JP2009062477A - Photoresponsive ionic liquid - Google Patents
Photoresponsive ionic liquid Download PDFInfo
- Publication number
- JP2009062477A JP2009062477A JP2007232587A JP2007232587A JP2009062477A JP 2009062477 A JP2009062477 A JP 2009062477A JP 2007232587 A JP2007232587 A JP 2007232587A JP 2007232587 A JP2007232587 A JP 2007232587A JP 2009062477 A JP2009062477 A JP 2009062477A
- Authority
- JP
- Japan
- Prior art keywords
- ionic liquid
- photoresponsive
- photochromic compound
- light
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、所定の化合物を分子構造中に導入したイオン液体に関する。 The present invention relates to an ionic liquid in which a predetermined compound is introduced into a molecular structure.
イオン液体は室温付近で液体状態を示す塩であり、不揮発性、不燃性、高熱安定性、高イオン導電性、耐電気分解性を有する液体として応用が期待されている。例えば、本発明者らは、燃料電池用プロトン交換体として、高いプロトン伝導性を有するイオン液体を用いることを提案している(例えば、特許文献1参照)。
一方、光によって吸収帯が可逆的に変化して異性化するフォトクロミック化合物が従来から知られている。例えば、可視光帯で吸収スペクトルが変化するフォトクロミック化合物の場合、光によって色が変わるため、種々の光学材料に利用されている。
An ionic liquid is a salt that exhibits a liquid state near room temperature, and is expected to be applied as a liquid having non-volatility, incombustibility, high thermal stability, high ionic conductivity, and electrolysis resistance. For example, the present inventors have proposed to use an ionic liquid having high proton conductivity as a proton exchanger for a fuel cell (see, for example, Patent Document 1).
On the other hand, photochromic compounds in which the absorption band is reversibly changed by light and isomerized are conventionally known. For example, in the case of a photochromic compound whose absorption spectrum changes in the visible light band, the color changes depending on the light, so that it is used for various optical materials.
しかしながら、フォトクロミック化合物の多くは固体であり、フォトクロミック反応を生起させるためには、溶液にしたり、高分子などの媒体に希釈する必要があり、用途や使用条件が限定されるという問題があった。
一方、上記したイオン液体に新たな特性を付与する方法として、イオン液体の分子構造中に他の化合物を導入することが考えられる。
従って、本発明の目的は、化合物を分子構造中に導入した新規なイオン液体を提供することにある。
However, most of the photochromic compounds are solids, and in order to cause a photochromic reaction, it is necessary to form a solution or dilute in a medium such as a polymer, and there is a problem that applications and use conditions are limited.
On the other hand, as a method for imparting new characteristics to the ionic liquid, it is conceivable to introduce another compound into the molecular structure of the ionic liquid.
Accordingly, an object of the present invention is to provide a novel ionic liquid in which a compound is introduced into a molecular structure.
本発明者らは、フォトクロミック化合物をイオン液体の分子構造中に導入することで、光照射によって物性が変化することを見出した。これは、導入されたフォトクロミック化合物の物性が光照射によって変化したためと考えられる。
すなわち本発明の光応答性イオン液体は、フォトクロミック化合物が分子構造中に導入されたイオン液体であって、光照射によって物性が変化するものである。
The present inventors have found that physical properties are changed by light irradiation by introducing a photochromic compound into the molecular structure of an ionic liquid. This is presumably because the physical properties of the introduced photochromic compound were changed by light irradiation.
That is, the photoresponsive ionic liquid of the present invention is an ionic liquid in which a photochromic compound is introduced into a molecular structure, and its physical properties are changed by light irradiation.
前記光応答性イオン液体を電気二重層キャパシタのイオン伝導体として用いた時に、光照射によって前記キャパシタに充電される電荷量が変化してもよい。
これは、光照射によって前記光応答性イオン液体が光異性化したためと考えられる。
When the photoresponsive ionic liquid is used as an ionic conductor of an electric double layer capacitor, the amount of charge charged in the capacitor by light irradiation may change.
This is considered because the photoresponsive ionic liquid was photoisomerized by light irradiation.
本発明によれば、フォトクロミック化合物をイオン液体の分子構造中に導入することで、光照射によって物性を変化させることができる。 According to the present invention, physical properties can be changed by light irradiation by introducing a photochromic compound into the molecular structure of an ionic liquid.
以下、本発明の実施形態について説明する。本発明に係る光応答性イオン液体は、フォトクロミック化合物をイオン液体の分子構造中に導入したものである。 Hereinafter, embodiments of the present invention will be described. The photoresponsive ionic liquid according to the present invention is obtained by introducing a photochromic compound into the molecular structure of the ionic liquid.
<イオン液体>
イオン液体(イオン性液体)は、イオンのみから構成され、液体でありながら蒸気圧がなく(不揮発性)、耐熱性が高く、不燃性、不揮発性を有する。本発明において、イオン液体の融点は好ましくは100℃以下、より好ましくは室温以下とする。
イオン液体は特に限定されないが、例えば上記特許文献1に記載した表1に示すものを用いることができる。なお、表1において、B+はカチオンであり、X−はアニオンであり、B+とX−からイオン液体が構成される。表1に示すように、イオン液体として、主にイミダゾリウム系、ピリジニウム系、第四アンモニウム系、ホスホニウム系が挙げられる。
又、イオン液体として国際公開第2006/117997号パンフレットに記載されたEMITFSI(名称)を用いることができる。
<Ionic liquid>
An ionic liquid (ionic liquid) is composed only of ions, is a liquid, has no vapor pressure (nonvolatile), has high heat resistance, has nonflammability, and nonvolatility. In the present invention, the melting point of the ionic liquid is preferably 100 ° C. or lower, more preferably room temperature or lower.
Although an ionic liquid is not specifically limited, For example, what is shown in Table 1 described in the said
Moreover, EMITFSI (name) described in the international publication 2006/117997 pamphlet can be used as an ionic liquid.
<フォトクロミック化合物>
フォトクロミック化合物は、光によって吸収帯が可逆的に変化して異性化する化合物であり、可視光帯で吸収スペクトルが変化する場合、光によって色調が変わる。
フォトクロミック化合物は特に限定されないが、例えばジアリールエテン類、スピロオキサジン類及びその誘導体、スピトナフトオキサジン類、ナフトピラン及びその誘導体、スピロピラン類及びその誘導体、ニトロベンジルピリジン類、スピロラン類、フルギド類、フルギミド類、クロメン類を用いることができる。
フォトクロミック化合物の具体例は、例えば、特開平2-28154号公報、特開昭62-288830号公報、国際公開第94/22850号明細書、国際公開第96/14596号明細書などに記載されているものが挙げられる。
又、フォトクロミック化合物として国際公開第2006/95705号パンフレット記載のものを用いることができる。
<Photochromic compound>
A photochromic compound is a compound that reversibly changes its absorption band by light and isomerizes. When the absorption spectrum changes in the visible light band, the color tone changes depending on the light.
The photochromic compound is not particularly limited. Chromenes can be used.
Specific examples of the photochromic compound are described in, for example, JP-A-2-28154, JP-A-62-288830, WO94 / 22850, WO96 / 14596, and the like. The thing that is.
Moreover, the thing of the international publication 2006/95705 pamphlet can be used as a photochromic compound.
図1に、本発明で用いることができるフォトクロミック化合物の光による構造変化の例を示す。フォトクロミック化合物は光によって異性化し、分子構造が変化するため、上記した色調の変化だけでなく、誘電特性(双極子モーメント、誘電率)が変化する。例えば、アゾベンゼンの場合、トランス型の双極子モーメントは0.5D(デバイ;0.5D=1.668×10-30 C・m)であり、シス型の双極子モーメントは3.1D(=1.034×10-29 C・m)に変化する。 FIG. 1 shows an example of a structural change caused by light of a photochromic compound that can be used in the present invention. Since photochromic compounds are isomerized by light and the molecular structure changes, not only the above-mentioned change in color tone but also the dielectric properties (dipole moment, dielectric constant) change. For example, in the case of azobenzene, the trans-type dipole moment is 0.5 D (Debye; 0.5D = 1.668 × 10 −30 C · m), and the cis-type dipole moment is 3.1 D (= 1.034 × 10 −29 C).・ Change to m).
<イオン液体へのフォトクロミック化合物の導入>
フォトクロミック化合物をイオン液体の分子構造中に導入することにより、イオン液体の不揮発性、不燃性、高熱安定性、高イオン導電性、耐電気分解性といった特性をフォトクロミック化合物に付与し、かつフォトクロミック化合物の特性により導入後のイオン液体にまったく新規な特性を付与させることができる。
フォトクロミック化合物をイオン液体の分子構造中に導入する方法は特に制限されず、公知の有機合成法により、イオン液体の分子構造中の任意の部分にフォトクロミック化合物を化学結合させることができる。このような方法としては、
例えば、イオン液体の求核性を利用した公知の有機合成法や、酸又は塩基にフォトクロミック化合物を導入しておき中和反応することで光応答性能のある塩(イオン液体)を合成することが挙げられる。
<Introduction of photochromic compound into ionic liquid>
By introducing the photochromic compound into the molecular structure of the ionic liquid, the ionic liquid is imparted with characteristics such as non-volatility, incombustibility, high thermal stability, high ionic conductivity, and electrolysis resistance to the photochromic compound. Depending on the characteristics, completely new characteristics can be imparted to the introduced ionic liquid.
The method for introducing the photochromic compound into the molecular structure of the ionic liquid is not particularly limited, and the photochromic compound can be chemically bonded to any part of the molecular structure of the ionic liquid by a known organic synthesis method. As such a method,
For example, a known organic synthesis method using the nucleophilicity of an ionic liquid, or a salt (ionic liquid) having photoresponsive performance can be synthesized by introducing a photochromic compound into an acid or base and neutralizing it. Can be mentioned.
フォトクロミック化合物が導入されたイオン液体(光応答性イオン液体)を、電気二重層キャパシタのイオン伝導体として用いた時に、光照射によってキャパシタに充電される電荷量が変化する。これは、上記したように光照射によってフォトクロミック化合物の分子特性(形状、双極子モーメント、イオン導電率、誘電率等)が変化することに起因すると考えられる。従来、フォトクロミック化合物は固体であるためにフォトクロミック反応を起こさせるためには、一般に溶媒中や高分子中に希釈する必要があり、溶媒が導電性を有しない場合には電気二重層キャパシタのイオン伝導体として用いることができなかった。一方、光応答性イオン液体は、イオン液体の特性である導電性を有するため、電気二重層キャパシタのイオン伝導体として使用でき、しかも導入したフォトクロミック化合物部分の分子特性が光照射によって変化するため、充電電荷量の変化という新規な特性が生じるのである。 When an ionic liquid (photoresponsive ionic liquid) into which a photochromic compound is introduced is used as an ionic conductor of an electric double layer capacitor, the amount of charge charged in the capacitor is changed by light irradiation. This is considered to be caused by the change in molecular properties (shape, dipole moment, ionic conductivity, dielectric constant, etc.) of the photochromic compound due to light irradiation as described above. Conventionally, since a photochromic compound is a solid, in order to cause a photochromic reaction, it is generally necessary to dilute it in a solvent or a polymer, and when the solvent does not have conductivity, the ion conduction of the electric double layer capacitor It could not be used as a body. On the other hand, since the photoresponsive ionic liquid has conductivity which is a characteristic of the ionic liquid, it can be used as an ionic conductor of an electric double layer capacitor, and the molecular characteristics of the introduced photochromic compound portion change by light irradiation, A new characteristic of a change in the charge amount is generated.
上記特性を用いることで、本発明の光応答性イオン液体を用いた電気二重層キャパシタを製造することができる。一方、イオン液体ゲルを用いたアクチュエータの変位量は電気二重層容量と関係があることが知られている。そして、印加電圧を変えてイオン液体の構造を変化させると電気二重層容量が変化し、構造変化により変位することが報告されている。従って、本発明の光応答性イオン液体に光照射することでフォトクロミック化合物部分の構造変化が重畳されて変位量が増大し、アクチュエータとして有利となると考えられる。又、電圧印加と光照射の2つの方法によって変位量を変化させることができると考えられる。 By using the above characteristics, an electric double layer capacitor using the photoresponsive ionic liquid of the present invention can be manufactured. On the other hand, it is known that the displacement of an actuator using an ionic liquid gel is related to the electric double layer capacity. It has been reported that when the applied voltage is changed to change the structure of the ionic liquid, the electric double layer capacity changes and is displaced by the structure change. Therefore, it is considered that by irradiating the photoresponsive ionic liquid of the present invention with light, the structural change of the photochromic compound portion is superimposed and the amount of displacement increases, which is advantageous as an actuator. In addition, it is considered that the amount of displacement can be changed by two methods of voltage application and light irradiation.
本発明の光応答性イオン液体によれば、上記した光照射による電気二重層キャパシタの充電電荷量の変化の他、導入したフォトクロミック化合物部分の異性化(分子構造の変化)に起因した特性を光照射によって変化できるものと考えられる。このような特性として、光照射による溶媒への溶解性の変化、濡れ性の変化、体積変化が挙げられる。
例えば、本発明の光応答性イオン液体はイオン伝導性と光応答性を兼備するため、光と電気に応答して構造が変化し、濡れ性の変化を生じる可能性がある。
又、フォトクロミック化合物部分の異性化による極性変化を利用し、光照射によって各種溶媒との親和性を変化させることで、本発明の光応答性イオン液体を溶媒抽出などへ応用できる可能性がある。
According to the photoresponsive ionic liquid of the present invention, in addition to the change in the charge amount of the electric double layer capacitor due to the above-described light irradiation, the characteristics due to the isomerization (change in molecular structure) of the introduced photochromic compound portion are optically reflected. It can be changed by irradiation. Such characteristics include a change in solubility in a solvent, a change in wettability, and a volume change due to light irradiation.
For example, since the photoresponsive ionic liquid of the present invention has both ionic conductivity and photoresponsiveness, the structure changes in response to light and electricity, which may cause a change in wettability.
Further, the photoresponsive ionic liquid of the present invention may be applied to solvent extraction and the like by utilizing the change in polarity due to isomerization of the photochromic compound portion and changing the affinity with various solvents by light irradiation.
<電気二重層キャパシタの例>
本発明の光応答性イオン液体を電気二重層キャパシタのイオン伝導体として用いることができる。電気二重層キャパシタは、2つの対向電極の間にイオン伝導体を介装した構造を有する。このうち、少なくとも1つの電極は照射光に対して透明(照射光を透過)であることが必要である。典型的にはITO(インジウムチンオキサイド)をガラスやプラスチックにコートした電極を用いる。もう一方の電極は透明電極であっても、金属などの不透明電極でも良い。イオン伝導体であるイオン液体は電極間を隔てるスペーサの空隙に充填され、保持される。
なお、本発明の光応答性イオン液体をそのまま、あるいはセパレータを介して、電極間に封入することも可能であるし、液漏れを防ぐためにゲル化し、固体として閉じ込めることも可能である。ゲルの例としてはメチルメタクリレートと架橋剤を光応答性イオン液体に溶かし、ラジカル熱重合を行うことで、イオン伝導性を有するゲルを容易に合成することが可能である。
<Example of electric double layer capacitor>
The photoresponsive ionic liquid of the present invention can be used as an ionic conductor of an electric double layer capacitor. The electric double layer capacitor has a structure in which an ionic conductor is interposed between two counter electrodes. Among these, at least one electrode is required to be transparent (transmit the irradiation light) to the irradiation light. Typically, an electrode in which ITO (indium tin oxide) is coated on glass or plastic is used. The other electrode may be a transparent electrode or an opaque electrode such as a metal. The ionic liquid, which is an ionic conductor, is filled and held in the space of the spacer separating the electrodes.
The photoresponsive ionic liquid of the present invention can be sealed between electrodes as it is or via a separator, or can be gelled and confined as a solid to prevent liquid leakage. As an example of the gel, it is possible to easily synthesize a gel having ion conductivity by dissolving methyl methacrylate and a crosslinking agent in a photoresponsive ionic liquid and performing radical thermal polymerization.
以下に、実施例によって本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に断らない限り、%は質量%を示す。
以下の式(1)で表されるアゾベンゼンと、
Azobenzene represented by the following formula (1),
<合成>
光応答性イオン液体の合成は、図2に示すように、まず、アゾベンゼンに反応基を付加した(図2(a)、(b))。これに1-ブチルイミダゾールを加えて合成を行い、アニオンを加えてイオン液体とした(図2(c)、(d))。
(a) 4-メチルアゾベンゼン(4-Methylazobenzene)の合成
図2(a)の反応を行った。まず、遮光しながら、水浴に浸したニトロソベンゼン(Nitrosobenzene)(0.047 mol) の酢酸(酢酸12 ml)溶液に等モル量のp-トルイジン(p-toluidine)のエタノール溶液(エタノール 12 ml)溶液を窒素雰囲気下で滴下した。滴下後45 ?Cで3時間撹拌し、その後室温で12時間反応させた。固体を吸引ろ過で回収し、1 N 塩酸、1 N 水酸化ナトリウム水溶液、純水で洗浄した。生成物はエタノール / 水の混合溶媒を用いて再結晶操作によって精製した。収率は約 60 %であり、生成物の構造の確認は1H-NMRで行った。融点は73 ?C(Macromolecules 1984, 17, 782-792に記載の文献値は72 ?C)であった。
<Synthesis>
In the synthesis of the photoresponsive ionic liquid, as shown in FIG. 2, first, a reactive group was added to azobenzene (FIGS. 2A and 2B). 1-Butylimidazole was added thereto for synthesis, and an anion was added to form an ionic liquid (FIGS. 2 (c) and (d)).
(a) Synthesis of 4-methylazobenzene The reaction shown in Fig. 2 (a) was performed. First, an equimolar amount of p-toluidine ethanol solution (
(b)4-(ブロモメチル)アゾベンゼン(4-(Bromomethyl)azobenzene)の合成
図2(b)の反応を行った。4-メチルアゾベンゼン(4-Methylazobenzene)(6.7 mmol)、N-ブロモスクシンイミド(N-bromosuccinimide)(7.2 mmol)、及び過酸化ベンゾイル(0.21 mmol)をフラスコに入れ、フラスコ内を窒素雰囲気とした。四塩化炭素(Tetrachloromethane)(40 ml)を加えた後85 ?CでUV照射しながら3時間還流した。UV照射を停止した後、さらに12時間程度還流した。吸引ろ過によりコハク酸イミドを取り除き、四塩化炭素を留去し目的生成物を得た。生成物はエタノールを用いて再結晶した。収率は約75 %であり、構造の確認は1H-NMRで行った。融点は115~120 ?Cであった。(Nippon Kagaku Zasshi 1959, 80, 219記載の文献値は114~115 ?C)
(b) Synthesis of 4- (Bromomethyl) azobenzene (4- (Bromomethyl) azobenzene) The reaction shown in FIG. 4-Methylazobenzene (6.7 mmol), N-bromosuccinimide (7.2 mmol), and benzoyl peroxide (0.21 mmol) were placed in the flask, and the flask was filled with a nitrogen atmosphere. It was refluxed for 3 hours while irradiated with UV 85? C after the addition of carbon tetrachloride (Tetrachloromethane) (40 ml). After the UV irradiation was stopped, the mixture was further refluxed for about 12 hours. Succinimide was removed by suction filtration, and carbon tetrachloride was distilled off to obtain the desired product. The product was recrystallized using ethanol. The yield was about 75%, and the structure was confirmed by 1 H-NMR. The melting point was 115 ~ 120? C. (The literature values described in Nippon Kagaku Zasshi 1959, 80, 219 are 114-115 ? C)
(c)1-アゾベンジル-3-ブチルイミダゾリウム ブロマイド
(1-Azobenzyl-3-butylimidazolium bromide)の合成
図2(c)の反応を行った。窒素雰囲気のフラスコ内に4-(ブロモメチル)アゾベンゼン(4-(Bromomethyl)azobenzene)(0.011 mol)と脱水エタノール(200 ml)を加えた後70 ?Cに加熱した。1-ブチルイミダゾール(1-Butylimidazole)(0.013 mol)を加え12時間還流した。溶媒を留去して目的生成物を得た。生成物は2-プロパノール(2-propanol)と酢酸エチルの混合溶媒を用いて再結晶操作することで精製した。収率は約65 %であり、構造の確認は1H-NMRで行った。
(c) 1-Azobenzyl-3-butylimidazolium bromide
Synthesis of (1-Azobenzyl-3-butylimidazolium bromide) The reaction shown in FIG. Was heated to 70? C was added to the flask with a nitrogen atmosphere 4- (bromomethyl) azobenzene (4- (Bromomethyl) azobenzene) ( 0.011 mol) and dehydrated ethanol (200 ml). 1-Butylimidazole (0.013 mol) was added and refluxed for 12 hours. The target product was obtained by distilling off the solvent. The product was purified by recrystallization using a mixed solvent of 2-propanol and ethyl acetate. The yield was about 65%, and the structure was confirmed by 1 H-NMR.
(d)1-アゾベンジル-3-メチルイミダゾリウム ビストリフルオロメタンスルフォニルアミド
(1-Azobenzyl-3-butylimidazolium bis(trifluoromethane sulfonyl)amide)の合成
図2(d)の反応を行った。1-アゾベンジル-3-ブチルイミダゾリウム ブロマイド(6.02 mmol)を水に溶かし、さらにこれと等モル量のビストリフルオロメタンスルフォニルアミドリチウム塩(Bis(trifluoromethane sulfonyl)amide lithium salt)を水に溶かしたものを滴下し、アニオン交換を行った。滴下と同時に生成した水不溶性の赤色透明液体を回収し、水を用いて分液操作を繰り返すことで副生成物であるLiBrを取り除いた。水層に硝酸銀水溶液を滴下しても白色沈殿が生じないことを確認して分液を終了した。最後に減圧下で乾燥し目的生成物を得た。収率は約95 %であり構造の確認は1H-NMRで行った。図3に目的生成物のNMRスペクトルを示す。又、目的生成物を元素分析(エレメンタール(elementar)社のvario EL III CHNOS Elemental Analyzerを使用)したところ、生成物の分子量に対するCの重量割合が44.16(理論値は44.07)、Nの重量割合が11.58(理論値は11.68)であった。
なお、生成物は室温で赤色の液体状態であった。
(d) 1-azobenzyl-3-methylimidazolium bistrifluoromethanesulfonylamide
Synthesis of (1-Azobenzyl-3-butylimidazolium bis (trifluoromethanesulfonyl) amide) The reaction shown in FIG. 1-Azobenzyl-3-butylimidazolium bromide (6.02 mmol) dissolved in water, and equimolar amount of bistrifluoromethanesulfonylamide lithium salt (Bis (trifluoromethane sulfonyl) amide lithium salt) dissolved in water It was dripped and anion exchange was performed. The water-insoluble red transparent liquid produced at the same time as the dropwise addition was recovered, and LiBr as a byproduct was removed by repeating the liquid separation operation using water. Separation was completed after confirming that no white precipitate was formed even when an aqueous silver nitrate solution was dropped into the aqueous layer. Finally, it was dried under reduced pressure to obtain the desired product. The yield was about 95%, and the structure was confirmed by 1 H-NMR. FIG. 3 shows the NMR spectrum of the target product. Moreover, when the target product was subjected to elemental analysis (using elemento vario EL III CHNOS Elemental Analyzer), the weight ratio of C to the molecular weight of the product was 44.16 (theoretical value was 44.07), and the weight ratio of N. Was 11.58 (theoretical value was 11.68).
The product was in a red liquid state at room temperature.
<評価>
得られた光応答性イオン液体の各種特性を評価した。
1.導電率
光応答性イオン液体が通常のイオン液体と同様な導電性を有するかを評価するため、導電率を測定した。
導電率は、ポテンショスタット(Princeton Applied Research社製、VMP2 multi potentiostat)を用い、複素インピーダンス測定法によって測定した。周波数範囲を50 Hz~500 KHz、印加電圧を10 mVとした。あらかじめ標準KCl水溶液でセル定数を算出したステンレス電極のセルに上記光応答性イオン液体を装入し、80 ?C から降温させながら0 ?Cまでの範囲で各温度において1時間以上保持した後、測定した。
得られた結果を表4に示す。得られた光応答性イオン液体が通常のイオン液体と同様な導電性を有することがわかった。
<Evaluation>
Various characteristics of the obtained photoresponsive ionic liquid were evaluated.
1. Electrical conductivity In order to evaluate whether the photoresponsive ionic liquid has the same electrical conductivity as a normal ionic liquid, electrical conductivity was measured.
The conductivity was measured by a complex impedance measurement method using a potentiostat (Princeton Applied Research, VMP2 multi potentiostat). The frequency range was 50 Hz to 500 KHz, and the applied voltage was 10 mV. Previously charged cell constant in the cell of the calculated stainless electrode in a standard KCl solution the photoresponsive ionic liquid, 80? After holding of 1 hour or more at each temperature in the range from C to 0? C while cooling, It was measured.
Table 4 shows the obtained results. The obtained photoresponsive ionic liquid was found to have the same conductivity as that of a normal ionic liquid.
2.光照射による吸光度の変化
光応答性イオン液体がフォトクロミック化合物の特性を有するかを評価するため、光照射による吸光度の変化を測定した。紫外(UV)領域から可視光領域までの波長領域で吸光度変化を測定した。
得られた結果を図5に示す。図のシス型は、366 nmの光を一定時間照射した後の吸光度スペクトルであり、アゾベンゼンがシス体に光異性化した結果である。図のトランス型は437 nmの光を一定時間照射した後の吸光度スペクトルであり、アゾベンゼンがシス体からトランス体に戻った結果である。
アゾベンゼン単体と同様、光照射によって光応答性イオン液体が可逆にシス−トランス異性化することがわかった。
なお、測定はイオン液体を希釈せずに石英ガラスセルの壁面に薄く塗着して行った。
2. Change in absorbance due to light irradiation In order to evaluate whether the photoresponsive ionic liquid has the characteristics of a photochromic compound, the change in absorbance due to light irradiation was measured. The change in absorbance was measured in the wavelength region from the ultraviolet (UV) region to the visible light region.
The obtained results are shown in FIG. The cis form in the figure is an absorbance spectrum after irradiating light of 366 nm for a certain time, and is a result of photoisomerization of azobenzene into a cis form. The trans form in the figure is the absorbance spectrum after 437 nm light irradiation for a certain period of time, and is the result of azobenzene returning from the cis form to the trans form.
It was found that the photoresponsive ionic liquid reversibly cis-trans isomerizes by irradiation with light as in the case of azobenzene alone.
The measurement was performed by thinly coating the wall surface of the quartz glass cell without diluting the ionic liquid.
3.電気二重層キャパシタの充電電荷量の変化
得られた光応答性イオン液体を電気二重層キャパシタのイオン伝導体として用いた時に、光照射による充電電荷量の変化を測定した。
測定は、図6に示す3極式セルを用いた。なお、図6(a)は上面図、図6(b)は側面図を示す。
3極式セルは、導電性ガラスである2枚のITOガラス2a、2bを少しずらして重ね、ITOガラス2a、2bの重なり部分には2枚のスペーサ6、6を重ねて介装させてなる。スペーサ6は中心が約0.58 cm2の円形にくり抜かれ、ITOガラス2a、2bとスペーサ6のくり抜き部分で囲まれた内部空間に光応答性イオン液体8を収容するようになっている。
なお、ITOガラス2a、2bはそれぞれ作用極と対極とになっていて、さらにスペーサ6、6の間には線径0.1 mmの銀線からなる擬似参照電極4が介装され、電流や電圧を測定するようになっている。
3. Change in charge amount of electric double layer capacitor When the obtained photoresponsive ionic liquid was used as an ion conductor of an electric double layer capacitor, the change in charge amount due to light irradiation was measured.
For the measurement, a three-electrode cell shown in FIG. 6 was used. 6A shows a top view and FIG. 6B shows a side view.
The tripolar cell is made by stacking two
The
電気化学測定装置(BAS株式会社製のBAS 100B)を用い、作用極の上面から光照射を行い、初期電位を 0 mV vs. Agとし、最終電位を -200 mV vs. Agとして、充電電荷量を測定した。
照射光の波長は、それぞれ366 nm(UV光)、437 nm(Vis光(可視光))とし、光源は超高圧水銀ランプ(USHIO Optical Modulex USH-500SC)を用いた。なお、測定前にはUV光照射、Vis光照射ともに10分以上照射を行い、光を当て続けたまま測定した。得られた結果を図7に示す。これより、光照射によって電極に充電される電荷量が照射波長によって10%以上異なることが確認された。
Using an electrochemical measurement device (BAS 100B manufactured by BAS Co., Ltd.), charge is applied from the top surface of the working electrode, the initial potential is set to 0 mV vs. Ag, and the final potential is set to -200 mV vs. Ag. Was measured.
The wavelengths of irradiation light were 366 nm (UV light) and 437 nm (Vis light (visible light)), respectively, and an ultrahigh pressure mercury lamp (USHIO Optical Modulex USH-500SC) was used as a light source. Before the measurement, both UV light irradiation and Vis light irradiation were performed for 10 minutes or more, and the measurement was performed while the light was continuously applied. The obtained results are shown in FIG. From this, it was confirmed that the amount of charge charged to the electrode by light irradiation differs by 10% or more depending on the irradiation wavelength.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007232587A JP2009062477A (en) | 2007-09-07 | 2007-09-07 | Photoresponsive ionic liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007232587A JP2009062477A (en) | 2007-09-07 | 2007-09-07 | Photoresponsive ionic liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009062477A true JP2009062477A (en) | 2009-03-26 |
Family
ID=40557356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007232587A Pending JP2009062477A (en) | 2007-09-07 | 2007-09-07 | Photoresponsive ionic liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009062477A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010184902A (en) * | 2009-02-13 | 2010-08-26 | Kri Inc | Purification method and recovery method for ionic liquid |
WO2011013223A1 (en) | 2009-07-29 | 2011-02-03 | パイオニア株式会社 | Speaker device |
WO2011077560A1 (en) | 2009-12-25 | 2011-06-30 | パイオニア株式会社 | Speaker vibrator and speaker device |
CN114558528A (en) * | 2022-02-06 | 2022-05-31 | 河南师范大学 | Preparation method of ionic liquid counterion-mixed surfactant thermal response and UV (ultraviolet) light and heat double response gel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002003478A (en) * | 2000-06-20 | 2002-01-09 | Japan Science & Technology Corp | N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt |
JP2004258474A (en) * | 2003-02-27 | 2004-09-16 | Sangaku Renkei Kiko Kyushu:Kk | Photochromic display element |
JP2007066619A (en) * | 2005-08-30 | 2007-03-15 | Toshiba Corp | Non-aqueous electrolytic battery and portable information device |
WO2007088703A1 (en) * | 2006-02-01 | 2007-08-09 | National University Corporation NARA Institute of Science and Technology | Dye laser medium, dye laser apparatus and laser sensor |
-
2007
- 2007-09-07 JP JP2007232587A patent/JP2009062477A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002003478A (en) * | 2000-06-20 | 2002-01-09 | Japan Science & Technology Corp | N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt |
JP2004258474A (en) * | 2003-02-27 | 2004-09-16 | Sangaku Renkei Kiko Kyushu:Kk | Photochromic display element |
JP2007066619A (en) * | 2005-08-30 | 2007-03-15 | Toshiba Corp | Non-aqueous electrolytic battery and portable information device |
WO2007088703A1 (en) * | 2006-02-01 | 2007-08-09 | National University Corporation NARA Institute of Science and Technology | Dye laser medium, dye laser apparatus and laser sensor |
Non-Patent Citations (3)
Title |
---|
JPN6012052638; 2005年光化学討論会講演要旨集, , P.317 * |
JPN6012052639; 第1回分子科学討論会2007講演要旨集, , 4P145 * |
JPN6012052642; 2007年電気化学秋季大会講演要旨集, , P.149 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010184902A (en) * | 2009-02-13 | 2010-08-26 | Kri Inc | Purification method and recovery method for ionic liquid |
WO2011013223A1 (en) | 2009-07-29 | 2011-02-03 | パイオニア株式会社 | Speaker device |
WO2011077560A1 (en) | 2009-12-25 | 2011-06-30 | パイオニア株式会社 | Speaker vibrator and speaker device |
CN114558528A (en) * | 2022-02-06 | 2022-05-31 | 河南师范大学 | Preparation method of ionic liquid counterion-mixed surfactant thermal response and UV (ultraviolet) light and heat double response gel |
CN114558528B (en) * | 2022-02-06 | 2024-04-12 | 河南师范大学 | Preparation method of ionic liquid counter ion-mixed surfactant UV light and heat dual-response gel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5021778B2 (en) | Hydrophobic liquid salt | |
WO2004067673A1 (en) | Electrochromic compounds | |
JP5766942B2 (en) | Ionic gelling agent, gel, method for producing gel and crosslinking agent | |
JP2009062477A (en) | Photoresponsive ionic liquid | |
WO2014167034A2 (en) | Fluoro and chloro cyano compounds of the 15th group | |
WO2016068162A1 (en) | Polymer having condensed polycyclic aromatic skeleton, and light-emitting element and electrode each manufactured using same | |
JP2018024624A (en) | Organic compound, and electrochromic element, optical film, lens unit, and imaging device having the same | |
JP5584600B2 (en) | Lithium ionic liquid crystal compound, production method thereof and liquid crystal material | |
JP2009102461A (en) | Conductive water-containing gel | |
JP2005314646A (en) | Lithium ion conductive electrolyte and secondary battery using the same | |
Ouyang et al. | Ferrocene-Functionalized Poly (6-(3, 6-di (thiophen-2-yl)-9H-carbazol-9-yl)-hexyl Ferrocenecarboxylate): Effect of the Ferrocene on Electrochromic Properties | |
JP4500523B2 (en) | Onium salt | |
JP6991731B2 (en) | Organic compounds, electrochromic compounds, and electrochromic elements having them, optical filters, lens units, image pickup devices, window materials | |
JP4538955B2 (en) | Photoelectric conversion device using ether compound electrolyte | |
JP2009184954A (en) | Ruthenium complex and its production method, and dye-sensitized oxide semiconductor electrode | |
CN107430942B (en) | Dye-sensitized solar cell and electrolyte for dye-sensitized solar cell | |
JP4967292B2 (en) | Composition, ion conductive electrolyte obtained therefrom, and secondary battery using the same | |
JP2012087259A (en) | Ionic organic compound, method for producing the same, and photoresponsive polymer electrolyte | |
JP2003229022A (en) | High polymer solid electrolyte and its manufacturing method | |
JP2005126382A (en) | Onium salt | |
JP2008214310A (en) | Nitroxide alcohol compound and method for producing (meth)acrylic acid nitroxide compound using the same | |
JP2009215182A (en) | New organic paramagnetic ionic liquid compound and supporting electrolyte containing the same | |
JP2018170432A (en) | Nonaqueous electrolyte for electric double layer capacitor | |
KR20190050209A (en) | Electrochromic materials with excellent solubility and electrochromic device containing the same | |
KR102130391B1 (en) | Organic photoredox catalyst and Method for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100216 |
|
A621 | Written request for application examination |
Effective date: 20100903 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120926 |
|
A131 | Notification of reasons for refusal |
Effective date: 20121009 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20121206 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20130108 Free format text: JAPANESE INTERMEDIATE CODE: A02 |