Nothing Special   »   [go: up one dir, main page]

JP2008517475A - Substrate having electric contact and method of manufacturing the same - Google Patents

Substrate having electric contact and method of manufacturing the same Download PDF

Info

Publication number
JP2008517475A
JP2008517475A JP2007537448A JP2007537448A JP2008517475A JP 2008517475 A JP2008517475 A JP 2008517475A JP 2007537448 A JP2007537448 A JP 2007537448A JP 2007537448 A JP2007537448 A JP 2007537448A JP 2008517475 A JP2008517475 A JP 2008517475A
Authority
JP
Japan
Prior art keywords
substrate
contact pad
pad
contact pads
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007537448A
Other languages
Japanese (ja)
Inventor
ヴァン ヴェーン ニコラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2008517475A publication Critical patent/JP2008517475A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05555Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/14104Disposition relative to the bonding areas, e.g. bond pads, of the semiconductor or solid-state body
    • H01L2224/1411Disposition relative to the bonding areas, e.g. bond pads, of the semiconductor or solid-state body the bump connectors being bonded to at least one common bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09436Pads or lands on permanent coating which covers the other conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09745Recess in conductor, e.g. in pad or in metallic substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

第1金属接点パッド(13a〜13d)を有する第1基板(10)を提供するものであり、第1接点パッド(13a〜13d)は第2基板(20)上の第2接点パッド(23a〜23d)とはんだ付けされるものである。本発明によれば、前記第1基板の第1表面に対する、前記第1接点パッド(13a〜13d)の最大平面伸張長さ(Din)が20μmを超えないようにする。このように、第1基板(10)及び第2基板(20)が互いにはんだ付けされると、0またはほぼ0のスタンドオフ距離Xinを達成することができる。この方法は例えば、「アンダーバンプメタライゼーション(UBM)」及び、「はんだ浸漬バンピング(ISB)」が、前記第1基板(10)の製造に用いられるフリップチップ技術に適用することができる。Provided is a first substrate (10) having first metal contact pads (13a-13d), wherein the first contact pads (13a-13d) are second contact pads (23a-23) on a second substrate (20). 23d) and soldered. According to the present invention, the maximum planar extension length (Din) of the first contact pads (13a to 13d) relative to the first surface of the first substrate does not exceed 20 μm. Thus, when the first substrate (10) and the second substrate (20) are soldered together, a standoff distance Xin of 0 or nearly 0 can be achieved. This method can be applied, for example, to the flip chip technology in which "under bump metallization (UBM)" and "solder immersion bumping (ISB)" are used for the production of the first substrate (10).

Description

本発明は、絶縁領域によって互いに分離された複数の第1金属接点パッドを有する第1表面を具える基板であって、これら第1接点パッドは、他の基板の第2表面上の第2接点パッドにはんだ付けされるべきものであり、前記基板上の前記第1接点パッドとこれに対応する前記他の基板上の第2接点パッドとが互いに対向するようになっている当該基板に関する。   The present invention is a substrate comprising a first surface having a plurality of first metal contact pads separated from one another by an insulating region, wherein the first contact pads are second contacts on the second surface of the other substrate. The present invention relates to a substrate to be soldered to a pad, wherein the first contact pad on the substrate and the corresponding second contact pad on the other substrate face each other.

本発明は更に、第1金属接点パッドを有する第1表面を具えた第1基板と、第2金属接点パッドを有する第2表面を具えた第2基板とが設けられた電子デバイスであって、前記第1接点パッドと前記第2接点パッドとが互いにはんだ付けされており、第1基板上の第1接点パッドと、これに対応する第2基板上の第2接点パッドとが互いに対向している当該電子デバイスに関する。   The invention further relates to an electronic device provided with a first substrate comprising a first surface having a first metal contact pad and a second substrate comprising a second surface having a second metal contact pad, The first contact pad and the second contact pad are soldered to each other, and the first contact pad on the first substrate and the corresponding second contact pad on the second substrate face each other. The electronic device concerned.

本発明は更に、このような基板を製造する方法に関する。   The invention further relates to a method of manufacturing such a substrate.

前記基板は、当該技術において幅広く用いられている。例えば、電子回路を有するダイは、良く知られている「フリップチップ技術」によって、「サポート」基板にダイを接続するための接点パッドをも有している。   The substrate is widely used in the art. For example, a die with electronic circuitry also has contact pads for connecting the die to a "support" substrate by the well known "flip chip technology".

「フリップチップ」という語は、「フェースダウン」方法によって直接、基板、ボード又は担体上に実装(装着)することができる電気素子または半導体デバイスを意味する。電気接続が、チップの表面上に形成された導電性バンプによって達成されるので、この実装処理が従来から「フェースダウン」と称されている。実装に際し、チップは、バンプが目的位置に正確に配置されている基板、ボード又は担体上で裏返しに(フリップ)される。それ故、このチップを「フリップチップ」と称している。フリップチップはワイヤボンドを必要としないので、対応する従来のワイヤボンドを用いる場合よりも、基板上に占めるスペースが少なくて足りる。   The term "flip chip" means an electrical element or semiconductor device that can be mounted (mounted) directly on a substrate, board or carrier by a "face down" method. This mounting process is conventionally referred to as "face-down" because electrical connections are achieved by conductive bumps formed on the surface of the chip. During mounting, the chip is flipped over on a substrate, board or carrier on which the bumps are precisely located at the desired position. Therefore, this chip is called "flip chip". Because flip chips do not require wire bonds, they occupy less space on the substrate than with corresponding conventional wire bonds.

フリップチップは、伝統的な半導体パッケージとは構造的に異なるものであり、従って、必要とするアセンブリ処理もまた、従来の半導体アセンブリとは異なっている。フリップチップのアセンブリは、主たる3つの工程、すなわち、1)チップのバンピング工程、2)バンピングされたチップを基板又はボードへ「フェースダウン」で取り付ける工程、3)チップと基板又はボードとの間の隙間を、機械的に保護する非導電性材料で充填する処理であるアンダーフィル工程より成る。バンピング、取り付け及びアンダーフィルの工程で使用される材料及び技術を種々に異ならせると、フリップチップは、種々に異なる配列となる。   Flip chips are structurally different from traditional semiconductor packages, so the assembly process required is also different from conventional semiconductor assemblies. The flip chip assembly consists of three main steps: 1) bumping the chip, 2) attaching the bumped chip "face down" to the substrate or board, 3) between the chip and the substrate or board It comprises an underfilling process which is a process of filling the gap with a nonconductive material that protects mechanically. The different materials and techniques used in the bumping, attachment and underfill processes result in different arrangements of flip chips.

フリップチップのバンピング処理を行うための、多くの既知の処理のうちの1つには、
スパッタリング、めっき、印刷、又はこれらに類似する処理により接着パッド上に、いわゆる「アンダーバンプメタライゼーション(UBM)」の金属化体を配置する処理が含まれるものである。これらを組み合わせることも可能であること勿論である。UBMは、はんだのぬれ性(湿潤性)が良好な無電解NiAuをもって構成するのが好ましいが、他の物質の組み合わせを適用することもできる。より高い温度に用いられる他の例は、無電解NiPdAuである。UBM処理によれば、接着パッド上の表面安定化酸化物層が除去され、はんだのぬれ領域が規定される。次に、適切な方法、例えば蒸着、電気めっき、スクリーン印刷またはディスペンシングによりUBM上にはんだを堆積することができる。
One of the many known processes for bumping flip chips is:
Included is the process of disposing a so-called "under bump metallization (UBM)" metallization on the bond pad by a process such as sputtering, plating, printing, or the like. It is of course possible to combine these. The UBM is preferably constructed with electroless NiAu, which has good solder wettability (wettability), but other combinations of materials can be applied. Another example used for higher temperatures is electroless NiPdAu. The UBM process removes the surface stabilizing oxide layer on the bond pad and defines the wetted area of the solder. The solder can then be deposited on the UBM by any suitable method, such as evaporation, electroplating, screen printing or dispensing.

ウエハバンピングを廉価に達成するために、はんだペーストのステンシル印刷が実行されており、フリップチップはんだ付けに大きく貢献している。費用効果以外の点では、無鉛合金を含む他のはんだペーストを用いることができる。しかしながら、入手しうるはんだペースト及びステンシルの幾何学的形状が原因で、現在この処理は、多量生産の場合200μmまで、試験的には150μmまでのピッチに制限されている。   In order to achieve wafer bumping at low cost, stencil printing of solder paste is being performed, which greatly contributes to flip chip soldering. Other than cost effectiveness, other solder pastes can be used, including lead free alloys. However, due to the available solder paste and stencil geometry, this process is currently limited to pitches up to 200 μm for high volume production, and up to 150 μm for trial.

更なる他の方法は、いわゆる「はんだ浸漬バンピング(ISB)」であり、この方法は電気めっきに代わる廉価な代替例として用いることができる。ISBは、通常は100μmから極めて微細なピッチの40μmまでの寸法を有するパッドに対して用いることができる。ISBでは、ウエハが液体はんだに浸され、UBMが湿潤され、小さいはんだキャップがUBM上に形成される。はんだキャップの高さは、パッドの寸法に著しく依存する。液体はんだの表面上に有機液体を配置することにより、はんだの酸化を防止し、湿潤性を向上させる。はんだ付けの後、残留物を容易に取り除くことができる。処理自体は、ウエハの寸法を制限するものではない。単体のダイを処理することも、同様に可能である。処理はまた、無鉛はんだの要求に適合するように変更することもできる。PbSn63、SnBi42、SnAg3.5、SnCu0.7のような他のはんだ材料を用いることもできる。   Yet another method is the so-called "solder immersion bumping (ISB)", which can be used as an inexpensive alternative to electroplating. ISB can be used for pads that typically have dimensions from 100 μm to very fine pitches of 40 μm. In ISB, the wafer is immersed in liquid solder, the UBM is wetted, and a small solder cap is formed on the UBM. The height of the solder cap is highly dependent on the size of the pad. Placing the organic liquid on the surface of the liquid solder prevents oxidation of the solder and improves wettability. After soldering, the residue can be easily removed. The process itself does not limit the size of the wafer. It is also possible to process a single die. The process can also be modified to meet the requirements of lead free solders. Other solder materials such as PbSn63, SnBi42, SnAg3.5, SnCu0.7 can also be used.

はんだバンピングのこの処理全体は一般に、ウエハのレベルで実行される。次に、はんだがバンピングされたウエハを個々のフリップチップに切断し、はんだを溶かすのに十分高い温度をアセンブリに与えることによって、これらフリップチップをボードまたは基板に装着し、これにより、相互接続を達成する。この目的のために、サーモードボンダ、すなわち選択して配置する手段が使用される。サーモードボンダの配置ヘッドは、リフロー処理を達成するのに充分な熱を提供することを目的として、フリップチップデバイスにエネルギーを供給するために用いられる。低融点の軟質はんだのはんだ浸漬バンピングと急速なサーモードボンディングとの組み合わせを、スマートタグ接着技術に代わるものとすることができる。   This entire process of solder bumping is generally performed at the wafer level. These flip chips are then attached to a board or substrate by cutting the bumped wafers into individual flip chips and providing the assembly with a temperature high enough to melt the solder, thereby interconnecting Achieve. For this purpose, a thermobonder, ie a means for selective placement, is used. The placement head of the thermal bonder is used to provide energy to the flip chip device in order to provide sufficient heat to accomplish the reflow process. The combination of low melting point soft solder solder immersion bumping and rapid thermode bonding can be an alternative to smart tag bonding technology.

最後に、フリップチップデバイスに、アンダーフィル処理を行う。この処理は、しばしばフリップチップのエッジに沿うニードルディスペンシング処理によって達成される。この場合、毛管作用により、空間が満たされるまで、ディスペンシングされたアンダーフィル材料を内部へ吸引する。次に、熱硬化を実行して、不変的な結合を形成する。   Finally, the flip chip device is underfilled. This process is often accomplished by a needle dispensing process along the edge of the flip chip. In this case, the dispensed underfill material is drawn internally by capillary action until the space is filled. Next, heat curing is performed to form a permanent bond.

本明細書において使用されている「基板」という用語は、フリップチップ技術における基板を意味するだけでなく、電子回路を含むダイをも含むことに留意しなければならない。チップ製造に関する、「基板」と「ダイ」との相違は、本発明にとっては問題とならないものである。用語「基板」が、そのチップに関連する意味において必要である場合は常に、これに代えて、用語「サポート基板」が用いられるものである。更にまた、対応する処理を使用する場合に、通常「アンダーバンプメタライゼーション」と称されていることは、本明細書では一般的な表現で、「金属接点パッド」と称することを考慮すべきである。この一般的な表現を用いる理由は、本発明が、フリップチップ技術にも、UBM又はISBの処理にも限定されないた為である。   It should be noted that the term "substrate" as used herein not only refers to a substrate in flip chip technology, but also includes dies that contain electronic circuitry. The difference between "substrate" and "die" in chip manufacture is not a problem for the present invention. Whenever the term "substrate" is required in the sense associated with the chip, the term "support substrate" is used instead. Furthermore, when using the corresponding process, what is usually referred to as "under bump metallization" should be considered in general terms herein to be referred to as "metal contact pad". is there. The reason for using this general expression is that the present invention is not limited to flip chip technology, nor to the processing of UBM or ISB.

図1aは、従来技術である基板40の断面を示し、図1bは、これに対応する頂面図を示す。(第1)基板40は、より大きい電子回路の一部でもよく、この場合、図1a及び1bは、通常は、これらの一部を多数含むこのような電子回路の切り取り部のみを示す。   FIG. 1a shows a cross section of a prior art substrate 40 and FIG. 1b shows a corresponding top view. The (first) substrate 40 may be part of a larger electronic circuit, in which case FIGS. 1a and 1b only show the cutout of such electronic circuit, which usually contains a large number of these parts.

前記基板40は、その第1表面上に第1金属接着パッド41を具えている。この基板40上には第1絶縁層42が配置され、しかもこの第1絶縁層42は第1金属接着パッド41の境界域を覆い、これにより、円柱状の溝を第1接着パッド41の上面上に形成している。第1金属接着パッド41上には、第1接点パッド43が配置され、この第1接点パッドは前記第1絶縁層42から突出している。円柱状の溝のために、第1接点パッド43は、隆起したエッジを有する。最後に、第1接点パッド43上に、はんだバンプ44が形成されている。はんだバンプ44の高さHprは、第1接点パッド43の直径Dprに依存し、代表的にこの直径Dprの約0.3倍である。図1a及び1bに示されている構成は通常、中間生成体である。本例では、この構成が、電子回路を有するダイの一部であると仮定している。   The substrate 40 comprises a first metal bond pad 41 on its first surface. A first insulating layer 42 is disposed on the substrate 40, and the first insulating layer 42 covers the boundary area of the first metal bonding pad 41, thereby forming a cylindrical groove on the upper surface of the first bonding pad 41. Formed on. A first contact pad 43 is disposed on the first metal bonding pad 41, and the first contact pad protrudes from the first insulating layer 42. Due to the cylindrical groove, the first contact pad 43 has a raised edge. Finally, solder bumps 44 are formed on the first contact pads 43. The height Hpr of the solder bump 44 depends on the diameter Dpr of the first contact pad 43, and is typically about 0.3 times this diameter Dpr. The configurations shown in FIGS. 1a and 1b are usually intermediates. In this example, it is assumed that this configuration is part of a die with electronic circuitry.

電子デバイス60を完成するために、このダイが、サポート基板上にフリップチップ装着されている。この従来技術であるサポート基板の一部を、図2に示す。この図2は、図1aの部分と、これと同一の鏡像反転させた部分とが、互いにはんだ付けされた構造を示す。鏡像反転された前記部分は他の(第2)基板50を有し、この基板50はその第2表面上に第2金属接着パッド51を有する。基板50の下には第2絶縁層52が配置され、この第2絶縁層もまた、第2金属接着パッド51の境界域を覆い、これにより、円柱状の溝を第2接着パッド51の下面上に形成する。第2金属接着パッド51の下には、第2接点パッド53が配置され、この第2接点パッド自体は前記第2絶縁層52から突出している。円柱状の溝のために、第2接点パッド53は、隆起したエッジを有する。鏡像反転された部分では別のはんだバンプ44が省略されている。その理由は、はんだが既に第1接点パッド43上に存在している為である。両部分が互いにはんだ付けされると、第1接点パッド43及び第2接点パッド53は、はんだの表面張力によって互いに吸引される。図2は、2つの部分が接合されることにより、いわゆるスタンドオフ距離Xpr、すなわち接点パッド43及び53間の距離が得られることを示している。このスタンドオフ距離Xprも、第1接点パッド43の直径Dprに依存し、このスタンドオフ距離は前記直径Dprの約0.15倍である。本例では、第1接点パッド43及び第2接点パッド53の直径は同一であると仮定している。直径が異なる場合には、他の結果が得られること勿論である。   To complete the electronic device 60, the die is flip chip mounted on a support substrate. A portion of this prior art support substrate is shown in FIG. This FIG. 2 shows the structure of FIG. 1a and the same mirror-inverted part soldered together. The mirror-inverted portion has another (second) substrate 50, which has a second metal bond pad 51 on its second surface. A second insulating layer 52 is disposed under the substrate 50, and the second insulating layer also covers the boundary area of the second metal bonding pad 51, thereby forming a cylindrical groove on the lower surface of the second bonding pad 51. Form on. A second contact pad 53 is disposed under the second metal adhesive pad 51, and the second contact pad itself protrudes from the second insulating layer 52. Due to the cylindrical groove, the second contact pad 53 has a raised edge. Another solder bump 44 is omitted in the mirror-inverted part. The reason is that the solder is already present on the first contact pad 43. When both parts are soldered to each other, the first contact pad 43 and the second contact pad 53 are attracted to each other by the surface tension of the solder. FIG. 2 shows that by joining the two parts a so-called standoff distance Xpr, ie the distance between the contact pads 43 and 53, is obtained. The standoff distance Xpr also depends on the diameter Dpr of the first contact pad 43, and the standoff distance is about 0.15 times the diameter Dpr. In this example, it is assumed that the diameters of the first contact pad 43 and the second contact pad 53 are the same. Of course, other results can be obtained if the diameters are different.

電子デバイスの寸法を最小化する傾向に合わせて、前記スタンドオフ距離Xprを最小化する努力も払われている。しかし、接点パッドはある寸法を有さなければならないので、スタンドオフ距離もまた、ある寸法を有する。   Efforts have also been made to minimize the standoff distance Xpr in keeping with the trend of minimizing the size of the electronic device. However, since the contact pads must have certain dimensions, the standoff distance also has certain dimensions.

発明の目的及び概要OBJECT AND SUMMARY OF THE INVENTION

本発明の目的は、スタンドオフ距離を0又はほぼ0とする解法策を提供することにある。   An object of the present invention is to provide a solution in which the standoff distance is zero or almost zero.

この目的は、前記第1表面に対する前記第1接点パッドの最大平面伸張長さが20μmを超えないようにした前述した種類の基板によって達成される。驚いたことに、第1接点パッドの寸法が0である場合(この場合は勿論無意味である)だけでなく、ある値、すなわち20μmを超えない場合においても、スタンドオフ距離を0又はほぼ0とすることができることを確かめた。図5の線図は、上述した効果を示す。この線図は、旧来の研究による、はんだバンプの高さHpr(一点鎖線)と、スタンドオフ距離Xpr(破線)とをパッドの直径Dの関数として示す。この線図から容易に理解しうるように、はんだバンプの高さHprは、パッドの直径Dに著しく依存し、パッドの直径Dの約0.3倍である。旧来の研究によれば、スタンドオフ距離Xprに対しても同様な(線形の)効果を確かめた。このスタンドオフ距離Xprは、パッドの直径Dの約0.15倍である(破線)。しかし、より最近の研究によれば驚いたことに、第1接点パッドが20μmを超えない場合に、スタンドオフ距離Xinを0又はほぼ0にしうることを確かめた(実線)。パッドの直径を20μmよりも小さくした場合、ISB処理によって得られたはんだは、重ね合わせた接点パッドの周囲に配置され、従って、はんだはスタンドオフ距離を増大させることに寄与しない。   This object is achieved by a substrate of the kind described above, in which the maximum planar extension of the first contact pad relative to the first surface does not exceed 20 μm. Surprisingly, the standoff distance is zero or almost zero not only if the dimension of the first contact pad is zero (in this case, of course, meaningless) but also if it does not exceed a certain value, ie 20 μm. I confirmed that I could do it. The diagram of FIG. 5 shows the effect described above. This diagram shows the height Hpr of the solder bumps (dashed-dotted line) and the standoff distance Xpr (dashed line) as a function of the diameter D of the pad according to previous studies. As can be easily understood from this diagram, the height Hpr of the solder bumps is significantly dependent on the diameter D of the pad, which is about 0.3 times the diameter D of the pad. Previous studies have shown similar (linear) effects for standoff distance Xpr. This standoff distance Xpr is about 0.15 times the diameter D of the pad (dashed line). However, more recent studies have surprisingly found that the standoff distance Xin can be zero or nearly zero if the first contact pad does not exceed 20 μm (solid line). If the diameter of the pad is made smaller than 20 μm, the solder obtained by the ISB process is placed around the superimposed contact pads, so the solder does not contribute to increasing the standoff distance.

これらの結果は、非常に小さい電子デバイスを製造するのに有利に用いることができる。このことは特に、今日多量に必要であるいわゆる無線周波識別(RFID)タグにとって都合良いことである。本発明によれば、比較的容易で、従って廉価なUBM及びISB処理を用いることにより、アセンブリの高さを極めて低くしてこれらのタグを形成することができる。   These results can be advantageously used to produce very small electronic devices. This is particularly advantageous for so-called radio frequency identification (RFID) tags, which are needed today in large quantities. According to the present invention, these tags can be formed with an extremely low assembly height by using relatively easy and therefore inexpensive UBM and ISB processes.

「スタンドオフ距離が0」の具体的な数値は、接点パッドの寸法だけでなく、それらの表面状態にも依存することに留意する必要がある。従って、表面をきめ細かい構造にすることにより、表面を粗くした場合よりもスタンドオフ距離を小さくすることができる。更に、はんだ付け処理は小さな力効果を用いて、又はいかなる力効果も用いずに実行することができる。この力効果によってもスタンドオフ距離の値に影響を及ぼす。   It should be noted that the specific numerical value of "the standoff distance is 0" depends not only on the size of the contact pads but also on their surface condition. Therefore, by making the surface finer, the standoff distance can be made smaller than in the case where the surface is roughened. Furthermore, the soldering process can be performed with a small force effect or without any force effect. This force effect also affects the standoff distance value.

本発明の技術用語である「スタンドオフ距離」は、接点間の距離を表すものである為、一般的には前記基板の表面から突出しているUBMの場合、第1基板及び第2基板間にはある距離が存在する。従って、基板間の距離はUBM層の厚みにより影響され、接続部材であるUBM層の厚みの合計(実際にはミクロンのオーダーである)より小さくすることはできない。従って、本発明の基板によって形成される電子デバイスには、通常は、既知の技術に従ってアンダーフィル処理が行われる。   The term "standoff distance", which is a technical term of the present invention, represents the distance between the contacts, and therefore, in the case of UBM generally projecting from the surface of the substrate, the distance between the first substrate and the second substrate There is a certain distance. Therefore, the distance between the substrates is influenced by the thickness of the UBM layer and can not be smaller than the total thickness of the connecting member UBM layers (which is actually on the order of microns). Thus, the electronic devices formed by the substrate of the present invention are usually underfilled in accordance with known techniques.

前記第1表面に対する前記第1接点パッドの最小平面伸張長さは5μmより短くならないようにするのが有利である。接点パッドを容易に製造するためには、これら接点パッドは少なくともある程度の寸法を有する必要があることを確かめた。5μmから20μmまでの距離範囲は、特にUBM及びISB処理において有利な範囲である。接点パッドの形成前に既に、例えば無電解NiAuが7μmまでの寸法でパッド上に実装されているが、この寸法は、「物理的な」下限として解釈されるべきではないこと勿論である。近い将来、より小さいNiAu接点パッドを製造することができる可能性がある。しかしながら、これらの小さな寸法は、この処理に使われている浴に、新たな要求を課す。従って、パッド直径に対する「現実的な」下限値は、5μmであると考えられる。   Advantageously, the minimum planar extension of the first contact pad relative to the first surface is not shorter than 5 μm. It has been found that in order to easily manufacture the contact pads, these contact pads need to have at least some dimensions. A distance range of 5 μm to 20 μm is an advantageous range especially in UBM and ISB processing. Although, for example, electroless NiAu is already mounted on the pads with dimensions up to 7 μm before the formation of the contact pads, it is of course that this dimension should not be interpreted as a “physical” lower limit. In the near future, it may be possible to produce smaller NiAu contact pads. However, these small dimensions impose new requirements on the baths used in this process. Thus, the "realistic" lower limit for the pad diameter is considered to be 5 μm.

更に、第1接点パッドが隆起エッジを有するのが有利である。はんだを接点パッド上に設ける場合、このはんだが接点パッドの金属と接する個所に、金属間化合物が形成される。これらの金属間化合物は、スタンドオフ距離を0にするのを妨げる。その理由は、関連部分を「互いに吸引する」傾向が、必要な程度には強くない為である。隆起エッジがある場合、これらの金属間化合物は、主に中央に、すなわち接点パッドの溝に形成される。従って、これらの金属間化合物は、本質的に2つの接点パッドの密接な接近を妨げることはない。接点パッド、特に第1及び第2基板の表面から突出している隆起エッジを有する接点パッドは、特に、スタンドオフ距離が0の場合に顕著である追加の利点をもたらす。この場合、表面全体が接点となるのではなく、一部のみに接点が存在し、このことは、接点パッドのスタンドオフ距離を0にする上で役立つこと明らかである。   Furthermore, it is advantageous for the first contact pad to have a raised edge. When the solder is provided on the contact pad, an intermetallic compound is formed where the solder contacts the metal of the contact pad. These intermetallic compounds prevent the standoff distance from becoming zero. The reason is that the tendency to "suck together" the relevant parts is not as strong as necessary. If there are raised edges, these intermetallic compounds are mainly formed in the center, ie in the grooves of the contact pads. Thus, these intermetallic compounds do not essentially prevent the close proximity of the two contact pads. Contact pads, in particular contact pads having raised edges projecting from the surfaces of the first and second substrates, offer an additional advantage which is particularly noticeable when the standoff distance is zero. In this case, it is apparent that the entire surface is not a contact, but only a part of the contact is present, which helps to make the standoff distance of the contact pad zero.

本発明による更に他の好適な解決策は、前記第1接点パッドと前記第1表面との間に金属接着パッドが配置され、この金属接着パッドはその境界域において絶縁層によって部分的に覆われており、前記第1接点パッドはこの絶縁層から突出している基板にある。この構造は、例えばUBM処理の結果であり、その取り扱いは比較的容易である。それ故、上述した基板を製造するために要求される技術的及び経済的努力は、極めて低い。ここで、本発明はUBMに限定されないことを記述しておく。   Yet another preferred solution according to the invention places a metal bond pad between the first contact pad and the first surface, the metal bond pad being partially covered by an insulating layer in its interface area. The first contact pads are on the substrate projecting from the insulating layer. This structure is, for example, the result of UBM processing, and its handling is relatively easy. Therefore, the technical and economic effort required to manufacture the above mentioned substrates is extremely low. It is noted here that the present invention is not limited to UBM.

基板は第1接点パッド上にはんだバンプを有するようにするのが有利である。その理由は、この場合、第1基板は、第2金属接点パッドをも有する第2基板にはんだ付けされるべき準備ができている為である。はんだバンプは、ISB処理を利用して製造するのが好ましいが、これに限定されるものではない。上述したISBに代わるものとしてウェーブはんだ付けがあり、このはんだ付けも、本発明に用いることができる。他の適用可能な技術は、ステンシル印刷及びめっき処理であるが、これらは双方とも、ISBと比較して高価である。また、はんだ付けは、アンダーバンプメタライゼーション処理に依存しない点に留意すべきである。はんだ付けは、むしろどのような接点パッドに対しても達成することができる。   Advantageously, the substrate has solder bumps on the first contact pads. The reason is that in this case the first substrate is ready to be soldered to the second substrate which also has a second metal contact pad. Solder bumps are preferably manufactured using an ISB process, but are not limited thereto. Wave soldering is an alternative to the above-described ISB, and this soldering can also be used in the present invention. Other applicable techniques are stencil printing and plating processes, both of which are expensive compared to ISB. Also, it should be noted that the soldering does not depend on the under bump metallization process. Soldering can rather be achieved for any contact pad.

更に、はんだバンプは低融点はんだをもって構成するのが有利である。従って、基板は、紙又はプラスチックのような、感温材料をもって構成することができる。従来技術によれば、100℃よりも低い温度で溶融するはんだが開示されている。この点に対しては、2004年5月25日付で特許された、“Solder compositions for attaching a die to a substrate”の名称の米国特許US6,740,544号明細書、特に表1を参照しうる。更に、この米国特許明細書は、いわゆる「はんだ剤」によって、はんだの融点を上げる可能性を開示している。この米国特許は参考のために記載したものである。上述した方法は、周囲温度が高い条件下でデバイスを作動させる場合に特に有利である。   Furthermore, it is advantageous to construct the solder bumps with a low melting point solder. Thus, the substrate can be comprised of a temperature sensitive material, such as paper or plastic. According to the prior art, solders are disclosed which melt at temperatures below 100.degree. In this regard, reference may be made to US Pat. No. 6,740,544 entitled “Solder compositions for attaching a die to a substrate” patented on May 25, 2004, in particular Table 1. . Furthermore, this patent discloses the possibility of raising the melting point of the solder by means of so-called "solder agents". This US patent is described for reference. The method described above is particularly advantageous when operating the device under conditions of high ambient temperature.

更に、第1金属接点パッドを互いに隣接させて電気接点を形成するのが有利である。好ましくは5μm〜20μmの寸法を有する1つの接点パッドが、ある値の電流のみを流すようにしうる。ある設計の電子回路から生じる必要な電流がこのある値の制限を超える場合には、互いにより隣接させた第1金属接点パッドから成る電気接点を形成することができる。このようにすることにより、スタンドオフ距離を増大させることなく、電気接点がいかなる所望の電流をも流しうるようにしうる。この点で、接点パッドは必ずしも互いに接近させて配置する必要はないことに注意すべきである。また、これらの金属接点パッド間に、他の電気接点の金属接点パッドを存在させることもできる。   Furthermore, it is advantageous to bring the first metal contact pads adjacent to one another to form an electrical contact. One contact pad, preferably having dimensions of 5 [mu] m to 20 [mu] m, may be adapted to carry only a certain value of current. If the required current arising from an electronic circuit of a design exceeds this certain value limit, it is possible to form an electrical contact consisting of first metal contact pads that are more adjacent to one another. This may allow the electrical contacts to carry any desired current without increasing the standoff distance. It should be noted in this respect that the contact pads do not necessarily have to be arranged close to one another. Also, metal contact pads of other electrical contacts can be present between these metal contact pads.

本発明の目的は更に、第1金属接点パッドを有する第1表面を具えた第1基板と、第2金属接点パッドを有する第2表面を具えた第2基板とが設けられた電子デバイスであって、前記第1接点パッドと前記第2接点パッドとが互いにはんだ付けされており、第1基板上の第1接点パッドと、これに対応する第2基板上の第2接点パッドとが互いに対向している当該電子デバイスにおいて、前記第1及び第2表面に対する前記第1及び第2接点パッドの最大平面伸張長さが20μmを超えないようになっている電子デバイスによって達成される。   The object of the present invention is also an electronic device provided with a first substrate with a first surface with a first metal contact pad and a second substrate with a second surface with a second metal contact pad. The first contact pad and the second contact pad are soldered to each other, and the first contact pad on the first substrate and the corresponding second contact pad on the second substrate face each other. In the electronic device, the maximum planar extension length of the first and second contact pads relative to the first and second surfaces is achieved by the electronic device not to exceed 20 μm.

本発明の目的はまた、アンダーバンプメタライゼーション処理により、第1金属接点パッドを有する第1表面を具えた基板を製造する基板の製造方法において、前記第1表面に対する前記第1接点パッドの最大平面伸張長さが20μmを超えないようにする基板の製造方法により達成される。   An object of the present invention is also a method of manufacturing a substrate for manufacturing a substrate provided with a first surface having a first metal contact pad by an under bump metallization process, wherein the largest plane of said first contact pad with respect to said first surface It is achieved by a method of manufacturing a substrate in which the extension length does not exceed 20 μm.

本発明の基板の説明で述べた利点及び種々の例は、本発明のデバイス及び方法においても有効である点に留意すべきである。従って、本発明のデバイス及び方法に対する例及び利点の説明は省略する。   It should be noted that the advantages and various examples mentioned in the description of the substrate of the invention are also valid in the device and method of the invention. Accordingly, descriptions of examples and advantages for the devices and methods of the present invention are omitted.

本発明の上述した観点及びその他の観点は、以下の実施例の説明から明らかとなるであろう。以下に説明する本発明の実施例は、例示にすぎないものである。   These and other aspects of the invention will be apparent from the following description of the embodiments. The embodiments of the present invention described below are for illustration only.

図3aは、本発明による基板10の断面図を示し、図3bは、これに対応する頂面図を示す。基板10は、大きな電子回路の一部とすることができ、この場合、図1a及び図1bは、通常、この一部を多数有するこのような電子回路の切り取り部のみを示すものである。   FIG. 3a shows a cross-sectional view of a substrate 10 according to the invention, and FIG. 3b a corresponding top view. The substrate 10 can be part of a large electronic circuit, in which case FIGS. 1a and 1b only show the cutout of such an electronic circuit which usually has a large number of such parts.

前記基板10は、その第1表面上に第1金属接着パッド11(例えばCu、Ni、Co、Nb等から成る)を具える。この基板10の上には、第1絶縁層12が配置され、この第1絶縁層は第1金属接着パッド11の境界域をも覆っている。この第1絶縁層12は、4つの円柱状の溝を第1接着パッド11の上面上に形成している。第1金属接着パッド11上でこれらの溝内に、4つの第1接点パッド13a〜13dが配置され、これらの第1接点パッドは、前記第1絶縁層12から突出している。これらの円柱状の溝の為に、第1接点パッド13a〜13dは、隆起したエッジを有する。最後に、第1接点パッド13a〜13d上に、はんだバンプ14a〜14dが形成されている。はんだバンプ14a〜14dの高さHinは、第1接点パッド13a〜13dの直径Dinに依存し、前記直径Dinの約0.3倍である。図1a及び1bに示されている構成は、通常、中間生成体である。本例では、この構成を、電子回路を有するダイの一部であるものとする。   The substrate 10 comprises a first metal bond pad 11 (for example made of Cu, Ni, Co, Nb, etc.) on its first surface. A first insulating layer 12 is disposed on the substrate 10, and the first insulating layer also covers the boundary area of the first metal bonding pad 11. The first insulating layer 12 has four cylindrical grooves formed on the top surface of the first adhesive pad 11. Four first contact pads 13 a-13 d are arranged in these grooves on the first metal bonding pads 11, these first contact pads projecting from the first insulating layer 12. Because of these cylindrical grooves, the first contact pads 13a-13d have raised edges. Finally, solder bumps 14a to 14d are formed on the first contact pads 13a to 13d. The height Hin of the solder bumps 14a-14d depends on the diameter Din of the first contact pads 13a-13d and is about 0.3 times the diameter Din. The configurations shown in FIGS. 1a and 1b are usually intermediates. In this example, this configuration is part of a die with electronic circuitry.

電子デバイス30を完成するために、このダイを、サポート基板上にフリップチップ装着する。このサポート基板の一部を、図4に示してある。図4は、図3aの部分と、これと同一の鏡像反転された部分とが、互いにはんだ付けされた構成を示している。この鏡像反転された部分は第2基板20を有し、この第2基板はその第2表面上に第2金属接着パッド21を有している。第2基板20の下側には第2絶縁層22が配置され、この第2絶縁層も第2金属接着パッド21の境界域を覆っている。この鏡像反転された部分でも、第2接着パッド21の下側面には円柱状の溝が形成されている。第2金属接着パッド21の下側でこれらの溝内には、第2接点パッド23a〜23dが形成され(断面図である為、第2接点パッド23c及び23dは図4に図示されていない)、これら第2接点パッドは、前記第2絶縁層22から突出している。これらの円柱状の溝のために、第2接点パッド23a〜23dは、隆起したエッジを有する。別のはんだバンプ24a〜24dは、既に第1接点パッド13a〜13d上にはんだが存在するので省略されている。図3aの部分と、鏡像反転された部分とを互いにはんだ付けすると、第1接点パッド13a〜13dと、第2接点パッド23a〜23dとが、はんだバンプ14a〜14dの表面張力によって、互いに吸引される。図4は、これら2つの部分が接合される結果、スタンドオフ距離、すなわち接点パッド13a〜13dと接点パッド23a〜23dとの間の距離がXinとなることを示している。スタンドオフ距離Xinがパッド直径Dinに直線的に著しく依存するという旧来の見解に反して、図4(及び図5)は、驚いたことに、接点パッド13a〜13d及び接点パッド23a〜23dの直径が0より大きいにも拘らず、スタンドオフ距離Xinが0又はほぼ0であることを示している。   To complete the electronic device 30, this die is flip chip mounted on a support substrate. A portion of this support substrate is shown in FIG. FIG. 4 shows a configuration in which the part of FIG. 3a and the same mirror-inverted part are soldered to one another. The mirror-inverted portion has a second substrate 20, which has a second metal bond pad 21 on its second surface. A second insulating layer 22 is disposed below the second substrate 20, and the second insulating layer also covers the boundary area of the second metal bonding pad 21. A cylindrical groove is formed on the lower surface of the second adhesive pad 21 even in the mirror-inverted portion. Second contact pads 23a-23d are formed in these grooves below the second metal adhesive pad 21 (the second contact pads 23c and 23d are not shown in FIG. 4 because they are cross sectional views). The second contact pads protrude from the second insulating layer 22. Because of these cylindrical grooves, the second contact pads 23a-23d have raised edges. The other solder bumps 24a-24d are omitted because solder is already present on the first contact pads 13a-13d. When the portion of FIG. 3a and the mirror-inverted portion are soldered to each other, the first contact pads 13a to 13d and the second contact pads 23a to 23d are attracted to each other by the surface tension of the solder bumps 14a to 14d. Ru. FIG. 4 shows that as a result of these two parts being joined, the standoff distance, ie the distance between the contact pads 13a-13d and the contact pads 23a-23d, is Xin. Contrary to the old view that the standoff distance Xin is significantly dependent linearly on the pad diameter Din, FIG. 4 (and FIG. 5) surprisingly shows the diameter of the contact pads 13a-13d and the contact pads 23a-23d. Indicates that the standoff distance Xin is zero or almost zero, even though is greater than zero.

はんだバンプ14a〜14d及び44の高さは、パッドの直径Dinだけに依存するのではなく、接点パッド13a〜13d、14a〜14d、43及び44の形状にも依存する。図6は、多角形形状、より正確に言うと五角形形状とした第1接点パッド73の一例を示す。この第1接点パッド73は、一例であることに留意しなければならない。従って、第1接点パッド73に対しては種々の形状が考えられ、例えば、三角形、方形(特に正方形)、六角形及び八角形が考えられる。更にまた、例えば、楕円形、長円形、インゲン豆形の形状が可能である。図6は、このような第1接点パッド73が最大平面伸張長さDinと最小平面伸張長さdinを有することを示し、これらの長さは、20μm〜5μmの範囲とするのが好ましい。   The heights of the solder bumps 14a-14d and 44 depend not only on the pad diameter Din, but also on the shapes of the contact pads 13a to 13d, 14a to 14d, 43 and 44. FIG. 6 shows an example of a first contact pad 73 which has a polygonal shape, more precisely a pentagonal shape. It should be noted that this first contact pad 73 is an example. Therefore, various shapes can be considered for the first contact pad 73, and for example, triangles, squares (especially squares), hexagons and octagons can be considered. Furthermore, for example, oval, oval and kidney-shaped shapes are possible. FIG. 6 shows that such first contact pads 73 have a maximum planar extension length Din and a minimum planar extension length din, which are preferably in the range of 20 μm to 5 μm.

複数の第1接点パッド13a〜13dが1つの電気接点を形成することは、必須ではないことに留意すべきである。本発明は実際には、1つの第1接点パッド13a〜13dが電気接点を形成する場合にも適用しうる。更にまた、第1接点パッド13a〜13dを、UBM処理によって製造するか又はUBMのように形成することは、必須ではない。むしろ、第1接点パッド13a〜13dを、第1基板10の第1表面上の平坦体にしたり、第1基板内に埋め込んだりしたりすることができる。   It should be noted that it is not essential for the plurality of first contact pads 13a-13d to form one electrical contact. The present invention is practically applicable to the case where one first contact pad 13a-13d forms an electrical contact. Furthermore, it is not essential for the first contact pads 13a-13d to be manufactured by UBM processing or to be formed like a UBM. Rather, the first contact pads 13a-13d can be planarized on the first surface of the first substrate 10 or embedded in the first substrate.

更に、上述した実施例は本発明を制限するものではなく、当業者は、請求の範囲に規定された本発明の範囲を逸脱することなく、多くの変形を施すことができることに留意すべきである。複数の手段を列挙しているデバイスの請求項においては、これらの手段の幾つかを1つのハードウェア装置により構成することができる。互いに異なる従属請求項に述べた手段は、これらの手段を組み合わせて有利に利用できないということを意味するものではない。   Furthermore, it should be noted that the above-mentioned embodiments do not limit the present invention, and a person skilled in the art can make many modifications without departing from the scope of the present invention defined in the claims. is there. In the device claim enumerating several means, several of these means can be embodied by one hardware device. The measures recited in mutually different dependent claims do not indicate that a combination of these measures can not be used to advantage.

図1aは、従来技術の基板の断面図である。FIG. 1a is a cross-sectional view of a prior art substrate. 図1bは、図1aの基板の頂面図である。FIG. 1b is a top view of the substrate of FIG. 1a. 図2は、従来技術の電子デバイスの断面図である。FIG. 2 is a cross-sectional view of a prior art electronic device. 図3aは、本発明の基板の断面図である。FIG. 3a is a cross-sectional view of the substrate of the present invention. 図3bは、図3aの基板の頂面図である。Figure 3b is a top view of the substrate of Figure 3a. 図4は、本発明の電子デバイスの断面図である。FIG. 4 is a cross-sectional view of the electronic device of the present invention. 図5は、パッドの直径及びバンプ高さ間の関係と、パッドの直径及びスタンドオフ距離間の関係とを示す線図である。FIG. 5 is a diagram showing the relationship between pad diameter and bump height and the relationship between pad diameter and standoff distance. 図6は、五角形の形態の接点パッドを示す線図である。FIG. 6 is a diagram showing a contact pad in the form of a pentagon.

Claims (13)

絶縁領域によって互いに分離された複数の第1金属接点パッドを有する第1表面を具える基板であって、これら第1接点パッドは、他の基板の第2表面上の第2接点パッドにはんだ付けされるべきものであり、前記基板上の前記第1接点パッドとこれに対応する前記他の基板上の第2接点パッドとが互いに対向するようになっている当該基板において、前記第1表面に対する前記第1接点パッドの最大平面伸張長さが20μmを超えないようになっている基板。   A substrate comprising a first surface having a plurality of first metal contact pads separated from one another by an insulating region, wherein the first contact pads are soldered to the second contact pads on the second surface of the other substrate The first contact pad on the substrate and the corresponding second contact pad on the other substrate are opposed to each other with respect to the first surface. A substrate in which the maximum planar extension length of the first contact pad does not exceed 20 μm. 請求項1に記載の基板において、前記第1表面に対する前記第1接点パッドの最小平面伸張長さが5μmより短くならないようにした基板。   The substrate according to claim 1, wherein the minimum planar extension length of the first contact pad with respect to the first surface is not shorter than 5 μm. 請求項1に記載の基板において、前記第1接点パッドが隆起エッジを有している基板。   The substrate of claim 1, wherein the first contact pad comprises a raised edge. 請求項1に記載の基板において、前記第1接点パッドと前記第1表面との間に金属接着パッドが配置され、この金属接着パッドはその境界域において絶縁層によって部分的に覆われており、前記第1接点パッドはこの絶縁層から突出している基板。   A substrate according to claim 1, wherein a metal bond pad is arranged between the first contact pad and the first surface, the metal bond pad being partially covered by an insulating layer in its border area, The first contact pad protrudes from the insulating layer. 請求項1に記載の基板において、前記第1接点パッド上にはんだバンプを具えている基板。   The substrate of claim 1 comprising solder bumps on the first contact pads. 請求項1に記載の基板において、前記はんだバンプが、低融点はんだから成っている基板。   The substrate according to claim 1, wherein the solder bumps comprise low melting point solder. 請求項1〜6のいずれか一項に記載の基板において、前記第1金属接点パッドが、互いに隣接して電気接点を形成している基板。   7. The substrate according to any one of the preceding claims, wherein the first metal contact pads are adjacent to one another to form electrical contacts. 第1金属接点パッドを有する第1表面を具えた第1基板と、第2金属接点パッドを有する第2表面を具えた第2基板とが設けられた電子デバイスであって、前記第1接点パッドと前記第2接点パッドとが互いにはんだ付けされており、第1基板上の第1接点パッドと、これに対応する第2基板上の第2接点パッドとが互いに対向している当該電子デバイスにおいて、前記第1及び第2表面に対する前記第1及び第2接点パッドの最大平面伸張長さが20μmを超えないようになっている電子デバイス。   An electronic device provided with a first substrate comprising a first surface having a first metal contact pad and a second substrate comprising a second surface having a second metal contact pad, said first contact pad And the second contact pad are soldered to each other, wherein the first contact pad on the first substrate and the corresponding second contact pad on the second substrate face each other. Electronic device, wherein the maximum planar extension length of the first and second contact pads with respect to the first and second surfaces does not exceed 20 μm. アンダーバンプメタライゼーション処理により、第1金属接点パッドを有する第1表面を具えた基板を製造する基板の製造方法において、前記第1表面に対する前記第1接点パッドの最大平面伸張長さが20μmを超えないようにする基板の製造方法。   A method of manufacturing a substrate for manufacturing a substrate comprising a first surface having a first metal contact pad by underbump metallization, wherein the maximum planar extension length of said first contact pad to said first surface exceeds 20 μm. How to make the substrate not to. 請求項9に記載の基板の製造方法において、前記第1表面に対する前記第1接点パッドの最小平面伸張長さが5μmより短くならないようにする基板の製造方法。   The method of manufacturing a substrate according to claim 9, wherein the minimum planar extension length of the first contact pad with respect to the first surface is not shorter than 5 μm. 請求項9に記載の基板の製造方法において、前記第1接点パッド上のはんだバンプを、はんだ浸漬バンピング処理を用いて製造する基板の製造方法。   10. The method of manufacturing a substrate according to claim 9, wherein the solder bumps on the first contact pads are manufactured using a solder dip bumping process. 請求項9に記載の基板の製造方法において、前記はんだバンプを製造するのに、低融点はんだを用いる基板の製造方法。   10. The method of manufacturing a substrate according to claim 9, wherein a low melting point solder is used to manufacture the solder bumps. 請求項9〜12のいずれか一項に記載の基板の製造方法において、前記第1金属接点パッドを互いに隣接させて電気接点を形成する基板の製造方法。   The method of manufacturing a substrate according to any one of claims 9 to 12, wherein the first metal contact pads are adjacent to each other to form an electrical contact.
JP2007537448A 2004-10-20 2005-10-18 Substrate having electric contact and method of manufacturing the same Withdrawn JP2008517475A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04105175 2004-10-20
PCT/IB2005/053408 WO2006043235A1 (en) 2004-10-20 2005-10-18 Substrate with electric contacts and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008517475A true JP2008517475A (en) 2008-05-22

Family

ID=35520813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537448A Withdrawn JP2008517475A (en) 2004-10-20 2005-10-18 Substrate having electric contact and method of manufacturing the same

Country Status (4)

Country Link
EP (1) EP1805799A1 (en)
JP (1) JP2008517475A (en)
CN (1) CN101044619A (en)
WO (1) WO2006043235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302539A (en) * 2008-06-16 2009-12-24 Intel Corp Processing method for low profile solder grid array, device, and computer system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754579B (en) * 2009-11-16 2012-02-22 华为终端有限公司 Castle-type module and terminal equipment
US8809123B2 (en) * 2012-06-05 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Three dimensional integrated circuit structures and hybrid bonding methods for semiconductor wafers
CN103531562B (en) * 2012-07-04 2016-07-06 颀邦科技股份有限公司 Semiconductor package and lead frame thereof
CN104681530B (en) * 2013-11-26 2017-09-26 日月光半导体制造股份有限公司 Semiconductor structure and its manufacture method
CN106252247B (en) * 2016-09-05 2019-07-05 江苏纳沛斯半导体有限公司 Semiconductor structure and forming method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0001918D0 (en) * 2000-01-27 2000-03-22 Marconi Caswell Ltd Flip-chip bonding arrangement
US6596618B1 (en) * 2000-12-08 2003-07-22 Altera Corporation Increased solder-bump height for improved flip-chip bonding and reliability
US20020093106A1 (en) * 2001-01-17 2002-07-18 Ashok Krishnamoorthy Bonding pad for flip-chip fabrication
US6862378B2 (en) * 2002-10-24 2005-03-01 Triquint Technology Holding Co. Silicon-based high speed optical wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302539A (en) * 2008-06-16 2009-12-24 Intel Corp Processing method for low profile solder grid array, device, and computer system
JP2012151487A (en) * 2008-06-16 2012-08-09 Intel Corp Processing method and apparatus for flat solder grid array and computer system

Also Published As

Publication number Publication date
EP1805799A1 (en) 2007-07-11
WO2006043235A1 (en) 2006-04-27
CN101044619A (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US5633204A (en) Method and apparatus for forming bump structure used for flip-chip mounting, the bump structure and the flip-chip
JP4618260B2 (en) Conductor pattern forming method, semiconductor device manufacturing method, and semiconductor device
US8461679B2 (en) Method for fabricating circuit component
JP4119866B2 (en) Semiconductor device
KR100772920B1 (en) Semiconductor chip with solder bump and fabrication method thereof
US8237276B2 (en) Bump structure and fabrication method thereof
US20100230810A1 (en) Flip chip semiconductor package and fabrication method thereof
US20090289360A1 (en) Workpiece contact pads with elevated ring for restricting horizontal movement of terminals of ic during pressing
JP5208500B2 (en) Assembling method and assembly produced by this method
US10256207B2 (en) Clip-bonded semiconductor chip package using metal bumps and method for manufacturing the package
US20070114662A1 (en) Interconnecting element between semiconductor chip and circuit support and method
US20060022320A1 (en) Semiconductor device and manufacturing method thereof
US20050017376A1 (en) IC chip with improved pillar bumps
US7956472B2 (en) Packaging substrate having electrical connection structure and method for fabricating the same
KR20140043131A (en) Mounting structure and manufacturing method for same
JP2008517475A (en) Substrate having electric contact and method of manufacturing the same
JPH07142488A (en) Bump structure, formation thereof and flip-chip mounting structure
JP2008160158A (en) Semiconductor device
JP2012190939A (en) Semiconductor device and manufacturing method of the same
US9929115B2 (en) Device with optimized thermal characteristics
KR102222146B1 (en) Low-Cost Semiconductor package with metal structure
JP2005303176A (en) Semiconductor device and its manufacturing method
KR101009192B1 (en) Bump structure for semiconductor device and fabrication method thereof
TWI380425B (en) Fine pitch bump structure and its manufacturing process
JP2003007762A (en) Flip chip mounting method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090910