JP2009061745A - Method of manufacturing microneedle - Google Patents
Method of manufacturing microneedle Download PDFInfo
- Publication number
- JP2009061745A JP2009061745A JP2007233469A JP2007233469A JP2009061745A JP 2009061745 A JP2009061745 A JP 2009061745A JP 2007233469 A JP2007233469 A JP 2007233469A JP 2007233469 A JP2007233469 A JP 2007233469A JP 2009061745 A JP2009061745 A JP 2009061745A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- microneedle
- flat plate
- hole
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Micromachines (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明は微小針の製造方法に関するものである。特に生体分解性の材料で作製された微小針の製造方法に関する。 The present invention relates to a method for manufacturing a microneedle. In particular, the present invention relates to a method for manufacturing a microneedle made of a biodegradable material.
薬剤を経皮的に投与する方法として、通常、皮膚表面への液剤・軟膏剤の塗布、貼付剤型の経皮投与製剤が用いられてきた。皮膚は、ヒトの場合、通常、厚さ10〜30μmの層状構造を持つ角質層と、厚さ約70μmの表皮組織層と、厚さ約2mmの真皮組織層の複数の組織から構成されている。
角質層は、皮膚の最上位にあって層状をなし、種々の薬剤が皮膚から浸透するのを防ぐ、バリヤーの働きを行っている。一般的には、皮膚のバリヤー作用の約50〜約90%は角質層で行われている。表皮層では角質層ほどのバリヤー作用を果たさないが、残りの約10%以上のバリヤー作用を果たしている。一方、真皮は、真皮層と表皮層の接合部付近に豊富な毛細血管網があり、そのため、薬剤が一度真皮の深さに到達すると、その毛細血管網を伝わって、より深部の組織(毛包、筋肉等)に素早く拡散する。そして、毛細血管から血液循環を経由して薬剤が全身に拡散される。
As a method for transdermally administering a drug, generally, a liquid or ointment applied to the skin surface, or a patch-type transdermal administration preparation has been used. In the case of human beings, the skin is usually composed of a plurality of tissues including a stratum corneum having a layered structure having a thickness of 10 to 30 μm, an epidermal tissue layer having a thickness of about 70 μm, and a dermal tissue layer having a thickness of about 2 mm. .
The stratum corneum is layered on top of the skin and acts as a barrier to prevent the penetration of various drugs from the skin. In general, about 50 to about 90% of the skin barrier action occurs in the stratum corneum. The skin layer does not perform as much barrier action as the stratum corneum, but performs the remaining 10% or more barrier action. On the other hand, the dermis has an abundant capillary network near the junction between the dermis layer and the epidermis layer. Therefore, once the drug reaches the depth of the dermis, it travels through the capillary network and becomes deeper in tissues (hairs). Quickly spread to wraps, muscles, etc.) Then, the drug is diffused from the capillaries through the blood circulation throughout the body.
今日、各種の液剤・軟膏剤の塗布、貼付剤型の経皮投与製剤が開発されているが、上記角質層のバリヤー作用のため、あまり薬効成分が吸収されていない状況にある。例えば、経皮吸収効率が高いと言われているインドメタシンの経皮投与製剤においてすら、インドメタシン全量の5%程度が経皮吸収されているに過ぎないとされている。
そこで、薬剤の皮膚透過性を上げるための方法の一つとして、特許文献1に示されるように、微小針(マイクニードルまたはマイクロシリンジ)を使用し、角質層を局所的に破壊して薬剤を真皮層に強制的に投与すると言うことが試みられてきた。
この目的で使用される微小針は、真皮層に微小針が到達すればよいことから、その針の長さは30μm以上であることが望ましく、その針を支持するために必要な基板があればよいとされている。そして、この微小針は、神経の末端が存在する真皮層に到達しないので痛くない。それ故、小児などに恐怖感を与えることなく薬剤の投与ができると言う長所が存在する。
Today, various liquid / ointment coatings and patch-type transdermal preparations have been developed. However, due to the barrier action of the stratum corneum, the medicinal components are not so much absorbed. For example, even in the formulation of indomethacin transdermally administered, which is said to have high transdermal absorption efficiency, it is said that only about 5% of the total amount of indomethacin is absorbed percutaneously.
Therefore, as one of the methods for increasing the skin permeability of the drug, as shown in Patent Document 1, a microneedle (microphone needle or microsyringe) is used to locally destroy the stratum corneum and remove the drug. Attempts have been made to force administration to the dermis layer.
Since the microneedles used for this purpose only need to reach the dermis layer, the length of the needles is preferably 30 μm or more, and if there is a substrate necessary to support the needles It is said to be good. This microneedle does not hurt because it does not reach the dermis layer where the nerve ends are present. Therefore, there is an advantage that the drug can be administered without giving fear to children.
これまで微小針の製造方法に関して、色々な方法が報告されている。しかしその大半は、特許文献2に示されるように半導体を作製する際に用いられるX線照射のエッチングなどの方法を使用して、シリコン製、ガラス製、金属製の微小針を作製している。しかし、この製法では微小針の製造コストが高額となり、また破損等の問題で残留した微小針の破片が人体に障害を与えることとなる。
そこで、これを改善するために、例えば特許文献3では、ポリメタアクリル酸メチル(PMMA)を用いて微小針の母型を作製し、これに金属メッキを施して母型を外し、金属の鋳型を作製している。この金属の鋳型にポリマー材料を加熱押圧して、目的の樹脂製の微小針を作製している。
しかし、このような非貫通孔の鋳型を使用した微小針の製造方法では、鋳型から微小針を取り出す際に、摩擦応力が懸かって、微小針の先端部が欠けやすくなっている。そのため、品質のよい、先端部の欠損がない微小針を得ることは困難な状況にあった。
Various methods have been reported so far regarding methods for producing microneedles. However, most of them produce silicon, glass, and metal microneedles using a method such as etching of X-ray irradiation used when producing a semiconductor as shown in Patent Document 2. . However, in this manufacturing method, the manufacturing cost of the microneedles is high, and fragments of the microneedles remaining due to problems such as breakage damage the human body.
Therefore, in order to improve this, for example, in Patent Document 3, a master mold of a microneedle is produced using polymethyl methacrylate (PMMA), and metal mold is applied to the master mold to remove the master mold. Is making. A polymer material is heated and pressed against the metal mold to produce a target resin microneedle.
However, in the method of manufacturing a microneedle using such a non-through-hole mold, frictional stress is applied when the microneedle is taken out of the mold, and the tip portion of the microneedle is easily chipped. For this reason, it has been difficult to obtain a microneedle having a good quality and having no tip portion defect.
そこで、特許文献4では、鋳型として可撓性のある材質のPDMS(ポリジメチルシロキサン)を使用し、光硬化性高分子を用いて微小針を作製したことが示されている。
更に、非特許文献1では、同様に鋳型としてPDMSを使用し、生体分解性樹脂としてポリ乳酸、ポリグリコール酸を用いて微小針を作製したことが示されている。しかし、PDMS製鋳型が柔軟であるので、樹脂に対する圧着転写を避けて、樹脂を溶解し減圧下で非貫通孔の鋳型に流し込む方法が取られている。
このPDMS製鋳型を作製するための微小針母型は、SU−8、ポリウレタンを用いて作製されている。しかし、非貫通孔の鋳型を作るために、母型の加工として、微小針の先端部の加工に多くの工程が費やされている。
ところが、このPDMS製の鋳型は強度的に弱く、何回も繰り返し使用することが難しい。従って、マイクロニードルを大量に製造するためには、それに対応できるだけの量のPDMS製鋳型が必要になる。更には、このPDMS製鋳型を必要量作るために、耐久力強度の高い微小針母型を作る必要が生まれてきた。
このように、経皮吸収用の微小針の作製に関して幾つもの改良がなされ、品質の良いものが作られてきている。しかし、非貫通孔タイプの鋳型を用いて、溶融樹脂を流し込んで所望の微小針を作る状況にあるため、コスト的にも高く、操作が高温(100度程度)になることから、薬剤を微小針に練りこむことも困難である。
そこで、比較的低温で生体分解性樹脂の微小針が製造でき、薬剤の混入が容易にできるような製造方法が求められることとなった。さらに、コスト的にも安価で、使い捨てが可能となる微小針が必要とされている。マイクロニードルの課題は、生体親和性の材料で形成され、ある一定の強度および耐久性を持ったマイクロニードルで、かつ、欠損部分が無く、品質的に安定したものを、どのように作製するかである。
更に、このようなマイクロニードルは、通常使い捨てのものであるので、コスト的にも安価なものであることが必要とされている。
Therefore, Patent Document 4 shows that PDMS (polydimethylsiloxane), which is a flexible material, is used as a mold and a microneedle is manufactured using a photocurable polymer.
Further, Non-Patent Document 1 shows that PDMS was similarly used as a template, and microneedles were produced using polylactic acid and polyglycolic acid as biodegradable resins. However, since the PDMS mold is flexible, a method is adopted in which the resin is dissolved and poured into a non-through-hole mold under reduced pressure while avoiding pressure transfer to the resin.
The microneedle matrix for producing this PDMS mold is produced using SU-8 and polyurethane. However, in order to make a non-through-hole mold, many processes are spent on the processing of the tip of the microneedle as the processing of the mother die.
However, this PDMS mold is weak in strength and difficult to use repeatedly. Therefore, in order to manufacture a large number of microneedles, an amount of a PDMS mold that can handle the microneedles is required. Furthermore, in order to make a necessary amount of the PDMS mold, it has become necessary to make a microneedle matrix having high durability strength.
Thus, several improvements have been made regarding the production of microneedles for percutaneous absorption, and high quality ones have been made. However, since it is in a situation where a molten resin is poured into a desired microneedle by using a non-through-hole type mold, the cost is high and the operation becomes a high temperature (about 100 degrees). It is also difficult to knead into a needle.
Accordingly, a manufacturing method that can produce biodegradable resin microneedles at a relatively low temperature and facilitate the mixing of drugs has been demanded. Furthermore, there is a need for a microneedle that is inexpensive and can be disposable. The problem with microneedles is how to produce microneedles that are made of biocompatible materials and have a certain level of strength and durability, and that have no defects and are stable in quality. It is.
Furthermore, since such a microneedle is usually disposable, it is required to be inexpensive.
本発明の課題は、生体分解性材料を用いて、剣山型微小針を安価且つ量産規模で製造することを目的とする。更に詳しくは微小針に薬剤の混入が可能であり、微小針の先端部分が欠けずに揃っている、規格信頼性の高い製造方法を提供することである。 An object of the present invention is to produce a Kenyama microneedle at low cost and on a mass production scale using a biodegradable material. More specifically, it is an object of the present invention to provide a manufacturing method with high standard reliability in which a drug can be mixed into a microneedle and the tip portion of the microneedle is aligned without being chipped.
本発明者らは、上記課題を達成すべく鋭意検討を行った結果、ポリジメチルシロキサン(PDMS)製の鋳型を使用し、生体分解性の樹脂を用いて遷移点(ガラス転移点)から融点までの温度範囲で減圧下転写加工することを特徴とする製造方法を見出した。
非特許文献1にも示されるように、PDMS製の鋳型の特徴は柔軟性に富むことであり、それ故、微小針との脱離が良く、微小針の先端部分の欠損が抑制できている。更に、この効果を向上させるために、微小針の鋳型をすべて貫通孔とする工夫を行った。
以上の本発明の特徴を詳しく説明すれば、次の通りである。
(1)貫通孔を有するPDMS製の鋳型を用いて微小針を作製する:
無貫通孔の場合と対比すると、同じ真空下での転写加工であっても、非特許文献1とは異なり、生体分解性樹脂の融点よりも低い温度で行われるため、無貫通孔では生体分解性樹脂によって孔がふさがっており、空気が抜けないので鋳型に充分樹脂が流入できないことが生じる。
また、無貫通孔の場合、低温にして樹脂を固化させ鋳型から樹脂を離型する場合、鋳型に生じる上記の空気溜りが陰圧になり、離型ができず、針が折れることが生じる。
ところで、本発明の貫通孔の鋳型の場合には、より低い温度で樹脂に転写加工ができ、更には樹脂からの離型に関しても、貫通孔であるため陰圧になることがなく、樹脂の温度が遷移点付近であるため、摩擦が抑制されている。これらのことから、得られる生体分解性樹脂の微小針は先端部の欠損が回避できている。
(2)生体分解性樹脂への転写は遷移点から融点より低い温度範囲で減圧下に行う:
樹脂の融点以上になると、鋳型への密着性が増し、鋳型からの微小針の離型が困難になることが生じるため、樹脂を溶融させず、軟化(融点以下に)させる必要がある。樹脂を冷却して微小針を鋳型から離型する時には、鋳型貫通孔の表面荒れによる摩擦抵抗のために微小針の離型が困難になる。これを回避し、微小針の先端部の折損を防ぐため、樹脂の遷移点近傍の温度で樹脂を完全に硬化させずに離型させることを行う。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors use a polydimethylsiloxane (PDMS) mold and use a biodegradable resin from the transition point (glass transition point) to the melting point. The manufacturing method characterized by carrying out transfer processing under reduced pressure in the above temperature range was found.
As shown in Non-Patent Document 1, the feature of the PDMS mold is rich in flexibility. Therefore, it can be easily detached from the microneedle, and the tip of the microneedle can be prevented from being lost. . Furthermore, in order to improve this effect, a device was devised in which all the microneedle molds were through-holes.
The characteristics of the present invention will be described in detail as follows.
(1) A microneedle is produced using a PDMS mold having a through hole:
In contrast to the case of a non-through hole, even in transfer processing under the same vacuum, unlike Non-Patent Document 1, it is performed at a temperature lower than the melting point of the biodegradable resin. Since the holes are blocked by the functional resin and the air cannot escape, the resin cannot sufficiently flow into the mold.
In the case of a non-through hole, when the resin is solidified at a low temperature and the resin is released from the mold, the air pool generated in the mold becomes a negative pressure, the mold cannot be released and the needle breaks.
By the way, in the case of the mold of the through hole of the present invention, it can be transferred to the resin at a lower temperature. Further, regarding the release from the resin, since it is a through hole, there is no negative pressure. Since the temperature is near the transition point, friction is suppressed. From these facts, the tip of the biodegradable resin microneedle obtained can be avoided.
(2) Transfer to the biodegradable resin is performed under reduced pressure in a temperature range lower than the melting point from the transition point:
When the melting point is higher than the melting point of the resin, the adhesiveness to the mold increases, and it becomes difficult to release the microneedle from the mold. Therefore, it is necessary to soften the resin (below the melting point) without melting the resin. When the resin is cooled and the microneedles are released from the mold, it is difficult to release the microneedles due to frictional resistance due to the surface roughness of the mold through hole. In order to avoid this and prevent breakage of the tip portion of the microneedle, the resin is released without being completely cured at a temperature in the vicinity of the resin transition point.
一方で、PDMS製の鋳型は耐久性が悪く、10回程度の転写加工で使用困難になる。そこで、生体分解性樹脂の微小針を大量に製造するためには、PDMS製鋳型の効率の良い製造方法が必要になる。そして、PDMS製鋳型を大量に製造するためには、非特許文献1のような樹脂製の微小針の母型ではなく、耐久性に優れた金属母型が必要になってくる。
このように、PDMS製鋳型を製造するための、精度の高い金属製微小針の製造が不可欠であると考えられる。そこで本発明者らは、金属メッキの手法を用いて、金属製微小針の母型の製造方法を検討し、いくつかの効率的な方法を見出した。
以上のように、本発明の微小針の金属製母型の製造方法と生体分解性樹脂の微小針の製造方法とを用いて、品質が良好で、しかもコスト的に安価な微小針が、量産可能になることを見出し、本発明を完成した。
On the other hand, the mold made of PDMS has poor durability and is difficult to use after about 10 transfer processes. Therefore, in order to manufacture a large number of biodegradable resin microneedles, an efficient manufacturing method of a PDMS mold is required. In order to manufacture a large number of PDMS molds, a metal mold excellent in durability is required instead of a resin microneedle mold as in Non-Patent Document 1.
Thus, it is considered essential to manufacture highly accurate metal microneedles for manufacturing a PDMS mold. Accordingly, the present inventors have studied a method for manufacturing a metal microneedle using a metal plating technique, and have found several efficient methods.
As described above, by using the method for manufacturing a metal mold of a microneedle according to the present invention and the method for manufacturing a microneedle of a biodegradable resin, a microneedle having good quality and low cost can be mass-produced. We have found that this is possible and have completed the present invention.
本発明の要旨は以下の通りである。
[1]以下の形状の生体分解性樹脂製の剣山型微小針の製造方法であって、
(1)上記樹脂製の剣山型微小針を作製するために、上記微小針のサイズに合った貫通孔(円柱、円錐、角柱、角錐)を有するポリジメチルシロキサン(PDMS)製の鋳型を次のように作製する、
a)微小針の長さに対応した厚みを持つシリコン(Si)平板に、半導体プロセスにて50〜200μm程度のサイズの円柱状、角柱状、円錐状または角錐状の穴を、10〜500個開ける、
b)上記で作製されたSiデバイスに金属メッキを行い、該デバイスの貫通孔と表面を金属で被覆充填する、
c)Siデバイスを溶解除去し、微小針の金属母型を作製する、
d)上記金属母型にPDMS樹脂を平板状に塗布し固化させ、Siデバイスと同型の貫通孔を持ったPDMS製の鋳型を作成する、
(2)上記PDMS製の鋳型を用いて、減圧下、生体分解性樹脂に対して高温転写加工する、
(3)該樹脂の温度を遷移点付近まで冷却し、鋳型から樹脂を離型する、
ことを特徴とする、生体分解性樹脂製の剣山型微小針の製造方法。
[2]金属メッキがニッケルメッキあるいは銅メッキである、上記[1]記載の微小針の製造方法。
[3]生体分解性樹脂がポリ乳酸である、上記[1]または[2]記載の微小針の製造方法。
[4]剣山型微小針が
(1)微小針の基底部の幅が50〜200μm
(2)微小針の先端から基底部までの長さが30μ〜2mm
(3)本数が10〜500個
であることを特徴とする、上記[1]〜[3]のいずれかに記載の微小針の製造方法。
The gist of the present invention is as follows.
[1] A method for producing a Kenyama microneedle made of biodegradable resin having the following shape,
(1) In order to fabricate the resin-made Kenzan-type microneedles, a polydimethylsiloxane (PDMS) mold having through holes (cylinders, cones, prisms, pyramids) matching the size of the microneedles is used as follows. To make,
a) 10 to 500 cylindrical, prismatic, conical or pyramidal holes having a size of about 50 to 200 μm in a silicon (Si) flat plate having a thickness corresponding to the length of a microneedle. Open,
b) Metal plating is performed on the Si device manufactured as described above, and the through hole and the surface of the device are covered and filled with metal.
c) Dissolving and removing the Si device to produce a metal needle mold of microneedles.
d) Apply and solidify PDMS resin in the form of a flat plate on the metal matrix to create a PDMS mold having through holes of the same type as the Si device.
(2) High-temperature transfer processing is performed on the biodegradable resin under reduced pressure using the PDMS mold.
(3) The temperature of the resin is cooled to near the transition point, and the resin is released from the mold.
A method for producing a Kenyama-type microneedle made of a biodegradable resin.
[2] The method for producing microneedles according to the above [1], wherein the metal plating is nickel plating or copper plating.
[3] The method for producing a microneedle according to the above [1] or [2], wherein the biodegradable resin is polylactic acid.
[4] Kenyama microneedle (1) The width of the base of the microneedle is 50 to 200 μm
(2) The length from the tip of the microneedle to the base is 30 μ to 2 mm
(3) The method for producing microneedles according to any one of [1] to [3] above, wherein the number is 10 to 500.
[5]金属製の微小針母型の製造方法であって、微小針の長さに対応した厚みを持つSi平板を用いて、半導体プロセスにて50〜200μm程度のサイズの円柱状、角柱状、円錐状または角錐状の貫通穴を、10〜500個開け、次いで、以下の5つの方法の内のいずれか一つを選択することからなる金属製母型の製造方法、
(1)第1の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、該貫通孔の口径がより小さい方の平面で無孔のSi平板を熱接合する、
b)熱接合して得られたSiデバイスの開孔部表面に、TiとPdをスパッタリングあるいは真空蒸着する、
c)TiとPdで被覆されたSiデバイスに金属メッキを行い、金属で被覆充填する、
d)Siデバイスを溶解除去し、金属製微小針母型を得る、
(2)第2の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、該貫通孔の口径がより小さい方の平面で、TiとPdをスパッタリングした無孔のSi平板を合わせる、
b)2つのSi平板を保護テープで分離しないよう固定し、Siデバイスを作製する、
c)固定されたSi製鋳型に金属メッキを行い、鋳型の底面から金属を析出させ、金属で該デバイスを被覆充填する、
d)Siデバイスを溶解除去し、金属製微小針母型を得る、
(3)第3の方法は、次に示すものである、
a)TiとPdをスパッタリングした無孔のSi平板の外周部分にUV硬化剤を塗布し、UVを照射する、
b)剣山型微小針に対応する貫通孔を持ったSi平板と、該無孔Si平板とを、該貫通孔の口径がより小さい方の平面で、合わせて接着しSiデバイスを作製する、
c)Siデバイスの開孔表面に金属メッキを行い、孔の底面から金属を析出させ、金属でデバイス開孔表面の被覆を行う、
d)Siデバイスを溶解除去して、金属製微小針母型を作製する、
(4)第4の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、TiとPdをスパッタリングする、
b)スパッタリング後のSi平板で、貫通孔の口径の広い側のSi平板表面を研磨し、付着した金属を除去して、貫通孔のみがTi、Pdで被覆された平板を作製する、
c)別途、TiとPdがスパッタリングされた無孔のSi平板の外周部分(貫通孔に接触しない外周部分)にUV硬化剤を塗布する、
d)該UV硬化剤にUVを照射した後、貫通孔の口径の小さい側の平板表面と無孔のSi板を接着しSiデバイスを作製する、
d)該Siデバイスに金属メッキを行い、デバイスの孔の底面と側面から金属を析出させ、金属で被覆する、
e)Siデバイスを溶解除去して、金属製微小針母型を作製する、
(5)第5の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、貫通孔の口径の小さい側の平板表面にTiとPdをスパッタリングする、
b)別途、無孔のSi平板表面にTiとPdをスパッタリングする、
c)スパッタリング後の無孔Si平板にPMERを塗布する、
d)貫通孔を有するSi平板と無孔のSi平板に関して、それぞれのスパッタリングされた表面がPMERを挟んで向き合うように接着する、
e)Si平板の開孔表面側から、光を照射、露光し、現像して、孔の先端部分のPMERを除去して、TiとPdで被覆された孔の底面を露出させる、
f)得られたSiデバイスに金属メッキを行い、該デバイスの孔の底面と側面から金属を析出させ、金属でデバイスを被覆する、
g)Siデバイスを溶解除去して、金属製微小針母型を作製する。
[6]金属がニッケルまたは銅である、上記[5]記載の微小針の製造方法。
[7]PMERが、プロピレングリコールモノメチルエーテルアセテートの含量として50〜70重量%である、上記[5]または[6]に記載の微小針の製造方法。
[8]UV硬化剤が、硬化後の硬度として96/52〜100/80(ショアA/D)の範囲の材質である、上記[5]〜[7]のいずれかに記載の微小針の製造方法。
[5] A method for manufacturing a metal microneedle mold, using a Si flat plate having a thickness corresponding to the length of the microneedles, and a columnar or prismatic shape having a size of about 50 to 200 μm in a semiconductor process. , A method for producing a metal mother die comprising opening 10 to 500 conical or pyramidal through holes, and then selecting any one of the following five methods:
(1) The first method is as follows:
a) A Si flat plate having a through hole corresponding to a sword-shaped microneedle is thermally bonded to a non-porous Si flat plate on a plane having a smaller diameter of the through hole.
b) Sputtering or vacuum deposition of Ti and Pd on the surface of the opening of the Si device obtained by thermal bonding,
c) Metal plating is performed on a Si device coated with Ti and Pd, and the metal is coated and filled.
d) Dissolving and removing the Si device to obtain a metal microneedle matrix,
(2) The second method is as follows:
a) The Si flat plate having a through hole corresponding to the sword-shaped microneedle is combined with the non-porous Si flat plate obtained by sputtering Ti and Pd on the plane having the smaller diameter of the through hole.
b) Fixing the two Si flat plates so as not to be separated by a protective tape, and producing a Si device.
c) performing metal plating on the fixed Si mold, depositing metal from the bottom of the mold, and covering and filling the device with metal;
d) Dissolving and removing the Si device to obtain a metal microneedle matrix,
(3) The third method is as follows.
a) A UV curing agent is applied to the outer peripheral portion of a non-porous Si flat plate obtained by sputtering Ti and Pd, and UV is irradiated.
b) A Si flat plate having a through-hole corresponding to the sword-shaped microneedle and the non-porous Si flat plate are bonded together on a plane having a smaller diameter of the through-hole to produce a Si device.
c) Metal plating is performed on the hole surface of the Si device, metal is deposited from the bottom of the hole, and the surface of the device hole is covered with metal.
d) dissolving and removing the Si device to produce a metal microneedle matrix,
(4) The fourth method is as follows.
a) Sputtering Ti and Pd on a Si flat plate having a through hole corresponding to a sword mountain type microneedle,
b) Polishing the Si flat plate surface on the wide diameter side of the through hole with the Si flat plate after sputtering, removing the adhered metal, and producing a flat plate in which only the through hole is covered with Ti, Pd.
c) Separately, a UV curing agent is applied to the outer peripheral portion of the non-porous Si flat plate on which Ti and Pd are sputtered (the outer peripheral portion not in contact with the through hole).
d) After irradiating the UV curing agent with UV, a flat plate surface on the side having a small diameter of the through hole is bonded to a non-porous Si plate to produce a Si device.
d) performing metal plating on the Si device, depositing metal from the bottom and side surfaces of the hole of the device, and coating with metal;
e) Dissolving and removing the Si device to produce a metal microneedle matrix,
(5) The fifth method is as follows.
a) Sputtering Ti and Pd on the flat plate surface on the side having a small diameter of the through hole with respect to the Si flat plate having the through hole corresponding to the sword mountain type microneedle,
b) Separately sputtering Ti and Pd on the non-porous Si flat plate surface,
c) Applying PMER to the non-porous Si flat plate after sputtering,
d) With respect to the Si flat plate having a through hole and the non-porous Si flat plate, the sputtered surfaces are bonded so as to face each other with the PMER interposed therebetween.
e) From the surface of the aperture of the Si flat plate, light is irradiated, exposed, and developed to remove the PMER at the tip of the hole to expose the bottom surface of the hole covered with Ti and Pd.
f) Metal plating is performed on the obtained Si device, metal is deposited from the bottom and side surfaces of the hole of the device, and the device is covered with metal.
g) The Si device is dissolved and removed to produce a metal microneedle matrix.
[6] The method for producing a microneedle according to the above [5], wherein the metal is nickel or copper.
[7] The method for producing a microneedle according to the above [5] or [6], wherein PMER is 50 to 70% by weight as a content of propylene glycol monomethyl ether acetate.
[8] The microneedle according to any one of the above [5] to [7], wherein the UV curing agent is a material having a hardness after curing of 96/52 to 100/80 (Shore A / D). Production method.
本発明の製造方法は、所望の剣山型微小針に対応する貫通孔を有するPDMS製の鋳型を用いて、生体分解性樹脂の遷移点から融点までの温度範囲で減圧下に比較的低温下での転写加工を行い、遷移点近傍で樹脂を離型させ、それによって樹脂製の剣山型微小針を作成する方法である。その製造方法の特徴と、金属母型およびその母型を基にしたPDMS製鋳型の柔軟性により、微小針の先端部分に欠損が生じ難く、より低温で微小針が作成できるため、薬物を含有させ得る規格的に信頼性の高い製品が製造できる方法となっている。
The production method of the present invention uses a PDMS mold having a through-hole corresponding to a desired Kenzan-type microneedle and uses a temperature range from the transition point to the melting point of the biodegradable resin at a relatively low temperature under a reduced pressure. The transfer process is performed, and the resin is released in the vicinity of the transition point, thereby creating a sword-shaped microneedle made of resin. Due to the characteristics of the manufacturing method and the flexibility of the metal matrix and the PDMS mold based on the matrix, the tip of the microneedle is less likely to be damaged, and the microneedle can be created at a lower temperature. It is a method by which a product with high standard reliability can be manufactured.
以下に、添付の図面に基づいて本発明の生体分解性樹脂を用いた剣山型微小針の製造方法を以下に説明する。
本発明の製造方法の概略は、例えば図1に示すところのものである。即ち、まず、半導体プロセスにて作製した貫通孔(微小針に対応する)を有するSiデバイスに金属メッキを行って金属製剣山型微小針母型を作製する。そして、その金属製母型にPDMS樹脂を流し込み平板状にすることによって貫通孔を持ったPDMS製の鋳型を製造する。得られたPDMS製の鋳型を用いて減圧下に生体内分解性樹脂に転写を行い、該樹脂製の剣山型微小針デバイスを製造する。
このように、本発明の製造方法の主要な特徴は、PDMS製の鋳型から転写加工によって剣山型微小針を製造する工程と、PDMS製の鋳型を大量に作製するための金属製微小針母型を製造する工程の2つの工程にある。
Below, the manufacturing method of the Kenyama type | mold microneedle using the biodegradable resin of this invention is demonstrated based on attached drawing below.
The outline of the production method of the present invention is, for example, as shown in FIG. That is, first, metal plating is performed on an Si device having a through-hole (corresponding to a microneedle) manufactured by a semiconductor process to manufacture a metal sword mountain microneedle master. Then, a PDMS mold having a through hole is manufactured by pouring PDMS resin into the metal matrix and forming a flat plate shape. Using the obtained PDMS mold, transfer is performed to a biodegradable resin under reduced pressure to produce a Kenyama microneedle device made of the resin.
As described above, the main features of the manufacturing method of the present invention are a process of manufacturing a Kenyama-type microneedle from a PDMS mold by transfer processing, and a metal microneedle matrix for manufacturing a large number of PDMS molds. Are in two steps.
−本発明の第1態様―
本発明の第一の態様は貫通孔を持ったPDMS製の鋳型を用いて、剣山型の微小針を製造する方法に関するものである。
本明細書中に開示される微小針を作製する際に使用され得る微細製作プロセスとしては、リソグラフィー、スパッタリング、電気めっき、等が挙げられる。これらの技術は一般的な成書に記載されており、例えば、谷口淳「はじめてのナノインプリント技術」(工業調査会、2005年)、M.エルベンスポーク「シリコンマイクロ加工の基礎」(シュプリンガー・フェアラーク東京、2001年)、Jaeger,Introduction to
Microelectronic Fabrication(Addison−Wesley Publishing Co.,Reading
MA 1988);Runyan,ら、Semiconductor
Integrated Circuit Processing Technology(Addison−Wesley Publishing Co.,Reading
MA 1990);Proceedings
of the
IEEE Micro
Electro Mechanical
Systems Conference
1987−1998;Rai−Choudhury編、Handbook of Microlithography,Micromachining
& Microfabrication(SSPIE
Optical Engineering
Press,Bellingham,WA 1997)を参照、準用して行われる。
本発明で言う「生体分解性樹脂」とは、生体内で分解して吸収される成分からなる樹脂であれば、特に限定されるものではない。生体分解性樹脂としては、例えばポリ乳酸、ポリグリコール酸、乳酸・グリコール酸共重合物等の脂肪族ポリエステル、例えばマルトース、ラクトース、スクロース、マンニトール、ソルビトール等の糖類を挙げることができる。好ましくは、脂肪族ポリエステルとしてはポリ乳酸、ポリグリコール酸、多糖類としてはマルトースが好適である。ポリ乳酸は、例えば乳酸メチル、乳酸ブチル、乳酸ヘキサデシル等の乳酸エステルとの混合、あるいは、プラスチック樹脂の安定化、改質化の為に使用される一般的な熱安定剤、安定化助剤、可塑剤、酸化防止剤、光安定剤、難燃剤、滑剤等の添加剤と混合する等のことを行って所望の物性のものを得ることができる。
なお、本発明では高温転写加工を行うことから、PDMS製の鋳型が軟化せず形状を保持できる温度以下に設定された融点あるいは遷移点を持つ生体分解性樹脂が望ましい。
本発明で言う「剣山型の微小針」とは、円柱形あるいは円錐形、角柱、角錐の微小針が、その大きさとして(1)微小針の基底部の幅が50〜200μmであり、(2)微小針の先端から基底部までの長さが30μm〜2mmであるものであり、(3)剣山型を構成する微小針の本数として10〜500本有するものを言う。好ましくは、(1)微小針の基底部の幅が80〜150μmであり、(2)微小針の先端から基底部までの長さが300μm〜1mmであり、(3)剣山型を構成する微小針の本数が100〜400本であるものを挙げることができる。
-First aspect of the present invention-
The first aspect of the present invention relates to a method for manufacturing a Kenyama-type microneedle using a PDMS mold having a through hole.
Microfabrication processes that can be used in making the microneedles disclosed herein include lithography, sputtering, electroplating, and the like. These techniques are described in general books. For example, Taniguchi Satoshi “Nanoimprint Technology for the First Time” (Industry Research Committee, 2005); Elben spokes “Basics of Silicon Micromachining” (Springer Fairlark Tokyo, 2001), Jaeger, Introduction to
Microelectronic Fabrication (Addison-Wesley Publishing Co., Reading)
MA 1988); Runyan, et al., Semiconductor.
Integrated Circuit Processing Technology (Addison-Wesley Publishing Co., Reading)
MA 1990); Proceedings
of the
IEEE Micro
Electro Mechanical
Systems Conference
1987-1998; Rai-Chudhury, Handbook of Microlithography, Micromachining.
& Microfabrication (SSPIE
Optical Engineering
See, Press, Bellingham, WA 1997).
The “biodegradable resin” referred to in the present invention is not particularly limited as long as it is a resin composed of components that are decomposed and absorbed in vivo. Examples of the biodegradable resin include aliphatic polyesters such as polylactic acid, polyglycolic acid, and lactic acid / glycolic acid copolymer, and saccharides such as maltose, lactose, sucrose, mannitol, and sorbitol. Preferably, polylactic acid and polyglycolic acid are suitable as the aliphatic polyester, and maltose is suitable as the polysaccharide. Polylactic acid is, for example, mixed with lactic acid esters such as methyl lactate, butyl lactate, and hexadecyl lactate, or a general heat stabilizer used for stabilizing and modifying plastic resins, a stabilizing aid, The desired physical properties can be obtained by mixing with additives such as plasticizers, antioxidants, light stabilizers, flame retardants, and lubricants.
In the present invention, since a high-temperature transfer process is performed, a biodegradable resin having a melting point or a transition point set to a temperature that can be maintained at a temperature at which the PDMS mold is not softened is desirable.
The “sword mountain type microneedle” referred to in the present invention is a cylindrical or conical, prismatic, or pyramidal microneedle. (1) The width of the base of the microneedle is 50 to 200 μm. 2) The length from the tip of the microneedle to the base is 30 μm to 2 mm, and (3) it has 10 to 500 microneedles constituting the sword mountain shape. Preferably, (1) the width of the base part of the microneedle is 80 to 150 μm, (2) the length from the tip of the microneedle to the base part is 300 μm to 1 mm, and (3) the micrometer constituting the sword mountain shape A needle having 100 to 400 needles can be exemplified.
本発明で言う「ポリジメチルシロキサン(PDMS)」とは、ジメチルシロキサンのオリゴマーが触媒等で重合、硬化して得られた樹脂のことを言う。市販のPDMSを用いることが出来、好ましくは、PDMS樹脂の硬度が約50Shore Aであり、引張り強さは、約7Ppaであるものが挙げられる。例えば、シルガード184(Sylgard
184、ダウコーニング社製)を用いて、加熱処理を行うことによって樹脂化できる。
本発明で言う「半導体プロセス」とは、半導体の製造プロセスで汎用される手段のことを言い、特にシリコン平板表面に穿孔を行うための技術のことを言う。これらの手段としては、例えばX線リソグラフィー、フォトリソグラフィー等のリソグラフィー、例えばイオンエッチング、プラズマエッチィング等のエッチング、レーザーによる穿孔等を挙げることができる。好ましくは、イオンで深くエッチングできるICP−RIE(Inductively Coupled Plasma‐Reactive Ion Etching)技術を挙げることができる。
本発明で言う「金属」とは、金属メッキに汎用される金属のことを言い、例えばNi、NiFe、AuまたはCuを挙げることができる。好ましいものとして、Niを挙げることができる。
本発明で言う「金属メッキ」とは、当該分野の一般的な手法を応用でき、例えば、Frazier,ら、「Two Dimensional metallic microelectrode arrays for extracellular stimulation
and recording
of neurons」IEEE
Proceeding of the Micro Electro
Mechanical Systems Conference 195−200頁(1993)に記載の方法に準じて行うことができる。
本発明で言う「Siデバイスを溶解除去」とは、半導体プロセスで一般的に使用されるSiを溶解させる手法で除くことを言う。例えば30%水酸化カルシウム水溶液、HNO3/HF溶液、SF6プラズマ等を挙げることができる。
本発明で言う「転写加工」とは、生体分解性樹脂を加熱し、樹脂の温度を遷移点から融点までの温度範囲で維持し、鋳型に圧着させ、樹脂製微小針を形成させることを言う。なお、転写に際して、転写された樹脂が貫通孔からあふれないようにする。あふれ出た場合には、あふれた樹脂部分を削除する。なお、樹脂の融点以上で転写を行うと、溶融した樹脂が鋳型に密着することになり、離型時の摩擦抵抗が大きくなる傾向にある。従って、転写温度は樹脂の融点よりも低い温度で行うことが望ましい。
本発明で言う「離型」とは、圧着された樹脂の温度を遷移点近傍に低下させ、該樹脂が硬化する前に鋳型から樹脂を外すことを言う。微小針の鋳型が貫通孔になっているので、非貫通孔タイプの鋳型とは異なり、微小針の離型が容易になっている。また、離型の温度が遷移点近傍であるため、樹脂が固化した場合と比べて、微小針の破断が起きず塑性変形を多少伴って鋳型から脱離し易くなっている。その結果、微小針の先端部分の欠損が少なく品質の安定した微小針が作製できる。例えば、生体分解性樹脂としてポリ乳酸を用いる場合には、遷移点から融点までの温度範囲は50℃〜90℃であるので、この温度範囲で樹脂を鋳型に圧着転写し、樹脂が固化しない遷移点の50℃付近で離型することが望ましい。
本発明で言う「減圧下」とは、鋳型の貫通孔に生体分解性樹脂を充分充填させるために行われるものであり、その目的が達成できる減圧のことを言う。本発明で言う減圧の程度は、圧着される生体分解性樹脂の粘度に応じて加減でき、例えば、生体分解性樹脂としてポリ乳酸を用いる場合には、65℃〜80℃で減圧下で圧着することが好ましい。本発明の貫通孔を持つ鋳型では、無貫通孔の場合と異なり、生体分解性樹脂によって孔がふさがれることがなく、そのため空気が抜けずに樹脂が充分鋳型に流入しないことがない。また、転写した樹脂を離型する際においても、空気溜りがなく、その結果、陰圧になることもないため、離型できなかったり、針の先端部が折れたりすることが軽減されている。
The term “polydimethylsiloxane (PDMS)” used in the present invention refers to a resin obtained by polymerizing and curing a dimethylsiloxane oligomer with a catalyst or the like. Commercially available PDMS can be used, and preferably, the PDMS resin has a hardness of about 50 Shore A and a tensile strength of about 7 Ppa. For example, Sylgard 184 (Sylgard
184, manufactured by Dow Corning Co., Ltd.), and can be resinized by heat treatment.
The “semiconductor process” referred to in the present invention refers to a means widely used in a semiconductor manufacturing process, and particularly refers to a technique for perforating a silicon flat plate surface. Examples of these means include lithography such as X-ray lithography and photolithography, etching such as ion etching and plasma etching, and drilling with a laser. Preferably, an ICP-RIE (Inductively Coupled Plasma-Reactive Ion Etching) technique capable of deep etching with ions can be used.
The “metal” referred to in the present invention refers to a metal widely used for metal plating, and examples thereof include Ni, NiFe, Au, and Cu. A preferable example is Ni.
The “metal plating” referred to in the present invention can be applied by a general technique in this field. For example, Frazier, et al., “Two Dimensional metallic microarrays for extracellular simulation.
and recording
of neurons "IEEE
Proceeding of the Micro Electro
It can be carried out according to the method described in Mechanical Systems Conference, pages 195-200 (1993).
The term “dissolving and removing Si device” in the present invention refers to removal by a technique of dissolving Si generally used in a semiconductor process. Examples thereof include a 30% calcium hydroxide aqueous solution, an HNO 3 / HF solution, and SF 6 plasma.
“Transfer processing” as used in the present invention refers to heating a biodegradable resin, maintaining the temperature of the resin in a temperature range from the transition point to the melting point, and press-bonding it to a mold to form a resin microneedle. . In transferring, the transferred resin is prevented from overflowing from the through hole. If it overflows, delete the overflowing resin part. If transfer is performed at a temperature equal to or higher than the melting point of the resin, the molten resin comes into close contact with the mold, and the frictional resistance at the time of release tends to increase. Therefore, it is desirable that the transfer temperature is lower than the melting point of the resin.
The term “release” as used in the present invention means that the temperature of the pressure-bonded resin is lowered to the vicinity of the transition point, and the resin is removed from the mold before the resin is cured. Since the microneedle mold is a through-hole, unlike a non-through-hole type mold, the microneedle can be easily released. In addition, since the temperature of the mold release is in the vicinity of the transition point, the microneedle is not broken and is easily detached from the mold with some plastic deformation as compared with the case where the resin is solidified. As a result, it is possible to produce a microneedle having a stable quality with few defects at the tip of the microneedle. For example, when polylactic acid is used as a biodegradable resin, the temperature range from the transition point to the melting point is 50 ° C. to 90 ° C. Therefore, the resin is pressure-transferred to the mold in this temperature range, and the resin does not solidify. It is desirable to release the mold around 50 ° C.
The term “under reduced pressure” as used in the present invention is carried out in order to sufficiently fill the through-hole of the mold with the biodegradable resin, and means a reduced pressure at which the object can be achieved. The degree of decompression referred to in the present invention can be adjusted according to the viscosity of the biodegradable resin to be pressure-bonded. For example, when polylactic acid is used as the biodegradable resin, it is pressure-bonded at 65 to 80 ° C. under reduced pressure. It is preferable. In the mold having the through hole of the present invention, unlike the case of the non-through hole, the hole is not blocked by the biodegradable resin, so that the air does not escape and the resin does not sufficiently flow into the mold. In addition, when releasing the transferred resin, there is no air accumulation and, as a result, no negative pressure is generated, so that it is not possible to release the mold or the tip of the needle is broken. .
−本発明の第2態様―
本発明の第2態様としては、PDMS製の鋳型を作製するための金属製微小針母型を製造する方法に関するものである。
図1に示されるように、Siデバイスを用いて金属メッキにより金属製微小針母型を作製するが、該Siデバイスの作製方法に以下の5つの方法がある。
(1)図2に示されるように、貫通孔のあるSi平板と貫通孔がないSi平板を熱接合する。なお、微小針が形成できるように、貫通孔の口径がより狭いSi平板面が接合面となる。熱接合後のデバイスにTiとPdをスパッタリングして、Siデバイスを作製する。
(2)図3に示されるように、貫通孔のないSi平板にTiとPdをスパッタリングして、TiとPdで被覆されたSi平板を作製する。該Si平板に、貫通孔を持ったSi平板を重ね、保護テープで固定する。このように、Siデバイスの穴の底面が金属で被覆されたデバイスを作製する。
(3)図4に示されるように、貫通孔のないSi平板にTiとPdをスパッタリングして、TiとPdで被覆されたSi平板を作製する。該Si平板の外周にUV硬化剤を塗布する。UV硬化剤にUVを照射した後、貫通穴の口径がより狭いSi平板面が接合面となるよう、貫通孔のあるSi平板と貫通孔のないSi平板を圧着固定する。このように、Siデバイスの穴の底面が金属で被覆されたデバイスを作製する。
(4)図5に示されるように、貫通孔のないSi平板にTiとPdをスパッタリングして、TiとPdで被覆されたSi平板を作製する。貫通孔のあるSi平板の径口の大きい面にTiとPdをスパッタリングして貫通孔をTiとPdで被覆する。TiとPdで被覆された貫通孔のないSi平板の外周にUV硬化剤を塗布する。UV硬化剤にUVを照射した後、貫通穴の口径がより狭いSi平板面が接合面となるよう、貫通孔のあるSi平板と貫通孔のないSi平板を圧着固定する。このように、Siデバイスの穴の底面と側面が金属で被覆されたデバイスを作製する。
(5)図6に示されるように、貫通孔のないSi平板にTiとPdをスパッタリングして、TiとPdで被覆されたSi平板を作製する。更に、該Si平板のTi・Pd被覆表面をPMERで被覆する。貫通孔のあるSi平板の径口の小さい面にTiとPdをスパッタリングして貫通孔と平板表面をTiとPdで被覆する。貫通孔のあるSi平板の径口の小さい面が接合面となるように貫通孔のあるSi平板とPMER(東京応化製感光樹脂)で被覆されたSi平板を接合固定する。このSiデバイスの開口部から光を照射し、現像することによって、露光したPMERを除去する。これにより、Siデバイスの穴の底面と側面が金属で被覆されたデバイスを作製する。なお、底面と側面はPMERを介して分離されている。
-Second aspect of the present invention-
The second aspect of the present invention relates to a method for producing a metal microneedle matrix for producing a PDMS mold.
As shown in FIG. 1, a metal microneedle matrix is produced by metal plating using an Si device. There are the following five methods for producing the Si device.
(1) As shown in FIG. 2, a Si flat plate having a through hole and a Si flat plate having no through hole are thermally bonded. In addition, the Si flat plate surface having a narrower diameter of the through hole becomes the bonding surface so that microneedles can be formed. A Si device is fabricated by sputtering Ti and Pd on the device after thermal bonding.
(2) As shown in FIG. 3, Ti and Pd are sputtered onto a Si flat plate having no through-hole to produce a Si flat plate coated with Ti and Pd. A Si flat plate having a through hole is superimposed on the Si flat plate and fixed with a protective tape. In this manner, a device in which the bottom surface of the hole of the Si device is coated with a metal is manufactured.
(3) As shown in FIG. 4, Ti and Pd are sputtered onto a Si flat plate having no through-holes to produce a Si flat plate covered with Ti and Pd. A UV curing agent is applied to the outer periphery of the Si flat plate. After irradiating the UV curing agent with UV, the Si flat plate with through holes and the Si flat plate without through holes are pressure-bonded and fixed so that the Si flat plate surface with a narrower diameter of the through hole becomes the bonding surface. In this manner, a device in which the bottom surface of the hole of the Si device is coated with a metal is manufactured.
(4) As shown in FIG. 5, Ti and Pd are sputtered onto a Si flat plate having no through-holes to produce a Si flat plate covered with Ti and Pd. Ti and Pd are sputtered on the surface of the Si flat plate with through holes having a large diameter to cover the through holes with Ti and Pd. A UV curing agent is applied to the outer periphery of a Si flat plate coated with Ti and Pd and having no through holes. After irradiating the UV curing agent with UV, the Si flat plate with through holes and the Si flat plate without through holes are pressure-bonded and fixed so that the Si flat plate surface with a narrower diameter of the through hole becomes the bonding surface. Thus, a device in which the bottom and side surfaces of the hole of the Si device are coated with metal is manufactured.
(5) As shown in FIG. 6, Ti and Pd are sputtered onto a Si flat plate having no through-holes to produce a Si flat plate coated with Ti and Pd. Furthermore, the Ti · Pd coating surface of the Si flat plate is coated with PMER. Ti and Pd are sputtered on the surface of the Si flat plate with through holes having a small diameter to cover the through holes and the flat plate surface with Ti and Pd. The Si flat plate with the through hole and the Si flat plate coated with PMER (Tokyo Ohka Photopolymer) are bonded and fixed so that the surface with the small diameter of the Si flat plate with the through hole becomes the bonding surface. The exposed PMER is removed by irradiating and developing light from the opening of the Si device. Thereby, a device in which the bottom and side surfaces of the hole of the Si device are coated with metal is manufactured. Note that the bottom and side surfaces are separated via a PMER.
上記5つの方法は、金属メッキを効率的に行う上で、それぞれ以下のような特徴を有している。
(1)の特徴:熱接合によればシリコン同士が強固に節後されるため基板間にメッキ液が入り込むこともなく基板同士の剥離の恐れがない。
(2)の特徴:熱接合のように加圧や加熱をすることなく容易にかつ簡易に基板同士を貼り付けることが出来る。(1)は表面側からメッキするため底部にメッキのつきが不十分な恐れがあるが、(2)では底面からメッキされるのでメッキ時に確実に全体形状の形成が期待できる。
(3)の特徴:テープに比べて多少手間はかかるが、熱接合よりも、簡易にかつ基板間の隙間がなく確実に張り合わせることが出来る。底面から出来ることは(2)と同様のメリットがある。
(4)の特徴:(2)(3)は底面だけからメッキしたが、(4)では底面だけでなく孔側面からも同時にメッキすることが出来る。これにより一層確実に形状メッキが期待出来る。
(5)の特徴:(4)と同様に底面と側面の両方からメッキできるメリットがあるが、さらに固定方としてPMERを用いるので一層確実に基板間を接着できて信頼性が増す。
The above five methods have the following characteristics in order to efficiently perform metal plating.
Feature (1): According to the thermal bonding, silicon is strongly bonded to each other, so that the plating solution does not enter between the substrates and there is no fear of peeling between the substrates.
Feature (2): The substrates can be easily and simply attached without applying pressure or heating as in thermal bonding. Since (1) is plated from the surface side, the bottom may be insufficiently plated. However, in (2), since it is plated from the bottom surface, formation of the entire shape can be reliably expected at the time of plating.
Feature (3): Although it takes a little more labor than a tape, it can be bonded more easily and reliably than a thermal bonding without any gaps between substrates. What can be done from the bottom has the same merit as (2).
(4) Features: (2) and (3) are plated only from the bottom, but (4) can be plated from the side of the hole as well as the bottom. Thereby, shape plating can be expected more reliably.
(5) Feature: Similar to (4), there is an advantage that plating can be performed from both the bottom and side surfaces. However, since PMER is used as a fixing method, the substrates can be bonded more reliably and the reliability can be increased.
本発明では、特に言及しない限り、上記第一の態様の用語の定義と同じである。
本発明で言う「熱接合」とは、シリコン基板を過熱して圧力と掛けることによりシリコン同士を接合する技術のことを言う。接合の温度としては、900℃〜1000℃の範囲で行うことができる。
本発明で言う「UV硬化剤」とは、オリゴマー、モノマーと光開始剤からなるものであり、例えばモノマーとしてアクリル酸系のものを挙げることができる。好ましいものとしては、硬化後の硬度が96/52〜100/80ショア
A/Dのものを挙げることができる。より好ましくは、GL-4001(有限会社グルーラボ製)あるいはGLX39-79(有限会社グルーラボ製)を挙げることができる。
本発明で言う「PMER」とは、ホトレジストのことを言い、プロピレングリコールモノアセテートが50〜70重量%含有されるものが好ましい。より好ましくは、P−HM3000PM(東京応化製)あるいはP−LA900PM(東京応化製)を挙げることができる。
In the present invention, the definitions of the terms in the first aspect are the same unless otherwise specified.
The term “thermal bonding” as used in the present invention refers to a technique for bonding silicon by heating a silicon substrate and applying pressure thereto. The bonding temperature can be in the range of 900 ° C to 1000 ° C.
The “UV curing agent” referred to in the present invention is composed of an oligomer, a monomer, and a photoinitiator, and examples thereof include acrylic acid-based monomers. Preferable examples include those having a hardness after curing of 96/52 to 100/80 Shore A / D. More preferable examples include GL-4001 (manufactured by Glue Lab Co., Ltd.) or GLX39-79 (manufactured by Glue Lab Co., Ltd.).
“PMER” as used in the present invention means a photoresist, and preferably contains 50 to 70% by weight of propylene glycol monoacetate. More preferably, P-HM3000PM (made by Tokyo Ohka) or P-LA900PM (made by Tokyo Ohka) can be mentioned.
以下に本発明について実施例により具体的に説明する。但し、本発明は以下の実施例になんら限定されるものではない。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)貫通孔を持ったSi製平板の作製
感光性レジストをスピンコート法により、厚さ500μmのSi平板(4インチ径)に用いて被膜した。微小針のパターン(直径100μmの穴が400個配列しているパターン)をUV露光で描画した。デッピング法により現像し、微小針のサイズに対応する開口部を開ける。SF6ガスを用いた、誘導結合型プラズマ反応性イオンエッチィング(ICP-RIE)方法により、描画パターンをSi平板上に転写し、貫通孔を得る。残存する感光性レジストをO2ガスを用いたRIE方法により除去し、貫通孔を有するSi平板を得た。
(Example 1) Production of Si flat plate having through-holes A photosensitive resist was coated on a Si flat plate (4 inch diameter) having a thickness of 500 µm by spin coating. A microneedle pattern (a pattern in which 400 holes having a diameter of 100 μm are arranged) was drawn by UV exposure. Development is performed by a dipping method, and an opening corresponding to the size of the microneedle is opened. A drawing pattern is transferred onto a Si flat plate by an inductively coupled plasma reactive ion etching (ICP-RIE) method using SF6 gas to obtain a through hole. The remaining photosensitive resist was removed by an RIE method using O 2 gas to obtain a Si flat plate having a through hole.
(実施例2)微小針用金属母型を作製するためのSi製デバイスの製造方法
(1)熱接合型:
実施例1で得られた貫通孔を有するSi平板と、同じサイズの無孔のSi平板を重ね合わせ、貫通孔の口径の広いSi平面が残るようにする。このデバイスを30分間酸化炉で約1000℃で加熱し、Si平板の熱接合を行う。
(2)保護テープ固定型(鋳型穴の底面を金属被覆):
上記(1)と同様にSi平板を重ね合わせる。保護テープで両方のSi平板をしっかり固定する。
(3)UV硬化剤接着型(鋳型穴の底面を金属被覆):
実施例1で得られた貫通孔を有するSi平板と、同じサイズの、TiとPdでスッパッタリングされた無孔のSi平板を重ね合わせる。この時、Si平板の周囲にGL−4001を塗布し、UV照射を行い、両Si平板を重ね合わせる。そのまま固定することによって、鋳型穴の底面が金属被覆された貫通孔が得られることになる。
(4)UV接着型(鋳型穴の底面・側面を金属被覆):
実施例1で得られた貫通孔を有するSi平板に、開口部が広い方からTiとPdでスッパッタリングを行い、Si平板上のTiとPdについては平板表面を研磨して除去する。このようにして得られた貫通孔のみがTiとPdで被覆されたSi平板を得る。
当該Si平板と、同じサイズの、TiとPdでスッパッタリングされた無孔のSi平板とを用いて、上記(3)と同様に接着して、鋳型穴の底面・側面がTiとPdで被覆されたSiデバイスを得る。
(5)PMER接着型(鋳型穴の底面・側面を金属被覆):
実施例1で得られた貫通孔を有するSi平板に、開口部の狭い方からTiとPdでスッパッタリングを行う。また、無孔のSi平板にTiとPdでスッパッタリングを行い、TiとPdの被覆の上にPMER樹脂(P−HM3000PM)を塗布する。その上に、貫通孔を有するSi平板を、開口部の狭い方で重ね合わせる。Siデバイスの開口部よりUVを照射し、現像する。感光部分を除去し、鋳型穴の底面・側面がTiとPdで被覆されたSiデバイスを得る。
(Example 2) Manufacturing method of Si device for producing a metal mold for a microneedle (1) Thermal bonding type:
The Si flat plate having the through hole obtained in Example 1 and the non-porous Si flat plate of the same size are overlapped so that a Si plane having a large aperture diameter remains. This device is heated at about 1000 ° C. in an oxidation furnace for 30 minutes to perform thermal bonding of the Si flat plate.
(2) Protective tape fixed type (metal bottom covering the mold hole):
Similar to the above (1), the Si flat plates are overlapped. Secure both Si plates with protective tape.
(3) UV curing agent adhesion type (metal bottom covering the mold hole):
The Si flat plate having through holes obtained in Example 1 and the non-porous Si flat plate having the same size and sputtered with Ti and Pd are overlapped. At this time, GL-4001 is applied around the Si flat plate, UV irradiation is performed, and both Si flat plates are overlapped. By fixing as it is, a through hole in which the bottom surface of the mold hole is coated with metal is obtained.
(4) UV adhesive mold (metal bottom and side surfaces of mold hole):
The Si flat plate having through-holes obtained in Example 1 is subjected to sputtering with Ti and Pd from the wider opening, and the surface of Ti and Pd on the Si flat plate is removed by polishing. Thus, a Si flat plate in which only the through holes obtained in this way are coated with Ti and Pd is obtained.
Using the Si flat plate and a non-porous Si flat plate sputtered with Ti and Pd of the same size, bonding is performed in the same manner as in (3) above, and the bottom and side surfaces of the mold hole are made of Ti and Pd. A coated Si device is obtained.
(5) PMER adhesion type (metal bottom covers and side surfaces of mold holes):
The Si flat plate having a through hole obtained in Example 1 is subjected to sputtering with Ti and Pd from the narrower opening. Further, sputtering is performed with Ti and Pd on a non-porous Si flat plate, and PMER resin (P-HM3000PM) is applied on the Ti and Pd coating. On top of this, a Si flat plate having a through hole is overlaid on the narrower side of the opening. UV is irradiated from the opening of the Si device and developed. The photosensitive portion is removed to obtain a Si device in which the bottom and side surfaces of the mold hole are covered with Ti and Pd.
(実施例3)微小針用金属母型の作製
実施例2の(3)で得られたSiデバイスを用いて、pH4.5のニッケルメッキ水溶液(スルファミン酸ニッケル、ホウ酸、ラウリル硫酸ナトリウム)に浸漬し、50℃で20時間、メッキ処理を行う。
メッキ処理されたSiデバイスをHNO3/HF溶液でウェットエッチングを行い、Siデバイスのみを除去した。これにより、微小針のニッケル母型を作製することができた。
(Example 3) Production of metal mold for microneedle Using the Si device obtained in (3) of Example 2, a pH 4.5 nickel plating aqueous solution (nickel sulfamate, boric acid, sodium lauryl sulfate) was used. Immerse and plate at 50 ° C. for 20 hours.
The plated Si device was wet etched with an HNO 3 / HF solution to remove only the Si device. As a result, a nickel needle mold of microneedles could be produced.
(実施例4)PDMS製の微小針鋳型の作製
実施例3で得られたニッケル母型を用いて、PDMS(SILPOT 184W/C)と重合触媒を10:1で混合し、該ニッケル母型の微小針がようやく隠れるところまで、該混合液を流し込んで平板上にする。温度を30分間70℃に設定し、PDMSを硬化させる。冷却後、ニッケル母型と離型させることにより、PDMS製の微小針鋳型を作製することができた。
(Example 4) Production of PDMS microneedle mold Using the nickel matrix obtained in Example 3, PDMS (SILPOT 184W / C) and a polymerization catalyst were mixed at a ratio of 10: 1. The mixture is poured onto a flat plate until the microneedles are finally hidden. The temperature is set at 70 ° C. for 30 minutes to cure the PDMS. After cooling, the microneedle mold made of PDMS could be produced by releasing from the nickel matrix.
(実施例5)生体分解性樹脂製の微小針の製造
実施例4で得られたPDMS製鋳型を使用し、ポリ乳酸樹脂を85℃近傍に加温し、−の減圧下で圧着させる。ポリ乳酸樹脂の温度が50℃近傍に低下した時点で鋳型とポリ乳酸樹脂を離型させる。離型したポリ乳酸樹脂の不要なバリをカットして、図7と図8に示されるポリ乳酸樹脂製の微小針を得た。
(Example 5) Production of biodegradable resin microneedles Using the PDMS mold obtained in Example 4, the polylactic acid resin was heated to around 85 ° C and pressure-bonded under a negative pressure of-. When the temperature of the polylactic acid resin is lowered to around 50 ° C., the mold and the polylactic acid resin are released from the mold. Unnecessary burrs of the released polylactic acid resin were cut to obtain polylactic acid resin microneedles shown in FIGS.
本発明の微小針の製造方法により、例えば図1に示されるように、金属母型を使用することで,貫通孔を有するPDMS製鋳型が大量に生産でき,良好な品質の剣山形微小針デバイスを大量生産することが可能になった。特に、本発明の微小針用金属母型の製造方法により、精度の高い金属母型を作製できるため、良好な品質のPDMS製鋳型が大量に生産できるようになった。
According to the microneedle manufacturing method of the present invention, for example, as shown in FIG. 1, a PDMS mold having a through-hole can be produced in large quantities by using a metal master mold, and a good quality sword-shaped microneedle device. Can be mass-produced. In particular, the method for producing a metal mold for a microneedle according to the present invention can produce a metal mold with high accuracy, so that PDMS molds of good quality can be produced in large quantities.
Claims (8)
(1)上記樹脂製の剣山型微小針を作製するために、上記微小針のサイズに合った貫通孔(円柱、円錐、角柱、角錐)を有するポリジメチルシロキサン(PDMS)製の鋳型を次のように作製する、
a)微小針の長さに対応した厚みを持つシリコン(Si)平板に、半導体プロセスにて50〜200μm程度のサイズの円柱状、角柱状、円錐状または角錐状の穴を、10〜500個開ける、
b)上記で作製されたSiデバイスに金属メッキを行い、該デバイスの貫通孔と表面を金属で被覆充填する、
c)Siデバイスを溶解除去し、微小針の金属母型を作製する、
d)上記金属母型にPDMS樹脂を平板状に塗布し固化させ、Siデバイスと同型の貫通孔を持ったPDMS製の鋳型を作成する、
(2)上記PDMS製の鋳型を用いて、減圧下、生体分解性樹脂に対して高温転写加工する、
(3)該樹脂の温度を遷移点付近まで冷却し、鋳型から樹脂を離型する、
ことを特徴とする、生体分解性樹脂製の剣山型微小針の製造方法。 A method for producing a Kenyama microneedle made of biodegradable resin having the following shape,
(1) In order to fabricate the resin-made Kenzan-type microneedles, a polydimethylsiloxane (PDMS) mold having through holes (cylinders, cones, prisms, pyramids) matching the size of the microneedles is used as follows. To make,
a) 10 to 500 cylindrical, prismatic, conical or pyramidal holes having a size of about 50 to 200 μm in a silicon (Si) flat plate having a thickness corresponding to the length of a microneedle. Open,
b) Metal plating is performed on the Si device manufactured as described above, and the through hole and the surface of the device are covered and filled with metal.
c) Dissolving and removing the Si device to produce a metal needle mold of microneedles.
d) Apply and solidify PDMS resin in the form of a flat plate on the metal matrix to create a PDMS mold having through holes of the same type as the Si device.
(2) High-temperature transfer processing is performed on the biodegradable resin under reduced pressure using the PDMS mold.
(3) The temperature of the resin is cooled to near the transition point, and the resin is released from the mold.
A method for producing a Kenyama-type microneedle made of a biodegradable resin.
(1)微小針の基底部の幅が50〜200μm
(2)微小針の先端から基底部までの長さが30μ〜2mm
(3)本数が10〜500個
であることを特徴とする、請求項1〜3のいずれかに記載の微小針の製造方法。 The Kenyama type microneedle (1) The width of the base of the microneedle is 50 to 200 μm
(2) The length from the tip of the microneedle to the base is 30 μ to 2 mm
(3) The method for producing microneedles according to any one of claims 1 to 3, wherein the number is 10 to 500.
(1)第1の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、該貫通孔の口径がより小さい方の平面で無孔のSi平板を熱接合する、
b)熱接合して得られたSiデバイスの開孔部表面に、下地金属をスパッタリングあるいは真空蒸着する、
c)下地金属で被覆されたSiデバイスに金属メッキを行い、金属で被覆充填する、
d)Siデバイスを溶解除去し、金属製微小針母型を得る、
(2)第2の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、該貫通孔の口径がより小さい方の平面で、TiとPdを付着した無孔のSi平板を合わせる、
b)2つのSi平板を保護テープで分離しないよう固定し、Siデバイスを作製する、
c)固定されたSi製鋳型に金属メッキを行い、鋳型の底面から金属を析出させ、金属で該デバイスを被覆充填する、
d)Siデバイスを溶解除去し、金属製微小針母型を得る、
(3)第3の方法は、次に示すものである、
a)TiとPdをスパッタリングした無孔のSi平板の外周部分にUV硬化剤を塗布し、UVを照射する、
b)剣山型微小針に対応する貫通孔を持ったSi平板と、該無孔Si平板とを、該貫通孔の口径がより小さい方の平面で、合わせて接着しSiデバイスを作製する、
c)Siデバイスの開孔表面に金属メッキを行い、孔の底面から金属を析出させ、金属でデバイス開孔表面の被覆を行う、
d)Siデバイスを溶解除去して、金属製微小針母型を作製する、
(4)第4の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、TiとPdをスパッタリングする、
b)スパッタリング後のSi平板で、貫通孔の口径の広い側のSi平板表面を研磨し、付着した金属を除去して、貫通孔のみがTi、Pdで被覆された平板を作製する、
c)別途、TiとPdがスパッタリングされた無孔のSi平板の外周部分(貫通孔に接触しない外周部分)にUV硬化剤を塗布する、
d)該UV硬化剤にUVを照射した後、貫通孔の口径の小さい側の平板表面と無孔のSi板を接着しSiデバイスを作製する、
d)該Siデバイスに金属メッキを行い、デバイスの孔の底面と側面から金属を析出させ、金属で被覆する、
e)Siデバイスを溶解除去して、金属製微小針母型を作製する、
(5)第5の方法は、次に示すものである、
a)剣山型微小針に対応する貫通孔を持ったSi平板に対して、貫通孔の口径の小さい側の平板表面にTiとPdをスパッタリングする、
b)別途、無孔のSi平板表面にTiとPdをスパッタリングする、
c)スパッタリング後の無孔Si平板にPMERを塗布する、
d)貫通孔を有するSi平板と無孔のSi平板に関して、それぞれのスパッタリングされた表面がPMERを挟んで向き合うように接着する、
e)Si平板の開孔表面側から、光を照射、露光し、現像して、孔の先端部分のPMERを除去して、TiとPdで被覆された孔の底面を露出させる、
f)得られたSiデバイスに金属メッキを行い、該デバイスの孔の底面と側面から金属を析出させ、金属でデバイスを被覆する、
g)Siデバイスを溶解除去して、金属製微小針母型を作製する。
A method for manufacturing a metal microneedle mold, using a Si flat plate having a thickness corresponding to the length of a microneedle, and a cylindrical, prismatic, or conical shape having a size of about 50 to 200 μm in a semiconductor process. Alternatively, a method for producing a metal mother die comprising opening 10 to 500 pyramidal through holes and then selecting one of the following five methods:
(1) The first method is as follows:
a) A Si flat plate having a through hole corresponding to a sword-shaped microneedle is thermally bonded to a non-porous Si flat plate on a plane having a smaller diameter of the through hole.
b) Sputtering or vacuum-depositing a base metal on the surface of the opening of the Si device obtained by thermal bonding,
c) Metal plating is performed on the Si device coated with the base metal, and the metal is coated and filled.
d) Dissolving and removing the Si device to obtain a metal microneedle matrix,
(2) The second method is as follows:
a) The Si flat plate having a through hole corresponding to the sword-shaped microneedle is combined with a non-porous Si flat plate to which Ti and Pd are adhered on a plane having a smaller diameter of the through hole.
b) Fixing the two Si flat plates so as not to be separated by a protective tape, and producing a Si device.
c) performing metal plating on the fixed Si mold, depositing metal from the bottom of the mold, and covering and filling the device with metal;
d) Dissolving and removing the Si device to obtain a metal microneedle matrix,
(3) The third method is as follows.
a) A UV curing agent is applied to the outer peripheral portion of a non-porous Si flat plate obtained by sputtering Ti and Pd, and UV is irradiated.
b) A Si flat plate having a through-hole corresponding to the sword-shaped microneedle and the non-porous Si flat plate are bonded together on a plane having a smaller diameter of the through-hole to produce a Si device.
c) Metal plating is performed on the hole surface of the Si device, metal is deposited from the bottom of the hole, and the surface of the device hole is covered with metal.
d) dissolving and removing the Si device to produce a metal microneedle matrix,
(4) The fourth method is as follows.
a) Sputtering Ti and Pd on a Si flat plate having a through hole corresponding to a sword mountain type microneedle,
b) Polishing the Si flat plate surface on the wide diameter side of the through hole with the Si flat plate after sputtering, and removing the adhered metal to produce a flat plate in which only the through hole is covered with Ti and Pd.
c) Separately, a UV curing agent is applied to the outer peripheral portion of the non-porous Si flat plate on which Ti and Pd are sputtered (the outer peripheral portion not in contact with the through hole).
d) After irradiating the UV curing agent with UV, a flat plate surface on the side having a small diameter of the through hole is bonded to a non-porous Si plate to produce a Si device.
d) performing metal plating on the Si device, depositing metal from the bottom and side surfaces of the hole of the device, and coating with metal;
e) Dissolving and removing the Si device to produce a metal microneedle matrix,
(5) The fifth method is as follows.
a) Sputtering Ti and Pd on the flat plate surface on the side having a small diameter of the through hole with respect to the Si flat plate having the through hole corresponding to the sword mountain type microneedle,
b) Separately sputtering Ti and Pd on the non-porous Si flat plate surface,
c) Applying PMER to the non-porous Si flat plate after sputtering,
d) With respect to the Si flat plate having a through hole and the non-porous Si flat plate, the sputtered surfaces are bonded so as to face each other with the PMER interposed therebetween.
e) From the surface of the aperture of the Si flat plate, light is irradiated, exposed, and developed to remove the PMER at the tip of the hole to expose the bottom surface of the hole covered with Ti and Pd.
f) Metal plating is performed on the obtained Si device, metal is deposited from the bottom and side surfaces of the hole of the device, and the device is covered with metal.
g) The Si device is dissolved and removed to produce a metal microneedle matrix.
The manufacturing method of the micro needle | hook of Claim 5 whose metal is nickel or copper.
The manufacturing method of the microneedle in any one of Claims 5-7 whose UV hardening | curing agent is a material of the range of 96 / 52-100 / 80 (Shore A / D) as the hardness after hardening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233469A JP2009061745A (en) | 2007-09-08 | 2007-09-08 | Method of manufacturing microneedle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233469A JP2009061745A (en) | 2007-09-08 | 2007-09-08 | Method of manufacturing microneedle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009061745A true JP2009061745A (en) | 2009-03-26 |
Family
ID=40556792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007233469A Pending JP2009061745A (en) | 2007-09-08 | 2007-09-08 | Method of manufacturing microneedle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009061745A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011043085A1 (en) * | 2009-10-08 | 2011-04-14 | 株式会社バイオセレンタック | Stamper for microneedle sheet, method for manufacturing the stamper, and method for manufacturing microneedle using the stamper |
JP2011218754A (en) * | 2010-04-14 | 2011-11-04 | Toray Eng Co Ltd | Method for manufacturing stamper used for manufacturing microneedle sheet |
JP2012034944A (en) * | 2010-08-10 | 2012-02-23 | Kansai Univ | Method for manufacturing mold to make fine needle, and method for fabricating fine needle |
CN103568160A (en) * | 2012-07-27 | 2014-02-12 | 中国科学院理化技术研究所 | Method for manufacturing polymer material micro-needle array patch |
CN109835869A (en) * | 2019-01-30 | 2019-06-04 | 广东工业大学 | A kind of micro-nano through-hole template and the preparation method and application thereof |
KR102247267B1 (en) * | 2019-12-27 | 2021-05-03 | 대구가톨릭대학교산학협력단 | Apparatus for manufacturing micro niddle and method for the same |
-
2007
- 2007-09-08 JP JP2007233469A patent/JP2009061745A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011043085A1 (en) * | 2009-10-08 | 2011-04-14 | 株式会社バイオセレンタック | Stamper for microneedle sheet, method for manufacturing the stamper, and method for manufacturing microneedle using the stamper |
JP2011078617A (en) * | 2009-10-08 | 2011-04-21 | Toray Eng Co Ltd | Stamper for microneedle sheet, and manufacturing method for the same, and manufacturing method for microneedle using the same |
CN102202723A (en) * | 2009-10-08 | 2011-09-28 | 株式会社培旺精廉宅 | Stamper for microneedle sheet, method for manufacturing the stamper, and method for manufacturing microneedle using the stamper |
JP2011218754A (en) * | 2010-04-14 | 2011-11-04 | Toray Eng Co Ltd | Method for manufacturing stamper used for manufacturing microneedle sheet |
JP2012034944A (en) * | 2010-08-10 | 2012-02-23 | Kansai Univ | Method for manufacturing mold to make fine needle, and method for fabricating fine needle |
CN103568160A (en) * | 2012-07-27 | 2014-02-12 | 中国科学院理化技术研究所 | Method for manufacturing polymer material micro-needle array patch |
CN103568160B (en) * | 2012-07-27 | 2015-11-04 | 中国科学院理化技术研究所 | Method for manufacturing polymer material micro-needle array patch |
CN109835869A (en) * | 2019-01-30 | 2019-06-04 | 广东工业大学 | A kind of micro-nano through-hole template and the preparation method and application thereof |
CN109835869B (en) * | 2019-01-30 | 2021-03-30 | 广东工业大学 | Micro-nano through hole template and preparation method and application thereof |
KR102247267B1 (en) * | 2019-12-27 | 2021-05-03 | 대구가톨릭대학교산학협력단 | Apparatus for manufacturing micro niddle and method for the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100793615B1 (en) | A biodegradable solid type microneedle and methods for preparing it | |
JP5558772B2 (en) | STAMPER FOR MICRO NEEDLE SHEET, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR MANUFACTURING MICRO NEEDLE USING THE SAME | |
Perennes et al. | Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol | |
JP4778669B2 (en) | Method for manufacturing microneedles structures using soft lithography and photolithography | |
JP5653750B2 (en) | Method for producing an original plate, method for producing a concave array mold, method for producing an acicular array sheet, original plate | |
JP5020080B2 (en) | Manufacturing method of medical equipment | |
KR100682534B1 (en) | Method for manufacturing microneedle array | |
JP2006341089A (en) | Instrument for carrying medicinal material and manufacturing method of the same | |
JP2009061745A (en) | Method of manufacturing microneedle | |
CN104056346B (en) | Isoplanar microneedle array and manufacturing method thereof | |
KR20110067009A (en) | Manufacturing method of micro needle stamper | |
US20180250851A1 (en) | Manufacturing method of pattern sheet | |
WO2004062899A2 (en) | Method for manufacturing of polymer micro needle array with liga process | |
JP5717322B2 (en) | Method for producing needle array master | |
JP2007130030A (en) | Micro-needle, micro-needle assembly, and its manufacturing method | |
KR20110007734A (en) | The method for manufacturing hallow micro needle structures | |
JP2009082206A (en) | Method of manufacturing functional film | |
CN1864976A (en) | Microneedle preparation method based on multiplayer processing technology | |
JP2009241357A (en) | Method for producing functional sheet | |
JP5380965B2 (en) | Needle-like body and method for producing needle-like body | |
JP5023671B2 (en) | Manufacturing method of needle-shaped body | |
JP4888011B2 (en) | Needle-like body and manufacturing method thereof | |
Imaeda et al. | Sharp tip-separable microneedle device for trans-dermal drug delivery systems | |
WO2017056893A1 (en) | Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould | |
JP2009208171A (en) | L-shaped microneedle device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121016 |