proportional to the specific surface area. If the average pore width is too large, the pore volume is too large to obtain a sufficient density, and the adsorption capacity per unit volume becomes low. On the other hand, if the average pore width is too large, the specific surface area is too small to obtain sufficient adsorption sites, and the adsorption capacity is also lowered. The average pore width of the adsorbent of the present invention is preferably 1.0 to 4.0 nm, more preferably 1.0 to 2.0 nm, and particularly preferably 1.0 to 1.5 nm. Pore volume, is also relevant specific surface area is preferably 0.30 cm 3 / g or more, further 0.40 cm 3 / g or more, and particularly 0.50 cm 3 / g or more. Moreover, since the molding activation treatment product or the second molding activation treatment product may be used as it is, the specific surface area and average pores of the molding activation treatment product and the second molding activation treatment product may be used as the adsorbent of the present invention. For the pore characteristics such as the width and the pore volume, the same pore characteristics as those in the above-mentioned range for the adsorbent can be applied.

細孔特性はガス吸着分析器(Autosorb−3B、カンタクロム社、米国フロリダ州)を用いて分析できる。例えば、まず−196℃において、窒素ガスの相対圧力を関数とした窒素ガスの吸着量(これを窒素吸着等温線という)を得る。この窒素吸着等温線から、全細孔容積、BET比表面積、平均細孔幅を算出する。相対圧力が0.995での窒素吸着容積で全細孔容積を決定できる。BET比表面積は0.05−0.10の相対圧力での窒素吸着容積で求める。平均細孔幅は細孔がスリット状と仮定して2×全細孔容積/BET比表面積で求めることができる。多孔体の吸着能力は、比表面積や細孔容積ですべて説明できるものではないが、一般的には高い比表面積、又は大きい全細孔容積が望ましい。細孔は幅が2.0nm以下のマイクロ孔、2.0〜50nmのメソ孔、それ以上のマクロ孔に分類され、マイクロ孔は、さらに0.7nm未満のウルトラマイクロ孔と0.7〜2.0nmのスーパーマイクロ孔に分類される。   Pore characteristics can be analyzed using a gas adsorption analyzer (Autosorb-3B, Cantachrome, Florida, USA). For example, first, at −196 ° C., an adsorption amount of nitrogen gas (referred to as a nitrogen adsorption isotherm) as a function of the relative pressure of nitrogen gas is obtained. From this nitrogen adsorption isotherm, the total pore volume, BET specific surface area, and average pore width are calculated. The total pore volume can be determined by the nitrogen adsorption volume at a relative pressure of 0.995. The BET specific surface area is determined by the nitrogen adsorption volume at a relative pressure of 0.05-0.10. The average pore width can be determined by 2 × total pore volume / BET specific surface area assuming that the pores are slit-like. The adsorption capacity of the porous body cannot be explained entirely by the specific surface area and pore volume, but generally a high specific surface area or a large total pore volume is desirable. The pores are classified into micropores having a width of 2.0 nm or less, mesopores of 2.0 to 50 nm, and macropores of more than that, and the micropores are further divided into ultramicropores of less than 0.7 nm and 0.7-2. Classified as 0 nm super micropores.

細孔幅を関数とした細孔容積の細孔分布はDensity Functional Theory (DFT)法を用いて解析できる。DFT法は得られた窒素吸着等温線より数値解析を経て細孔分布を得る方法であり、DFTソフトウェア(カンタクロム社、Version 1.62)を用いて解析できる。ウルトラマイクロ孔容積が大きいと、比表面積が大きくなることから、吸着サイトが多くなり好ましい。また、メソ孔容積が大きいと、細孔幅が大きくなり、硫黄化合物が吸着サイトまで移動することが容易となる。従って、ウルトラマイクロ孔容積及びメソ孔容積が大きい活性炭が好ましい。籾殻活性炭は、シリカを含むことからメソ孔容積は元来多いので、メソ孔容積を低下させずにウルトラマイクロ孔容積を増大させる製造方法が有効である。本発明の含浸用バインダーを含浸させ、炭化処理及び賦活処理する方法は、メソ孔容積の低下を最小限に抑制し、尚且つ、ウルトラマイクロ孔容積を増大させる効果が顕著である。   The pore distribution of pore volume as a function of pore width can be analyzed using the Density Functional Theory (DFT) method. The DFT method is a method for obtaining a pore distribution through numerical analysis from the obtained nitrogen adsorption isotherm, and can be analyzed using DFT software (Cantachrome, Version 1.62). A large ultra-micro pore volume is preferable because the specific surface area is large and the number of adsorption sites is large. Further, when the mesopore volume is large, the pore width is increased, and the sulfur compound is easily moved to the adsorption site. Therefore, activated carbon having a large ultramicro pore volume and mesopore volume is preferred. Since rice husk activated carbon contains silica, the mesopore volume is inherently large. Therefore, a production method for increasing the ultramicropore volume without reducing the mesopore volume is effective. The method of impregnating the binder for impregnation of the present invention, carbonizing treatment and activation treatment has a remarkable effect of suppressing the decrease in the mesopore volume and increasing the ultramicropore volume.

〔微量成分の吸着除去〕
本発明の吸着剤が適用対象とする炭化水素油としては、硫黄化合物としてジベンゾチオフェン類を含む、或いは多環芳香族化合物を含む炭素数5〜20の炭化水素油を挙げることができる。具体的には、灯油、軽油などが挙げられ、特には高度に(深度に)脱硫する必要のある燃料電池用の灯油が挙げられる。
[Adsorption and removal of trace components]
Examples of the hydrocarbon oil to which the adsorbent of the present invention is applied include hydrocarbon oils containing 5 to 20 carbon atoms containing dibenzothiophenes as sulfur compounds or polycyclic aromatic compounds. Specific examples include kerosene and light oil, and particularly kerosene for fuel cells that needs to be highly desulfurized (deep).

これらの炭化水素油は、チオフェン類、メルカプタン類(チオール類)、スルフィド類、ジスルフィド類、二硫化炭素など、どんな種類の硫黄化合物を含有していても構わないが、本発明の吸着剤は、特に脱硫することが極めて困難なジベンゾチオフェン類などの硫黄化合物を含有した炭化水素油に対して顕著な効果を発揮する。例えば、全硫黄化合物に対するジベンゾチオフェン類の割合は、灯油では30%前後、軽油ではほぼ100%であり、灯油や軽油などの炭化水素油は本発明の吸着剤の適用対象として好ましい炭化水素油である。もちろん、本発明の吸着剤の適用対象は灯油や軽油に限定されるものではない。   These hydrocarbon oils may contain any kind of sulfur compounds such as thiophenes, mercaptans (thiols), sulfides, disulfides, carbon disulfide, etc. In particular, it exhibits a remarkable effect on hydrocarbon oils containing sulfur compounds such as dibenzothiophenes that are extremely difficult to desulfurize. For example, the ratio of dibenzothiophenes to the total sulfur compounds is about 30% for kerosene and almost 100% for light oil. Hydrocarbon oils such as kerosene and light oil are preferred hydrocarbon oils for application of the adsorbent of the present invention. is there. Of course, the application target of the adsorbent of the present invention is not limited to kerosene or light oil.

これらの硫黄化合物の定性及び定量分析には、ガスクロマトグラフ(Gas Chromatograph:GC)−炎光光度検出器(Flame Photometric Detector:FPD)、GC−原子発光検出器(Atomic Emission Detector:AED)、GC−硫黄化学発光検出器(Sulfur Chemiluminescence Detector:SCD)、GC−誘導結合プラズマ質量分析装置(Inductively Coupled Plasma Mass Spectrometer:ICP−MS)などを用いることができるが、質量ppbレベルの分析にはGC−ICP−MSが最も好ましい(特開2006−145219号公報参照)。   For qualitative and quantitative analysis of these sulfur compounds, Gas Chromatograph (GC) -Flame Photometric Detector (FPD), GC-Atomic Emission Detector (AED), GC- Sulfur Chemiluminescence Detector (SCD), GC-Inductively Coupled Plasma Mass Spectrometer (ICP-MS), etc. can be used, but GC-ICP is used for mass ppb level analysis. -MS is most preferable (see JP 2006-145219 A).

また、多環芳香族化合物は、ベンゼン環を2個以上有する化合物であり、炭素と水素以外のヘテロ原子を含有していても構わないが、2個のベンゼン環を形成する炭素がすべて同一平面上に位置する方が、本発明の吸着剤とのπ電子相互作用が強く、本発明の効果を顕著に得ることができる。   A polycyclic aromatic compound is a compound having two or more benzene rings and may contain heteroatoms other than carbon and hydrogen, but all the carbons forming the two benzene rings are in the same plane. The one located above has a stronger π-electron interaction with the adsorbent of the present invention, and the effects of the present invention can be remarkably obtained.

炭化水素油から硫黄分や多環芳香族化合物などの不純物を本発明の吸着剤で除去する場合、それら不純物の含有量が多すぎると大量の吸着剤を必要とすることになり、不経済である。このような場合、水素化精製法など他の精製法の方が効率的であることから、本発明で取り扱い対象とする炭化水素油中の硫黄分は20質量ppm以下、好ましくは10質量ppm以下、さらに好ましくは1質量ppm以下であり、多環芳香族化合物の含有量は5質量%以下、好ましくは2質量%以下、さらに好ましくは0.5質量%以下である。   When removing impurities such as sulfur and polycyclic aromatic compounds from hydrocarbon oil with the adsorbent of the present invention, if the content of these impurities is too large, a large amount of adsorbent is required, which is uneconomical. is there. In such a case, since other purification methods such as hydrorefining methods are more efficient, the sulfur content in the hydrocarbon oil to be handled in the present invention is 20 mass ppm or less, preferably 10 mass ppm or less. More preferably, it is 1 mass ppm or less, and the content of the polycyclic aromatic compound is 5 mass% or less, preferably 2 mass% or less, more preferably 0.5 mass% or less.

吸着剤は、使用する前に前処理として吸着剤に吸着した微量の水分を除去しておくことが好ましい。水分除去は、空気などの酸化雰囲気下ならば100〜200℃程度で乾燥すればよい。しかし、200℃を超えると空気中の酸素と吸着剤の炭素成分が反応して吸着剤の質量が減少するので好ましくない。一方、窒素などの非酸化雰囲気下では吸着剤を100〜800℃程度で乾燥することができる。特に非酸化雰囲気下で吸着剤を400〜800℃で熱処理を行うと、有機物や酸素含有官能基などが除去され、吸着性能が向上するので一層好ましい。   It is preferable to remove a small amount of moisture adsorbed on the adsorbent as a pretreatment before use. Moisture removal may be performed at about 100 to 200 ° C. in an oxidizing atmosphere such as air. However, when the temperature exceeds 200 ° C., oxygen in the air reacts with the carbon component of the adsorbent to reduce the mass of the adsorbent, which is not preferable. On the other hand, the adsorbent can be dried at about 100 to 800 ° C. in a non-oxidizing atmosphere such as nitrogen. In particular, it is more preferable to heat-treat the adsorbent at 400 to 800 ° C. in a non-oxidizing atmosphere because organic substances and oxygen-containing functional groups are removed and the adsorption performance is improved.

本発明の吸着剤と炭化水素油とを接触させる方法は、回分式(バッチ式)でも連続式でも良いが、成形品の吸着剤を充填した容器に炭化水素油を流通する連続式が効率的であり好ましい。
連続式の場合、接触させる条件としては、圧力は、常圧〜1.0MPaGが好ましく、常圧〜0.1MPaGがより好ましく、特には0.001〜0.3MPaGが好ましい。流量は、液空間速度(LHSV)で0.001〜100hr−1が好ましく、0.01〜10hr−1がより好ましい。見掛けの線速度(炭化水素油の流量を脱硫剤層の断面積で割った値)は、0.001〜100cm/分、更には0.005〜10cm/分、特には0.01〜1cm/分が好ましい。見掛けの線速度が大きいと、吸着速度(液相から固相への移動速度)に比べて液相自体が吸着剤の充填層を通過する移動速度が速くなり、液相が吸着層出口に到達するまでに硫黄分が除去しきれず、除去されない硫黄分を含有したまま炭化水素油は出口から流出されてしまうといった問題が生じやすくなる。逆に見掛けの線速度が小さいと、吸着剤層の断面積が相対的に大きくなることから、液体の分散状態が不良となり、吸着剤層の流れ方向と直角な断面を通過する炭化水素油の流速(流量)にムラが生じ、吸着剤層の断面において吸着した硫黄分に分布(ムラ)が生じるため、脱硫剤への負荷が不均一になり、やはり十分効率的に脱硫することができない。
脱硫処理を行う温度は、10〜150℃が好ましく、特には30〜100℃が好ましい。
The method of bringing the adsorbent of the present invention into contact with the hydrocarbon oil may be a batch type (batch type) or a continuous type, but a continuous type in which hydrocarbon oil is circulated in a container filled with the adsorbent of the molded product is efficient. It is preferable.
In the case of a continuous type, the pressure for contact is preferably normal pressure to 1.0 MPaG, more preferably normal pressure to 0.1 MPaG, and particularly preferably 0.001 to 0.3 MPaG. Flow rate is preferably 0.001~100Hr -1 at a liquid hourly space velocity (LHSV), 0.01~10hr -1 are more preferred. The apparent linear velocity (value obtained by dividing the flow rate of hydrocarbon oil by the cross-sectional area of the desulfurizing agent layer) is 0.001 to 100 cm / min, further 0.005 to 10 cm / min, and particularly 0.01 to 1 cm / min. Minutes are preferred. If the apparent linear velocity is high, the moving speed of the liquid phase itself passing through the packed bed of adsorbent is faster than the adsorption speed (moving speed from the liquid phase to the solid phase), and the liquid phase reaches the outlet of the adsorbing layer. Until then, the sulfur content cannot be removed, and the hydrocarbon oil tends to flow out from the outlet while containing the sulfur content that is not removed. Conversely, when the apparent linear velocity is low, the cross-sectional area of the adsorbent layer becomes relatively large, so that the liquid dispersion state becomes poor, and the hydrocarbon oil passing through the cross section perpendicular to the flow direction of the adsorbent layer. Since unevenness occurs in the flow rate (flow rate) and distribution (unevenness) occurs in the sulfur content adsorbed in the cross section of the adsorbent layer, the load on the desulfurizing agent becomes non-uniform, and desulfurization cannot be performed sufficiently efficiently.
10-150 degreeC is preferable and the temperature which performs a desulfurization process has especially preferable 30-100 degreeC.

燃料電池システムにおいて、本発明の吸着剤を使用する場合には、本発明の吸着剤と他の吸着剤とを組み合わせて使用しても良い。
本発明の吸着剤は、ジベンゾチオフェン類の除去性能に特に優れているので、ベンゾチオフェン類、メルカプタン類、或いは、スルフィド類など、他の種類の硫黄化合物の除去性能に優れた他の吸着剤、例えば、ベンゾチオフェン類の除去については本発明者が先に提案した固体酸触媒及び/又は遷移金属酸化物が担持された活性炭などの脱硫剤、メルカプタン類の除去については本発明が先に提案した酸化銅担持アルミナ、スルフィド類の除去についてはゼオライトなどとの組み合わせが好ましい。
When the adsorbent of the present invention is used in a fuel cell system, the adsorbent of the present invention may be used in combination with another adsorbent.
Since the adsorbent of the present invention is particularly excellent in removal performance of dibenzothiophenes, other adsorbents excellent in removal performance of other types of sulfur compounds such as benzothiophenes, mercaptans, or sulfides, For example, for the removal of benzothiophenes, the present invention has previously proposed the removal of desulfurization agents such as activated carbon on which a solid acid catalyst and / or transition metal oxide is supported, and mercaptans, which the present inventor previously proposed. A combination with zeolite or the like is preferable for removing copper oxide-supported alumina and sulfides.

以下本発明を実施例によりさらに具体的に説明するが,本発明はそれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

[活性炭1〜5の製造]
静岡県豊岡村産コシヒカリ(2004年収穫)のイネの籾殻10gをステンレス金網からなる容器に入れ、管状炉(電気炉)の内径44mm、外径50mmのステンレス管内に配置し、雰囲気ガスとして窒素を約600ml/minで流しながら、ヒーターに通電して、250℃で1時間熱処理を施すことにより、予備炭化処理を行い、8.3gの予備炭化処理物を得た。
乾燥甜菜糖粉末1質量部(乾燥基準)を、蒸留水2.5質量部に加えて、ホットスターラー上で熱しながら撹拌し溶解した。水溶液が、60℃に達したら、その温度で10分間保持して甜菜糖水溶液(含浸用バインダー)を得た。
予備炭化処理して得られた、籾殻の原型を保持したままの予備炭化処理物1質量部に対して、前記のようにして調製した含浸用バインダー1質量部(乾燥基準の甜菜糖として)を均等に含浸されるように噴霧した。一晩大気中に放置してバインダーを予備炭化処理物に均等に含浸させ、乾燥した。
含浸用バインダーを含浸し乾燥した予備炭化処理物を、上記と同じステンレス容器に入れ、管状炉を用い、窒素気流中、600℃で1時間炭化処理を行い、含浸炭化処理物を得た。
[Production of activated carbon 1-5]
Put 10g rice husks from Koshihikari (Toyokamura, Shizuoka Prefecture) from a stainless steel wire mesh into a vessel made of stainless steel wire mesh and place it in a stainless steel tube with an inner diameter of 44mm and an outer diameter of 50mm. While flowing at about 600 ml / min, the heater was energized and subjected to a heat treatment at 250 ° C. for 1 hour to carry out a preliminary carbonization treatment to obtain 8.3 g of a preliminary carbonized product.
1 part by mass (dry basis) of dried beet sugar powder was added to 2.5 parts by mass of distilled water, and the mixture was stirred and dissolved while heating on a hot stirrer. When the aqueous solution reached 60 ° C., it was kept at that temperature for 10 minutes to obtain a beet sugar aqueous solution (impregnation binder).
For 1 part by mass of the pre-carbonized product obtained by pre-carbonization treatment while retaining the original rice husk, 1 part by mass of the impregnation binder prepared as described above (as dry-based sugar beet sugar) Spraying was done so that it was evenly impregnated. The binder was impregnated with the pre-carbonized product evenly in the atmosphere overnight and dried.
The pre-carbonized product impregnated with the impregnating binder and dried was placed in the same stainless steel container as described above, and carbonized at 600 ° C. for 1 hour in a nitrogen stream using a tubular furnace to obtain an impregnated carbonized product.

別途、乾燥甜菜糖粉末6質量部(乾燥基準)に、蒸留水10質量部を加え、ホットスターラー上で撹拌しながら熱し穏やかに沸騰させた。水分を蒸発してとろみが増したところで、加熱、撹拌を止め、放置し冷却してとろみを有する甜菜糖シロップ(成形用バインダー)を得た。
前記の含浸炭化処理物1質量部を乳鉢で粉砕し、そこに成形用バインダー0.43質量部(乾燥基準)を加え、十分に混合した。得られた混合物を、加圧成形機(ENERPAC社製、型番CPF10−1)を用い、3ton(42MPa)の圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に加圧成形した。
得られた加圧成形物を、ステンレスホルダーに立て掛け、105℃で1時間乾燥した後、上記と同じ管状炉を用い、加圧成型物の直径方向がステンレス容器の直径方向とほぼ一致するように設置し、加圧成型物の直径方向に垂直に窒素気流が当たるようにして、窒素気流中、875℃で5分間炭化処理し、成形炭化処理物を得た。
Separately, 10 parts by mass of distilled water was added to 6 parts by mass (dry basis) of dried beet sugar powder, and the mixture was heated and gently boiled on a hot stirrer. When the thickening was caused by evaporating the water, heating and stirring were stopped, and the mixture was left to cool to obtain a sugar beet sugar syrup (molding binder) having a thickening.
1 part by mass of the above-mentioned impregnated carbonized product was pulverized in a mortar, and 0.43 part by mass (dry basis) of a binder for molding was added thereto and mixed thoroughly. The obtained mixture was pressed into a disk shape having a diameter of 30 mm and a thickness of 2 mm by pressing for 1 minute at a pressure of 3 ton (42 MPa) using a pressure molding machine (manufactured by ENERPAC, model number CPF10-1).
The obtained press-molded product is stood on a stainless steel holder and dried at 105 ° C. for 1 hour, and then the same tubular furnace as above is used so that the diameter direction of the press-molded product is substantially coincident with the diameter direction of the stainless steel container. It was installed and carbonized in a nitrogen stream at 875 ° C. for 5 minutes so that a nitrogen stream hits perpendicularly to the diameter direction of the pressure molded product to obtain a molded carbonized product.

こうして得られた成形炭化処理物を、上記の含浸用バインダーに一晩浸漬し、含浸用バインダーを成形炭化処理物に均等に含浸させた後、105℃で2時間乾燥した。この浸漬及び乾燥により、成形炭化処理物は1質量部当たり0.1質量部(乾燥基準)のバインダーを取り込んだ。含浸用バインダーを含浸し乾燥した成形炭化処理物を5ロット用意し、それぞれ上記と同じ管状炉を用い、窒素ガスを約600ml/minで流しながら昇温し、875℃に達したところで窒素ガスを二酸化炭素ガスに切り替え、二酸化炭素ガス気流中(約600ml/min)、同温度(875℃)で、0.5時間、1.0時間、1.5時間、2時間及び2.5時間保持し賦活処理をした。その後、室温まで自然放冷して、賦活時間の異なる5種類の成形賦活処理物である活性炭1〜5(実施例1〜3、比較例1〜2)を得た。活性炭1〜5の形状維持性や細孔特性などの性状を測定し、その結果を表1に示す。   The molded carbonized product thus obtained was immersed in the above impregnation binder overnight, and the impregnated binder was uniformly impregnated into the molded carbonized product, and then dried at 105 ° C. for 2 hours. By this immersion and drying, the molded carbonized product took in 0.1 part by mass (dry basis) of binder per part by mass. Five lots of carbonized carbonized material impregnated with a binder for impregnation and dried were prepared, respectively, using the same tubular furnace as described above, and heated while flowing nitrogen gas at about 600 ml / min. When the temperature reached 875 ° C., nitrogen gas was supplied. Switch to carbon dioxide gas and hold for 0.5 hours, 1.0 hour, 1.5 hours, 2 hours and 2.5 hours at the same temperature (875 ° C.) in a carbon dioxide gas stream (about 600 ml / min). Activated. Then, it stood to cool naturally to room temperature, and obtained activated carbon 1-5 (Examples 1-3, Comparative Examples 1-2) which is five types of shaping | molding activation treatment products from which activation time differs. Properties such as the shape maintaining properties and pore characteristics of the activated carbons 1 to 5 were measured, and the results are shown in Table 1.

尚、形状維持性は、賦活処理の前後において形状が変化した否かを目視で観察し、変化が見られないもので、さらに手で壊そうとしたとき形がくずれないものを「良好」とし、変化が見られるものや形がくずれたものは「不良」とした。かさ密度[g/cm]は、成形賦活処理物の直径及び厚さから求めた体積V[cm]、及び質量W[g]の値から、次の式(1)により算出した。
かさ密度[g/cm]=W/V (1)
賦活質量収率[%]は、賦活処理前後の質量から、次の式(2)により算出した。
賦活質量収率[%]=100×W/W (2)
式中、W及びWは、それぞれ賦活後及び賦活前(乾燥後)の質量[g]を示す。
In addition, the shape maintainability is determined by visually observing whether or not the shape has changed before and after the activation treatment, and no change is observed. Those that showed a change or were deformed were considered “bad”. The bulk density [g / cm 3 ] was calculated by the following equation (1) from the value of the volume V [cm 3 ] and the mass W a [g] obtained from the diameter and thickness of the molded activated product.
Bulk density [g / cm 3 ] = W a / V (1)
The activation mass yield [%] was calculated by the following equation (2) from the mass before and after the activation treatment.
Activation mass yield [%] = 100 × W a / W b (2)
In the formula, W a and W b represent mass [g] after activation and before activation (after drying), respectively.

Figure 2009072712
Figure 2009072712

[活性炭6の製造]
賦活時間1.0時間の成形賦活処理物(活性炭2)を、含浸用バインダーに一晩浸漬した。成形賦活処理物(活性炭2)を含浸用バインダーから引き上げてから、それを105℃で2時間乾燥した。この含浸及び乾燥により、成形賦活処理物(活性炭2)は1質量部当たり0.1質量部(乾燥基準)のバインダーを取り込んだ。その後、上記の賦活処理と同様にして、再度875℃で1.0時間賦活処理を行った。こうして、2段階賦活処理物である活性炭6(実施例4)を得た。活性炭6の性状を活性炭1〜5と同様に表1に示す。尚、賦活質量収率は、2段階目の値を示す。
[Manufacture of activated carbon 6]
A molding activation treatment product (activated carbon 2) having an activation time of 1.0 hour was immersed in an impregnation binder overnight. After the molded activation product (activated carbon 2) was pulled up from the impregnation binder, it was dried at 105 ° C. for 2 hours. By this impregnation and drying, the molded activated product (activated carbon 2) took in 0.1 parts by mass (dry basis) of binder per part by mass. Then, similarly to said activation process, the activation process was again performed at 875 degreeC for 1.0 hour. Thus, activated carbon 6 (Example 4), which is a two-stage activation treatment product, was obtained. The properties of the activated carbon 6 are shown in Table 1 as with the activated carbons 1-5. In addition, an activation mass yield shows the value of a 2nd step.

〔脱硫性能評価試験〕
活性炭1〜6をそのまま吸着剤として用い、表2に示す性状を有する灯油(ジャパンエナジー社製)に浸漬して吸着脱硫試験を実施し、吸着剤としての性能を評価した。具体的には、ディスク状の活性炭1〜6を、乳鉢を用いて軽度に粉砕した後、150℃で3時間乾燥してから吸着脱硫試験に供した。吸着剤に対する灯油の比率(質量)を30(吸着剤1質量部に対して灯油30質量部)として、吸着剤を灯油中に浸漬し、10℃にて4日間静置した。4日間静置後、灯油中の硫黄分を分析した。浸せき前後の灯油の硫黄分の値から、次の式(3)により活性炭に吸着した硫黄量を硫黄吸着量[mg−S/g−活性炭]として算出し、表1下部に示した。
硫黄吸着量=(S−S)×30÷10 (3)
式中、S及びSは、それぞれ浸せき前及び浸せき後の灯油の硫黄分[質量ppm]を示す。
[Desulfurization performance evaluation test]
Activated carbons 1 to 6 were used as adsorbents as they were and immersed in kerosene (made by Japan Energy Co., Ltd.) having the properties shown in Table 2 to conduct an adsorption desulfurization test, and the performance as adsorbents was evaluated. Specifically, the disc-shaped activated carbons 1 to 6 were lightly pulverized using a mortar and then dried at 150 ° C. for 3 hours, and then subjected to an adsorption desulfurization test. The ratio (mass) of kerosene to adsorbent was set to 30 (30 parts by mass of kerosene to 1 part by mass of adsorbent), and the adsorbent was immersed in kerosene and allowed to stand at 10 ° C. for 4 days. After standing for 4 days, the sulfur content in kerosene was analyzed. From the sulfur content of kerosene before and after the immersion, the sulfur amount adsorbed on the activated carbon was calculated as the sulfur adsorption amount [mg-S / g-activated carbon] by the following formula (3), and is shown in the lower part of Table 1.
Sulfur adsorption amount = (S 1 −S 2 ) × 30 ÷ 10 3 (3)
In the formula, S 1 and S 2 indicate the sulfur content [mass ppm] of kerosene before and after immersion, respectively.

また、参考例として、市販の繊維状活性炭(クラレケミカル社製、FR−25)を用いて同様に浸漬式吸着脱硫試験を行い、繊維状活性炭の脱硫性能評価を実施した。活性炭6及び参考例の繊維状活性炭の性状とともに、脱硫性能評価試験の結果を表1に併せて示す。   Moreover, as a reference example, a commercial activated carbon (manufactured by Kuraray Chemical Co., Ltd., FR-25) was similarly subjected to an immersion adsorption desulfurization test, and the desulfurization performance of the fibrous activated carbon was evaluated. The results of the desulfurization performance evaluation test are shown in Table 1 together with the properties of the activated carbon 6 and the fibrous activated carbon of the reference example.

Figure 2009072712
Figure 2009072712

〔充てん密度の測定〕
活性炭6と市販の繊維状活性炭の充てん密度をそれぞれ次のように測定した。活性炭6は幅5mm以下の粒に粉砕し、内径10.6mm、容量10mlのメスシリンダに充てんし、ガラス棒で上から圧縮して充填した後、活性炭6の占める容積と充填質量とから充てん密度を算出した。一方、繊維状活性炭の場合、上記と同じメスシリンダに繊維状活性炭を、活性炭6の場合と同様にガラス棒を用いて上から十分に圧縮し充填して、充てん密度を算出した。それぞれの充てん密度を表1に示す。
[Measurement of packing density]
The packing densities of the activated carbon 6 and the commercially available fibrous activated carbon were measured as follows. Activated carbon 6 is pulverized into particles having a width of 5 mm or less, filled into a measuring cylinder having an inner diameter of 10.6 mm and a capacity of 10 ml, compressed from above with a glass rod and filled, and then filled from the volume occupied by activated carbon 6 and the filling mass. Was calculated. On the other hand, in the case of fibrous activated carbon, fibrous activated carbon was packed into the same graduated cylinder as described above and sufficiently packed from above using a glass rod as in the case of activated carbon 6, and the packing density was calculated. Each packing density is shown in Table 1.

[活性炭7の製造]
活性炭1〜6の原料として用いた静岡県豊岡村産コシヒカリ(2004年収穫)のイネの籾殻を、600℃で1時間予備炭化した。得られた予備炭化処理物は含浸炭化処理をすることなく、予備炭化処理物1質量部に、成形用バインダーを0.5質量部(甜菜糖乾燥基準)加えて、活性炭2の場合と同様にして、ディスク状にプレス成形した後、成形用バインダーを練り込んでディスク状に成形した予備炭化処理物を、成形炭化処理をすることなく、上記の賦活処理と同様にして、二酸化炭素ガス気流中、875℃で1時間賦活処理を施し、成形賦活処理物である活性炭7(比較例3)を調製した。活性炭7の性状を表1に示す。
[Manufacture of activated carbon 7]
Rice husks of Koshihikari (Toyokamura, Shizuoka Prefecture) used as raw materials for activated carbons 1 to 6 were pre-carbonized at 600 ° C. for 1 hour. The obtained pre-carbonized product was not impregnated and carbonized, and 0.5 parts by mass of a molding binder (based on sugar beet sugar) was added to 1 part by mass of the pre-carbonized product, and the same as in the case of activated carbon 2. Then, after press-molding into a disk shape, a pre-carbonized product kneaded into a disk shape by kneading a molding binder, in the same manner as the activation process described above, without carbonizing the molding, Then, activation treatment was performed at 875 ° C. for 1 hour to prepare activated carbon 7 (Comparative Example 3) which is a molded activation treatment product. The properties of the activated carbon 7 are shown in Table 1.

形状維持性、比表面積、細孔容積などの物性測定、及び浸漬式吸着脱硫試験の結果を示す表1から、本発明の活性炭2〜4及び6(実施例1〜3及び4)は、形状維持性に優れ、比表面積、全細孔容積が大きく、良好な細孔特性を有している。なかでも、2段階賦活処理物である活性炭6は、合計の賦活処理時間が同じ2時間である活性炭4と比べて、比表面積及び全細孔容積がほぼ同程度であるが、かさ密度が相当大きくなっていることが分かる。その結果、体積当たりの比表面積及び全細孔容積が大きくなっている。そして、特に、比表面積、全細孔容積、及びスーパーマイクロ孔容積が比較的大きい活性炭2、3、4及び6の脱硫性能は、それぞれ0.118、0.124、0.111及び0.132mg−S/g−活性炭と高く、比表面積及び全細孔容積が極めて大きい繊維状活性炭の0.126mg−S/g−活性炭と比較して遜色の無い脱硫性能を示している。   From Table 1 showing the results of physical properties measurement such as shape maintenance, specific surface area, pore volume, and immersion adsorption desulfurization test, the activated carbons 2 to 4 and 6 (Examples 1 to 3 and 4) of the present invention are shapes. Excellent maintainability, large specific surface area, large total pore volume, and good pore characteristics. Among them, the activated carbon 6 which is a two-stage activation treatment product has substantially the same specific surface area and total pore volume as the activated carbon 4 having the same total activation treatment time of 2 hours, but the bulk density is considerable. You can see that it is getting bigger. As a result, the specific surface area per volume and the total pore volume are increased. In particular, the desulfurization performances of the activated carbons 2, 3, 4, and 6 having a relatively large specific surface area, total pore volume, and super micro pore volume are 0.118, 0.124, 0.111, and 0.132 mg, respectively. -Desulfurization performance comparable to 0.126 mg-S / g-activated carbon, which is high in S / g-activated carbon, and has a very large specific surface area and total pore volume.

また、活性炭6と繊維状活性炭の充てん密度に着目すると、活性炭6の充てん密度は0.41g/cmであり、繊維状活性炭は0.16g/cmである。吸着剤は、通常充填カラムに充填されて、連続式で使用される。容器に充填して使用する場合、充填密度が高いほどより多くの脱硫剤を充填することができ、その分容量当たりの脱流量を増やすことができる。したがって、本実施例の活性炭からなる吸着剤は、単位容積あたりの脱硫性能は、高価な繊維状活性炭に勝るとも劣るものではなく、活性炭6は繊維状活性炭の3倍近い脱硫性能が期待される。
含浸用バインダーを使用しないで製造した比較例の活性炭7は、比表面積が小さく、含浸用バインダーを添加しないと比表面積が大きくならないことがわかる。
Moreover, paying attention to the packing density of the activated carbon 6 and the fibrous activated carbon, the packing density of the activated carbon 6 is 0.41 g / cm 3 and the fibrous activated carbon is 0.16 g / cm 3 . The adsorbent is usually packed in a packed column and used in a continuous manner. When the container is filled and used, the higher the packing density, the more desulfurizing agent can be filled, and the deflow rate per volume can be increased accordingly. Therefore, the adsorbent made of activated carbon of this example is not inferior to expensive fibrous activated carbon in desulfurization performance per unit volume, and activated carbon 6 is expected to have desulfurization performance nearly three times that of fibrous activated carbon. .
It can be seen that the activated carbon 7 of the comparative example manufactured without using the impregnating binder has a small specific surface area, and the specific surface area does not increase unless the impregnating binder is added.

表1及び表2の物性測定及び組成分析については、既に説明したものを除き、次の方法で行った。
(1)密度(15℃):JIS K2249に準拠して測定した。
(2)蒸留性状:JIS K2254に準拠して測定した。
(3)芳香族分、飽和分、多環芳香族分:英国石油協会(The Institute of Petroleum)規格IP標準法391/95(屈折率検出器を用いた高速液体クロマトグラフによる中間留出物の芳香族炭化水素の分析)に準拠して測定した。
(4)硫黄分(全硫黄分):燃焼酸化−紫外蛍光法で分析した。
(5)硫黄化合物タイプ分析:GC−ICP−MSで分析した。
(6)窒素分:JIS K2609に記載の微量電量滴定法に準拠して測定した。
About the physical-property measurement and composition analysis of Table 1 and Table 2, except having already demonstrated, it performed by the following method.
(1) Density (15 ° C.): Measured according to JIS K2249.
(2) Distillation property: Measured according to JIS K2254.
(3) Aromatic content, saturated content, polycyclic aromatic content: British Institute of Petroleum standard IP standard method 391/95 (high-performance liquid chromatograph using refractive index detector of middle distillate Aromatic hydrocarbon analysis).
(4) Sulfur content (total sulfur content): analyzed by combustion oxidation-ultraviolet fluorescence method.
(5) Sulfur compound type analysis: Analyzed by GC-ICP-MS.
(6) Nitrogen content: Measured according to the microcoulometric titration method described in JIS K2609.

Claims (12)

活性炭を含む吸着剤の製造方法において、植物系バイオマスに糖類からなる成形用バインダーを加えて混練して成形した後、炭化処理して成形炭化処理物を得る成形炭化処理工程、及び得られた成形炭化処理物に糖類からなる含浸用バインダーを加えて含浸させた後、賦活処理して活性炭である比表面積600m/g以上の成形賦活処理物を得る賦活処理工程を含むことを特徴とする炭化水素油中の微量成分を除去する吸着剤の製造方法。 In a method for producing an adsorbent containing activated carbon, a molding carbonization step for obtaining a molded carbonized product by carbonizing after adding a molding binder made of sugar to a plant biomass and kneading and molding, and the obtained molding Carbonization characterized by including an activation treatment step of adding a binder for impregnation consisting of saccharides to the carbonized product and impregnating the carbonized product to obtain a molded activation treatment product having a specific surface area of 600 m 2 / g or more which is activated carbon. The manufacturing method of the adsorption agent which removes the trace component in hydrogen oil. さらに、成形賦活処理物に、再び糖類からなる含浸用バインダーを含浸させ第2の賦活処理を行い比表面積600m/g以上の第2の成形賦活処理物を得る第2の賦活処理工程を含む請求項1に記載の吸着剤の製造方法。 Furthermore, the molding activation treatment product includes a second activation treatment step of impregnating a binder for impregnation made of saccharide again and performing a second activation treatment to obtain a second molding activation treatment product having a specific surface area of 600 m 2 / g or more. The method for producing an adsorbent according to claim 1. さらに、成形炭化処理工程の前に、植物系バイオマスに糖類からなる含浸用バインダーを含浸させ炭化処理を行う含浸炭化処理工程を含む請求項1又は2に記載の吸着剤の製造方法。   Furthermore, the manufacturing method of the adsorption agent of Claim 1 or 2 including the carbonization process of impregnation which impregnates the plant-type biomass with the binder for impregnation which consists of saccharides before a shaping | molding carbonization process process. さらに、植物系バイオマスを予備炭化して予備炭化処理物を得る予備炭化処理工程を含む請求項1〜3の何れかに記載の吸着剤の製造方法。   Furthermore, the manufacturing method of the adsorption agent in any one of Claims 1-3 including the pre-carbonization process process which pre-carbonizes plant biomass and obtains a pre-carbonization processed material. 予備炭化処理が、不活性雰囲気下、200〜600℃で、0.01〜2時間実施され、含浸炭化処理及び成形炭化処理が、それぞれ不活性雰囲気下、200〜900℃で、0.01〜2時間実施され、かつ、賦活処理及び第2の賦活処理が、それぞれ二酸化炭素雰囲気下、800〜900℃で、0.1〜4時間実施される請求項1〜4の何れかに記載の吸着剤の製造方法。   The preliminary carbonization treatment is performed at 200 to 600 ° C. for 0.01 to 2 hours under an inert atmosphere, and the impregnation carbonization treatment and the molding carbonization treatment are performed at 0.01 to 200 ° C. under an inert atmosphere at 200 to 900 ° C., respectively. The adsorption according to any one of claims 1 to 4, wherein the adsorption treatment is carried out for 2 hours, and the activation treatment and the second activation treatment are each carried out at 800 to 900 ° C in a carbon dioxide atmosphere for 0.1 to 4 hours. Manufacturing method. 植物系バイオマスが、イネの籾殻である請求項1〜5の何れかに記載の吸着剤の製造方法。   The method for producing an adsorbent according to any one of claims 1 to 5, wherein the plant biomass is rice husk. 糖類が、甜菜糖、黒糖及び甘しゃ糖から選択される少なくとも1種である請求項1〜6の何れかに記載の吸着剤の製造方法。   The method for producing an adsorbent according to any one of claims 1 to 6, wherein the saccharide is at least one selected from sugar beet sugar, brown sugar and sugar sucrose. 請求項1〜7の何れかに記載の吸着剤の製造方法で得られた、比表面積が600m/g以上、平均細孔幅が1.0nm以上である成形賦活処理物及び/又は第2の成形賦活処理物を含む炭化水素油中の微量成分を除去する吸着剤。 A molded activation treatment product obtained by the method for producing an adsorbent according to claim 1 and having a specific surface area of 600 m 2 / g or more and an average pore width of 1.0 nm or more and / or second An adsorbent that removes trace components in hydrocarbon oils that contain the molded activation product. 請求項8に記載の吸着剤を用い、炭化水素油中に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去することを特徴とする炭化水素油中の微量成分の除去方法。   A method for removing trace components in hydrocarbon oil, wherein the adsorbent according to claim 8 is used to adsorb and remove sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oil. 炭化水素油が灯油又は軽油である請求項9に記載の除去方法。   The removal method according to claim 9, wherein the hydrocarbon oil is kerosene or light oil. 150℃以下の温度において硫黄化合物を吸着除去する請求項9又は10に記載の除去方法。   The removal method according to claim 9 or 10, wherein the sulfur compound is adsorbed and removed at a temperature of 150 ° C or lower. 請求項8に記載の吸着剤を装備したことを特徴とする燃料電池システム。   A fuel cell system equipped with the adsorbent according to claim 8.
JP2007244933A 2007-09-21 2007-09-21 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil Expired - Fee Related JP4817075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244933A JP4817075B2 (en) 2007-09-21 2007-09-21 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244933A JP4817075B2 (en) 2007-09-21 2007-09-21 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2009072712A true JP2009072712A (en) 2009-04-09
JP4817075B2 JP4817075B2 (en) 2011-11-16

Family

ID=40608261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244933A Expired - Fee Related JP4817075B2 (en) 2007-09-21 2007-09-21 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4817075B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative
JP2013203614A (en) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
JP2013538256A (en) * 2010-07-30 2013-10-10 シェブロン ユー.エス.エー. インコーポレイテッド Hydrocarbon feed processing
CN103566882A (en) * 2013-09-29 2014-02-12 安徽金叶炭素科技有限公司 High-adsorptivity modified activated carbon and preparation method thereof
WO2017126421A1 (en) * 2016-01-19 2017-07-27 デクセリアルズ株式会社 Porous carbon material, method for manufacturing same, filter, sheet, and catalyst carrier
JP2017128497A (en) * 2016-01-19 2017-07-27 デクセリアルズ株式会社 Porous carbon material and method for manufacturing same, and filter, sheet, and catalyst carrier
JP2019018202A (en) * 2011-02-10 2019-02-07 ソニー株式会社 Air purification device, filter for purifying air, water purification device, and cartridge for purifying water
JP2020510527A (en) * 2017-12-12 2020-04-09 江▲蘇▼省▲農▼▲業▼科学院Jiangsu Academy Of Agricultural Sciences Production method of composite modified straw granular activated carbon adsorption material and its use in phosphorus adsorption
US11697603B2 (en) 2011-02-10 2023-07-11 Sony Corporation Decontaminant, carbon/polymer composite, decontamination sheet member and filter medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107296A (en) * 1975-03-19 1976-09-22 Jiro Asahina
JP2000313611A (en) * 1999-04-26 2000-11-14 Mitsubishi Chemicals Corp Active carbon and its production
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
JP2005047724A (en) * 2003-07-30 2005-02-24 Araco Corp Production method for molded active carbon
JP2007284337A (en) * 2006-03-23 2007-11-01 Japan Energy Corp Adsorbent removing trace component in hydrocarbon oil and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107296A (en) * 1975-03-19 1976-09-22 Jiro Asahina
JP2000313611A (en) * 1999-04-26 2000-11-14 Mitsubishi Chemicals Corp Active carbon and its production
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
JP2005047724A (en) * 2003-07-30 2005-02-24 Araco Corp Production method for molded active carbon
JP2007284337A (en) * 2006-03-23 2007-11-01 Japan Energy Corp Adsorbent removing trace component in hydrocarbon oil and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349907B (en) * 2010-03-30 2021-02-02 索尼公司 Bactericide, photocatalytic composite material, adsorbent and purifying agent
US11707068B2 (en) 2010-03-30 2023-07-25 Sony Corporation Fungicide, photo catalytic composite material, adsorbent, and depurative
CN107349907A (en) * 2010-03-30 2017-11-17 索尼公司 Bactericide, optic catalytic composite material, adsorbent and cleanser
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative
JP2013538256A (en) * 2010-07-30 2013-10-10 シェブロン ユー.エス.エー. インコーポレイテッド Hydrocarbon feed processing
US11802059B2 (en) 2011-02-10 2023-10-31 Sony Corporation Decontaminant, carbon/polymer composite, decontamination sheet member and filter medium
US11697603B2 (en) 2011-02-10 2023-07-11 Sony Corporation Decontaminant, carbon/polymer composite, decontamination sheet member and filter medium
JP2019018202A (en) * 2011-02-10 2019-02-07 ソニー株式会社 Air purification device, filter for purifying air, water purification device, and cartridge for purifying water
JP2013203614A (en) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
CN103566882A (en) * 2013-09-29 2014-02-12 安徽金叶炭素科技有限公司 High-adsorptivity modified activated carbon and preparation method thereof
KR20180100677A (en) * 2016-01-19 2018-09-11 데쿠세리아루즈 가부시키가이샤 Porous carbon material, its production method, and carrier for filter, sheet and catalyst
TWI774653B (en) * 2016-01-19 2022-08-21 日商迪睿合股份有限公司 Porous carbon material, method for producing the same, filter, sheet, and carrier for catalyst
CN108473319A (en) * 2016-01-19 2018-08-31 迪睿合株式会社 Porous carbon material and its manufacturing method and filter, sheet material and carriers for catalysts
JP2017128497A (en) * 2016-01-19 2017-07-27 デクセリアルズ株式会社 Porous carbon material and method for manufacturing same, and filter, sheet, and catalyst carrier
WO2017126421A1 (en) * 2016-01-19 2017-07-27 デクセリアルズ株式会社 Porous carbon material, method for manufacturing same, filter, sheet, and catalyst carrier
KR102636938B1 (en) * 2016-01-19 2024-02-16 데쿠세리아루즈 가부시키가이샤 Porous carbon material, method for producing the same, and carrier for filters, sheets, and catalysts
JP2020510527A (en) * 2017-12-12 2020-04-09 江▲蘇▼省▲農▼▲業▼科学院Jiangsu Academy Of Agricultural Sciences Production method of composite modified straw granular activated carbon adsorption material and its use in phosphorus adsorption

Also Published As

Publication number Publication date
JP4817075B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4817075B2 (en) Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil
JP2011093774A (en) Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
Islam et al. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption
JP4963616B2 (en) Adsorbent for removing trace components in hydrocarbon oil and method for producing the same
Özçimen et al. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons
Hsi et al. Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation
Saka et al. Sulphur-doped carbon particles from almond shells as cheap adsorbent for efficient Cd (II) adsorption
CN101947435B (en) Chitosan polycation additive for reducing phenols in cigarette smoke
Yin et al. A facile fabrication of highly dispersed CeO2/SiO2 aerogel composites with high adsorption desulfurization performance
Kazmierczak-Razna et al. The use of microwave radiation for obtaining activated carbons enriched in nitrogen
Soleimani et al. Low-cost adsorbents from agricultural by-products impregnated with phosphoric acid
Adio et al. Silver nanoparticle-loaded activated carbon as an adsorbent for the removal of mercury from arabian gas-condensate
Li et al. Preparation of desulfurization adsorbents with highly dispersed metal active sites by enriching Ni from water with Pistia Stratiotes
AU2006230531B2 (en) Process for removing color bodies from hydrocarbon-based fuels using activated carbon
Udawatta et al. Surface modification of Trema orientalis wood biochar using natural coconut vinegar and its potential to remove aqueous calcium ions: column and batch studies
Khalid et al. Adsorptive removal of dibenzothiophene from model fuel over activated carbon developed by KOH activation of pinecone: Equilibrium and kinetic studies
Zhang et al. Pore Structure Characteristics of Activated Carbon Fibers Derived from Poplar Bark Liquefaction and Their Use for Adsorption of Cu (II).
WO2006105318A2 (en) Process for removing color bodies from hydrocarbon-based fuels using activated carbon
CN108927146A (en) Inferior heavy oil hydrogenation catalyst and preparation method thereof
Li et al. Adsorption of phenol from water on activated carbon prepared from shaddock peel by ZnCl2 and H3PO4: equilibrium, kinetics and thermodynamics
Malikov et al. Granulated sorbents from wood waste
McWilliams et al. Batchwise extraction of methyl linolenate (18: 3, ALA) from fatty acid methyl esters derived from soybean and canola oils using silver nitrate/silica gel
CN110354813B (en) With SiO2Method for removing thiophene sulfides in fuel oil by taking-MTES-graphene oxide composite aerogel as adsorbent
EP3757063B1 (en) Porous carbon material, method for producing same, and catalyst for synthesis reaction
JPH10202003A (en) Mercury adsorbent and method for removing mercury in hydrocarbon oil with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees