Nothing Special   »   [go: up one dir, main page]

JP2009068381A - Exhaust passage for internal combustion engine - Google Patents

Exhaust passage for internal combustion engine Download PDF

Info

Publication number
JP2009068381A
JP2009068381A JP2007235874A JP2007235874A JP2009068381A JP 2009068381 A JP2009068381 A JP 2009068381A JP 2007235874 A JP2007235874 A JP 2007235874A JP 2007235874 A JP2007235874 A JP 2007235874A JP 2009068381 A JP2009068381 A JP 2009068381A
Authority
JP
Japan
Prior art keywords
exhaust
passage
throttle valve
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235874A
Other languages
Japanese (ja)
Inventor
Ichiro Yamaguchi
一郎 山口
Hidetomo Horikawa
英知 堀川
Yasuhisa Ono
泰久 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Toyota Motor Corp
Original Assignee
Daihatsu Motor Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Toyota Motor Corp filed Critical Daihatsu Motor Co Ltd
Priority to JP2007235874A priority Critical patent/JP2009068381A/en
Priority to PCT/JP2008/066355 priority patent/WO2009035009A1/en
Publication of JP2009068381A publication Critical patent/JP2009068381A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust passage for an internal combustion engine capable of suppressing noise while making appropriate quantity of exhaust gas flow out from an upstream side of an exhaust throttle valve to a downstream side thereof through a bypass passage. <P>SOLUTION: The exhaust passage 15 is provided with the exhaust throttle valve 30, a bypass passage 34 communicating to a section at an upstream side and a section at a downstream side of the valve 30, a waste gate valve 35 changing passage cross section of the passage 34. The exhaust throttle valve 30 is driven and closed so as to make a gap between a valve element 32 of the exhaust throttle valve 30 and an inner wall of the exhaust passage 15 smaller at a section near a rotation center L1 of a rotation shaft 31 of the exhaust throttle valve 30 and larger at a section far from the rotation center L1, and the waste gate valve 35 is opened. The bypass passage 34 opens only on a surface at a side where an end part at an downstream side thereof crosses the rotation center L1 out of the inner wall surface of the exhaust passage 15, is set in a shape of which length of an opening in a direction perpendicularly crossing a direction of exhaust gas flow becomes short as the shape of opening section goes more downstream side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、通路断面積を変更する排気絞り弁と同排気絞り弁を迂回するバイパス通路とが設けられた内燃機関の排気通路に関する。   The present invention relates to an exhaust passage of an internal combustion engine provided with an exhaust throttle valve that changes the passage cross-sectional area and a bypass passage that bypasses the exhaust throttle valve.

従来、内燃機関の排気通路の途中に排気絞り弁が設けられたものがある(例えば特許文献1参照)。この排気絞り弁としては通常、回転駆動される回動軸と同回動軸に一体形成された弁体とを備えた、いわゆるバタフライ式のものが採用される。   Conventionally, an exhaust throttle valve is provided in the middle of an exhaust passage of an internal combustion engine (see, for example, Patent Document 1). As this exhaust throttle valve, a so-called butterfly type that includes a rotational shaft that is rotationally driven and a valve body that is integrally formed with the rotational shaft is usually employed.

この排気絞り弁は、例えば通常時において開弁駆動されるとともに内燃機関の温度や排気通路に設けられた排気浄化装置の温度の早期上昇を図るときに閉弁駆動されるなどといったように駆動される。そして、このように排気絞り弁が閉弁された場合には、排気通路の通路断面積がごく小さくなり、その後において排気絞り弁より排気流れ方向上流側(以下、単に「上流側」)の圧力が高くなって内燃機関のポンピングロスが増加して、燃料消費量が増加するようになる。これにより内燃機関の温度や排気浄化装置の温度が速やかに上昇するようになるといった効果が得られるようになる。   For example, the exhaust throttle valve is driven to open at a normal time and is driven to close when the temperature of the internal combustion engine or the temperature of the exhaust gas purification device provided in the exhaust passage is to be raised early. The When the exhaust throttle valve is closed in this way, the passage cross-sectional area of the exhaust passage becomes very small, and thereafter the pressure upstream of the exhaust throttle valve in the exhaust flow direction (hereinafter simply “upstream side”). As the fuel consumption increases, the pumping loss of the internal combustion engine increases and the fuel consumption increases. As a result, it is possible to obtain an effect that the temperature of the internal combustion engine and the temperature of the exhaust gas purification device quickly rise.

また、そうした内燃機関の排気通路に、排気絞り弁の上流側の部分および排気流れ方向下流側(以下、単に「下流側」)の部分を連通するバイパス通路と同通路の通路断面積を変更するウェイストゲート弁とを設けることが提案されている。こうした装置では、排気絞り弁の閉弁に伴ってその上流側の圧力が過度に高くなるおそれのあるときにウェイストゲート弁が開弁される。これにより排気絞り弁を迂回するようにバイパス通路を通じて排気が流れるようになり、排気絞り弁の上流側の圧力が過度に高くなることが回避される。   In addition, the cross-sectional area of the bypass passage and the bypass passage communicating with the exhaust passage of the internal combustion engine through the upstream portion of the exhaust throttle valve and the downstream portion in the exhaust flow direction (hereinafter simply referred to as “downstream side”) is changed. It has been proposed to provide a wastegate valve. In such a device, the waste gate valve is opened when the pressure on the upstream side of the exhaust throttle valve may become excessively high as the exhaust throttle valve is closed. As a result, exhaust gas flows through the bypass passage so as to bypass the exhaust throttle valve, and an excessive increase in pressure on the upstream side of the exhaust throttle valve is avoided.

ここで仮に、上記排気通路にあって排気絞り弁が閉弁された際に排気通路が完全に閉塞されるようにすると、排気絞り弁の上流側の圧力が過度に高い速度で上昇するおそれがある。そのため上記排気通路では、そうした圧力の急上昇を回避するために、若干開かれた位置が排気絞り弁の閉弁位置として設定されている。これにより排気絞り弁が閉弁されているときであっても同排気絞り弁の弁体と排気通路の内壁との間隙から下流側に若干量の排気が漏れるようになり、排気絞り弁の上流側の圧力の過度に高い速度での上昇が抑えられるようになる。
特開平11−82070号公報
If the exhaust passage is completely closed when the exhaust throttle valve is closed in the exhaust passage, the pressure on the upstream side of the exhaust throttle valve may increase at an excessively high speed. is there. Therefore, in the exhaust passage, in order to avoid such a sudden rise in pressure, a slightly opened position is set as the valve closing position of the exhaust throttle valve. As a result, even when the exhaust throttle valve is closed, a slight amount of exhaust gas leaks downstream from the gap between the exhaust throttle valve body and the inner wall of the exhaust passage. The rise of the side pressure at an excessively high speed can be suppressed.
JP-A-11-82070

上述した内燃機関の排気通路では、排気絞り弁が閉弁されているときであっても、同排気絞り弁の弁体と排気通路の内壁との間隙から下流側に向けて排気が噴出する。そのため、単にバイパス通路の下流側の端部を排気通路における排気絞り弁より下流側の部分に接続すると、排気絞り弁が閉弁されるとともにウェイストゲート弁が開弁された際に、上記間隙から漏れる排気の流れとバイパス通路から排気通路に流入する排気の流れとの干渉によって乱れが発生してしまう。そして、そうした乱れが発生すると、バイパス通路を通じて排気絞り弁の上流側から下流側に排気を流出させる際にその流出量の不要な低下を招く一因となるばかりか、その乱れが大きい場合には排気通路壁面からの大きな音(騒音)の発生を招いてしまう。   In the exhaust passage of the internal combustion engine described above, even when the exhaust throttle valve is closed, the exhaust is ejected downstream from the gap between the valve body of the exhaust throttle valve and the inner wall of the exhaust passage. Therefore, if the downstream end of the bypass passage is simply connected to a portion downstream of the exhaust throttle valve in the exhaust passage, the exhaust throttle valve is closed and the waste gate valve is opened. Disturbance occurs due to interference between the leaked exhaust flow and the exhaust flow flowing from the bypass passage into the exhaust passage. If such disturbance occurs, not only will it cause an unnecessary decrease in the amount of outflow when exhaust flows from the upstream side to the downstream side of the exhaust throttle valve through the bypass passage, but if the disturbance is large, The generation of a loud noise (noise) from the wall surface of the exhaust passage.

本発明は、そうした実情に鑑みてなされたものであり、その目的は、バイパス通路を通じて排気絞り弁の上流側から下流側へと適正量の排気を流出させつつ騒音の発生を抑えることのできる内燃機関の排気通路を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is an internal combustion engine capable of suppressing the generation of noise while allowing an appropriate amount of exhaust gas to flow out from the upstream side to the downstream side of the exhaust throttle valve through the bypass passage. It is to provide an exhaust passage for the engine.

以下、上記目的を達成するための手段及びその作用効果について説明する。
請求項1に記載の発明は、回転駆動される回動軸および同回動軸に一体形成された弁体からなるバタフライ式の開閉弁であって内燃機関の排気通路の通路断面積を変更する排気絞り弁と、前記排気通路における前記排気絞り弁の排気流れ方向上流側の部分および同下流側の部分を連通するバイパス通路と、同バイパス通路の通路断面積を変更するウェイストゲート弁とを備え、前記排気絞り弁および前記ウェイストゲート弁の一作動態様として、前記弁体と前記排気通路の内壁との間隙が前記回動軸の回転中心に近い部分において小さくなり且つ同回転中心から遠い部分において大きくなる開度に前記排気絞り弁の開度が変更されるとともに、前記バイパス通路を通じた前記連通が許容される開度に前記ウェイストゲート弁の開度が変更されるとの特定作動態様が設定されてなる内燃機関の排気通路において、前記バイパス通路は、その排気流れ方向下流側の端部が前記排気通路の内壁面のうちの前記回転中心と交差する側の面においてのみ開口されてなり、該開口された部分における排気流れ方向下流側の部分の形状が同下流側の部分ほど排気流れ方向と直交する方向における開口長さが短い形状に設定されてなることをその要旨とする。
Hereinafter, means for achieving the above-described object and its operation and effects will be described.
The invention according to claim 1 is a butterfly type on-off valve comprising a rotary shaft that is rotationally driven and a valve body that is integrally formed with the rotary shaft, and changes the cross-sectional area of the exhaust passage of the internal combustion engine. An exhaust throttle valve, a bypass passage communicating the upstream portion and the downstream portion in the exhaust flow direction of the exhaust throttle valve in the exhaust passage, and a waste gate valve that changes the passage cross-sectional area of the bypass passage As an operation mode of the exhaust throttle valve and the waste gate valve, the gap between the valve body and the inner wall of the exhaust passage is reduced in a portion near the rotation center of the rotation shaft and in a portion far from the rotation center. The opening of the exhaust throttle valve is changed to an opening that increases, and the opening of the waste gate valve is changed to an opening that allows the communication through the bypass passage. In the exhaust passage of the internal combustion engine in which the specific operation mode is set, the bypass passage is a surface on the side where the end on the downstream side in the exhaust flow direction intersects the rotation center of the inner wall surface of the exhaust passage The shape of the downstream portion in the exhaust flow direction in the opened portion is set to a shape in which the opening length in the direction orthogonal to the exhaust flow direction is shorter in the downstream portion. The gist.

上記構成では、排気絞り弁およびウェイストゲート弁の作動態様が特定作動態様とされた際に、排気絞り弁の弁体と排気通路の内壁との間隙から噴出する排気の量が同排気絞り弁の回動軸の回転中心に近い部分において少なく、同回転中心から遠い部分において多くなる。そのため、排気通路の内壁面における排気絞り弁の回動軸の回転中心に近い部分においてバイパス通路の排気流れ方向下流側(以下、単に「下流側」)の端部を開口させることにより、同回転中心から遠い部分において開口させる場合と比較して、バイパス通路から流出する排気の流れと上記間隙から漏れる排気の流れとの干渉によって生じる乱れを小さく抑えることが可能である。   In the above configuration, when the operation mode of the exhaust throttle valve and the waste gate valve is set to the specific operation mode, the amount of exhaust ejected from the gap between the valve body of the exhaust throttle valve and the inner wall of the exhaust passage is the same as that of the exhaust throttle valve. It is small in the portion near the rotation center of the rotation shaft, and increases in a portion far from the rotation center. Therefore, by rotating the end of the bypass passage on the downstream side in the exhaust flow direction (hereinafter simply referred to as “downstream”) in the portion near the rotation center of the rotation shaft of the exhaust throttle valve on the inner wall surface of the exhaust passage, Compared with the case of opening at a portion far from the center, it is possible to suppress the turbulence caused by the interference between the exhaust flow flowing out from the bypass passage and the exhaust flow leaking from the gap.

この点、上記構成によれば、そうした排気通路の内壁面のうちの排気絞り弁の回動軸の回転中心と交差する側の面、すなわち上記間隙から漏れる排気の量が少ない部分においてバイパス通路の下流側の端部が開口されているため、排気流れの干渉による乱れの発生を抑えることができる。   In this respect, according to the above-described configuration, the bypass passage is formed on the inner wall surface of the exhaust passage that intersects the rotation center of the rotation shaft of the exhaust throttle valve, that is, on the portion where the amount of exhaust leaking from the gap is small. Since the downstream end is opened, the occurrence of turbulence due to interference of the exhaust flow can be suppressed.

また上記構成では、排気絞り弁およびウェイストゲート弁の作動態様が特定作動態様とされた際に、排気通路の内壁面のうちの排気絞り弁の回動軸の回転中心から遠い側の面の近傍において、上記間隙から噴出する排気の流量が多くなり且つその流速が高くなる。そのため、そのように排気の流量が多く且つその流速が高い部分に挟まれた部分(特定部分)においては上記間隙から噴出する排気の流量が少なく且つ流速が低いと云える。ここで上記間隙から漏れた排気は下流側ほど広い範囲に広がるように噴出するために、上記特定部分は排気絞り弁を始点に延びる部分であって下流側ほど狭い部分となる。また、排気通路の内壁面において同特定部分に接する部分(特定壁面)は、排気絞り弁を始点に延びる形状であって下流側に向かうほど排気流れ方向と直交する方向における長さが短い形状となる。そして、上述した排気流れの干渉による乱れの発生を抑えるためには、上記特定壁面、言い換えれば、上記間隙から噴出する排気の流量が少なく且つ流速が低い部分においてバイパス通路の下流側の端部を開口させることが望ましい。   Further, in the above configuration, when the operation mode of the exhaust throttle valve and the waste gate valve is set to the specific operation mode, the vicinity of the surface far from the rotation center of the rotation shaft of the exhaust throttle valve on the inner wall surface of the exhaust passage , The flow rate of the exhaust gas ejected from the gap increases and the flow velocity increases. Therefore, it can be said that the flow rate of exhaust gas ejected from the gap is small and the flow rate is low in a portion (specific portion) sandwiched between portions where the flow rate of exhaust gas is high and the flow rate is high. Here, since the exhaust gas leaked from the gap is ejected so as to spread in a wider range toward the downstream side, the specific portion is a portion extending from the exhaust throttle valve to the starting point and narrower toward the downstream side. In addition, a portion (specific wall surface) in contact with the specific portion on the inner wall surface of the exhaust passage has a shape extending from the exhaust throttle valve as a starting point, and a shape having a shorter length in a direction orthogonal to the exhaust flow direction toward the downstream side. Become. In order to suppress the occurrence of turbulence due to the interference of the exhaust flow described above, the end portion on the downstream side of the bypass passage in the specific wall surface, in other words, the portion where the flow rate of the exhaust gas ejected from the gap is small and the flow velocity is low. It is desirable to make it open.

この点、上記構成によれば、排気絞り弁の下流側におけるバイパス通路の開口部分の下流側の部分の形状を上記特定壁面に対応する形状とすることができ、排気の流量が多く且つ流速が高い部分、すなわちバイパス通路の下流側の端部が開口された場合において排気流れの干渉によって発生する乱れが大きくなる可能性の高い部分においてバイパス通路が開口されることを抑えつつ、その開口面積を大きくすることが可能になる。   In this regard, according to the above configuration, the shape of the downstream portion of the opening portion of the bypass passage on the downstream side of the exhaust throttle valve can be a shape corresponding to the specific wall surface, and the exhaust flow rate is large and the flow rate is high. While suppressing the opening of the bypass passage in the high portion, i.e., the portion where the turbulence caused by the interference of the exhaust flow is likely to increase when the downstream end of the bypass passage is opened, the opening area is reduced. It becomes possible to enlarge.

したがって上記構成によれば、バイパス通路を通じて排気絞り弁の排気流れ方向上流側の部分から下流側の部分へと適正量の排気を流出させつつ騒音の発生を抑えることができる。   Therefore, according to the above configuration, it is possible to suppress the generation of noise while allowing an appropriate amount of exhaust gas to flow out from the upstream portion in the exhaust flow direction of the exhaust throttle valve to the downstream portion through the bypass passage.

請求項2に記載の発明は、請求項1に記載の内燃機関の排気通路において、前記バイパス通路は、前記開口された部分全体の形状が排気流れ方向下流側の部分ほど排気流れ方向と直交する方向における開口長さが短い形状に設定されてなることをその要旨とする。   According to a second aspect of the present invention, in the exhaust passage of the internal combustion engine according to the first aspect, the shape of the entire opened portion of the bypass passage is orthogonal to the exhaust flow direction as the downstream portion in the exhaust flow direction. The gist is that the opening length in the direction is set to a short shape.

上記構成によれば、排気の流量が多く且つ流速が高い部分においてバイパス通路が開口されることを抑えた上で、その開口面積をより大きくすることが可能になる。
請求項3に記載の発明は、請求項1または2に記載の内燃機関の排気通路において、当該排気通路は内部を通過する排気を浄化する排気浄化装置が設けられてなり、前記排気絞り弁および前記ウェイストゲート弁は前記排気浄化装置より排気流れ方向下流側に設けられてなることをその要旨とする。
According to the above configuration, it is possible to further increase the opening area of the exhaust passage while suppressing the opening of the bypass passage at a portion where the flow rate of exhaust gas is high and the flow velocity is high.
According to a third aspect of the present invention, in the exhaust passage of the internal combustion engine according to the first or second aspect, the exhaust passage is provided with an exhaust purification device for purifying exhaust gas passing through the interior thereof, and the exhaust throttle valve and The gist of the wastegate valve is that it is provided downstream of the exhaust purification device in the exhaust flow direction.

上記構成によれば、排気浄化装置の温度を速やかに上昇させるために同排気浄化装置より下流側に排気絞り弁が設けられた装置にあって、騒音の発生を好適に抑制することができる。   According to the above configuration, in the device in which the exhaust throttle valve is provided on the downstream side of the exhaust purification device in order to quickly raise the temperature of the exhaust purification device, the generation of noise can be suitably suppressed.

以下、本発明にかかる内燃機関の排気通路を具体化した一実施の形態について説明する。
図1に、本実施の形態にかかる排気通路が適用される内燃機関の概略構成を示す。
Hereinafter, an embodiment in which an exhaust passage of an internal combustion engine according to the present invention is embodied will be described.
FIG. 1 shows a schematic configuration of an internal combustion engine to which an exhaust passage according to the present embodiment is applied.

同図1に示すように、内燃機関10にはその燃焼室11内に直接燃料を噴射する燃料噴射弁12が設けられている。この燃料噴射弁12には燃料ポンプ13を通じて燃料タンク14から燃料が供給されている。   As shown in FIG. 1, the internal combustion engine 10 is provided with a fuel injection valve 12 that injects fuel directly into the combustion chamber 11. Fuel is supplied to the fuel injection valve 12 from a fuel tank 14 through a fuel pump 13.

内燃機関10の排気通路15には、排気を浄化するための排気浄化装置20が設けられている。この排気浄化装置20は、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する酸化触媒コンバータ21と排気中の粒子状物質(PM)を捕集するフィルタ22とを備えている。   An exhaust gas purification device 20 for purifying exhaust gas is provided in the exhaust passage 15 of the internal combustion engine 10. This exhaust purification device 20 includes an oxidation catalytic converter 21 that oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas, and a filter 22 that collects particulate matter (PM) in exhaust gas. I have.

また排気通路15には、その上記排気浄化装置20より排気流れ方向上流側(以下、単に「上流側」)の位置に、排気中に燃料を添加する燃料添加弁23が設けられている。この燃料添加弁23には連通管24を介して前記燃料ポンプ13が連通されており、同燃料ポンプ13を通じて燃料タンク14から燃料が供給される。   The exhaust passage 15 is provided with a fuel addition valve 23 for adding fuel into the exhaust gas at a position upstream of the exhaust purification device 20 in the exhaust flow direction (hereinafter simply “upstream side”). The fuel pump 13 is communicated with the fuel addition valve 23 through a communication pipe 24, and fuel is supplied from the fuel tank 14 through the fuel pump 13.

さらに排気通路15には、その上記排気浄化装置20より排気流れ方向下流側(以下、単に「下流側」)の位置に、同排気通路15の通路断面積を変更するための排気絞り弁30が設けられている。この排気絞り弁30は、回転駆動される回動軸31と同回動軸31に一体形成された円板形状の弁体32とによって構成された、いわゆるバタフライ式の開閉弁である。排気絞り弁30の回動軸31にはアクチュエータ33が連結されている。このアクチュエータ33の駆動を通じて排気絞り弁30の作動状態が、排気通路15の通路断面積が大きい状態(開弁状態)と同通路断面積がごく小さい状態(閉弁状態)とのいずれか一方に切り替えられる。   Further, an exhaust throttle valve 30 for changing the cross-sectional area of the exhaust passage 15 is provided in the exhaust passage 15 at a position downstream of the exhaust purification device 20 in the exhaust flow direction (hereinafter simply “downstream side”). Is provided. The exhaust throttle valve 30 is a so-called butterfly on-off valve configured by a rotational shaft 31 that is rotationally driven and a disc-shaped valve body 32 that is integrally formed with the rotational shaft 31. An actuator 33 is connected to the rotation shaft 31 of the exhaust throttle valve 30. The operating state of the exhaust throttle valve 30 through the driving of the actuator 33 changes to one of a state where the passage cross-sectional area of the exhaust passage 15 is large (valve open state) and a state where the passage cross-sectional area is very small (valve closed state). Can be switched.

また、排気通路15にはその上記排気絞り弁30の上流側の部分と下流側の部分とを連通するバイパス通路34が設けられており、このバイパス通路34にはウェイストゲート弁35が設けられている。このウェイストゲート弁35は、自己調圧式の弁であり、排気通路15における排気絞り弁30より上流側の部分と同排気絞り弁30より下流側の部分との圧力差が所定値を超えると自動的に開弁される。これらバイパス通路34およびウェイストゲート弁35を設けることにより、排気絞り弁30が閉弁されてその上流側の圧力が高くなった場合にウェイストゲート弁35が開弁されて排気絞り弁30を迂回するように排気が流れるようになり、排気絞り弁30の上流側の圧力の過度に高くなることが回避される。   The exhaust passage 15 is provided with a bypass passage 34 that communicates the upstream portion and the downstream portion of the exhaust throttle valve 30, and a waste gate valve 35 is provided in the bypass passage 34. Yes. The waste gate valve 35 is a self-regulating valve, and is automatically activated when the pressure difference between a portion upstream of the exhaust throttle valve 30 and a portion downstream of the exhaust throttle valve 30 in the exhaust passage 15 exceeds a predetermined value. Open. By providing the bypass passage 34 and the waste gate valve 35, when the exhaust throttle valve 30 is closed and the upstream pressure becomes high, the waste gate valve 35 is opened to bypass the exhaust throttle valve 30. Thus, the exhaust gas flows and the pressure on the upstream side of the exhaust throttle valve 30 is prevented from becoming excessively high.

内燃機関10の吸気通路16には、燃焼室11内に吸入される空気の量(吸入空気量GA)を検出するための吸気量センサ41が設けられている。また、内燃機関10の出力軸17の近傍には同出力軸17の回転速度(機関回転速度NE)を検出するための回転速度センサ42が設けられている。   The intake passage 16 of the internal combustion engine 10 is provided with an intake air amount sensor 41 for detecting the amount of air taken into the combustion chamber 11 (intake air amount GA). A rotation speed sensor 42 for detecting the rotation speed of the output shaft 17 (engine rotation speed NE) is provided in the vicinity of the output shaft 17 of the internal combustion engine 10.

電子制御装置40はCPU、ROM、RAMの他、燃料噴射弁12や燃料添加弁23、アクチュエータ33等を駆動するための駆動回路を備えて構成されている。そして電子制御装置40は各種センサの出力信号を取り込むとともに各種の演算を行い、その演算結果に基づいて燃料噴射弁12や燃料添加弁23、排気絞り弁30(詳しくはアクチュエータ33)の駆動を制御する。   The electronic control unit 40 includes a drive circuit for driving the fuel injection valve 12, the fuel addition valve 23, the actuator 33, and the like in addition to the CPU, ROM, and RAM. The electronic control unit 40 takes in output signals from various sensors and performs various calculations, and controls the driving of the fuel injection valve 12, the fuel addition valve 23, and the exhaust throttle valve 30 (specifically, the actuator 33) based on the calculation results. To do.

燃料噴射弁12の駆動制御は、基本的に、内燃機関10の出力トルクを調節するために実行される。具体的には、そのときどきの吸入空気量GAや機関回転速度NEなどに基づいて燃料噴射量についての制御目標値(目標噴射量)が求められ、同目標噴射量と実際の燃料噴射量とが一致するように燃料噴射弁12が開弁駆動される。   The drive control of the fuel injection valve 12 is basically executed to adjust the output torque of the internal combustion engine 10. Specifically, a control target value (target injection amount) for the fuel injection amount is obtained based on the intake air amount GA and the engine rotational speed NE at that time, and the target injection amount and the actual fuel injection amount are obtained. The fuel injection valve 12 is driven to open so as to match.

燃料添加弁23の駆動制御は、フィルタ22に堆積したPMを除去するために実行される。具体的には、所定期間にわたり燃料添加弁23が間欠的に開弁駆動される。そして、そのように燃料添加弁23を開弁駆動する処理(PM除去処理)を実行することにより、排気中に燃料が継続的に添加され、その燃料が酸化することによってフィルタ22の温度が高くなる。その結果、フィルタ22に堆積しているPMが燃焼して二酸化炭素(CO2)と水(H2O)になって排気通路15の外部に放出されるようになる。   The drive control of the fuel addition valve 23 is executed to remove PM accumulated on the filter 22. Specifically, the fuel addition valve 23 is intermittently opened for a predetermined period. Then, by executing the process for opening the fuel addition valve 23 (PM removal process) as described above, the fuel is continuously added to the exhaust gas, and the temperature of the filter 22 is increased by oxidizing the fuel. Become. As a result, the PM deposited on the filter 22 burns and becomes carbon dioxide (CO 2) and water (H 2 O) and is discharged outside the exhaust passage 15.

排気絞り弁30の駆動制御は、上記PM除去処理においてPMを適切に除去するために実行される。
内燃機関10の運転領域が吸入空気量の少ない低負荷領域であるときには、燃焼室11から排気通路15に排出される排気の量が少なく、単位時間当たりに排気通路15を通過する排気が有する熱の総量も少ない。そのため、燃料添加弁23の開弁駆動を通じて排気中に燃料を添加したところで、フィルタ22の温度を十分に高くすることができない場合がある。
The drive control of the exhaust throttle valve 30 is executed in order to properly remove PM in the PM removal process.
When the operating region of the internal combustion engine 10 is a low load region where the amount of intake air is small, the amount of exhaust discharged from the combustion chamber 11 to the exhaust passage 15 is small, and the heat that the exhaust passing through the exhaust passage 15 per unit time has. The total amount of is also small. Therefore, the temperature of the filter 22 may not be sufficiently increased when the fuel is added to the exhaust gas through the valve opening drive of the fuel addition valve 23.

この点をふまえて本実施の形態では、PM除去処理の実行中において内燃機関10の運転領域が低負荷領域であるときに排気絞り弁30が閉弁駆動される。このように排気絞り弁30を閉弁駆動することにより、排気通路15における排気絞り弁30より上流側の部分の圧力が高くなって内燃機関10のポンピングロスが大きくなることから、同ロスの増加に伴う機関出力の減少分を補うために燃料噴射弁12から噴射される燃料の量が多くなる。その結果、単位時間当たりに燃焼室11から排気通路15に排出される排気の有する熱の総量が多くなってフィルタ22の温度が速やかに上昇するようになり、同フィルタ22に堆積しているPMの除去が適切に行われるようになる。   In view of this point, in the present embodiment, the exhaust throttle valve 30 is driven to be closed when the operation region of the internal combustion engine 10 is a low load region during execution of the PM removal process. Since the exhaust throttle valve 30 is driven to close in this manner, the pressure in the portion upstream of the exhaust throttle valve 30 in the exhaust passage 15 is increased and the pumping loss of the internal combustion engine 10 is increased. The amount of fuel injected from the fuel injection valve 12 increases in order to compensate for the decrease in the engine output accompanying this. As a result, the total amount of heat of the exhaust exhausted from the combustion chamber 11 to the exhaust passage 15 per unit time increases, and the temperature of the filter 22 quickly rises, and the PM accumulated in the filter 22 Is properly removed.

一方、PM除去処理の実行中であっても内燃機関10の運転領域が中高負荷領域であるときには排気絞り弁30が開弁駆動される。これは、このとき単位時間当たりに燃焼室11から排気通路15に排出される排気の有する熱の総量が多く、排気絞り弁30を閉弁駆動しなくてもフィルタ22の温度を十分に高くすることが可能であるためである。また、PM除去処理が実行されないときにも排気絞り弁30は開弁駆動される。   On the other hand, even when the PM removal process is being executed, the exhaust throttle valve 30 is driven to open when the operating range of the internal combustion engine 10 is in the middle and high load range. This is because the total amount of heat of the exhaust gas discharged from the combustion chamber 11 to the exhaust passage 15 per unit time is large at this time, and the temperature of the filter 22 is sufficiently increased without the exhaust throttle valve 30 being driven to close. Because it is possible. The exhaust throttle valve 30 is also driven to open when the PM removal process is not executed.

なお本実施の形態では、排気絞り弁30が閉弁駆動されて閉弁状態になったときに、排気絞り弁30の弁体32と排気通路15の内壁との間隙から少量の排気が漏れる構造になっている。これは排気絞り弁30が閉弁状態になった直後にその上流側の部分の圧力が過度に高い速度で上昇することを避けるためである。   In the present embodiment, when the exhaust throttle valve 30 is driven to be closed, a small amount of exhaust gas leaks from the gap between the valve body 32 of the exhaust throttle valve 30 and the inner wall of the exhaust passage 15. It has become. This is to prevent the pressure in the upstream portion from rising at an excessively high speed immediately after the exhaust throttle valve 30 is closed.

図2に、排気絞り弁30の配設部分における排気通路15の断面構造を模式的に示す。なお同図2において、(a)は排気通路15の延設方向に沿う方向における断面形状を示しており、(b)は同延設方向と直行する方向における断面形状を示している。   FIG. 2 schematically shows a cross-sectional structure of the exhaust passage 15 in the portion where the exhaust throttle valve 30 is disposed. 2A shows a cross-sectional shape in a direction along the extending direction of the exhaust passage 15, and FIG. 2B shows a cross-sectional shape in a direction orthogonal to the extending direction.

図2に示すように、上記間隙から少量の排気が漏れる構造は、同間隙が弁体32の周囲において均等になる排気絞り弁30の動作位置(図2中に破線で示す位置)より若干大きい開度となる動作位置(図2中に実線で示す位置)を閉弁状態であるときの排気絞り弁30の動作位置とすることにより実現される。   As shown in FIG. 2, the structure in which a small amount of exhaust gas leaks from the gap is slightly larger than the operating position of the exhaust throttle valve 30 where the gap becomes uniform around the valve body 32 (position indicated by the broken line in FIG. 2). This is realized by setting the operating position (the position indicated by the solid line in FIG. 2) at the opening as the operating position of the exhaust throttle valve 30 when the valve is closed.

これにより本実施の形態では、排気絞り弁30が閉弁状態になると、排気絞り弁30の弁体32と排気通路15の内壁との間隙が同排気絞り弁30の回動軸31の回転中心L1に近い部分において小さく、且つ同回転中心L1から遠い部分において大きい状態になる。なお、図2においては理解を容易にするために、排気絞り弁30の弁体32と排気通路15の内壁との間隙や、上記回転中心L1に近い部分における同間隙と回転中心L1に遠い部分における間隙との差を誇張して示している。   Thus, in the present embodiment, when the exhaust throttle valve 30 is closed, the gap between the valve body 32 of the exhaust throttle valve 30 and the inner wall of the exhaust passage 15 is the rotational center of the rotary shaft 31 of the exhaust throttle valve 30. It becomes small in a portion close to L1 and large in a portion far from the rotation center L1. In order to facilitate understanding in FIG. 2, the gap between the valve body 32 of the exhaust throttle valve 30 and the inner wall of the exhaust passage 15, or the portion near the rotation center L1 and the portion far from the rotation center L1. The difference from the gap is exaggerated.

以下、排気通路15の内壁面における上記バイパス通路34の下流側の端部の開口形状について、図3を参照して説明する。
図3は、排気絞り弁30の配設部分およびその周辺における排気通路15の断面構造を示している。なお図3にあっては、閉弁状態になったときの排気絞り弁30の動作位置を実線で示しており、開弁状態になったときの排気絞り弁30の動作位置を二点鎖線で示している。
Hereinafter, the opening shape of the downstream end portion of the bypass passage 34 on the inner wall surface of the exhaust passage 15 will be described with reference to FIG. 3.
FIG. 3 shows a cross-sectional structure of the exhaust passage 15 in the vicinity of the portion where the exhaust throttle valve 30 is disposed and the periphery thereof. In FIG. 3, the operating position of the exhaust throttle valve 30 when the valve is closed is indicated by a solid line, and the operating position of the exhaust throttle valve 30 when the valve is opened is indicated by a two-dot chain line. Show.

同図3に示すように、バイパス通路34の下流側の端部は、排気通路15の内壁面のうちの排気絞り弁30の回動軸31の回転中心L1から遠い側の面(図3における上部および下部)においては開口されず、同回動軸31の回転中心L1と交差する側の面(図3の上下方向における中央部分)において開口されている。すなわち、排気通路15の内壁面のうちの上記回転中心L1と交差する側の面においてのみバイパス通路34の下流側の端部は開口されている。   As shown in FIG. 3, the downstream end of the bypass passage 34 is a surface on the inner wall surface of the exhaust passage 15 that is far from the rotation center L1 of the rotation shaft 31 of the exhaust throttle valve 30 (in FIG. 3). The upper and lower portions are not opened, but are opened on the surface (the central portion in the vertical direction in FIG. 3) on the side that intersects with the rotation center L1 of the rotation shaft 31. That is, the downstream end of the bypass passage 34 is opened only on the surface of the inner wall surface of the exhaust passage 15 that intersects the rotation center L1.

また、バイパス通路34の下流側の端部の排気通路15における開口形状は、下流側の部分に向かうほど排気流れ方向と直交する方向(図3の上下方向)における開口長さが徐々に短くなる略台形形状に設定される。ちなみに本実施の形態では、加工上の理由によりバイパス通路34の下流側の部分の内壁が角部のない形状に形成されており、上記のように略台形形状に設定された開口形状における四つの角にあたる部分もそれぞれ湾曲した形状になっている。   Moreover, the opening shape in the exhaust passage 15 at the downstream end of the bypass passage 34 is gradually shortened in the direction (vertical direction in FIG. 3) perpendicular to the exhaust flow direction toward the downstream portion. It is set to a substantially trapezoidal shape. Incidentally, in the present embodiment, the inner wall of the downstream portion of the bypass passage 34 is formed in a shape having no corners for processing reasons, and the four openings in the substantially trapezoidal shape as described above are formed. Each of the corners has a curved shape.

以下、このように排気通路15におけるバイパス通路34の下流側の端部の開口形状を設定することによる作用について説明する。
内燃機関10の排気通路15では、排気絞り弁30が閉弁状態になると、排気絞り弁30の弁体32と排気通路15の内壁との間隙が同排気絞り弁30の回動軸31の回転中心L1に近い部分において小さく、且つ同回転中心L1から遠い部分において大きい状態になる。
Hereinafter, the effect | action by setting the opening shape of the downstream edge part of the bypass channel 34 in the exhaust channel 15 in this way is demonstrated.
In the exhaust passage 15 of the internal combustion engine 10, when the exhaust throttle valve 30 is closed, the gap between the valve body 32 of the exhaust throttle valve 30 and the inner wall of the exhaust passage 15 is rotated by the rotation shaft 31 of the exhaust throttle valve 30. It becomes small in a portion near the center L1 and large in a portion far from the rotation center L1.

そのため、排気絞り弁30が閉弁駆動されるとともにウェイストゲート弁35が開弁されるとの特定作動態様になったときには、上記間隙から噴出する排気の量が排気絞り弁30の回動軸31の回転中心L1に近い部分において少なく、同回転中心L1から遠い部分において多くなる。   For this reason, when the exhaust throttle valve 30 is driven to close and the waste gate valve 35 is opened, the amount of exhaust gas ejected from the gap is determined by the rotation shaft 31 of the exhaust throttle valve 30. In the portion close to the rotation center L1, and increases in the portion far from the rotation center L1.

したがって、排気通路15の内壁面における上記回転中心L1に近い部分においてバイパス通路34の下流側の端部を開口させることにより、同回転中心L1から遠い部分において開口させる場合と比較して、バイパス通路34から流出する排気の流れと上記間隙から漏れる排気の流れとの干渉によって生じる乱れを小さく抑えることが可能である。   Accordingly, by opening the downstream end of the bypass passage 34 in the portion near the rotation center L1 on the inner wall surface of the exhaust passage 15, the bypass passage is compared with the case of opening the portion far from the rotation center L1. It is possible to suppress the turbulence caused by the interference between the flow of exhaust gas flowing out from 34 and the flow of exhaust gas leaking from the gap.

上記排気通路15では、その内壁面のうちの上記回転中心L1と交差する側の面、すなわち上記間隙から漏れる排気の量が少ない部分においてのみバイパス通路34の下流側の端部が開口されている。そのため、バイパス通路34から流出する排気の流れと上記間隙から漏れる排気の流れとの干渉による乱れの発生を抑えることができる。   In the exhaust passage 15, the downstream end portion of the bypass passage 34 is opened only on the surface of the inner wall surface that intersects the rotation center L <b> 1, that is, in the portion where the amount of exhaust leaking from the gap is small. . Therefore, it is possible to suppress the occurrence of turbulence due to interference between the flow of exhaust flowing out of the bypass passage 34 and the flow of exhaust leaking from the gap.

また内燃機関10の排気通路15では、上記特定作動状態になったときに、排気通路15の内壁面のうちの排気絞り弁30の回動軸31の回転中心L1から遠い側の面の近傍において上記間隙から噴出する排気の流量が多くなり且つその流速が高くなる。そのため、そうした排気の流量が多く且つその流速が高い部分に挟まれた部分(特定部分)においては上記間隙から噴出する排気の流量が少なく且つ流速が低いと云える。   Further, in the exhaust passage 15 of the internal combustion engine 10, in the vicinity of the surface on the far side from the rotation center L <b> 1 of the rotation shaft 31 of the exhaust throttle valve 30 on the inner wall surface of the exhaust passage 15 when the specific operation state is reached. The flow rate of the exhaust gas ejected from the gap increases and the flow velocity increases. Therefore, it can be said that the flow rate of the exhaust gas ejected from the gap is small and the flow velocity is low in a portion (specific portion) sandwiched between portions where the flow rate of the exhaust gas is high and the flow velocity is high.

図4に、排気絞り弁30の周辺における排気通路15の断面構造および排気の流れの様子を模式的に示す。
同図4中に矢印で示すように、排気絞り弁30の弁体32と排気通路15の内壁との間隙から漏れた排気は下流側ほど広い範囲に広がるように噴出するために、同間隙から噴出する排気の流れにあってその流量が多く且つ流速が高い部分も同様に下流側ほど広い範囲に広がる形状となる。また、そうした排気の流量が多く且つ流速が高い部分に挟まれた部分である上記特定部分は排気絞り弁30を始点に延びる形状であって下流側ほど狭い形状となる。さらに、排気通路15の内壁面における上記特定部分に接する部分(図4中における一点鎖線により挟まれた部分「A」)である特定壁面は、排気絞り弁30を始点に延びる形状であって下流側に向かうほど排気流れ方向と直交する方向(図4における上下方向)における長さが短い形状となる。
FIG. 4 schematically shows the cross-sectional structure of the exhaust passage 15 around the exhaust throttle valve 30 and the state of the exhaust flow.
As indicated by arrows in FIG. 4, the exhaust gas leaking from the gap between the valve element 32 of the exhaust throttle valve 30 and the inner wall of the exhaust passage 15 is ejected so as to spread in a wider range toward the downstream side. The portion of the flow of exhaust gas that is ejected and that has a high flow rate and a high flow velocity also has a shape that spreads in a wider range toward the downstream side. Further, the specific portion, which is a portion sandwiched between portions where the flow rate of exhaust gas is large and the flow velocity is high, has a shape extending from the exhaust throttle valve 30 as a starting point, and becomes narrower toward the downstream side. Furthermore, the specific wall surface that is a portion in contact with the specific portion of the inner wall surface of the exhaust passage 15 (portion “A” sandwiched by a chain line in FIG. 4) extends from the exhaust throttle valve 30 to the downstream side. As it goes to the side, the length in the direction (vertical direction in FIG. 4) orthogonal to the exhaust flow direction becomes shorter.

ここで、バイパス通路34から流出する排気の流れと上記間隙から漏れる排気の流れとの干渉による乱れの発生を抑えるためには、上記特定壁面(言い換えれば、排気通路15の内壁面の中でも上記間隙から噴出する排気の流量が少なく且つ流速が低い部分)においてにおいてバイパス通路34の下流側の端部を開口させることが望ましい。   Here, in order to suppress the occurrence of turbulence due to interference between the flow of the exhaust gas flowing out of the bypass passage 34 and the flow of the exhaust gas leaking from the gap, the gap is not limited to the specific wall surface (in other words, the inner wall surface of the exhaust passage 15. It is desirable to open the downstream end portion of the bypass passage 34 in a portion where the flow rate of the exhaust gas ejected from the pipe is small and the flow velocity is low.

本実施の形態では、排気絞り弁30の下流側におけるバイパス通路34の開口部分の形状が下流側に向かうほど排気流れ方向と直交する方向における長さが短い形状、すなわち上記特定壁面に対応する形状に形成されている。そのためバイパス通路34の下流側の端部が開口する部分を設定する際に、開口部分が略長方形形状や略正方形状、あるいは下流側に向かうほど排気流れ方向と直交する方向における長さが長い形状に形成される場合と比較して、その開口部分を上記特定壁面にあたる部分に容易に収めることができる。したがって排気の流量が多く且つ流速が高い部分(すなわちバイパス通路34の下流側の端部が開口された場合において排気流れの干渉によって発生する乱れが大きくなる可能性の高い部分)において同バイパス通路34が開口されることを抑えつつ、その開口面積を大きくすることが可能になる。   In the present embodiment, the shape of the opening portion of the bypass passage 34 on the downstream side of the exhaust throttle valve 30 is shorter in the direction orthogonal to the exhaust flow direction toward the downstream side, that is, the shape corresponding to the specific wall surface. Is formed. Therefore, when setting the portion where the downstream end of the bypass passage 34 is opened, the opening portion is substantially rectangular or square, or the shape that is longer in the direction orthogonal to the exhaust flow direction toward the downstream side. Compared with the case where it forms, the opening part can be easily accommodated in the part which hits the said specific wall surface. Therefore, in the portion where the flow rate of the exhaust gas is high and the flow velocity is high (that is, the portion where the turbulence generated by interference of the exhaust flow is likely to increase when the downstream end of the bypass passage 34 is opened), the bypass passage 34. It is possible to increase the opening area while suppressing the opening.

このように本実施の形態によれば、バイパス通路34から流出する排気の流れと上記間隙から漏れる排気の流れとの干渉による乱れの発生を抑えるとともに排気絞り弁30の下流側におけるバイパス通路34の開口部分の開口面積を大きくすることができる。そのため、排気絞り弁30およびウェイストゲート弁35の作動態様が前記特定作動態様になったときに、バイパス通路34を通じて排気絞り弁30の上流側の部分から下流側の部分へと適正量の排気を流出させつつ騒音の発生を抑えることができる。   As described above, according to the present embodiment, the occurrence of turbulence due to the interference between the exhaust flow flowing out of the bypass passage 34 and the exhaust flow leaking from the gap is suppressed, and the bypass passage 34 on the downstream side of the exhaust throttle valve 30 is suppressed. The opening area of the opening portion can be increased. Therefore, when the operation modes of the exhaust throttle valve 30 and the waste gate valve 35 are the specific operation modes, an appropriate amount of exhaust gas is discharged from the upstream portion of the exhaust throttle valve 30 to the downstream portion through the bypass passage 34. Generation of noise can be suppressed while flowing out.

ところで、排気絞り弁30が閉弁状態になったときには、上記間隙から漏れる排気の流量が多く且つ流速が高い部分に沿う部分(図4中の「A」で示す部分と「B」で示す部分との境界における「A」側の部分)の圧力が低くなる。本実施の形態では、排気絞り弁30の下流側におけるバイパス通路34の開口部分の形状が下流側に向かうほど排気流れ方向と直交する方向における長さが短い形状に形成されているため、同開口部分の端部を、上述した排気が高速で流れる部分に沿う位置に配置することができる。そのため、排気通路15において比較的圧力が低くなる部分においてバイパス通路34の下流側の端部を開口させることが可能になり、同バイパス通路34を通じて排気絞り弁30の上流側の部分から下流側の部分へと排気をスムーズに流入させることが可能になる。   By the way, when the exhaust throttle valve 30 is in a closed state, portions along the portion where the flow rate of exhaust gas leaking from the gap is high and the flow velocity is high (the portion indicated by “A” and the portion indicated by “B” in FIG. 4). The pressure on the “A” side portion at the boundary of In the present embodiment, since the shape of the opening portion of the bypass passage 34 on the downstream side of the exhaust throttle valve 30 is formed in a shape having a shorter length in the direction orthogonal to the exhaust flow direction as it goes downstream, The edge part of a part can be arrange | positioned in the position along the part which the exhaust_gas | exhaustion mentioned above flows at high speed. Therefore, it is possible to open the downstream end of the bypass passage 34 at a portion where the pressure is relatively low in the exhaust passage 15, and the downstream portion from the upstream portion of the exhaust throttle valve 30 through the bypass passage 34. It becomes possible to allow the exhaust gas to smoothly flow into the portion.

ちなみに、排気絞り弁30の下流側におけるバイパス通路34の開口部分と上述した排気の流量が多く且つ流速が高い部分との距離を近くした場合に、バイパス通路34の開口部分から流入して排気通路15を流れる排気と前記間隙から噴出して流れる排気のうちの流量が多く流速が高い部分とが干渉することによって乱れが発生することも考えられる。ここでバイパス通路34の通路断面積は排気通路15の通路断面積と比較して小さいことから、バイパス通路34の開口部分から排気通路15に流入する排気の流速は同開口部分の近傍において最も高く、開口部分より下流側に向かうに連れて急速に低くなる。そのため、上述した排気の流量が多く且つ流速が高い部分から適度に離れた位置にバイパス通路34の開口部分を形成することにより、同開口部分から流入して排気通路15を流れる排気が、その流速がごく低くなった後に前記間隙から噴出して流れる排気のうちの流量が多く流速が高い部分と干渉するようになる。したがって、そのように流量が多く且つ流速が高い部分から適度に離れた位置にバイパス通路34の開口部分を形成することにより、上記開口部分から流入して排気通路15を流れる排気と前記間隙から噴出して流れる排気とが干渉した場合であっても、その干渉によって大きな乱れが発生することを回避することが可能になる。   Incidentally, when the distance between the opening portion of the bypass passage 34 on the downstream side of the exhaust throttle valve 30 and the above-described portion where the flow rate of exhaust gas is large and the flow velocity is high, the exhaust passage flows into the opening portion of the bypass passage 34. It is also conceivable that turbulence may occur due to interference between the exhaust gas flowing through the exhaust gas 15 and the exhaust gas flowing from the gap and having a high flow rate and a high flow velocity. Here, since the passage sectional area of the bypass passage 34 is smaller than the passage sectional area of the exhaust passage 15, the flow velocity of the exhaust gas flowing into the exhaust passage 15 from the opening portion of the bypass passage 34 is highest in the vicinity of the opening portion. , It decreases rapidly as it goes downstream from the opening. Therefore, by forming the opening portion of the bypass passage 34 at a position that is moderately separated from the portion where the flow rate of exhaust gas is high and the flow velocity is high, the exhaust gas flowing from the opening portion and flowing through the exhaust passage 15 flows at the flow velocity. After the air flow becomes very low, the flow rate of the exhaust gas flowing out of the gap and interfering with the flow rate is high. Therefore, by forming the opening portion of the bypass passage 34 at a position that is moderately separated from the portion where the flow rate is high and the flow velocity is high, the exhaust gas flowing from the opening portion and flowing through the exhaust passage 15 is ejected from the gap. Therefore, even when the exhaust flowing in the air interferes with the exhaust gas, it is possible to avoid the occurrence of a large disturbance due to the interference.

以上説明したように、本実施の形態によれば、以下に記載する効果が得られるようになる。
・バイパス通路34を通じて排気絞り弁30の上流側の部分から下流側の部分へと適正量の排気を流出させつつ騒音の発生を抑えることができる。
As described above, according to the present embodiment, the effects described below can be obtained.
The generation of noise can be suppressed while allowing an appropriate amount of exhaust gas to flow from the upstream portion of the exhaust throttle valve 30 to the downstream portion through the bypass passage 34.

なお、上記実施の形態は、以下のように変更して実施してもよい。
・上記実施の形態は、トルク発生のための燃料噴射とは別に内燃機関10の膨張行程中あるいは排気行程中において燃料噴射弁12から燃料を噴射する、いわゆるポスト噴射を行う処理をPM除去処理として実行する機関システムにも適用することができる。また、そうした構成にあっては、燃料添加弁23および連通管24を省略することができる。
The embodiment described above may be modified as follows.
In the above-described embodiment, a process for performing so-called post-injection, in which fuel is injected from the fuel injection valve 12 during the expansion stroke or exhaust stroke of the internal combustion engine 10 separately from fuel injection for generating torque, is referred to as PM removal processing. It can also be applied to an executing engine system. In such a configuration, the fuel addition valve 23 and the communication pipe 24 can be omitted.

・バイパス通路34の下流側の端部の排気通路15における開口形状は、下流側の部分に向かうほど上記開口長さが短くなる形状であれば、例えば下流側の部分に向かうほど排気流れ方向と直交する方向における開口長さが段階的に短くなる形状など、任意に変更可能である。   If the opening shape in the exhaust passage 15 at the downstream end of the bypass passage 34 is a shape in which the opening length becomes shorter toward the downstream portion, for example, the exhaust flow direction toward the downstream portion The shape can be arbitrarily changed, such as a shape in which the opening length in the orthogonal direction becomes shorter stepwise.

・バイパス通路34の下流側の端部の排気通路15における開口部分のうち、その下流側の部分のみを下流側に向かうほど上記開口長さが短くなる形状に形成するようにしてもよい。排気絞り弁30より下流側の部分ほど、前記間隙から噴出した排気の流速が低くなるために上記開口部分の形成に適した部分であると云える。その一方で、排気絞り弁30より下流側の部分ほど、前記特定壁面(図4中に「A」で示す部分)が狭くなるために、上記開口部分を形成するためのスペースの確保が困難な部分であるとも云える。上記構成によれば、そうした下流側の部分において上記開口部分を形成するためのスペースを好適に確保することができる。   -Of the opening portions in the exhaust passage 15 at the downstream end of the bypass passage 34, only the downstream portion may be formed in a shape such that the opening length becomes shorter toward the downstream side. It can be said that the portion on the downstream side of the exhaust throttle valve 30 is a portion suitable for forming the opening portion because the flow velocity of the exhaust gas ejected from the gap becomes lower. On the other hand, since the specific wall surface (portion indicated by “A” in FIG. 4) becomes narrower at a portion downstream from the exhaust throttle valve 30, it is difficult to secure a space for forming the opening portion. It can be said that it is a part. According to the said structure, the space for forming the said opening part in such a downstream part can be ensured suitably.

・本発明は、排気浄化装置より上流側に排気絞り弁が設けられた排気通路にも適用することができる。要は、排気通路における排気絞り弁の上流側の部分および下流側の部分を連通するバイパス通路と同バイパス通路の通路断面積を変更するウェイストゲート弁とを備えた排気通路であれば、本発明は適用可能である。なお、排気浄化装置より上流側に設けられる排気絞り弁としては、内燃機関の温度が低いときに閉弁することによって同温度を速やかに上昇させるための排気絞り弁や、内燃機関を減速する際に閉弁することによって、いわゆるエンジンブレーキの効果を高めるための排気絞り弁などを挙げることができる。   The present invention can also be applied to an exhaust passage provided with an exhaust throttle valve upstream from the exhaust purification device. The point is that the present invention is an exhaust passage provided with a bypass passage communicating the upstream portion and the downstream portion of the exhaust throttle valve in the exhaust passage and a waste gate valve for changing the passage sectional area of the bypass passage. Is applicable. As an exhaust throttle valve provided upstream of the exhaust purification device, an exhaust throttle valve for quickly increasing the temperature by closing when the temperature of the internal combustion engine is low, or when decelerating the internal combustion engine By closing the valve, an exhaust throttle valve for enhancing the effect of so-called engine braking can be exemplified.

本発明を具体化した一実施の形態にかかる排気通路が適用される内燃機関の概略構成を示すブロック図。1 is a block diagram showing a schematic configuration of an internal combustion engine to which an exhaust passage according to an embodiment embodying the present invention is applied. (a)および(b)排気絞り弁の配設部分における排気通路の断面構造を模式的に示す略図。(A) And (b) The schematic which shows typically the cross-section of the exhaust passage in the arrangement | positioning part of an exhaust throttle valve. 排気絞り弁の配設部分およびその周辺における排気通路の断面構造を示す断面図。Sectional drawing which shows the cross-sectional structure of the exhaust passage in the arrangement | positioning part of an exhaust throttle valve, and its periphery. 排気絞り弁周辺における排気通路の断面構造および排気の流れの様子を模式的に示す略図。1 is a schematic view schematically showing a cross-sectional structure of an exhaust passage around an exhaust throttle valve and a state of exhaust flow.

符号の説明Explanation of symbols

10…内燃機関、11…燃焼室、12…燃料噴射弁、13…燃料ポンプ、14…燃料タンク、15…排気通路、16…吸気通路、17…出力軸、20…排気浄化装置、21…酸化触媒コンバータ、22…フィルタ、23…燃料添加弁、24…連通管、30…排気絞り弁、31…回動軸、32…弁体、33…アクチュエータ、34…バイパス通路、35…ウェイストゲート弁、40…電子制御装置、41…吸気量センサ、42…回転速度センサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Combustion chamber, 12 ... Fuel injection valve, 13 ... Fuel pump, 14 ... Fuel tank, 15 ... Exhaust passage, 16 ... Intake passage, 17 ... Output shaft, 20 ... Exhaust purification device, 21 ... Oxidation Catalytic converter, 22 ... filter, 23 ... fuel addition valve, 24 ... communication pipe, 30 ... exhaust throttle valve, 31 ... rotating shaft, 32 ... valve element, 33 ... actuator, 34 ... bypass passage, 35 ... waste gate valve, 40 ... an electronic control unit, 41 ... an intake air amount sensor, 42 ... a rotational speed sensor.

Claims (3)

回転駆動される回動軸および同回動軸に一体形成された弁体からなるバタフライ式の開閉弁であって内燃機関の排気通路の通路断面積を変更する排気絞り弁と、前記排気通路における前記排気絞り弁の排気流れ方向上流側の部分および同下流側の部分を連通するバイパス通路と、同バイパス通路の通路断面積を変更するウェイストゲート弁とを備え、前記排気絞り弁および前記ウェイストゲート弁の一作動態様として、前記弁体と前記排気通路の内壁との間隙が前記回動軸の回転中心に近い部分において小さくなり且つ同回転中心から遠い部分において大きくなる開度に前記排気絞り弁の開度が変更されるとともに、前記バイパス通路を通じた前記連通が許容される開度に前記ウェイストゲート弁の開度が変更されるとの特定作動態様が設定されてなる内燃機関の排気通路において、
前記バイパス通路は、その排気流れ方向下流側の端部が前記排気通路の内壁面のうちの前記回転中心と交差する側の面においてのみ開口されてなり、該開口された部分における排気流れ方向下流側の部分の形状が同下流側の部分ほど排気流れ方向と直交する方向における開口長さが短い形状に設定されてなる
ことを特徴とする内燃機関の排気通路。
A butterfly-type on-off valve comprising a rotary shaft that is rotationally driven and a valve body integrally formed with the rotary shaft, and an exhaust throttle valve that changes a cross-sectional area of the exhaust passage of the internal combustion engine; A bypass passage communicating the upstream portion and the downstream portion of the exhaust throttle direction with respect to the exhaust throttle valve; and a waste gate valve that changes a cross-sectional area of the bypass passage; and the exhaust throttle valve and the waste gate As one mode of operation of the valve, the exhaust throttle valve is adjusted so that a gap between the valve body and the inner wall of the exhaust passage is reduced in a portion near the rotation center of the rotation shaft and increased in a portion far from the rotation center. The specific operation mode is set such that the opening of the waste gate valve is changed to an opening that allows the communication through the bypass passage. In an exhaust passage of an internal combustion engine comprising been,
The end of the bypass passage on the downstream side in the exhaust flow direction is opened only on the surface of the inner wall surface of the exhaust passage that intersects the rotation center, and the downstream portion in the exhaust flow direction in the opened portion. An exhaust passage for an internal combustion engine, characterized in that the opening portion in the direction orthogonal to the exhaust flow direction is set to be shorter in the shape of the downstream portion.
請求項1に記載の内燃機関の排気通路において、
前記バイパス通路は、前記開口された部分全体の形状が排気流れ方向下流側の部分ほど排気流れ方向と直交する方向における開口長さが短い形状に設定されてなる
ことを特徴とする内燃機関の排気通路。
In the exhaust passage of the internal combustion engine according to claim 1,
The exhaust of the internal combustion engine characterized in that the bypass passage is set such that the shape of the entire opened portion is shorter in the direction orthogonal to the exhaust flow direction toward the downstream side of the exhaust flow direction. aisle.
請求項1または2に記載の内燃機関の排気通路において、
当該排気通路は内部を通過する排気を浄化する排気浄化装置が設けられてなり、
前記排気絞り弁および前記ウェイストゲート弁は前記排気浄化装置より排気流れ方向下流側に設けられてなる
ことを特徴とする内燃機関の排気通路。
The exhaust passage of the internal combustion engine according to claim 1 or 2,
The exhaust passage is provided with an exhaust purification device that purifies the exhaust passing through the interior,
The exhaust passage of an internal combustion engine, wherein the exhaust throttle valve and the waste gate valve are provided downstream of the exhaust purification device in the exhaust flow direction.
JP2007235874A 2007-09-11 2007-09-11 Exhaust passage for internal combustion engine Pending JP2009068381A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007235874A JP2009068381A (en) 2007-09-11 2007-09-11 Exhaust passage for internal combustion engine
PCT/JP2008/066355 WO2009035009A1 (en) 2007-09-11 2008-09-10 Exhaust gas passage for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235874A JP2009068381A (en) 2007-09-11 2007-09-11 Exhaust passage for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009068381A true JP2009068381A (en) 2009-04-02

Family

ID=40452015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235874A Pending JP2009068381A (en) 2007-09-11 2007-09-11 Exhaust passage for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009068381A (en)
WO (1) WO2009035009A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115324750A (en) * 2022-09-06 2022-11-11 南京交通职业技术学院 Exhaust throttle valve of diesel engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271632U (en) * 1975-11-25 1977-05-28
JPH02221670A (en) * 1989-02-22 1990-09-04 Aisan Ind Co Ltd Engine intake quantity control device
JPH11351071A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Egr system for internal-combustion engine
JP2007255395A (en) * 2006-03-27 2007-10-04 Aisan Ind Co Ltd Exhaust pressure control valve
JP2008106641A (en) * 2006-10-24 2008-05-08 Denso Corp Throttle valve device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930193Y2 (en) * 1979-05-24 1984-08-29 日産デイ−ゼル工業株式会社 Exhaust brake device
KR100528193B1 (en) * 2002-06-29 2005-11-15 현대자동차주식회사 Reduction device of ISCA driving noise
JP4130912B2 (en) * 2003-12-24 2008-08-13 愛三工業株式会社 Exhaust pressure raising device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271632U (en) * 1975-11-25 1977-05-28
JPH02221670A (en) * 1989-02-22 1990-09-04 Aisan Ind Co Ltd Engine intake quantity control device
JPH11351071A (en) * 1998-06-12 1999-12-21 Nissan Motor Co Ltd Egr system for internal-combustion engine
JP2007255395A (en) * 2006-03-27 2007-10-04 Aisan Ind Co Ltd Exhaust pressure control valve
JP2008106641A (en) * 2006-10-24 2008-05-08 Denso Corp Throttle valve device

Also Published As

Publication number Publication date
WO2009035009A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5609828B2 (en) Exhaust gas purification device for internal combustion engine
JP2008255905A (en) Exhaust emission control system of internal combustion engine
JP4193801B2 (en) Exhaust gas purification system for internal combustion engine
JP2008127998A (en) Exhaust emission control device of internal combustion engine
JP2006083726A (en) Exhaust emission control system for internal combustion engine
JP5338344B2 (en) Control device for internal combustion engine
JP4730351B2 (en) Exhaust gas purification device for internal combustion engine
JP2009068381A (en) Exhaust passage for internal combustion engine
JP4858023B2 (en) Exhaust gas purification system for internal combustion engine
EP2921677A2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5163553B2 (en) Diesel engine control device
JP2009215942A (en) Muffler for vehicle
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP2010150978A (en) Exhaust emission control device
JP2010174701A (en) Regeneration system of filter
JP6183387B2 (en) Control device for internal combustion engine
JP4696655B2 (en) Exhaust gas purification system for internal combustion engine
JP2007064055A (en) Exhaust emission control device for internal combustion engine
JP6100666B2 (en) Engine additive supply device
JP2010127187A (en) Diesel engine
KR100957325B1 (en) Exhaust gas flow passage between control device in vehicle
JP4905104B2 (en) Exhaust purification device
JP2006152875A (en) Catalyst heating system of internal combustion engine
JP4432449B2 (en) Exhaust gas purification device for internal combustion engine
JP2009174498A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712